
UCL DEPARTMENT OF
COMPUTER SCIENCE

Research Note
RN/16/07

An Empirical Study of Cohesion and Coupling:

Balancing Optimisation and Disruption

December 2, 2016

Matheus Paixao1, Mark Harman1, Yuanyuan Zhang1, Yijun Yu2

Affiliation: University College London1, Open University2

{matheus.paixao.14, mark.harman, yuanyuan.zhang}@ucl.ac.uk, y.yu@open.ac.uk

Abstract

Search based software engineering has been extensively applied to the problem of finding im-
proved modular structures that maximise cohesion and minimise coupling. However, there has,
hitherto, been no longitudinal study of developers’ implementations, over a series of sequential
releases. Moreover, results validating whether developers respect the fitness functions are scarce,
and the potentially disruptive effect of search-based re-modularisation is usually overlooked. We
present an empirical study of 233 sequential releases of 10 different systems; the largest empirical
study reported in the literature so far, and the first longitudinal study. Our results provide evi-
dence that developers do, indeed, respect the fitness functions used to optimise cohesion/coupