
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, AUGUST 2016 1

Keypoints Detection and Feature Extraction: A
Dynamic Genetic Programming Approach for

Evolving Rotation-invariant Texture Image
Descriptors

Harith Al-Sahaf, Member, IEEE, Mengjie Zhang, Senior Member, IEEE,
Ausama Al-Sahaf, Student Member, IEEE,and Mark Johnston, Member, IEEE

Abstract—The goodness of the features extracted from the
instances and the number of training instances are two key
components in machine learning, and building an effective model
is largely affected by these two factors. Acquiring a large number
of training instances is very expensive in some situations such
as in the medical domain. Designing a good feature set, on the
other hand, is very hard and often requires domain expertise.
In computer vision, image descriptors have emerged to auto-
mate feature detection and extraction; however, domain-expert
intervention is typically needed to develop these descriptors.
The aim of this paper is to utilise Genetic Programming to
automatically construct a rotation-invariant image descriptor by
synthesising a set of formulae using simple arithmetic operators
and first-order statistics, and determining the length of the
feature vector simultaneously using only two instances per class.
Using seven texture classification image datasets, the performance
of the proposed method is evaluated and compared against eight
domain-expert hand-crafted image descriptors. Quantitatively,
the proposed method has significantly outperformed, or achieved
comparable performance to, the competitor methods. Qualita-
tively, the analysis shows that the descriptors evolved by the
proposed method can be interpreted.

Index Terms—Genetic Programming, Classification, Image
Descriptor, Keypoint detection, Feature extraction.

I. INTRODUCTION

THE process of developing an image classifier requires an
appropriate set of features and a classification method.

The term feature in this paper refers to a measurable property
such as the number of pixels, or the average intensity value of a
specific region of the image. Finding appropriate features may
be more important than designing an effective classification
algorithm since, in many cases, this requires a domain-expert
[1], [2]. If the extracted features are informative, even a very
simple classification model, e.g., k-Nearest Neighbour, can
be sufficient to achieve good classification performance [3].
In order to construct a feature vector for an image, a set of
keypoints, i.e., regions of interest, need to be identified first.
An example of keypoint identification is using legs and wheels

H. Al-Sahaf, M. Zhang, and A. Al-Sahaf are with the School of Engi-
neering and Computer Science, Victoria University of Wellington, PO Box
600, Wellington 6140, New Zealand (e-mail: harith.al-sahaf@ecs.vuw.ac.nz;
mengjie.zhang@ecs.vuw.ac.nz; ausama.alahaf@gmail.com).

M. Johnston is with the Institute of Science and the Environment,
University of Worcester, Worcester, WR2 6AJ, United Kingdom (e-mail:
m.johnston@worc.ac.uk).

to discriminate between images where each is either a horse
or a vehicle. In texture images, some typical keypoints are
lines, corners, circles, and spots. Usually a domain-expert is
required to define those informative keypoints. The second
step is to detect those keypoints in an image, i.e., find
their corresponding pixel coordinates. Conventionally, this task
is performed manually where a domain-expert has to label
the coordinates of each keypoint in every image, which is
an expensive and time-consuming task. This has motivated
researchers to automate this task and numerous algorithms
have been proposed that aim at detecting a specific keypoint,
e.g., corners [4]–[6], edges [7], and ridges [8], or a set of
keypoints [9], [10]. The third step is to extract a value or
a set of values from a detected keypoint such as calculating
the average value of pixel intensities, contrast, homogeneity,
or correlation. Automating the second and third steps, and
combining them into a single model, is known as image
descriptor in computer vision and pattern recognition [11].
Developing image descriptors has attracted many researchers
and received increasing attention over the past few decades.
Examples of commonly used image descriptors are Gray-level
Co-occurrence Matrix (GLCM) [12], Local Binary Patterns
(LBP) [9], Scale-invariant Feature Transform (SIFT) [13],
Speeded-Up Robust Features (SURF) [14], KAZE Features
[15], and Fast Retina Keypoint (FREAK) [16]. Based on how
they operate, image descriptors can be at least categorised
into dense and sparse [11], [17]. Dense descriptors operate
in a pixel-by-pixel fashion such as LBP; whereas sparse
descriptors such as SIFT consider only some pixels or parts of
an image. Although the process of detecting those keypoints
and extracting features have been automated, the intervention
of a domain-expert is still required to perform the first step,
i.e., keypoint identification. Furthermore, how to automatically
detect those keypoints and what features can be extracted from
the detected keypoints are determined by a domain-expert (e.g.
GLCM and SURF). Another important issue is that some of
these descriptors are not robust to image variants such as
illumination, rotation, and scale. Conventional LBP is a typical
example that has been extended in order to handle illumination
and rotation.

The length of the feature vector extracted from an image is
often predetermined and static. For example, conventional LBP
produces a feature vector with length 2p where p is the number

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, AUGUST 2016 2

Algorithm 1 The GP Evolutionary Process
Input: T ,F , δ, β, γ . Terminal (T) and function (F) sets,

population size (δ), generations (β),
and ideal fitness (γ).

Output: ϑ . Best evolved program
1: i← 0 . The ith generation
2: λ← +∞ . Best fitness so far
3: ϑ← null . Best solution so far
4: Ξ0 ← GENERATE(T ,F , δ) . The initial population
5: repeat
6: for all ξ ∈ Ξi do
7: ∆ξ ← FITNESS(ξ) . Fitness of the current individual
8: if ∆ξ < λ then . A better fitness than so far
9: λ← ∆ξ

10: ϑ← ξ
11: end if
12: end for
13: Ξi+1 ← POPULATE(Ξi). Populating subsequent generation
14: i← i+ 1 . Increment the generations counter
15: until (i = β or λ = γ) . Check the termination criteria
16: return ϑ

of neighbouring pixels; whereas uniform LBP (LBPu2) [18]
generates a feature vector with length p(p−1)+3. Specifying
the length of the feature vector increases the number of
parameters required to be set. This task can be accomplished
empirically; however, computationally it can be a very expen-
sive task to perform [19].

Genetic Programming (GP) is a widely used Evolutionary
Computation (EC) technique that evolves (searches for) a
solution (a computer program), for a user defined prob-
lem via simulating the principles of natural selection and
survival of the fittest [20], [21]. Generally, EC techniques
start from a set/population of randomly generated candidate
solutions that will be improved gradually over a number
of cycles/generations. The process is guided using a fitness
measure that reflects the goodness of each individual in the
population to tackle the problem being solved. Algorithm 1
depicts the GP evolutionary process.

Since its introduction, GP has been used to tackle many
image-related problems such as feature extraction [22], [23],
classification [24], [25], object detection [26], [27], image
segmentation [28], [29], image registration [30], and image
processing [31]. Ebner and Zell [32] employed GP to auto-
matically evolve an interest point detector. A similar approach
was adopted by Trujillo and Olague [33] where GP is used
to synthesise an interest point detector. The preliminary work
of Trujillo and Olague was extended in [34] to improve the
performance of the evolved interest point detector through
considering the geometric stability and global separability of
the detected points. GP is employed by Olague and Trujillo
[35] to combine image operators, e.g., histogram normalisation
and Gaussian smoothing, that aim at detecting interest points
in an image. Following the same direction, Perez et al. [36]
utilised GP to construct image descriptors for detecting objects
in an image. Shao et al. [37] adopted a multi-objective
GP approach to combine image processing operators, e.g.,
Laplacian, and Gabor filters, for image classification. Using
GP to recognise human actions by evolving a spatio-temporal
descriptor is the main focus of Liu et al. [38].

Many of these works employ different image processing
techniques such as filtering, image derivatives, and convo-
lution. Moreover, many are designed to identify or detect
a specific type of keypoint, e.g., lines or corners. Non-EC
developed image descriptors, on the other hand, are designed
to detect a wide variety of keypoints. For example, LBP and
its variants are typical examples that have the potential to
detect lines, corners, spots, and edges. However, almost all
LBP-based image descriptors require careful design of how
to generate code at each pixel, and hence, a domain-expert
is needed to design mathematical formulae to accomplish this
task. Furthermore, changing one of the parameters, e.g., num-
ber of neighbouring pixels or radius, may require substantial
changes to those formulae.

In machine learning, it is well known that a sufficiently
large training dataset (in terms of the number of instances)
is required in order to achieve a good level of performance
[39]–[41]. However, acquiring a sufficiently large number of
labelled instances, where each instance has the corresponding
class label or labels if each instance comprises more than
one object, is costly or sometimes infeasible [40], [42]. The
medical domain is a typical example where often only a few
labelled instances are available mainly because an expert is
required to highlight the regions of interest, and such experts
are often very expensive to employ. Another key factor is that
using a large training data set imposes a heavy computational
load on the learning system to evolve or train a model [40].
Zhu et al. [43] investigated the trade-off between the complex-
ity and the size of the training data set on the model perfor-
mance to perform object detection in images. They observed
that increasing the training data can help, but the assumption
is that the added data must have correct regularisation (system
complexity) and treatment (preprocessing) of noisy instances.
In other words, additional data may degrade the performance
as it increases the possibility of noisy instances. In some of
our recent work [19], [44]–[46], we also observed that GP can
evolve a good keypoints detection or feature extraction model
using only a limited number of training instances. Both [19]1

and [46] are directly related to the work of this study. Although
the aim of the method proposed in [46] is to tackle the length
of the feature vector via introducing special nodes (expand
and switch) in the program representation, the experiments
are rather limited since only two datasets are used, and more
importantly, those datasets are rotation-free. Furthermore, we
have identified a major drawback of this method (more details
in Section II-A). The method in [19], on the other hand, has
successfully been designed to evolve rotation-invariant image
descriptors and extensively examined; however, the length of
the feature vector is static and a parameter tuning phase is
needed to determine this parameter. The methods in [44],
[45], and [46] were not able to cope with rotation as we
have observed in our experiments. Hence, this paper sub-
stantially extends those methods to evolve rotation-invariant
image descriptors, dynamically determining the length of the
feature vector, extensively evaluating the evolved descriptors,
and providing a deep analysis.

1The method proposed in [45] has been extended to handle rotation in [19].

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, AUGUST 2016 3

A. Goals

This paper aims at using GP to automate the process of
constructing a rotation-invariant image descriptor that detects
a set of automatically designed keypoints, i.e., the user does
not specify those keypoints (such as corners and edges), and
extracts informative features from those keypoints; simulta-
neously, the system automatically determines the length of
the feature vector. Motivated by the success of [19], a set
of simple arithmetic operators and first-order statistics (e.g.
mean and standard deviation) are automatically synthesised
as a set of formulae that form an image descriptor, i.e., an
evolved GP program. More importantly, this method does
not require human intervention to design the keypoints and
features; instead it uses a small sample (only two instances)
of each class to evolve a descriptor. Moreover, the length of
the feature vector is dynamic and will be determined during
the evolutionary process. Quantitatively, the performance of
an automatically constructed image descriptor by GP will be
compared to that of eight domain-expert designed descriptors
using ten commonly used machine learning classification
methods on seven image benchmarks for multi-class texture
classification. Those datasets are of varying difficulty, and
are comprised of a different number of classes and rotations.
Qualitatively, on the other hand, a constructed descriptor will
be closely examined to shed light on how the proposed method
can perform well. The following objectives will be investigated
in this study.

• Develop a new tree-based [21] GP program representation
that allows a node to have a dynamic number of children.

• Assess the evolved descriptors quantitatively and compare
them to eight domain-expert designed descriptors on
seven texture image benchmarks.

• Provide a qualitative assessment by investigating the
interpretability and other aspects of an evolved descriptor.

Note that the work of this paper is a substantial extension
to our recent works [46] and [19]. The method proposed in
this paper is specifically designed to effectively handle the
rotation variation and simultaneously determine the length
of the feature vector. Here, the fitness measure, program
representation (terminal and function sets), and experiment
design are newly developed or substantially extended to over-
come the limitations of the baseline methods ([46] and [19]).
Furthermore, the method proposed in this study is evaluated
both quantitatively and qualitatively.

B. Organisation

The remainder of the paper is organised as follows. The
background and a survey of related literature are briefly
discussed in Section II. Section III describes the proposed
method. Section IV presents the experiment design. The results
are presented and discussed in Section V. A descriptor evolved
by the proposed method is thoroughly examined in Section VI.
Section VII concludes this study and presents some directions
for future research.

(a) (b) (c)

Fig. 1. Illustration of the LBPp,r parameters (a) LBP8,1, (b) LBP4,2, and
(c) LBP8,2.

II. LITERATURE SURVEY

A brief background on the directly related work is provided
in the first part of this section. The second part discusses some
of the currently existing methods in the literature regarding GP
for keypoints detection, feature extraction, and classification.

A. Background

The methods proposed in [19], [45], [46] as well as the
method proposed in this study are largely designed to operate
in a similar scheme to conventional LBP. Hence, LBP is briefly
introduced first, followed by a discussion on the baseline
methods GP-criptor [45], and EID [46].

1) Local Binary Pattern (LBP): A well-recognised and
widely used image descriptor in computer vision is the local
binary pattern (LBP) [9]. This image descriptor operates in a
pixel-by-pixel manner, and aims at detecting a variety of image
keypoints and generates a histogram (feature vector). Each bin
in the histogram corresponds to the frequency of a specific
keypoint [47]. The process of generating a feature vector for an
image starts by initialising (set all counts/elements to zero) a
histogram of length 2p, where p is the number of neighbouring
pixels. Then a binary code is generated at each pixel of the
image by comparing the intensity of the current pixel and each
of its circular equidistant neighbours. A parameter r specifies
the distance, i.e., radius, and the effect of using different
combinations is illustrated in Fig. 1. The binary code is then
converted into a decimal value and the corresponding bin of
the histogram is incremented by 1. This process is depicted in
Fig. 1, and is defined formally as follows:

LBPp,r =

p−1∑
i=0

s(gi − gc)2i, s (α) =

{
0, α < 0

1, otherwise
(1)

gi = I (xi, yi) (2)

xi = xc + r cos
(
2πi
/
p
)

(3)

yi = yc − r sin
(
2πi
/
p
)

(4)

where I is an image of size M×N , (xi, yi) are the coordinates
of the ith pixel, the coordinates of the current pixel is denoted
by (xc, yc), and the value/intensity of the current and ith

neighbouring pixels are, respectively, denoted as gc and gi.
Although LBP was originally designed to extract texture

features, this method and its variants have been broadly
employed in a wide variety of applications, such as face
detection and recognition [48]–[50], object detection [51],

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, AUGUST 2016 4

Fig. 2. Illustration of the LBP main steps.

[52], image segmentation [53], texture classification [54], and
content based image retrieval [55]. Due to the simplicity of
the algorithm and its effectiveness in detecting keypoints,
the original proposal of LBP has been extended in differ-
ent ways such as uniform LBP (LBPu2) [18], uniform and
rotation-invariant LBP (LBPriu2) [56], median binary patterns
(MBP) [57], soft/fuzzy LBP (FLBP) [58], [59], completed
LBP (CLBP) [54], local ternary pattern (LTP) [60], local
quinary patterns (LQP) [61], LBP with pyramid representation
(PLBP) [62], local binary count (LBC) and completed LBC
(CLBC) [63], robust LBP (RLBP) [64], and dominant rotated
LBP (DRLBP) [65]. Reviewing LBP variants is beyond the
scope of this study, and more details can be found in [50],
[62], [63], [66], [67]. However, the proposed method in this
study operates in a pixel-by-pixel manner (dense), and hence,
it will be compared against common state-of-the-art dense
descriptors such as LBPu2, LBPriu2, CLBP, LBC, CLBC,
DRLBP, grey-level co-occurrence matrix (GLCM) [12], and
domain-independent features (DIF) [26].

The two parameters r (radius) and p (number of considered
neighbouring pixels) can potentially affect the design of LBP,
specifically, the formulae to generate the binary code. Hence,
human intervention is needed to modify or develop new
formulae in order to have different settings for these two
parameters; which in many cases can be a very difficult
task. Furthermore, modifying conventional LBP to develop a
descriptor that is robust to image variants, e.g., illumination
and rotation, is not an easy task. The method proposed in
this study aims at tackling these difficulties (rotation-invariant
image descriptor, and the required formulae) by using GP
to automatically synthesise a set of formulae (possibly non-
linear) by combining simple arithmetic operators to form
a rotation-invariant image descriptor. The newly introduced
method does not require human intervention or background
knowledge, and has a dynamic representation that allows the
system to find an appropriate length of the generated code
equivalent to the parameter p in LBP.

2) Genetic Programming Descriptor (GP-criptor): Moti-
vated by the simplicity and effectiveness of LBP, and the
flexibility and capability of GP to handle different data
types, we have proposed a GP-based image descriptor (GP-
criptor) [45]. GP-criptor aims at automatically constructing an
LBP-like illumination-invariant image descriptor. Four sim-
ple arithmetic operators

{
+,−,×,

/}
along with a special

code node form the function set, and the pixel indices of
a sliding window form the terminal set. In GP-criptor, only
two instances of each class are randomly selected during the
evolutionary process (training) to evolve the descriptor. The
fitness function comprises of two components: Accuracy, and
Distance. The former measures the ability of the features
generated by the evolved descriptor to correctly classify the

Fig. 3. Example presents a sample program evolved by GP-criptor and the
main steps to generate the feature vector for an image.

training instances using a simple instance-based classifier (k-
Nearest Neighbour), whereas the within-class and between-
class average distances are measured by the latter. Similar
to LBP, an evolved program is used to generate the feature
vector for an image by scanning the image pixel-by-pixel
using a sliding window, generates a binary code, converts
the generated code into a decimal value, and increments the
corresponding bin of the histogram as presented in Fig. 3. At
each position of the sliding window, the values of the terminal
nodes are fed into the program, and those values are then
passed to the parent nodes to evaluate each sub-tree/branch of
the code node children. The code node uses the s (·) function
in Equation (1) to specify the corresponding value of each
child Vi, where i ∈ {1, 2, . . . , q} and q is the number of
children. The generated binary code is then used to increment
a bin in the histogram similar to conventional LBP.

The evaluation of GP-criptor in [45] is rather limited as
only two datasets were used that are rotation-free. Evaluating
GP-criptor on datasets with rotations revealed the limitation
of this method to handle this variation [19].

3) Evolutionary Image Descriptor (EID): To tackle the
problem of determining number of children of the code
node in GP-criptor, Evolutionary Image Descriptor (EID) was
proposed [46]. EID has a lot in common with GP-criptor, such
as the fitness function, terminal set, feature vector generating
procedure, and the four arithmetic operators in the function set.
However, two new functions were introduced in the function
set of EID that allow the system to evolve programs with a
dynamic number of bits in the binary code. The first node
is expand, which does not perform any operation on its two
children and only allows the system to grow by having chains
of this type of node as presented in Fig. 4. The second node
is switch, which has a single child and performs a threshold
on the value of that child similar to the s (·) function in
Equation (1). Each switch node represents a bit in the binary
code that is generated at each position of the sliding window.
For example, the program in Fig. 4 consists of three switch
nodes, hence, the length of the generated feature vector for
an image is 23 bins. An expand node can only appear at
the top part of the tree including the root, or as a child of
another expand node; whilst a switch node can only be the
child of an expand node or the root (if the tree does not
have any expand nodes). Although the system became more
powerful and reduced the number of parameters to be set, it
introduces two potential problems. First, very large trees with
an unnecessarily large number of switch nodes means the
feature vector will be excessively long, as has been observed
in [46]. Second, the depth of each switch node, i.e., the

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, AUGUST 2016 5

Fig. 4. Example presents a sample program evolved by EID and the main
steps to generate the feature vector for an image.

sub-tree, will be very shallow as more expand nodes are
occupying a large proportion of the evolved program. Al-Sahaf
et al. [46] proposed a way to overcome the former problem via
identifying the indices of all those bins having 0 value across
all training instances, and then remove those bins from all
training, as well as the unseen, instances. The latter problem
remains unsolved and an evolved program might not have
sufficient combinations of operators for each switch node,
which will result in a lack of responses for different instances.

In addition to those newly introduced issues regarding the
expand and switch nodes, similar to GP-criptor, EID cannot
handle the rotation variant as it was not designed to cope with
this problem. The proposed method in this paper, however, is
specifically designed to overcome these limitations.

B. Related Work

EC techniques have been widely used to tackle many image-
related problems [68]–[70]. However, the flexibility of GP
representation, ability to handle different types of data, and
interpretability, have attracted many researchers over the last
few decades to consider this EC technique to tackle image-
related problems in a wide variety of applications, among
which are feature extraction, feature selection, keypoints de-
tection, and classification. A brief discussion regarding some
the most related work is provided in this subsection.

Song et al. [71] is one of the earliest works using GP to
evolve a classifier that operates directly on the pixel values for
texture image classification. By adopting two ideas, namely
Static Range Selection (SRS) [72], [73] and Dynamic Range
Selection (DRS) [74] to tackle the multi-class classification
problem, Song et al. [71], [75] tested their methods for texture
classification and the results of their works show very good
performance compared to the other methods.

To tackle the limitations of SRS and DRS approaches,
Smart and Zhang [76] developed two methods for multi-class
classification tasks in GP: Centered Dynamic Range Selection
(CDRS), and Slotted Dynamic Range Selection. They assessed
their methods using five image datasets of increasing difficulty
and promising performance was observed.

The multi-class classification problem is tackled in [77] by
introducing a modified GP program representation called modi
that is capable of generating multiple values rather than the
single value generated from the root node in conventional GP.
Testing the methodology for object detection using four image
datasets showed the superiority of modi over conventional and
other GP-based methods. However, modi is not designed to
operate directly on raw pixel values and requires a set of pre-
extracted features.

Training a good classifier using a highly unbalanced dataset
(where there is a large difference between the number of
training instances in each class) is a very challenging task.
Bhowan et al. [78], [79] used GP to tackle this problem in a
variety of ways for binary classification without under or over
sampling.

Using Strongly-Typed GP (STGP) [80], Al-Sahaf et al. [81]
proposed a multi-layer GP representation that comprises of
two layers: aggregation, and classification; therefore, it is
called Two-tier GP (2TGP). The aggregation layer extracts
features from different regions of the image, whereas the
classification layer assigns a class label to the image being
evaluated. The different aspects and characteristics of 2TGP
have been extensively studied for binary image classification
tasks [22], [82], [83] and were shown to outperform compet-
itive methods. Although 2TGP is an automated system that
performs region of interest detection, feature extraction, and
classification, a large number of training instances are required
to evolve a good model.

Combining GP and SIFT features to improve the perfor-
mance for object recognition is proposed by Hindmarsh et
al. [84]. The idea is to use GP as a post-processing step to
construct better features from the detected SIFT features. The
results in [84] are comparable to the use of SIFT features
alone. The system operates in two stages where keypoints
detection and feature extraction are performed by SIFT in
the first stage, and feature construction and classification are
performed in the second stage by GP. However, abundant
labelled data is needed.

Ryan et al. [85] used GP techniques for detecting stage-
1 cancer in digital mammograms. Their method performs
a series of preprocessing operations, e.g., background sup-
pression, image segmentation, feature detection, and feature
selection, in order to reduce the volume of data to process,
and then the preprocessed data are fed into GP to evolve a
classifier. The results of their experiments show that this work-
flow (preprocessing steps and GP classifier) can successfully
detect a stage-1 cancer in digital mammograms. The work-
flow requires task-specific features which requires domain-
expert intervention. As a multiple stage system, the success of
any subsequent stage is subject to the goodness of performing
previous stages.

Detecting edges in images is an important task in a wide
variety of applications in computer vision such as image
segmentation. Fu et al. [86], [87] studied edge detection and
used GP to evolve edge detectors that outperformed some well-
known detectors that are designed by domain-experts such
as Sobel [88], [89] and Canny [7]. However, their methods
are designed to detect only one type of keypoint, i.e., edges,
while neglecting other types of keypoints, and requires a large
number of training examples.

By adopting a multi-objective approach, Albukhanajer et
al. [23] utilised GP for extraction of image features that are
robust to noise and invariant to geometric deformations, e.g.,
illumination, rotation, and scale. Their system automatically
combines different functionals and aims to maximise the
between-class variance and minimise the within-class variance.
The results of their experiments on two datasets showed good

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, AUGUST 2016 6

robustness of the method to noise and geometric deformations.
Recently, we have proposed GP-criptorri [19] (an extended

version of GP-criptor) to address the limitation of GP-criptor
to handle rotation. GP-criptorri uses a set of first-order statis-
tics to form the terminal set instead of the indices of the
sliding window. GP-criptorri has been extensively evaluated
in [19] using six image datasets for texture classification that
comprise a different number of classes, instances, and rota-
tions; and compared against the performance of hand-crafted
image descriptors. Although GP-criptorri has been shown to
significantly outperform, or achieve comparable performance
to, the competitive hand-crafted image descriptors, this method
requires performing a parameter tuning phase in order to set
the number of children for the code node. The number of
children of code plays a crucial role as it specifies the length of
the feature vector. Empirically setting the number of children
is a very time-consuming task as has been observed in [19].

In summary, most of the currently existing methods require
abundant training examples in order to achieve a satisfactory
level of performance as they were not designed to tackle the
absence of enough labelled data. Those methods were designed
to evolve a classifier/detector to handle image classification or
object detection, rather than constructing an image descrip-
tor. Some of those methods cannot operate directly on the
raw pixel values; instead, pre-extracted features are required.
Hence, domain-expert intervention is required to select/design
a set of good keypoints and perform feature extraction. The
existing image descriptors, on the other hand, were designed
by domain-experts and have been successfully employed to
tackle numerous problems in a wide variety of applications
in computer vision. Altering those descriptors to handle dif-
ferent image deformations, or even a parameter, may require
changing the system substantially. Another key factor of those
descriptors is that the domain-expert might miss some of the
good/crucial keypoints during the design phase and recovering
those good keypoints will be infeasible, if not impossible,
in the later phases. This paper aims at tackling those issues
by utilising GP to evolve image descriptors using only two
instances per class, which automatically detects keypoints and
extracts features from those keypoints. Simultaneously, the
proposed method in this study aims to dynamically set the
length of the feature vector. The new method is described in
detail in the next section.

III. THE PROPOSED METHOD

The proposed Rotation-invariant Evolutionary Image De-
scriptor (EIDri) method is described in this section. To
make this paper self-contained and provide essential de-
tails, the inherited components from GP-criptorri [19] are
presented/discussed in this section. The overall algorithm is
discussed first. Then the program representation is explained.
Finally, this section describes the fitness measure and the
procedure of extracting the feature vector from an image.

A. The Overall Algorithm

The overall process is depicted in Fig. 5. The instances of
each class are equally split between the training and test sets. A

key factor of the proposed method is that only a few instances
of each class are required to evolve a descriptor. Therefore, the
system randomly selects a subset (two instances per class) of
the training set and feeds it into GP. The final result of the GP
evolutionary process is an image descriptor that takes an image
and produces a feature vector. The randomly selected training
instances, i.e., those used during the evolutionary process, and
the test set are then fed into the evolved descriptor to generate
the transformed training set (Str) and transformed test set
(Sts) respectively. The Str is used to train a classifier which
is then evaluated using Sts. Here α = {(~xi, ci)} α ∈ Str∪Sts

and i ∈ {1, 2, . . . , z}, where ~xi ∈ R≥0 = {l ∈ R | l ≥ 0} and
ci ∈ {t1, t2, . . . , tC} denote the ith instance’s feature vector
and corresponding class label. The total number of classes is
C, and the total number of instances is z.

B. GP Process

Using the given terminal and function sets, GP generates the
initial population using the ramped-half-and-half method [21].
Fig. 6 presents an example of an EIDri individual. The fitness
of each individual program is then measured on the training
set (i.e. the two instances of each class). GP then generates a
population of new programs in the subsequent generation by
applying the different genetic operators (crossover, mutation
and reproduction) on some individuals selected from the popu-
lation in the current generation. Iteratively this process contin-
ues until the maximum number of generations is reached, and
the best evolved program (image descriptor) is then returned.
The program representation, fitness measures, feature vector
extraction, and the required algorithms are presented and
discussed in detail in the following subsections.

C. Program Representation

Similar to GP-criptorri, the terminal set in EIDri consists of
the min, max, mean and stdev nodes as presented in Fig. 6.
Each of these nodes performs a simple first order statistic on a
set of values. The min and max nodes, respectively, return the
minimum, i.e., min (·), and maximum, i.e., max (·), value of a
vector. The mean and stdev nodes, on the other hand, calculate
and return the average and standard deviation as shown in
Equation (5) and Equation (6), respectively.

mean =
1

|~x|
∑
l∈~x

l (5)

stdev =

√
1

|~x| − 1

∑
l∈~x

(l −mean)
2 (6)

Here ~x is a vector of elements, and |·| returns the length of a
vector, i.e., the number of elements. These functions are order-
independent, i.e., do not consider the indices of the elements
in the vector, which is an important property to tackle the
rotation variants as demonstrated in Fig. 7.

In order to keep the individual structure simple, the function
set in EIDri consists of five functions. Four of these functions
are the arithmetic +, −, × and protected / operators. The
/ function will return 0 if the numerator is 0, which is very
important to prevent the occurrence of a “division by zero”

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, AUGUST 2016 7

Fig. 5. Parts of the overall algorithm.

Fig. 6. Example of an evolved EIDri program.

(a) (b)

Fig. 7. Example demonstrates the rotation-invariant property of the terminal
nodes, (a) the original window, and (b) a 45◦ around the center rotated version
of the same window.

exception. These functions are identical to that of GP-criptorri

where each performs the corresponding operator on two inputs
and returns the resulting value. The main difference between
GP-criptorri and EIDri is the code function, which is the
fifth component of the function set. This function is different
from the other four functions in three ways. First, the number
of inputs, i.e., children, is dynamic and is automatically
determined by GP during the evolutionary process. However,
the number of children must be greater than 0; otherwise, this
node will not return any value. Second, this function thresholds
the input values such that all negative values are substituted
with 0 and all positive and zero values are substituted with 1;
which makes the type of the input and output values different.
Therefore, the code node can not appear anywhere apart from
being the root node of a program tree. Third, each individual
can have only a single code node due to the input-output type-
mismatch. The system generates individuals that have different
number of children under the code node. To accomplish this,
the system is provided with a list of code nodes each of which
has a specific number of children, e.g., ranging between 1 and
10, and the system randomly chooses one of these nodes to
build an individual as depicted in Fig. 8.

D. Fitness Measure

Typically, the number of instances that are used during the
evolving/training process is relatively large to address different
variations of each class, and therefore, it is assumed that a
well-trained model will give a satisfactory performance on
the unseen data. In this case, measuring the accuracy, which
is the proportion of those instances correctly classified to the

Fig. 8. Examples of code nodes with different number of children.

Algorithm 2 Measuring the fitness for an EIDri individual
1: function FITNESS(S, r, ind, c, t) . Training images, radius,

individual, number of classes, and
number of instances per class

2: z ← (c× t) . Total number of instances in S
3: A ← ∅ . Empty set
4: for i in {1, 2, . . . , z} do
5: ~fi ← FEATURES(Si, r, ind). Algorithm 3 on ith image
6: ci ← CLASS(Si) . Class label of the ith image
7: A ← A∪

{(
~fi, ci

)}
. Concatenate the ith image tuple

8: end for
9: {Wd,Bd} ← DISTANCES(A, c, t) . Algorithm 4

10: return 1
/(

1 + e−5(Wd−Bd)
)

. Fitness of ind on S

11: end function

total number of instances, represents an adequate measure. An
important objective of this study is to evolve image descriptors
using only a few training instances. When the number of
training instances of each class is relatively small, e.g., less
than 10, the use of accuracy often becomes insufficient, mainly
because the system can easily capture features that are good
enough to discriminate between the training instances, but
not sufficient to classify the unseen data. This is an example
of the well-known phenomenon in machine learning called
over-fitting [90], [91]. Therefore, it is necessary to derive an
alternative fitness measure that encourages the system towards
identifying a good set of representative keypoints. The aim
is to detect keypoints that have a different pattern between
instances belonging to different classes, and meanwhile, ensure
that instances belonging to the same class are following the
same pattern. Measuring the distance between the feature
vectors is an alternative approach [19] that we have also used
in this study as presented in Algorithm 4. Measuring the fitness
for an individual evolved by EIDri is presented in Algorithm 2.

A large number of distance measures have been proposed
in the literature. One of the widely used measures is χ2 which
measures the distance between two normalised vectors [92] as
presented in Algorithm 5. The two vectors must be normalised
and have the same number of elements. Formally, the χ2

distance is:

χ2 (~u,~v) =
1

2

E∑
i=1

(~ui − ~vi)2

(~ui + ~vi)
(7)

where ~u and ~v are vectors, E is the number of elements in a
vector, and ~xi is the ith element of ~x.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, AUGUST 2016 8

Algorithm 3 Extracting the feature vector
1: function FEATURES(Si, r, ind) . Image, radius, and individual
2: q ← |code.children| . Number of the children under code
3: ~f ← (01, 02, . . . , 02q) . Set of length 2q of zeros
4: for each pix in image do
5: ~x← PIXELS(pix, r) . Neighbouring pixels
6: min← MIN(~x)
7: max← MAX(~x)
8: mean← MEAN(~x)
9: stdev ← STDV(~x)

10: L← {min,max,mean, stdev}
11: i← EVALUATE(ind,L). Evaluate the tree on the inputs
12: ~f{i} ← ~f{i} + 1 . Increment the ith element in ~f
13: end for
14: return ~f . Feature vector
15: end function

Algorithm 4 The between-class and within-class distances
1: function DISTANCES(S̄, c, t) . Set of tuples {(~xi, ci)} where

i ∈
{

1, 2, . . . ,
∣∣S̄∣∣}, number of classes,

and number of instances per class
2: z ← (c× t) . Number of instances in S̄, i.e.,

∣∣S̄∣∣
3: for each (~xi, ci) in S̄, i ∈ {1, 2, . . . , z} do
4: for each (~xj , cj) in S̄, j ∈ {1, 2, . . . , z} \ {i} do
5: distance← DIST(~xi, ~xj) . Algorithm 5
6: if ci 6= cj then . Different classes
7: Bd ← Bd + distance . Between-class sum
8: else
9: Wd ←Wd + distance . Within-class sum

10: end if
11: end for
12: end for
13: Bd ← Bd

/
(z × (z − t)) . Average between-class distances

14: Wd ←Wd

/
(z × (t− 1)) . Average within-class distances

15: return {Wd,Bd} . Between- and within-class distances
16: end function

Inherited from GP-criptorri, this fitness function considers
the within-class and between-class distances. Considering only
the within-class distance, the system may evolve a program
that can generate nearly similar feature vectors for instances
belonging to different groups. In other words, the system will
form only a single group/cluster as the aim is to minimise
the distance between the instances. Meanwhile, the system
may evolve a program that separates the instances such that
each instance can form a cluster if the between-class distance
considered alone. Therefore, the aim is to find a trade-
off between these two distances by minimising the average
distance between instances belonging to the same class and
maximising the average distance between instances belonging
to different classes as shown in Algorithm 4. In this way, GP
will try to form a group/cluster for each class that keeps its
instances close to each other, and simultaneously, makes those
clusters separated apart as much as possible. The aim is that
an unseen instance will be put into a cluster consisting of
instances from the same class.

E. Feature Vector Extraction

The process of extracting the feature vector from an image
in EIDri is identical to that in GP-criptorri. However, the
length of the feature vector in GP-criptorri is predetermined

Algorithm 5 Measure the distance between two vectors
1: function DIST(~u,~v) . Two vectors
2: E ← |~u| . Number of elements (|~u| = |~v|)
3: ds← 0
4: for i in {1, 2, . . . , E} do
5: if (~ui + ~vi) 6= 0 then . Different classes
6: ds← ds+

(
(~ui − ~vi)2

/
(~ui + ~vi)

)
7: else . To prevent the division by zero exception
8: ds← ds+ 0 . Based on Cha [92]
9: end if

10: end for
11: distance← (0.5× ds)
12: return distance . Distance between ~u and ~v
13: end function

by the user; whereas in EIDri it is automatically determined
by the system during the evolutionary process. The number
of children (q) of the code (root) node is used to initiate
an empty histogram, i.e., feature vector, of length 2q bins.
This histogram is populated using a sliding window of a
predetermined size (r) that scans the image being evaluated
row-wise from the left-top corner to the right-bottom corner.
At each pixel, i.e., position of the sliding window, the fol-
lowing operations are performed. The inputs (terminals) of
the program’s tree are calculated, e.g., minimum, maximum,
mean, and standard deviation of the pixel values in the window.
As the terminals become available, the program tree can be
evaluated starting from the leaves up to the root (the standard
GP procedure to evaluate an individual). At this point, the root
node thresholds the values of its children in order to generate
a binary code. All negative values map to 0; whereas zero and
positive values map to 1. Similar to LBP, the generated code
is then converted into the corresponding decimal value, and
the bin at the index of this decimal value is incremented. This
procedure is depicted in Algorithm 3.

IV. EXPERIMENT DESIGN

The performance of the proposed method is assessed by
conducting a number of experiments using seven texture image
datasets, and compared to well-known image descriptors in
computer vision. The details of these datasets, parameter
settings, methods for comparison, and implementation are
provided in this section.

A. Data Sets

In this study, image classification is considered to evaluate
the performance of EIDri. Image classification is concerned
with assigning a class label to each instance. Seven multi-
class image classification datasets are used in this study. Each
consists of grey-scale texture images, and comprises a different
number of classes. Moreover, the instances of these datasets
differ in dimensions, number of instances, rotation angles, and
illuminations.

1) Kylberg Texture: The Kylberg Texture2 [93] dataset is
widely used in computer vision for texture classification. It
contains images of different materials, e.g., cushion, rug, rice,

2Available at: http://www.cb.uu.se/∼gustaf/texture/

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, AUGUST 2016 9

Fig. 9. Samples of the Kylberg dataset.

grass, and stone (Fig. 9). In total, this dataset comprises
28 classes each of which comes in two flavours: without-
and with-rotation. This is very important as investigating the
robustness of EIDri to evolve rotation-invariant descriptors is a
core aim of this study. Originally, the instances of this dataset
were of size 576× 576 pixels each and we have reduced the
size to 115×115 pixels via subsampling. Each of the without-
rotation classes consists of 160 instances while there are 1920
instances in each class of the with-rotation classes that fall into
12 rotation angles {0◦, 30◦, . . . , 330◦}. The instances of the
without-rotation classes are used to form the first dataset in
this study (KyNoRo), whereas the second dataset in this study
(KyWiRo) is formed using the instances of the with-rotation
classes.

2) Brodatz Texture: Another popular and widely used
dataset for texture classification in computer vision is the
Brodatz Texture3 [94] dataset. Similar to Kylberg, the Brodatz
dataset contains images for different materials, e.g., grass,
bark, wood grain, and brick wall (Fig. 10). In total, there
are 112 classes in the Brodatz dataset each of which consists
of a single grey-scale instance of size 640 × 640 pixels. In
order to generate the third dataset in this study (BrNoRo), the
single instances of 20 classes are randomly selected then each
instance is re-sampled into non-overlapping subimages each of
size 84 × 84 pixels. Meanwhile, the same examples of those
20 classes are then rotated around the center by 12 angles with
a step of size 30◦ to generate the fourth dataset in this study
(BrWiRo). Hence, the total number of instances in BrNoRo
is and BrWiRo is, respectively, 1680 (= 20× 84) and 20160
(= 20 (classes)× 12 (rotations)× 84 (instances)) instances.

3) Outex Texture Classification: The fifth (OutexTC00) and
sixth (OutexTC10) datasets in our experiments are formed
using two out of 16 datasets of the Outex Texture Classi-
fication4 [95] dataset. Those 16 datasets comprise different
numbers of classes, materials, rotations, and instances. The
Outex TC 00000 dataset is used to form OutexTC00, which
comprises 24 classes each of which consists of 20 instances
(Fig. 11). Meanwhile, OutexTC10 is formed using the in-
stances of the Outex TC 00010 dataset that also comprises
of 24 classes each of which has 180 instances. The instances
of OutexTC00 are rotation-free, whereas OutexTC10 instances

3Available at: http://multibandtexture.recherche.usherbrooke.ca/original
brodatz.html

4Available at: http://www.outex.oulu.fi/index.php?page=classification

Fig. 10. Samples of the Brodatz dataset.

Fig. 11. Samples of the Outex Texture Classification dataset.

fall into 9 different angles: 0◦, 5◦, 10◦, 15◦, 30◦, 45◦, 60◦,
75◦, and 90◦. Moreover, the instances in these two datasets
are of size 128× 128 pixels.

4) Kylberg Sintorn Rotation: The seventh dataset in this
study (KySinHw) is formed using the Kylberg Sintorn Rota-
tion5 [96] dataset. Originally, this dataset consists of 25 texture
classes, each made up of grey-scale instances of size 122×122
pixels as presented in Fig. 12. Each class comprises of 900
instances that fall into 9 different angles: 0◦, 40◦, 80◦, 120◦,
160◦, 200◦, 240◦, 280◦, and 320◦. Moreover, the instances
of this dataset are normalised with a mean value of 127
and a standard deviation of 40, and rotated using 6 different
methods: hardware, nearest neighbour, linear interpolation,
3rd order cubic interpolation, B-spline interpolation, and
Lanczos 3 interpolation. In this study, only the instances that
were rotated by the hardware method, where a sample is placed
on a rotatable desk and the camera is positioned vertically on
the top, are considered.

A summary of number of classes, instances, rotations, and
dimensions for these datasets is presented in Table I.

B. Methods for Comparison

Since an image descriptor is only responsible for detect-
ing keypoints and extracting features from those keypoints,
the goodness of the extracted features to perform classifi-
cation or detection is used in the literature as a measure
to assess the performance of the descriptor [9], [13], [14],
[48]. Therefore, different machine learning algorithms, Sup-
port Vector Machines (SVM), Naı̈ve Bayes (NB), Adaptive

5Available at: http://www.cb.uu.se/∼gustaf/KylbergSintornRotation/

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, AUGUST 2016 10

Fig. 12. Samples of the Kylberg Sintorn Rotation texture dataset.

TABLE I
A SUMMARY OF THE DATASETS.

Dimensions

Data set Classes Instances Rotations width height

BrNoRo 20 1680 1 64 64
BrWiRo 20 20160 12 64 64
OutexTC00 24 480 1 128 128
OutexTC10 24 4320 9 128 128
KySinHw 25 22500 9 122 122
KyNoRo 28 4480 1 115 115
KyWiRo 28 53760 12 115 115

Boosting (AdaBoost), Decision Trees (J48), Random Forest
(RF), Naı̈ve Bayes/Decision Tree (NBTree), KStar (K∗), Non-
Nested generalised (NNge), k-Nearest Neighbour (k-NN), and
Multilayer Perceptron (MLP), are used in this study to evaluate
the performance of EIDri. These classifiers are discussed in
[97]. The effectiveness of EIDri is also investigated in this
study by comparing its performance to a number of common
state-of-the-art image descriptors such as DIF, GLCM, LBPu2

p,r,
LBPriu2

p,r , CLBPp,r, LBCp,r, and CLBCp,r.

C. Experiments

Two sets of experiments are designed and conducted in
this study that aim at investigating different criteria. Apart
from the evolutionary parameters, the proposed method has
only one parameter that requires manual setting, that is the
sliding window size. Therefore, the impact of using 3 window
sizes, i.e., 3 × 3, 5 × 5, and 7 × 7, on the performance of
a simple instance-based classifier (k-NN) using the features
of an evolved image descriptor is investigated in the first
experiment. This experiment can be seen as a parameter tuning
stage. Investigating the influence of the evolved descriptors by
EIDri on the performance of different types of classification
methods and compared to other image descriptors (baseline
methods) is the aim of the second set of experiments.

TABLE II
THE GP PARAMETERS.

Parameter Value Parameter Value

Generations 50 Crossover Rate 80%
Population Size 300 Mutation Rate 20%
Minimum Depth 2 Maximum Depth 10
Selection Type Tournament Reproduction Keep the best
Tournament size 5 Initial Population Half-and-half

Similar to other EC methods, GP is a stochastic search
method initialised with a random seed value. Therefore, for
each experiment the proposed method has been independently
executed 30 times using a different seed value each time
and the best evolved program at the end of each run is
reported. Moreover, the proposed method randomly selects
two instances from each class to evolve an image descrip-
tor. Using different instances for training could affect the
evolved program. Hence, the process of 30 independent runs
was further repeated 10 more times using different training
instances each time. Then the average performance of those
300 (= 30 (runs) × 10 (repetitions)) best individuals along
with the standard deviation are reported. Saying that, the total
number of runs for the first experiment is 7 (datasets) ×
3 (windows sizes) × 10 (repetitions) × 30 (runs) = 6300.
Meanwhile, there are 7 baseline methods, 1 new method (using
only the best window size found in the first experiment with
30 independent runs), 8 deterministic (single run each) and
2 stochastic (30 runs each) classifiers, 10 repetitions, and 7
datasets; therefore, there are 176120 experiments/runs in total
in the second set of experiments.

D. Parameter Settings

This section discusses the parameter settings for the pro-
posed method, methods for comparison, and the different
classification algorithms.

1) Parameter settings for EIDri: Since EIDri is a GP-based
method, the GP evolutionary parameters are required. Due to
the high computation costs of dealing with images, the pop-
ulation size is restricted to 300 individuals. The evolutionary
process will be terminated when either the maximum number
of 50 generations is reached, or an ideal solution, i.e., the
fitness value is 0, is found. The minimum tree depth is 2 and
the maximum depth is 10, which allow the system to evolve
trees of different sizes but not too big which can slow down
the evolutionary process and affect the interpretability of those
trees. The mutation and crossover rates are, respectively, 20%
and 80% which allow the system to focus on trying different
combinations (crossover) before introducing a new materials
(mutation) [98], [99]. To ensure that the subsequent generation
is at least as good as the current generation, the best individual
of the current generation is copied without changing (i.e.
elitism) to the next generation. The initial generation is gener-
ated by the commonly used ramped-half-and-half method. The
tournament method is utilised for selecting individuals for the
mating process. These parameters are summarised in Table II.

2) Parameters of the baseline methods: As depicted in
Fig. 13, we have observed that the radius (r) and the number

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, AUGUST 2016 11

Fig. 13. The impact of p and r on the performance of the LBP-based image
descriptors on the BrNoRo dataset.

of neighbouring pixels (p) for LBPu2ri
p,r , CLBPp,r, LBCp,r and

CLBCp,r have achieved the best performance when they are,
respectively, set to 3 and 24. Meanwhile, these two parameters,
i.e., r and p, have been set to 1 and 8 for LBPu2

p,r and
DRLBPp,r as the experiments revealed that this combination
shows the best performance compared with the other settings.

3) Parameters of the classifiers: In this study, a number of
well-known classification methods are used to assess the good-
ness of the generated features by an image descriptor evolved
by EIDri or one of the baseline methods. Those classifiers, as
discussed in Section IV-B, have several parameters and tuning
all of them is beyond the scope of this study. However, some
of the important ones are considered in our experiments. Due
to having only two instances of each class in the training set,
the number of the neighbours for all instance-based methods,
e.g., NNge, k-NN, and K∗, is set to 1 (the closest neighbour).

For SVM, a study by Keerthi and Lin [100] investigated the
impact of linear and non-linear kernels on the performance. In
their study, it has been observed that using non-linear kernels
in SVM are more likely to give better performance than using
linear kernels. Following their suggestions, the Radial Basis
Function (RBF) kernel is employed in our experiments.

Similarly, the network structure of MLP is specified based
on the guidelines of Trenn [101]. Typically, MLP has a single
input layer that comprises of one node for each feature in the
feature vector; whereas the number of classes specifies the
number of nodes in the output layer. Only one hidden layer is
used and the following formula is considered to calculate the
number of nodes in this layer:

Nhidden =

⌈
Nin + Nout

2

⌉
(8)

where the values of Nin and Nout correspond to the number
of nodes in the input and output layers.

AdaBoost is a meta-algorithm that was introduced by Fre-
und et al. in 1996 [102] designed to be used in conjunction
with other machine learning algorithms in order to enhance
their performance. The overall idea of AdaBoost is to adap-
tively build a model by considering those previously misclassi-
fied instances by the current models to improve the subsequent
ones. In our experiments, the muLti-class Alternating Decision
Trees (LADTree) classifier [103] is used as it gave better
performance than DecisionStump.

E. Implementation

The proposed method is implemented using the platform
provided by the Evolutionary Computation Java-based (ECJ)
package version 23 [104]. The Waikato Environment for
Knowledge Analysis (WEKA) package version 3.8 [105] im-
plementations for all other aforementioned classifiers (Section
IV-B) are used.

V. RESULTS AND DISCUSSIONS

The results of the experiments are presented and discussed
in this section.

A. Window Size

The aim of the first experiment is to investigate the impact
of using different window sizes on the performance of the
proposed method, and the obtained results are presented in
Fig. 14. On the BrNoRo and BrWiRo datasets, the observed
performances for different window sizes were 90.21% and
92.12% for a 3× 3 pixels window, 91.04% and 92.59% for a
5×5 pixels window, and 89.17% and 90.78% for a 7×7 pixels
window, respectively. The results obtained on the KyNoRo and
KyWiRo datasets in this experiment were 86.27% and 87.67%
for a 3×3 pixels window, 86.90% and 88.60% for a 5×5 pixels
window, and 85.78% and 86.51% for a 7× 7 pixels window,
respectively. On OutexTC00 and OutexTC10, the proposed
method has achieved 87.51% and 85.90% for a 3 × 3 pixels
window, 87.90% and 87.09% for a 5× 5 pixels window, and
86.94% and 86.37% for a 7 × 7 pixels window, respectively.
Finally, EIDri obtained 92.85%, 94.06%, and 93.85% average
accuracy using a window of size 3×3, 5×5, and 7×7 pixels,
respectively. Clearly, the results of these datasets are following
a similar pattern and the differences between using different
window sizes is not large.

In summary, EIDri has achieved better results with a
window of size 5 × 5 pixels than those of the other two
experimented window sizes, i.e., 3 × 3 and 7 × 7 pixels, for
all datasets as depicted in Fig. 14. We did not investigate the
use of larger window sizes such as 9× 9 and 11× 11 mainly
because the results of the 7 × 7 window are generally worse
than 5 × 5 window. Based on the results of this experiment,
the window size has been set to 5 × 5 pixels in the second
experiment.

B. Image Classification

The aim of the second set of experiments is to compare
the effectiveness of EIDri descriptors against a variety of LBP
based and non-LBP based hand-crafted image descriptors that
were developed by domain-experts. The results for all datasets
are combined into a single table as presented in Table III. The
first column of Table III lists the dataset name, while the name
of the feature extraction methods, i.e., image descriptor, are
listed in the second column. The performances of the different
classifiers are listed in columns 3 to 12 each of which reports
the average accuracy and standard deviation (x̄±s). In order to
correctly assess the significance of the results, it is very impor-
tant to use a suitable statistical test. Testing the normality and

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, AUGUST 2016 12

Fig. 14. The impact of the window size on the performance of EIDri on the
seven datasets.

homoscedasticity are required prior to the use of a parametric
statistical test such as t-test and analysis of variance (ANOVA)
[106], [107]. The results of the normality test revealed the
skewness of the data, i.e., obtained results, which means
the normality assumption is not accomplished. Therefore, the
significance of the obtained results are tested using a non-
parametric statistical test that is the Wilcoxon signed-rank test
[106], [108] with a significance level of 5%. The statistical
significance test has been performed to investigate how EIDri

with a simple 1-NN classification method competes with
the other image descriptors using 1-NN and more powerful
classifiers. The symbol “∗” appears next to the method that has
been significantly outperformed by EIDri, and a “−” is used
to indicate that the corresponding method has significantly
better performance than that of EIDri. Moreover, the statistical
significance test has been applied again to assess whether the
proposed method can compete with the baseline methods using
the same classifier. In this case, the symbols “↑” and “↓” are
used to, respectively, indicate that EIDri is significantly better
and significantly worse than the corresponding method. The
overall best performance on each dataset is underlined, and
the method with the best performance for each classification
method is made bold.

1) BrNoRo: The results of the BrNoRo dataset are pre-
sented in the first block of Table III. The proposed method
has achieved the overall best performance using 1-NN clas-
sification method with an average accuracy of 90.0%. The
results of the first significance test show that EIDri has
significantly outperformed all the baseline methods even with
more sophisticated classifiers. The second significance test
revealed that EIDri has significantly better performance than
all the 8 baseline descriptors in 5 classifiers (excluding 1-
NN), and at least better than 5 descriptors on the other 4
classification methods.

2) BrWiRo: On the BrWiRo dataset, i.e., the rotated version
of BrNoRo, the results in the second block of Table III show
that EIDri has achieved the overall best average performance
that is 92.6% on this dataset. Similarly, the proposed method
with a simple instance-based classifier (1-NN) has significantly
outperformed the other baseline hand-crafted descriptors on
all 10 classifiers. Apart from CLBP24,3 with MLP and SVM,
EIDri with the same classification method has achieved signif-

icantly better performance than all the 8 baseline descriptors
as shown by the results of the second significance test.

3) KyNoRo: The third block of Table III shows the re-
sults obtained on the KyNoRo dataset. The newly introduced
method with 1-NN shows the 4th overall best performance
as CLBP24,3 achieved the first (MLP), second (1-NN), and
third (NNge). Using 1-NN, EIDri has significantly better
performance than the other descriptors in the vast majority
cases, and shows a significant improvement in the perfor-
mance of 76.25% (61/80) of the 10 classifiers compared to
the use of those domain-expert designed descriptors. On the
other 23.75% (19/80) of the cases, the proposed method has
comparable performance to the domain-expert methods for 11
out of 19 cases, and significantly degraded the performance
on the other 8 cases.

4) KyWiRo: On the KyWiRo dataset, the proposed method
shows nearly a similar pattern to that on the rotation-free ver-
sion of this dataset (KyNoRo) as presented in the fourth block
of Table III. Using the simple 1-NN classification method,
EIDri scored 88.6% accuracy on average which represents
the fourth overall best performance on this dataset (KyWiRo)
and has significantly outperformed the 8 baseline methods in
over 88% of the cases for the 10 classification methods. The
results of the second statistical test show that EIDri has a
significantly positive influence on the performance of the 10
classifiers compared to the use of the other image descriptors’
features.

5) OutexTC00: As shown in the fifth block of Table III, the
proposed method is the overall best performing method on the
OutexTC00 dataset with 87.9% average accuracy. Apart from
LBPu2

8,1 with 1-NN, K∗, MLP, and NNge, results of the first
statistical test show that EIDri with 1-NN has significantly
outperformed all other methods with 1-NN and more powerful
classifier. Using the same classification method, on the other
hand, EIDri has also shown a significant positive impact on
the performance in the vast majority (over 87%) of those
classifiers. However, in six cases the improvement was not
significant and on other four EIDri has either slightly or
significantly degraded the performance.

6) OutexTC10: On the rotated version of the OutexTC00,
i.e., OutexTC10, the proposed method shows the overall best
performance that is 87.1% average accuracy as presented in
the sixth block of Table III. The statistical results of using
EIDri with a 1-NN classifier against the baseline methods with
1-NN and other classifiers reveal that EIDri has significantly
better performance than the competitor methods apart from
CLBP24,3 with 1-NN, MLP, and NNge classifiers. The results
of the second significance test show that the features extracted
by the proposed method have significantly improved 67 out of
72 of the cases, and only slightly improved or degraded the
performance of 5 cases. Only one case, i.e., CLBP24,3 with
MLP, shows significantly negative impact of EIDri features.

7) KySinHw: The last (seventh) block of Table III lists the
results obtained on the KySinHw dataset. The winner of the
overall best performance on this dataset was CLBP24,3 with
NNge classification method, which achieved 97.9% accuracy
on average. However, EIDri is ranked fourth best performance
(94.1%) amongst the other methods on the KySinHw dataset.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, AUGUST 2016 13

TABLE III
THE AVERAGE ACCURACY (%) OF TEN CLASSIFIERS USING NINE IMAGE DESCRIPTORS ON THE SEVEN TEXTURE IMAGES DATASETS (x̄± s).

1-NN AdaBoost J48 K∗ MLP NB NBTree NNge RF SVM

B
rN

oR
o

DIF 36.8 ± 2.7∗ 18.0 ± 3.6∗↑ 28.5 ± 4.9∗↑ 36.4 ± 3.2∗↑ 35.3 ± 2.5∗↑ 21.0 ± 6.4∗↑ 33.4 ± 4.7∗↑ 34.3 ± 3.5∗↑ 31.7 ± 3.5∗↑ 33.5 ± 2.8∗↑
GLCM 51.5 ± 7.3∗ 17.0 ± 8.6∗↑ 33.6 ± 6.1∗↑ 48.9 ± 7.7∗↑ 53.6 ± 7.0∗↑ 38.7 ± 6.5∗↑ 44.6 ± 6.3∗↑ 48.0 ± 5.1∗↑ 43.9 ± 6.2∗↑ 47.3 ± 6.3∗↑
LBPu2

8,1 84.0 ± 2.0∗ 40.4 ± 4.7∗↑ 33.6 ± 5.1∗↑ 86.2 ± 2.4∗ 83.4 ± 1.6∗ 62.8 ± 8.3∗↑ 71.4 ± 5.8∗↑ 82.1 ± 2.7∗↑ 56.5 ± 1.6∗↑ 75.3 ± 5.3∗
LBPu2ri

24,3 68.5 ± 3.2∗ 25.1 ± 4.3∗↑ 39.0 ± 5.0∗↑ 60.8 ± 3.5∗↑ 68.8 ± 2.9∗↑ 34.7 ± 7.2∗↑ 46.7 ± 2.6∗↑ 63.3 ± 3.9∗↑ 48.4 ± 2.1∗↑ 62.8 ± 3.6∗↑
CLBP24,3 82.4 ± 4.9∗ 37.3 ± 8.0∗↑ 35.3 ± 4.4∗↑ 81.2 ± 4.5∗↑ 85.1 ± 3.5∗ 71.5 ± 5.0∗↑ 77.4 ± 5.3∗↑ 83.7 ± 4.7∗ 61.3 ± 1.8∗↑ 70.9 ± 5.7∗
LBC24,3 66.3 ± 2.8∗ 23.5 ± 8.0∗↑ 36.0 ± 6.8∗↑ 58.2 ± 3.3∗↑ 67.5 ± 3.1∗↑ 30.2 ± 7.3∗↑ 45.0 ± 3.1∗↑ 61.7 ± 2.8∗↑ 45.3 ± 2.3∗↑ 62.9 ± 2.8∗↑
CLBC24,3 63.6 ± 2.5∗ 32.5 ± 3.9∗↑ 32.7 ± 3.9∗↑ 67.1 ± 2.9∗↑ 68.0 ± 2.2∗↑ 61.9 ± 4.0∗↑ 67.8 ± 5.9∗↑ 65.9 ± 1.1∗↑ 54.5 ± 1.4∗↑ 50.7 ± 4.3∗↑
DRLBP8,1 83.2 ± 2.5∗ 39.0 ± 4.7∗↑ 35.7 ± 4.3∗↑ 80.3 ± 3.2∗↑ 83.6 ± 2.7∗ 58.0 ± 10.1∗↑ 71.0 ± 4.9∗↑ 82.9 ± 3.8∗ 59.7 ± 1.5∗↑ 73.3 ± 6.4∗
EIDri 91.0 ± 2.0 47.2 ± 2.6 51.8 ± 1.3 85.4 ± 1.6 83.1 ± 1.7 80.3 ± 2.7 82.2 ± 1.5 85.7 ± 1.9 70.3 ± 1.5 71.8 ± 2.6

B
rW

iR
o

DIF 36.5 ± 2.9∗ 14.8 ± 4.1∗↑ 30.9 ± 4.1∗↑ 34.9 ± 2.5∗↑ 32.5 ± 2.4∗↑ 21.2 ± 5.8∗↑ 34.1 ± 4.1∗↑ 34.2 ± 4.3∗↑ 34.1 ± 3.6∗↑ 34.1 ± 3.4∗↑
GLCM 41.1 ± 6.4∗ 13.9 ± 5.3∗↑ 27.8 ± 4.7∗↑ 39.9 ± 7.3∗↑ 38.7 ± 4.6∗↑ 29.1 ± 5.6∗↑ 39.6 ± 4.6∗↑ 37.9 ± 5.0∗↑ 35.3 ± 4.5∗↑ 38.2 ± 6.0∗↑
LBPu2

8,1 42.3 ± 1.7∗ 18.8 ± 2.7∗↑ 20.1 ± 3.0∗↑ 41.8 ± 2.0∗↑ 40.9 ± 2.5∗↑ 26.1 ± 3.6∗↑ 33.0 ± 3.2∗↑ 38.3 ± 3.3∗↑ 26.3 ± 1.2∗↑ 36.3 ± 4.0∗↑
LBPu2ri

24,3 67.6 ± 2.6∗ 22.9 ± 6.4∗↑ 40.1 ± 5.3∗↑ 62.5 ± 2.4∗↑ 68.6 ± 1.7∗↑ 39.4 ± 4.5∗↑ 49.1 ± 4.2∗↑ 65.8 ± 2.7∗↑ 51.2 ± 1.9∗↑ 63.0 ± 4.9∗↑
CLBP24,3 85.8 ± 2.7∗ 34.5 ± 8.1∗↑ 33.2 ± 3.0∗↑ 79.2 ± 2.1∗↑ 85.8 ± 1.6∗↓ 71.1 ± 6.5∗↑ 78.7 ± 4.3∗↑ 84.7 ± 2.1∗↑ 62.1 ± 1.4∗↑ 74.7 ± 2.8∗↓
LBC24,3 64.5 ± 3.0∗ 22.5 ± 4.8∗↑ 39.3 ± 2.9∗↑ 59.9 ± 3.5∗↑ 64.0 ± 3.1∗↑ 37.7 ± 3.1∗↑ 46.9 ± 5.6∗↑ 61.8 ± 3.3∗↑ 47.5 ± 1.7∗↑ 59.7 ± 5.0∗↑
CLBC24,3 70.8 ± 3.2∗ 32.3 ± 7.7∗↑ 34.4 ± 3.1∗↑ 73.8 ± 4.0∗↑ 73.4 ± 3.2∗↑ 67.1 ± 5.3∗↑ 72.3 ± 4.1∗↑ 72.8 ± 2.9∗↑ 57.2 ± 2.2∗↑ 58.3 ± 5.6∗↑
DRLBP8,1 69.7 ± 2.4∗ 29.4 ± 7.3∗↑ 34.3 ± 3.8∗↑ 66.8 ± 3.0∗↑ 71.2 ± 3.7∗↑ 52.7 ± 5.8∗↑ 60.8 ± 6.4∗↑ 69.9 ± 3.4∗↑ 52.2 ± 1.0∗↑ 63.1 ± 3.8∗↑
EIDri 92.6 ± 1.1 48.9 ± 2.4 49.4 ± 1.6 87.0 ± 1.7 84.0 ± 1.4 81.3 ± 3.0 83.0 ± 1.0 86.6 ± 1.9 70.1 ± 1.2 72.0 ± 1.9

K
yN

oR
o

DIF 22.2 ± 1.7∗ 10.5 ± 2.7∗↑ 28.4 ± 1.8∗↑ 18.7 ± 1.1∗↑ 23.0 ± 2.0∗↑ 19.4 ± 2.8∗↑ 20.0 ± 2.6∗↑ 27.1 ± 2.5∗↑ 22.4 ± 0.9∗↑ 21.1 ± 1.8∗↑
GLCM 68.0 ± 3.0∗ 18.2 ± 3.9∗↑ 44.5 ± 5.0∗ 68.9 ± 1.8∗↑ 64.5 ± 3.7∗↑ 48.1 ± 5.7∗↑ 55.1 ± 3.1∗↑ 65.7 ± 3.8∗↑ 56.0 ± 2.1∗↑ 67.0 ± 2.8∗
LBPu2

8,1 75.5 ± 2.0∗ 31.8 ± 3.1∗↑ 36.7 ± 4.3∗↑ 74.2 ± 2.2∗↑ 74.6 ± 2.1∗↑ 53.0 ± 7.4∗↑ 62.4 ± 4.6∗↑ 73.6 ± 3.1∗↑ 56.9 ± 1.3∗↑ 66.5 ± 3.2∗
LBPu2ri

24,3 67.4 ± 2.9∗ 20.2 ± 6.5∗↑ 38.2 ± 3.3∗↑ 66.1 ± 3.2∗↑ 66.1 ± 2.6∗↑ 40.2 ± 3.7∗↑ 50.6 ± 3.7∗↑ 64.4 ± 2.8∗↑ 53.5 ± 2.7∗↑ 66.1 ± 2.9∗
CLBP24,3 90.6 ± 1.2− 41.8 ± 2.4∗ 33.3 ± 3.5∗↑ 37.8 ± 1.3∗↑ 91.0 ± 1.6−↓ 67.5 ± 9.4∗ 77.1 ± 4.0∗ 90.6 ± 1.6−↓ 63.5 ± 1.0∗↑ 78.7 ± 4.5∗↓
LBC24,3 66.1 ± 2.8∗ 18.4 ± 4.0∗↑ 39.8 ± 4.6∗ 63.8 ± 3.2∗↑ 66.6 ± 2.7∗↑ 39.7 ± 5.0∗↑ 52.0 ± 4.0∗↑ 64.4 ± 3.4∗↑ 52.4 ± 3.3∗↑ 65.3 ± 2.7∗↑
CLBC24,3 76.7 ± 4.1∗ 38.3 ± 3.9∗↑ 32.8 ± 3.9∗↑ 68.0 ± 3.6∗↑ 78.1 ± 3.8∗ 64.2 ± 7.4∗↑ 69.4 ± 4.5∗↑ 77.8 ± 2.5∗↑ 59.7 ± 1.6∗↑ 51.3 ± 2.4∗↑
DRLBP8,1 86.3 ± 1.1 32.3 ± 6.8∗↑ 37.1 ± 3.6∗↑ 85.0 ± 1.5∗↓ 86.9 ± 1.3 ↓ 64.3 ± 5.1∗↑ 73.0 ± 3.8∗ 85.9 ± 1.8 ↓ 62.5 ± 1.8∗↑ 76.1 ± 3.4∗↓
EIDri 86.9 ± 1.9 43.3 ± 1.0 41.4 ± 1.3 82.4 ± 2.0 80.1 ± 2.0 70.9 ± 4.1 75.7 ± 1.7 83.1 ± 2.2 65.1 ± 1.4 68.3 ± 1.6

K
yW

iR
o

DIF 23.0 ± 0.9∗ 12.8 ± 2.3∗↑ 28.5 ± 2.9∗↑ 19.8 ± 0.9∗↑ 20.0 ± 1.6∗↑ 21.9 ± 0.9∗↑ 22.1 ± 1.4∗↑ 22.0 ± 0.1∗↑ 23.3 ± 0.5∗↑ 17.7 ± 2.7∗↑
GLCM 49.0 ± 0.5∗ 17.0 ± 2.9∗↑ 32.7 ± 2.3∗↑ 49.7 ± 0.7∗↑ 47.3 ± 0.2∗↑ 34.1 ± 2.8∗↑ 42.0 ± 2.1∗↑ 46.1 ± 0.5∗↑ 39.9 ± 1.0∗↑ 46.9 ± 1.1∗↑
LBPu2

8,1 42.6 ± 1.8∗ 19.7 ± 2.3∗↑ 25.8 ± 3.3∗↑ 39.1 ± 1.8∗↑ 45.2 ± 2.1∗↑ 27.0 ± 4.6∗↑ 38.4 ± 4.2∗↑ 44.2 ± 4.7∗↑ 32.1 ± 1.2∗↑ 37.3 ± 2.6∗↑
LBPu2ri

24,3 69.5 ± 3.3∗ 20.3 ± 5.2∗↑ 42.9 ± 5.0∗ 67.0 ± 3.7∗↑ 66.5 ± 2.6∗↑ 43.1 ± 4.8∗↑ 51.3 ± 3.5∗↑ 66.1 ± 2.5∗↑ 54.8 ± 1.6∗↑ 66.3 ± 2.3∗↑
CLBP24,3 89.0 ± 2.8 40.9 ± 6.3∗ 32.4 ± 3.6∗↑ 40.1 ± 2.4∗↑ 90.8 ± 1.8−↓ 69.1 ± 8.4∗ 78.1 ± 5.1∗ 89.5 ± 1.9 ↓ 62.1 ± 1.3∗↑ 79.3 ± 3.9∗↓
LBC24,3 68.3 ± 3.6∗ 17.6 ± 4.2∗↑ 41.2 ± 4.1∗ 65.2 ± 4.0∗↑ 64.9 ± 2.9∗↑ 41.8 ± 5.0∗↑ 50.3 ± 4.2∗↑ 64.7 ± 2.9∗↑ 52.9 ± 2.0∗↑ 64.1 ± 2.9∗↑
CLBC24,3 76.6 ± 3.8∗ 37.2 ± 2.1∗↑ 30.3 ± 3.0∗↑ 66.9 ± 3.3∗↑ 77.4 ± 4.4∗↑ 65.4 ± 5.4∗↑ 69.0 ± 3.6∗↑ 75.7 ± 3.8∗↑ 59.0 ± 1.6∗↑ 56.5 ± 5.8∗↑
DRLBP8,1 74.1 ± 2.1∗ 29.1 ± 5.3∗↑ 36.0 ± 2.7∗↑ 71.9 ± 2.0∗↑ 75.7 ± 2.4∗↑ 59.9 ± 5.8∗↑ 65.2 ± 3.0∗↑ 75.4 ± 3.1∗↑ 56.0 ± 1.3∗↑ 64.9 ± 3.8∗↑
EIDri 88.6 ± 1.3 43.0 ± 2.0 41.2 ± 1.1 84.4 ± 1.7 80.5 ± 1.1 72.4 ± 3.8 76.5 ± 1.6 84.0 ± 1.4 65.9 ± 0.9 68.6 ± 1.8

O
ut

ex
T

C
00

DIF 17.8 ± 1.4∗ 8.30 ± 2.7∗↑ 12.8 ± 4.8∗↑ 14.8 ± 1.9∗↑ 15.7 ± 1.9∗↑ 11.5 ± 2.6∗↑ 12.2 ± 4.4∗↑ 16.3 ± 1.3∗↑ 13.2 ± 1.4∗↑ 15.0 ± 2.8∗↑
GLCM 70.9 ± 2.2∗ 20.0 ± 7.3∗↑ 36.0 ± 7.9∗↑ 60.8 ± 4.8∗↑ 66.1 ± 4.9∗↑ 41.2 ± 12.5∗↑ 52.0 ± 7.1∗↑ 69.4 ± 3.0∗↑ 49.7 ± 5.4∗↑ 70.2 ± 2.8∗↑
LBPu2

8,1 87.9 ± 1.2 40.8 ± 12.0∗ 36.9 ± 3.8∗↑ 87.5 ± 1.7 87.5 ± 1.2 ↓ 67.2 ± 10.3∗ 73.5 ± 3.1∗↑ 86.8 ± 1.4 65.6 ± 1.5∗↑ 80.4 ± 3.0∗↓
LBPu2ri

24,3 69.5 ± 2.9∗ 26.8 ± 7.9∗↑ 39.2 ± 6.1∗↑ 67.9 ± 2.4∗↑ 66.5 ± 3.3∗↑ 44.3 ± 6.9∗↑ 51.6 ± 4.2∗↑ 68.8 ± 2.2∗↑ 53.0 ± 2.1∗↑ 69.7 ± 2.8∗↑
CLBP24,3 81.0 ± 2.9∗ 37.4 ± 7.6∗↑ 23.4 ± 3.6∗↑ 27.0 ± 2.2∗↑ 82.1 ± 1.3∗↑ 61.3 ± 4.2∗↑ 68.2 ± 4.3∗↑ 80.7 ± 2.5∗↑ 56.8 ± 1.3∗↑ 70.2 ± 6.5∗
LBC24,3 68.2 ± 3.8∗ 20.2 ± 4.6∗↑ 36.2 ± 3.8∗↑ 68.0 ± 4.1∗↑ 63.9 ± 3.7∗↑ 39.6 ± 5.8∗↑ 48.5 ± 3.0∗↑ 66.6 ± 3.9∗↑ 50.5 ± 1.7∗↑ 66.8 ± 3.0∗↑
CLBC24,3 72.8 ± 2.9∗ 37.1 ± 5.8∗↑ 30.4 ± 3.6∗↑ 69.1 ± 2.9∗↑ 73.8 ± 2.9∗↑ 64.3 ± 4.9∗↑ 66.1 ± 4.9∗↑ 71.1 ± 3.5∗↑ 57.3 ± 1.5∗↑ 55.0 ± 4.7∗↑
DRLBP8,1 85.0 ± 1.8∗ 34.1 ± 10.7∗↑ 40.9 ± 4.3∗↑ 83.4 ± 1.4∗↑ 83.7 ± 1.5∗ 64.1 ± 5.5∗↑ 71.6 ± 3.8∗↑ 83.3 ± 1.7∗↑ 66.9 ± 1.5∗↑ 79.5 ± 4.8∗↓
EIDri 87.9 ± 1.8 46.0 ± 2.1 47.8 ± 2.3 87.7 ± 2.2 84.6 ± 1.7 72.2 ± 3.6 80.1 ± 1.9 86.0 ± 2.0 73.3 ± 1.2 74.5 ± 1.6

O
ut

ex
T

C
10

DIF 8.20 ± 0.7∗ 6.60 ± 1.5∗↑ 11.4 ± 2.1∗↑ 7.40 ± 0.7∗↑ 8.40 ± 0.7∗↑ 7.50 ± 1.6∗↑ 7.70 ± 1.7∗↑ 9.40 ± 0.7∗↑ 9.10 ± 0.8∗↑ 7.80 ± 1.2∗↑
GLCM 43.8 ± 2.5∗ 17.3 ± 4.8∗↑ 26.4 ± 6.5∗↑ 41.2 ± 6.2∗↑ 36.5 ± 3.3∗↑ 28.0 ± 4.9∗↑ 38.0 ± 3.8∗↑ 43.3 ± 3.6∗↑ 34.4 ± 3.9∗↑ 44.2 ± 3.8∗↑
LBPu2

8,1 34.4 ± 1.8∗ 16.1 ± 3.5∗↑ 17.7 ± 4.3∗↑ 32.8 ± 1.2∗↑ 34.8 ± 2.1∗↑ 20.4 ± 3.4∗↑ 28.2 ± 4.7∗↑ 32.8 ± 1.2∗↑ 22.5 ± 0.9∗↑ 28.9 ± 4.4∗↑
LBPu2ri

24,3 64.5 ± 1.0∗ 25.9 ± 5.3∗↑ 38.4 ± 4.4∗ 64.3 ± 2.0∗↑ 64.2 ± 2.4∗↑ 34.5 ± 7.0∗↑ 49.6 ± 3.3∗↑ 61.2 ± 2.8∗↑ 47.1 ± 1.2∗↑ 62.3 ± 1.7∗↑
CLBP24,3 86.1 ± 2.4 33.8 ± 5.6∗↑ 26.6 ± 2.7∗↑ 16.1 ± 1.5∗↑ 86.9 ± 2.3 ↓ 51.6 ± 7.5∗↑ 74.3 ± 6.8∗ 86.5 ± 2.6 59.0 ± 1.0∗↑ 74.8 ± 5.0∗
LBC24,3 60.5 ± 1.8∗ 20.9 ± 4.3∗↑ 32.8 ± 5.7∗↑ 59.8 ± 1.7∗↑ 59.4 ± 2.7∗↑ 33.9 ± 4.1∗↑ 45.4 ± 3.2∗↑ 55.6 ± 3.6∗↑ 44.0 ± 1.5∗↑ 57.8 ± 2.4∗↑
CLBC24,3 75.5 ± 2.2∗ 31.5 ± 7.0∗↑ 29.2 ± 4.0∗↑ 70.2 ± 2.3∗↑ 77.3 ± 2.5∗↑ 59.9 ± 6.9∗↑ 71.7 ± 4.6∗↑ 75.2 ± 2.4∗↑ 58.8 ± 1.9∗↑ 53.4 ± 3.9∗↑
DRLBP8,1 64.0 ± 2.6∗ 27.2 ± 5.5∗↑ 29.8 ± 5.9∗↑ 59.4 ± 1.9∗↑ 61.3 ± 3.5∗↑ 42.2 ± 8.8∗↑ 59.3 ± 5.4∗↑ 64.7 ± 3.8∗↑ 52.0 ± 0.8∗↑ 55.4 ± 5.1∗↑
EIDri 87.1 ± 1.9 41.8 ± 2.5 41.2 ± 1.6 86.2 ± 1.6 84.3 ± 1.5 71.6 ± 4.4 78.4 ± 2.2 86.0 ± 1.9 68.8 ± 1.6 72.3 ± 1.3

K
yS

in
H

w

DIF 11.6 ± 1.1∗ 9.00 ± 1.6∗↑ 20.5 ± 1.9∗↑ 8.20 ± 1.0∗↑ 10.9 ± 1.6∗↑ 11.5 ± 2.5∗↑ 13.2 ± 3.6∗↑ 11.9 ± 1.8∗↑ 15.8 ± 1.4∗↑ 11.6 ± 1.8∗↑
GLCM 69.6 ± 2.3∗ 13.2 ± 3.9∗↑ 41.0 ± 3.6∗ 67.6 ± 2.6∗↑ 64.9 ± 3.0∗↑ 51.5 ± 6.8∗↑ 61.6 ± 3.2∗↑ 67.2 ± 3.0∗↑ 55.2 ± 2.0∗↑ 67.3 ± 2.3∗↑
LBPu2

8,1 54.8 ± 2.2∗ 22.8 ± 3.3∗↑ 28.2 ± 3.3∗↑ 48.6 ± 1.6∗↑ 54.8 ± 3.8∗↑ 27.1 ± 7.8∗↑ 45.0 ± 3.0∗↑ 51.5 ± 6.1∗↑ 35.0 ± 1.3∗↑ 48.4 ± 4.3∗↑
LBPu2ri

24,3 81.8 ± 1.5∗ 26.1 ± 5.6∗↑ 48.4 ± 3.4∗↓ 78.8 ± 1.6∗↑ 81.0 ± 1.7∗↑ 46.4 ± 6.5∗↑ 60.3 ± 4.2∗↑ 78.9 ± 2.3∗↑ 63.5 ± 1.5∗↑ 78.8 ± 1.7∗↓
CLBP24,3 97.3 ± 0.7− 46.7 ± 4.7∗ 31.6 ± 3.9∗↑ 23.1 ± 1.9∗↑ 96.5 ± 1.1−↓ 74.8 ± 5.4∗↑ 83.1 ± 4.1∗ 97.9 ± 1.0−↓ 67.0 ± 1.1∗ 87.3 ± 4.6∗↓
LBC24,3 80.7 ± 1.5∗ 20.6 ± 7.6∗↑ 46.3 ± 4.1∗↓ 77.7 ± 1.7∗↑ 79.5 ± 2.0∗↑ 46.5 ± 6.8∗↑ 60.2 ± 2.1∗↑ 77.5 ± 2.8∗↑ 60.6 ± 1.5∗↑ 77.6 ± 1.6∗↓
CLBC24,3 89.0 ± 1.9∗ 46.2 ± 2.7∗ 37.0 ± 4.1∗ 87.3 ± 2.0∗↑ 89.5 ± 1.5∗↓ 73.0 ± 4.4∗↑ 78.2 ± 5.1∗↑ 89.2 ± 1.9∗↑ 67.6 ± 1.3∗ 69.7 ± 3.5∗↑
DRLBP8,1 85.3 ± 2.3∗ 34.9 ± 8.6∗↑ 37.8 ± 5.1∗ 80.6 ± 2.3∗↑ 87.1 ± 2.9∗ 55.0 ± 7.9∗↑ 72.4 ± 3.8∗↑ 86.6 ± 2.6∗↑ 62.7 ± 2.0∗↑ 77.3 ± 5.2∗
EIDri 94.1 ± 1.6 44.8 ± 1.8 39.3 ± 1.3 91.4 ± 2.3 87.1 ± 1.8 80.2 ± 3.0 84.1 ± 1.5 92.1 ± 1.4 67.3 ± 1.3 74.8 ± 1.5

EIDri with 1-NN has also significantly outperformed over 96%
of the other methods with different classification methods as
revealed by the results of the first statistical test. Checking the
influence of EIDri on the performance of each classification
method compared to that of the other methods shows that

EIDri features have significantly improved over 81% of the
cases, but also significantly degraded the performance of 11%
of the cases. The performances of other 8% cases show either
slightly improvement or deterioration when the features of the
proposed method are used.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, AUGUST 2016 14

C. Summary

The following observations can be deduced from the results
above.
• The proposed method does not require human interven-

tion to automatically evolve a rotation-invariant image
descriptor;

• The system does not require domain knowledge and only
uses two instances of each class to find a set of good
keypoints that can lead to a significantly better perfor-
mance than using domain-expert designed descriptors in
most cases;

• The newly introduced method does not solely detect a
set of predefined/designed keypoints such as lines and
corners; rather, it automatically designs a set of keypoints
and determines how to detect those keypoints;

• The use of EIDri features have, in the majority of
the cases, improved the performance of the different
classification methods compared to the use of the other
descriptors’ features;

• The proposed method dynamically sets the length of the
feature vector by automatically selecting the number of
the bits in the binary codes, i.e., children of the code
node;

• Unlike other hand-crafted descriptors, changing the win-
dow size does not require changing or redesigning the
system since it is handled automatically in EIDri as the
results of the first experiment suggest; and

• The new method can build complicated functions using
the combination of simple ones, while it also has the
flexibility to use different functions in the function set.

VI. FURTHER ANALYSIS

In this section, EIDri is investigated in depth by considering
how and why the proposed method can perform well. The
convergence, time required to evolve a descriptor, and number
of children of the code node and the window size effect on
the number of children are discussed in the first subsection. A
program evolved by EIDri is analysed and discussed in details
in the second subsection.

A. Overall Analysis

The average fitness value per generation for 30 independent
runs using different seed values on two randomly selected
instances per class of the BrWoRo dataset is depicted in
Fig. 15. A closer inspection of this graph reveals that on
average the programs have made larger jumps in the first
few generations than the later generations. The fitness value
is decreased from 2.10 to 0.088 in the first 20 generations
compared to the decrease in fitness from 0.088 to 0.070 over
the remainder 30 generations. The standard deviation bars of
those 30 independent runs show a similar pattern where the
earlier generations have more variations than the later ones.

The average time needed to evolve an image descriptor by
EIDri is presented in Fig. 16. Clearly, the time required to
evolve an individual is affected by the number of classes,
size of each instance, and size of the sliding window. Having

Fig. 15. The average fitness value per generation on the BrWoRo dataset (the
whiskers represent the standard deviation).

Fig. 16. The impact of the window size on the average time required to
evolve a program by EIDri.

more classes results in having more instances to scan by each
GP individual in each generation. Similarly, a larger instance
means more pixels are required to be scanned. Although in-
creasing the window size is assumed to reduce the evolutionary
time as more pixels (the edges) are ignored, Fig. 16 shows
that increasing the window size considerably increases the
evolution time. Calculating the minimum, maximum, mean,
and standard deviation values require iterations proportional
to the number of pixels. This process can be optimised by
pre-calculating those values instead of re-calculating them for
each individual at each generation. However, storing those pre-
calculated values for each instance requires a large amount
of memory as each pixel, i.e., a single integer value, will be
associated with four floating values.

The evaluation time of EIDri and the competitive methods
have been analysed theoretically and practically based on
[109]. Theoretically, the proposed method has a complexity
of O(n), where n is the number of pixels. Similarly, the
complexity of the DIF, LBPu2

p,r, LBPu2ri
p,r , CLBPp,r, LBCp,r,

and CLBCp,r methods are O(n). All those methods need to
iterate only once over the pixel values of an image to gener-
ate the corresponding feature vector. The DRLBPp,r method
also scans the image only once, however, it performs extra
iterations to find the dominate direction and performs feature
selection. GLCM, on the other hand, is a more expensive
and computationally intensive method that requires iterating

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, AUGUST 2016 15

Fig. 17. The average time (milliseconds) to generate the feature vector using
different image descriptors on the seven texture datasets.

multiple times over the image to generate different matrices
in order to calculate the Haralick texture features, i.e., feature
vector. Practically, further experiments have been conducted to
measure the average CPU time required to generate the feature
vector for an image (excluding the input/output time to read
the image files) as presented in Table IV and Fig. 17. The
window size for all the LBP-based methods is set to 3×3 (i.e.
p = 8 and r = 1) for fair comparisons between these methods.
The values presented in Table IV were calculated over all
instances of each dataset measured in milliseconds. DIF is the
fastest amongst all other methods mainly because this method
only calculates simple pixel statistics from predefined regions
of the image. The results show that EIDri is very fast, requiring
on average between 3 and 10 milliseconds to generate the
feature vector for an image. Meanwhile, DRLBPp,r is slower
than the other methods as it involves complicated calculations
to find the dominant direction and performs feature selection
which are computationally intensive.

The average number of children under the code node has
been analysed as it is automatically determined during the
evolutionary process. The bar plot presented in Fig. 18 shows
the distribution of code lengths, i.e., number of children for the
code node, across all independent runs of the seven datasets,
and categorised based on the different window sizes. The plot
shows clearly that the vast majority of the evolved descriptors
have a code node with 8, 9 or 10 children. The percentage of
those programs with a code node having more than 7 children
occupy 85.6%, 86.1%, and 86.4% of the evolved programs
for window sizes 3 × 3, 5 × 5, and 7 × 7, respectively. Also
none of the best evolved programs has less than 3 children
under the code node, only one program with 3, and only six
with 4 nodes. The intuition behind investigating this factor
is to give a guideline for future studies on how to set the
range of the number of children for the code node. Note that
the length of the feature vector is doubled for every node
added to the children list of the code node, which means more
space is required to store those feature vectors. Moreover, from
the analysis of those programs with 9 or 10 children, it has
been observed that only a few cells of the feature vectors have
values/counts, whilst the other cells have zero values across all
instances. Removing those unused cells can potentially reduces
the memory required to store the feature vectors.

Fig. 18. The average number of children for the code node of different
window sizes.

B. An Evolved Descriptor

A sample program evolved by EIDri on the BrNoRo dataset
is presented in Fig. 19. Using a window of size 5× 5 pixels,
this program has achieved 92.14% accuracy on the unseen
data. Overall, there are 118 nodes in this program where 61
nodes are leaves and the other 57 are functions. The code
node has 5 children/branches, which means that the feature
vector for an image is with a length of 25 = 32 values.
Although some of those branches are difficult to interpret,
other branches can be simplified and presented as mathe-
matical formulae. For instance, the corresponding formulae
for the third, fourth and fifth branches can be presented as
2mean − (min+max), (2mean−max)

/
(stdev −max),

and
(
mean+max+ mean−min

stdev

)
−
(
(mean−min) stdev

max

)
,

respectively. As only a few simple mathematical operations
are required to generate the feature vector for an image, such
descriptors can be used for on-line applications.

Table V presents the confusion matrix for the program
depicted in Fig. 19. The first column of this table lists the
actual class labels, whereas the first row lists the predicted
class labels. The proportion of correctly classified instances
for each class is presented in the last column of Table V.
The program has correctly classified either all instances (100%
accuracy) or achieved over 90% accuracy for 17 out of the 20
classes, scored over 70% accuracy on 2 further classes, and did
not perform well on only one class (D09) with 55% accuracy.
The confusion matrix shows that 19 out of 42 instances of
the D09 class have been misclassified as D04. A sample
instance from each of these two classes, i.e., D04 and D09, are
randomly selected and two tiles of each are enlarged (zoomed-
in) in Fig. 20. A close look at the enlarged tiles reveals the
similarity between the instances of the two classes especially
when the rotation variation is considered (the position order
of the pixel values is ignored within the sliding window).

The program presented in Fig. 19 is further analysed by
feeding two randomly selected instances from each class of
the BrNoRo dataset to generate the corresponding feature
vectors that are visually depicted in Fig. 21. In this figure,
the two instances drawn from each class are positioned side-
by-side to ease the comparison task, and the corresponding
class label is shown on the horizontal axis. The values of
each feature vector are normalised and represented as the

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, AUGUST 2016 16

TABLE IV
THE AVERAGE TIME (MILLISECONDS) TO GENERATE THE FEATURE VECTOR FOR AN IMAGE USING NINE IMAGE DESCRIPTORS ON SEVEN DATASETS.

DIF GLCM LBPu2
8,1 LBPu2ri

8,1 CLBP8,1 LBC8,1 CLBC8,1 DRLBP8,1 EIDri

BrNoRo 0.090 6.992 2.545 2.408 3.502 2.222 3.180 5.233 2.796
BrWiRo 0.082 7.170 3.059 2.527 5.250 2.663 5.352 7.734 3.043
KyNoRo 0.148 9.605 6.397 5.832 8.147 4.890 7.068 14.902 9.755
KyWiRo 0.148 9.587 7.901 6.806 13.370 5.604 12.001 21.066 9.960
OutexTC00 0.230 10.321 7.127 6.535 8.560 5.506 7.398 16.973 7.823
OutexTC10 0.207 10.306 7.232 6.702 9.070 5.495 7.825 17.428 7.851
KySinHw 0.190 10.033 7.234 6.535 10.469 5.671 9.495 18.662 7.572

Fig. 19. A sample program evolved by EIDri on the BrNoRo dataset (5 bits).

TABLE V
THE CONFUSION MATRIX FOR THE PROGRAM PRESENTED IN FIG. 19

D01 D03 D04 D05 D06 D09 D11 D14 D15 D16 D17 D18 D20 D21 D24 D34 D37 D46 D47 D49
D01 38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0.91
D03 0 40 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0.95
D04 0 0 30 0 0 9 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0.71
D05 0 0 0 40 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0.95
D06 0 0 0 0 42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.00
D09 0 0 19 0 0 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.55
D11 0 0 2 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0.95
D14 0 1 0 0 0 0 0 41 0 0 0 0 0 0 0 0 0 0 0 0 0.98
D15 0 0 2 0 0 0 0 0 38 0 0 0 0 0 2 0 0 0 0 0 0.91
D16 0 0 0 0 0 0 0 0 0 39 2 0 0 1 0 0 0 0 0 0 0.93
D17 0 0 0 0 0 0 0 0 0 0 42 0 0 0 0 0 0 0 0 0 1.00
D18 0 0 0 9 0 0 0 0 0 0 0 31 0 0 0 0 2 0 0 0 0.74
D20 0 0 0 0 0 0 0 0 0 0 0 0 42 0 0 0 0 0 0 0 1.00
D21 0 0 0 0 0 0 0 0 0 0 0 0 0 42 0 0 0 0 0 0 1.00
D24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 42 0 0 0 0 0 1.00
D34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 42 0 0 0 0 1.00
D37 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 38 1 0 0 0.91
D46 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 40 0 0 0.95
D47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 42 0 1.00
D49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 42 1.00

(a) (b)

Fig. 20. A sample instance and two enlarged tiles of the (a) D04 class, and
(b) D09 class.

percentage that are placed on top of each other. The 25 = 32
features {f1, f2, . . . , f32} are indicated using different colours
as depicted in the legend of Fig. 21. The figure clearly shows
that the evolved program has generated a “fingerprint” for the
instances belonging to the same class that is different from
all other instances from the other classes. Some examples are
the class D16 that has a very high percentage of f3, class
D21 with a high percentage of f9, and class D49 with high

f31 percentage. The program also identified some features that
occur in some classes but not in others, e.g., feature f12 that
does not appear in the vectors of classes D01, D03, D06,
D14, D16, D21, D46, and D49. The similarity between D04
and D09 instances is also noticeably high, which explains
why a large number of instances of these two classes were
misclassified.

VII. CONCLUSIONS

In this paper, GP has been successfully utilised to automat-
ically synthesise a set of mathematical formulae that form an
image descriptor. Unlike other image descriptors, the proposed
method does not require human intervention to design a set
of keypoints, or any mechanism for detecting those keypoints
and extracting the feature values. Domain knowledge is not
required either. The proposed method uses two instances of
each class to evolve a descriptor that is capable of generating
distinctive feature vectors for instances belong to different
classes. As this method uses only a few training instances,
it is suitable for problems where the number of labelled data
is limited. Another impact of using a few training instances is
that the overall complexity of the system in terms of time and
physical computer memory will be reduced, which makes the
system suitable for the situations that cannot afford a long time
for training. Moreover, the proposed method uses a set of first-
order statistics to evolve a rotation-invariant descriptor relying
on the order-independent characteristic of those statistics. An
evolved descriptor works in a pixel-by-pixel fashion, using a
sliding window of a predefined size. To assess the effectiveness
of the proposed method, seven texture image classification
datasets with different degrees of rotations were used and
compared to the effectiveness of eight state-of-the-art expert-
designed and hand-crafted image descriptors using ten widely
used classification algorithms. Quantitatively, the results of

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, AUGUST 2016 17

Fig. 21. A visual representation for the feature vectors of 40 randomly selected instances from the 20 classes (two from each class) of the BrNoRo dataset,
which were generated by the program presented in Fig. 19.

the experiments reveal the effectiveness of the proposed GP
method to evolve an image descriptor using only two instances
per class and yet can significantly outperform or achieve com-
parable results to the hand-crafted descriptors. Qualitatively,
the analysis of the proposed system and an evolved descriptor
demonstrates the robustness to tackle the rotation variation and
the interpretability of the evolved descriptor.

A. Major Contributions

The major contribution of the method proposed in this
paper is how GP can be designed to have a dynamic program
representation that allows the system to specify the length
of the feature vector simultaneously while evolving an image
descriptor. The empirical evaluations reveal the effectiveness
of the proposed method to consider different aspects, and
yet, is capable of evolving an illumination- and rotation-
invariant image descriptor without domain-knowledge, human
intervention, and using only two instances per class.

B. Future Work

Although the proposed method has tackled the issues of
hand-crafted descriptors as well as those recently proposed
methods, i.e., GP-criptor [45] and EID [46], it has some
limitations and there is still room for improvements that will
be addressed in the future. The proposed method can evolve
illumination-invariant and rotation-invariant descriptors, but
it may fail to handle the scale variation. Building a scale-
invariant descriptor is more difficult and more challenging than
illumination and rotation image variants. One way to tackle
this problem is via using windows of different sizes in order
to capture keypoints at different levels (zoom). This could
be accomplished by updating the program representation to
use different window sizes during the evolutionary process.
Another limitation is that dense descriptors have the potential
to perform very well on texture images, which may not
be as good as sparse descriptors when it comes to general
object classification. In real-life object classification tasks, it
is more likely that the objects of a category will have different
backgrounds, colours, and appearances. Increasing the number
of training instances can be adopted to mitigate this problem,
which may be achieved via transfer learning [110]–[112].

Using a set of instances from a related (source) domain to
evolve a model that will be used to solve the problem at hand
(target domain) is one way of performing transfer learning
that we would like to investigate in the future. Colours are
substantial elements that carry more information than grey-
scale images, and can largely influence the performance of the
different tasks in computer vision applications such as content-
based image retrieval and salient object detection. Hence, in
the future we also would like to extend the proposed method
to handle colours and evolve colour image descriptors.

ACKNOWLEDGMENT

This work was supported in part by the Marsden Fund
of New Zealand Government under Contracts VUW1209 and
VUW1509, the University Research Fund of Victoria Univer-
sity of Wellington under contracts 209861/3580, 209862/3580
and 213150/3663, and the Huawei Program under grant num-
ber E2880/3663.

REFERENCES

[1] X. Zhu, C. Vondrick, C. C. Fowlkes, and D. Ramanan, “Do we need
more training data?” International Journal of Computer Vision, vol.
119, no. 1, pp. 76–92, 2016.

[2] B. Xue, M. Zhang, W. Browne, and X. Yao, “A survey on evolutionary
computation approaches to feature selection,” IEEE Transactions on
Evolutionary Computation, vol. 20, no. 4, pp. 606–626, 2016.

[3] M. Pechenizkiy, “The impact of feature extraction on the performance
of a classifier: kNN, Naı̈ve Bayes and C4.5,” in Proceedings of the
18th Conference of the Canadian Society for Computational Studies of
Intelligence: Advances in Artificial Intelligence, ser. Lecture Notes in
Computer Science, vol. 3501. Springer, 2005, pp. 268–279.

[4] H. Moravec, “Obstacle avoidance and navigation in the real world by a
seeing robot rover,” Robotics Institute, Stanford University, Tech. Rep.
CMU-RI-TR-80-03, 1980.

[5] C. Harris and M. Stephens, “A combined corner and edge detector,” in
Proceedings of the 4th Alvey Vision Conference. Alvey Vision Club,
1988, pp. 147–151.

[6] A. Willis and Y. Sui, “An algebraic model for fast corner detection,” in
Proceedings of the 12th IEEE International Conference on Computer
Vision. IEEE, 2009, pp. 2296–2302.

[7] J. Canny, “A computational approach to edge detection,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 8, no. 6,
pp. 679–698, 1986.

[8] T. Lindeberg, “Feature detection with automatic scale selection,” In-
ternational Journal of Computer Vision, vol. 30, no. 2, pp. 79–116,
1998.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, AUGUST 2016 18

[9] T. Ojala, M. Pietikäinen, and D. Harwood, “Performance evaluation of
texture measures with classification based on Kullback discrimination
of distributions,” in Proceedings of the 12th International Conference
on Pattern Recognition, vol. 1. IEEE, 1994, pp. 582–585.

[10] J. Chen, S. Shan, C. He, G. Zhao, M. Pietikäinen, X. Chen, and W. Gao,
“WLD: A robust local image descriptor,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 32, no. 9, pp. 1705–1720, 2010.

[11] S. Krig, Computer Vision Metrics: Survey, Taxonomy, and Analysis,
1st ed. Apress, 2014.

[12] R. Haralick, K. Shanmugam, and I. Dinstein, “Textural features for
image classification,” IEEE Transactions on Systems, Man and Cyber-
netics, vol. SMC-3, no. 6, pp. 610–621, 1973.

[13] D. G. Lowe, “Object recognition from local scale-invariant features,”
in Proceedings of the International Conference on Computer Vision.
IEEE, 1999, pp. 1150–1157.

[14] H. Bay, A. Ess, T. Tuytelaars, and L. van Gool, “Speeded-up robust
features (SURF),” Computer Vision and Image Understanding, vol.
110, no. 3, pp. 346–359, 2008.

[15] P. F. Alcantarilla, A. Bartoli, and A. J. Davison, “KAZE features,” in
Proceedings of the 12th European Conference on Computer Vision -
Volume Part VI. Springer, 2012, pp. 214–227.

[16] R. Ortiz, “FREAK: Fast retina keypoint,” in Proceedings of the 2012
IEEE Conference on Computer Vision and Pattern Recognition. IEEE
Computer Society, 2012, pp. 510–517.

[17] J. Chen, G. Zhao, V. Kellokumpu, and M. Pietikäinen, “Combining
sparse and dense descriptors with temporal semantic structures for
robust human action recognition,” in IEEE International Conference
on Computer Vision Workshops. IEEE, 2011, pp. 1524–1531.

[18] T. Ojala, M. Pietikäinen, and D. Harwood, “A comparative study of
texture measures with classification based on feature distributions,”
Pattern Recognition, vol. 29, no. 1, pp. 51–59, 1996.

[19] H. Al-Sahaf, A. Al-Sahaf, B. Xue, M. Johnston, and M. Zhang,
“Automatically evolving rotation-invariant texture image descriptors by
genetic programming,” IEEE Transactions on Evolutionary Computa-
tion, pp. 1–19, 2016, doi:10.1109/TEVC.2016.2577548.

[20] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. MIT Press, 1992.

[21] R. Poli, W. B. Langdon, and N. F. McPhee, A Field Guide to Genetic
Programming. Published via http://lulu.com, 2008, (with contributions
by J. R. Koza).

[22] H. Al-Sahaf, A. Song, K. Neshatian, and M. Zhang, “Extracting
image features for classification by two-tier genetic programming,”
in Proceedings of the IEEE Congress on Evolutionary Computation.
IEEE, 2012, pp. 1–8.

[23] W. Albukhanajer, J. Briffa, and Y. Jin, “Evolutionary multiobjective
image feature extraction in the presence of noise,” IEEE Transactions
on Cybernetics, vol. 45, no. 9, pp. 1757–1768, 2015.

[24] C. Downey and M. Zhang, “Multiclass object classification for com-
puter vision using linear genetic programming,” in Proceedings of the
24th International Conference on Image and Vision Computing New
Zealand. IEEE, 2009, pp. 73–78.

[25] F. Abdulhamid, K. Neshatian, and M. Zhang, “Image recognition using
genetic programming with loop structures,” in Proceedings of the
26th International Conference on Image and Vision Computing New
Zealand, vol. 29, 2011, pp. 553–558.

[26] M. Zhang, V. Ciesielski, and P. Andreae, “A domain-independent
window approach to multiclass object detection using genetic program-
ming,” EURASIP Journal on Advances in Signal Processing, vol. 2003,
no. 8, pp. 841–859, 2003.

[27] T. Liddle, M. Johnston, and M. Zhang, “Multi-objective genetic pro-
gramming for object detection,” in Proceedings of the IEEE Congress
on Evolutionary Computation. IEEE, 2010, pp. 1–8.

[28] H. Vojodi, A. Fakhari, and A. M. E. Moghadam, “A new evaluation
measure for color image segmentation based on genetic programming
approach,” Image and Vision Computing, vol. 31, no. 11, pp. 877–886,
2013.

[29] Y. Liang, M. Zhang, and W. Browne, “A supervised figure-ground
segmentation method using genetic programming,” in Proceedings of
the 18th European Conference on the Applications of Evolutionary
Computation, ser. Lecture Notes in Computer Science, vol. 9028.
Springer, 2015, pp. 491–503.

[30] W. B. Langdon, M. Modat, J. Petke, and M. Harman, “Improving
3D medical image registration CUDA software with genetic program-
ming,” in Proceedings of the 2014 Annual Conference on Genetic and
Evolutionary Computation. ACM, 2014, pp. 951–958.

[31] S. Harding, J. Leitner, and J. Schmidhuber, “Cartesian genetic pro-
gramming for image processing,” in Genetic Programming Theory and

Practice X, ser. Genetic and Evolutionary Computation. Springer,
2013, pp. 31–44.

[32] M. Ebner and A. Zell, “Evolving a task specific image operator,” in
Evolutionary Image Analysis, Signal Processing and Telecommunica-
tions, ser. Lecture Notes in Computer Science. Springer, 1999, vol.
1596, pp. 74–89.

[33] L. Trujillo and G. Olague, “Synthesis of interest point detectors through
genetic programming,” in Proceedings of the 8th Annual Conference
on Genetic and Evolutionary Computation. ACM, 2006, pp. 887–894.

[34] ——, “Automated design of image operators that detect interest points,”
Evolutionary Computation, vol. 16, no. 4, pp. 483–507, 2008.

[35] G. Olague and L. Trujillo, “A genetic programming approach to the
design of interest point operators,” in Bio-inspired Hybrid Intelligent
Systems for Image Analysis and Pattern Recognition, ser. Studies in
Computational Intelligence. Springer, 2009, vol. 256, pp. 49–65.

[36] C. B. Perez and G. Olague, “Evolutionary learning of local descriptor
operators for object recognition,” in Proceedings of the 11th Annual
Conference on Genetic and Evolutionary Computation. ACM, 2009,
pp. 1051–1058.

[37] L. Shao, L. Liu, and X. Li, “Feature learning for image classification
via multiobjective genetic programming,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 25, no. 7, pp. 1359–1371, 2014.

[38] L. Liu, L. Shao, X. Li, and K. Lu, “Learning spatio-temporal repre-
sentations for action recognition: A genetic programming approach,”
IEEE Transactions on Cybernetics, vol. 46, no. 1, pp. 158–172, 2016.

[39] S. J. Raudys and A. K. Jain, “Small sample size effects in statistical
pattern recognition: Recommendations for practitioners,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 13, no. 3,
pp. 252–264, 1991.

[40] G. M. Weiss and F. Provost, “Learning when training data are costly:
The effect of class distribution on tree induction,” Journal of Artificial
Intelligence Research, vol. 19, no. 1, pp. 315–354, 2003.

[41] E. Rodner and J. Denzler, “Learning with few examples by transferring
feature relevance,” in Proceedings of the 31st DAGM Symposium on
Pattern Recognition, ser. Lecture Notes in Computer Science, vol. 5748.
Springer, 2009, pp. 252–261.

[42] L. Zhuang, H. Gao, J. Luo, and Z. Lin, “Regularized semi-supervised
latent dirichlet allocation for visual concept learning,” Neurocomputing,
vol. 119, pp. 26–32, 2013.

[43] X. Zhu, C. Vondrick, D. Ramanan, and C. Fowlkes, “Do we need more
training data or better models for object detection?” in Proceedings of
the British Machine Vision Conference. BMVA Press, 2012, pp. 80.1–
80.11.

[44] H. Al-Sahaf, M. Zhang, and M. Johnston, “Binary image classification:
A genetic programming approach to the problem of limited training
instances,” Evolutionary Computation (Journal, MIT Press), vol. 24,
no. 1, pp. 143–182, 2016.

[45] H. Al-Sahaf, M. Zhang, M. Johnston, and B. Verma, “Image descriptor:
A genetic programming approach to multiclass texture classification,”
in Proceedings of 2015 IEEE Congress on Evolutionary Computation.
IEEE, 2015, pp. 2460–2467.

[46] H. Al-Sahaf, M. Zhang, and M. Johnston, “Evolutionary image de-
scriptor: A dynamic genetic programming representation for feature
extraction,” in Proceedings of the 2015 Annual Conference on Genetic
and Evolutionary Computation. ACM, 2015, pp. 975–982.

[47] L. Nanni, S. Brahnam, and A. Lumini, “A simple method for improving
local binary patterns by considering non-uniform patterns,” Pattern
Recognition, vol. 45, no. 10, pp. 3844–3852, 2012.

[48] T. Ahonen, A. Hadid, and M. Pietikäinen, “Face recognition with local
binary patterns,” in Proceedings of the 8th European Conference on
Computer Vision, ser. Lecture Notes in Computer Science, T. Pajdla
and J. Matas, Eds., vol. 3021. Springer, 2004, pp. 469–481.

[49] T. Ahonen, A. Hadid, and M. Pietikäinen, “Face description with local
binary patterns: Application to face recognition,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 28, no. 12, pp.
2037–2041, 2006.

[50] B. Yang and S. Chen, “A comparative study on local binary pattern
(LBP) based face recognition: LBP histogram versus LBP image,”
Neurocomputing, vol. 120, pp. 365–379, 2013.

[51] D. T. Nguyen, Z. Zong, P. Ogunbona, and W. Li, “Object detection
using non-redundant local binary patterns,” in Proceedings of the 17th
IEEE International Conference on Image Processing. IEEE, 2010,
pp. 4609–4612.

[52] A. Satpathy, X. Jiang, and H.-L. Eng, “LBP-based edge-texture features
for object recognition,” IEEE Transactions on Image Processing,
vol. 23, no. 5, pp. 1953–1964, 2014.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, AUGUST 2016 19

[53] J. Cheng, L. Li, B. Luo, S. Wang, and H. Liu, “High-resolution remote
sensing image segmentation based on improved RIU-LBP and SRM,”
EURASIP Journal on Wireless Communications and Networking, vol.
2013, no. 1, pp. 1–12, 2013.

[54] Z. Guo, L. Zhang, and D. Zhang, “A completed modeling of local
binary pattern operator for texture classification,” IEEE Transactions
on Image Processing, vol. 19, no. 6, pp. 1657–1663, 2010.

[55] O. A. Vatamanu, M. Frandes, D. Lungeanu, and G.-I. Mihalas, “Content
based image retrieval using local binary pattern operator and data
mining techniques,” Studies in Health Technology and Informatics, vol.
210, pp. 75–79, 2015.

[56] T. Ojala, M. Pietikäinen, and T. Mäenpää, “Gray scale and rotation
invariant texture classification with local binary patterns,” in Proceed-
ings of the 6th European Conference on Computer Vision, ser. Lecture
Notes in Computer Science, no. 1842. Springer, 2000, pp. 404–420.

[57] A. Hafiane, G. Seetharaman, and B. Zavidovique, “Median binary
pattern for textures classification,” in Image Analysis and Recognition,
ser. Lecture Notes in Computer Science. Springer, 2007, vol. 4633,
pp. 387–398.

[58] T. Ahonen and M. Pietikäinen, “Soft histograms for local binary
patterns,” in Proceedings of the Finnish Signal Processing Symposium.
Oulu, 2007, pp. 1–4.

[59] D. Iakovidis, E. Keramidas, and D. Maroulis, “Fuzzy local binary
patterns for ultrasound texture characterization,” in Image Analysis and
Recognition, ser. Lecture Notes in Computer Science, A. Campilho and
M. Kamel, Eds. Springer, 2008, vol. 5112, pp. 750–759.

[60] X. Tan and B. Triggs, “Enhanced local texture feature sets for face
recognition under difficult lighting conditions,” IEEE Transactions on
Image Processing, vol. 19, no. 6, pp. 1635–1650, 2010.

[61] L. Nanni, A. Lumini, and S. Brahnam, “Local binary patterns variants
as texture descriptors for medical image analysis,” Artificial Intelli-
gence in Medicine, vol. 49, no. 2, pp. 117–125, 2010.

[62] X. Qian, X.-S. Hua, P. Chen, and L. Ke, “PLBP: An effective local
binary patterns texture descriptor with pyramid representation,” Pattern
Recognition, vol. 44, no. 10-11, pp. 2502–2515, 2011.

[63] Y. Zhao, D.-S. Huang, and W. Jia, “Completed local binary count for
rotation invariant texture classification,” IEEE Transactions on Image
Processing, vol. 21, no. 10, pp. 4492–4497, 2012.

[64] Y. Zhao, W. Jia, R.-X. Hu, and H. Min, “Completed robust local binary
pattern for texture classification,” Neurocomputing, vol. 106, no. 1, pp.
68–76, 2013.

[65] R. Mehta and K. Egiazarian, “Dominant rotated local binary pat-
terns (DRLBP) for texture classification,” Pattern Recognition Letters,
vol. 71, no. 1, pp. 16–22, 2016.

[66] M. Pietikäinen, A. Hadid, G. Zhao, and T. Ahonen, “Local binary
patterns for still images,” in Computer Vision Using Local Binary
Patterns, ser. Computational Imaging and Vision. Springer, 2011,
vol. 40, pp. 13–47.

[67] G. Kylberg and I.-M. Sintorn, “Evaluation of noise robustness for local
binary pattern descriptors in texture classification,” EURASIP Journal
on Image and Video Processing, vol. 2013, no. 1, pp. 1–20, 2013.

[68] J. Santamaria, S. Damas, O. Cordon, and A. Escamez, “Self-adaptive
evolution toward new parameter free image registration methods,” IEEE
Transactions on Evolutionary Computation, vol. 17, no. 4, pp. 545–557,
2013.

[69] G. Abo Smara and F. Khalefah, “Localization of license plate number
using dynamic image processing techniques and genetic algorithms,”
IEEE Transactions on Evolutionary Computation, vol. 18, no. 2, pp.
244–257, 2014.

[70] M. Lones, S. Smith, J. Alty, S. Lacy, K. Possin, D. Jamieson, and
A. Tyrrell, “Evolving classifiers to recognize the movement char-
acteristics of parkinson’s disease patients,” IEEE Transactions on
Evolutionary Computation, vol. 18, no. 4, pp. 559–576, 2014.

[71] A. Song, T. Loveard, and V. Ciesielski, “Towards genetic programming
for texture classification,” in Proceedings of the 14th Australian Joint
Conference on Artificial Intelligence, ser. Lecture Notes in Computer
Science, vol. 2256. Springer, 2001, pp. 461–472.

[72] W. A. Tackett, “Genetic programming for feature discovery and image
discrimination,” in Proceedings of the 5th International Conference on
Genetic Algorithms, 1993, pp. 303–311.

[73] M. Zhang and V. Ciesielski, “Genetic programming for multiple
class object detection,” in Proceedings of the 12th Australian Joint
Conference on Artificial Intelligence, ser. Lecture Notes in Computer
Science, vol. 1747. Springer, 1999, pp. 180–192.

[74] T. Loveard and V. Ciesielski, “Representing classification problems
in genetic programming,” in Proceedings of the IEEE Congress on
Evolutionary Computation, vol. 2. IEEE, 2001, pp. 1070–1077.

[75] A. Song and V. Ciesielski, “Texture analysis by genetic programming,”
in Proceedings of the IEEE Congress on Evolutionary Computation.
IEEE Press, 2004, pp. 2092–2099.

[76] W. R. Smart and M. Zhang, “Classification strategies for image
classification in genetic programming,” in Proceedings of the 18th In-
ternational Conference on Image and Vision Computing New Zealand.
Massey University, 2003, pp. 402–407.

[77] M. Zhang and M. Johnston, “A variant program structure in tree-
based genetic programming for multiclass object classification,” in
Evolutionary Image Analysis and Signal Processing, ser. Studies in
Computational Intelligence. Springer, 2009, vol. 213, pp. 55–72.

[78] U. Bhowan, M. Johnston, M. Zhang, and X. Yao, “Reusing genetic
programming for ensemble selection in classification of unbalanced
data,” IEEE Transactions on Evolutionary Computation, vol. 18, no. 6,
pp. 893–908, 2014.

[79] ——, “Evolving diverse ensembles using genetic programming for
classification with unbalanced data,” IEEE Transactions on Evolution-
ary Computation, vol. 17, no. 5, pp. 368–386, 2013.

[80] D. J. Montana, “Strongly typed genetic programming,” Evolutionary
Computation, vol. 3, no. 2, pp. 199–230, 1995.

[81] H. Al-Sahaf, A. Song, K. Neshatian, and M. Zhang, “Two-tier genetic
programming: Towards raw pixel-based image classification,” Expert
Systems with Applications, vol. 39, no. 16, pp. 12 291–12 301, 2012.

[82] H. Al-Sahaf, K. Neshatian, and M. Zhang, “Two-tier genetic program-
ming for automatic feature extraction, feature selection and image
classification,” in Proceedings of the 26th International Conference on
Image and Vision Computing New Zealand. IEEE, 2011, pp. 109–114.

[83] ——, “Automatic feature extraction and image classification using
genetic programming,” in Proceedings of the 5th International Con-
ference on Automation, Robots and Applications. IEEE Press, 2011,
pp. 157–162.

[84] S. Hindmarsh, P. Andreae, and M. Zhang, “Genetic programming for
improving image descriptors generated using the scale-invariant feature
transform,” in Proceedings of the 27th International Conference on
Image and Vision Computing New Zealand. ACM, 2012, pp. 85–90.

[85] C. Ryan, J. Fitzgerald, K. Krawiec, and D. Medernach, “Image
classification with genetic programming: Building a stage 1 computer
aided detector for breast cancer,” in Handbook of Genetic Programming
Applications. Springer, 2015, pp. 245–287.

[86] W. Fu, M. Johnston, and M. Zhang, “Automatic construction of
invariant features using genetic programming for edge detection,” in
Proceedings of the 25th Australasian Joint Conference on Artificial
Intelligence, ser. Lecture Notes in Computer Science. Springer, 2012,
vol. 7691, pp. 144–155.

[87] ——, “Distribution-based invariant feature construction using genetic
programming for edge detection,” Soft Computing, vol. 19, no. 8, pp.
2371–2389, 2015.

[88] I. Sobel and G. Feldman, “A 3×3 isotropic gradient operator for image
processing,” 1968, Presented at a talk at the Stanford Artificial Project.

[89] R. Duda and P. Hart, Pattern Classification and Scene Analysis. John
Wiley & Sons, 1973.

[90] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution
Programs, 2nd ed. Springer-Verlag, 1994.

[91] Q. Chen, M. Zhang, and B. Xue, “Feature selection to improve
generalisation of genetic programming for high-dimensional symbolic
regression,” IEEE Transactions on Evolutionary Computation, 2017.

[92] S.-H. Cha, “Comprehensive survey on distance/similarity measures
between probability density functions,” International Journal of Math-
ematical Models and Methods in Applied Sciences, vol. 1, no. 4, pp.
300–307, 2007.

[93] G. Kylberg, “The Kylberg texture dataset v. 1.0,” Centre for Image
Analysis, Swedish University of Agricultural Sciences and Uppsala
University, Uppsala, Sweden, External report (Blue series) 35, 2011.

[94] P. Brodatz, Textures: A Photographic Album for Artists and Designers.
Dover Publications, 1999.

[95] T. Ojala, T. Mäenpää, M. Pietikäinen, J. Viertola, J. Kyllonen, and
S. Huovinen, “Outex - new framework for empirical evaluation of
texture analysis algorithms,” in Proceedings of the 16th International
Conference on Pattern Recognition, vol. 1. IEEE, 2002, pp. 701–706.

[96] G. Kylberg, “Automatic virus identification using TEM: Image seg-
mentation and texture analysis,” Ph.D. dissertation, Division of Visual
Information and Interaction, Uppsala University, Uppsala, Sweden,
2014.

[97] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques, 2nd ed. Morgan Kaufmann, 2005.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, AUGUST 2016 20

[98] S. Luke and L. Spector, “A revised comparison of crossover and muta-
tion in genetic programming,” in Proceedings of the 12th Conference
on Genetic Programming. Morgan Kaufmann, 1998, pp. 208–213.

[99] D. White and S. Poulding, “A rigorous evaluation of crossover and mu-
tation in genetic programming,” in Proceedings of the 12th European
Conference on Genetic Programming. Springer, 2009, pp. 220–231.

[100] S. Keerthi and C.-J. Lin, “Asymptotic behaviors of support vector
machines with gaussian kernel,” Neural Computation, vol. 15, no. 7,
pp. 1667–1689, 2003.

[101] S. Trenn, “Multilayer perceptrons: Approximation order and necessary
number of hidden units,” IEEE Transactions on Neural Networks,
vol. 19, no. 5, pp. 836–844, 2008.

[102] Y. Freund and R. E. Schapire, “Experiments with a new boosting
algorithm,” in Proceedings of the 13th International Conference on
Machine Learning. Morgan Kaufmann, 1996, pp. 148–156.

[103] G. Holmes, B. Pfahringer, R. Kirkby, E. Frank, and M. Hall, “Multi-
class alternating decision trees,” in Proceedings of the 13th European
Conference on Machine Learning. Springer, 2002, pp. 161–172.

[104] S. Luke, Essentials of Metaheuristics, 2nd ed. Lulu, 2013, [Online]
Available: http://cs.gmu.edu/∼sean/book/metaheuristics/.

[105] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The WEKA data mining software: An update,” SIGKDD
Explorations Newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[106] J. Demšar, “Statistical comparisons of classifiers over multiple data
sets,” Journal of Machine Learning Research, vol. 7, pp. 1–30, 2006.

[107] J. Derrac, S. Garcı́a, D. Molina, and F. Herrera, “A practical tutorial
on the use of nonparametric statistical tests as a methodology for
comparing evolutionary and swarm intelligence algorithms,” Swarm
and Evolutionary Computation, vol. 1, no. 1, pp. 3–18, 2011.

[108] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics
Bulletin, vol. 1, no. 6, pp. 80–83, 1945.

[109] O. A. B. Penatti, E. Valle, and R. S. Torres, “Comparative study of
global color and texture descriptors for web image retrieval,” Journal
of Visual Communication and Image Representation, vol. 23, no. 2, pp.
359–380, 2012.

[110] T. Tommasi and B. Caputo, “The more you know, the less you learn:
From knowledge transfer to one-shot learning of object categories,”
in Proceedings of the British Machine Vision Conference. British
Machine Vision Association, 2009, pp. 1–11.

[111] K. R. Canini, M. M. Shashkov, and T. L. Griffiths, “Modeling transfer
learning in human categorization with the hierarchical Dirichlet pro-
cess,” in Proceedings of the 27th International Conference on Machine
Learning. Omnipress, 2010, pp. 151–158.

[112] M. Iqbal, B. Xue, H. Al-Sahaf, and M. Zhang, “Cross-domain reuse
of extracted knowledge in genetic programming for image classi-
fication,” IEEE Transactions on Evolutionary Computation, 2017,
doi:10.1109/TEVC.2017.2657556.

Harith Al-Sahaf (M’13) received his B.Sc. de-
gree in Computer Science from Baghdad University,
Baghdad, Iraq, in 2005. He received his Master
of Computer Science (MCompSc) degree, and PhD
in computer science degree, respectively, in 2010
and 2017 from Victoria University of Wellington,
Wellington, New Zealand (VUW). Since 2010, he
has joined the Evolutionary Computation Research
Group (ECRG) at VUW. Currently, he is a post-
doctoral fellow with the School of Engineering and
Computer Science at VUW.

Harith’s research interests are in evolutionary computation, computer vision,
pattern recognition, machine learning, feature manipulation including feature
detection, selection, extraction and construction, transfer learning, domain
adaptation, one-shot learning, and image understanding.

Harith is a member of the IEEE Computational Intelligence Society (CIS).
He is also a member of the IEEE CIS Task Force on Evolutionary Computation
for Feature Selection and Construction. He has been serving as a reviewer for
top international journals and conferences in the field.

Mengjie Zhang (M’04-SM’10) received the B.E.
and M.E. degrees from Artificial Intelligence Re-
search Center, Agricultural University of Hebei,
Hebei, China, and the Ph.D. degree in computer
science from RMIT University, Melbourne, VIC,
Australia, in 1989, 1992, and 2000, respectively.

Since 2000, he has been with the Victoria Uni-
versity of Wellington, New Zealand, where he is
currently Professor of Computer Science, Head of
the Evolutionary Computation Research Group, and
the Associate Dean (Research and Innovation) in the

Faculty of Engineering. His current research interests include evolutionary
computation, particularly genetic programming, particle swarm optimization,
and learning classifier systems with application areas of image analysis,
feature selection and dimensionality reduction, multiobjective optimization,
classification with missing data, and job shop scheduling. He has published
over 400 academic papers in refereed international journals and conferences.

Prof. Zhang has been serving as an Associated Editor or Editorial Board
Member for eight international journals (including IEEE Transactions on Evo-
lutionary Computation, Evolutionary Computation Journal) and as a Reviewer
of over 20 international journals. He has been serving as a Steering Commit-
tee Member and a Program Committee Member for over 80 international
conferences. He has supervised over 50 postgraduate research students. He is
the Chair of the IEEE CIS Emergent Technologies Technical Committee, the
immediate past Chair of the Evolutionary Computation Technical Committee,
a member of the IEEE CIS Intelligent Systems and Applications Technical
Committee, a Vice-Chair of the IEEE CIS Task Force on Evolutionary
Computer Vision and Image Processing, a Vice-Chair of the IEEE CIS Task
Force on Evolutionary Computation for Feature Selection and Construction, a
member of IEEE CIS Task Force of Hyper-heuristics, and the Founding Chair
for IEEE Computational Intelligence Chapter in New Zealand.

Ausama Al-Sahaf (S’16) received his B.Sc. degree
in Computer Science from Al-Mamon University
College, Baghdad, Iraq, in 2001. He joined the Col-
lege of Agriculture, Baghdad University, Baghdad,
Iraq, as a faculty member in September 2002. He re-
ceived his Master of Computer Science (MCompSc)
degree in 2010 from Victoria University of Welling-
ton, Wellington, New Zealand (VUW).

Ausama’s research interests are in evolutionary
computation, computer vision, pattern recognition,
machine learning, and transfer learning. Ausama is

a member of the IEEE Computational Intelligence Society (CIS).
Mr. Al-Sahaf has worked as a software developer in both governmental and

private sector companies.

Mark Johnston (M’10) is currently a Senior Lec-
turer in Mathematics at the University of Worcester,
UK, having previously held positions at Victoria
University of Wellington, New Zealand, and the
University of Essex, UK. He received a BSc(hons)
in Mathematics and a PhD in Operations Research
from Massey University, New Zealand.

Mark’s research interests are in combinatorial
optimisation, particularly evolutionary computation
approaches and hyperheuristics. For several years
Mark has worked closely with the New Zealand

Rugby Union in developing their domestic rugby competition schedules.

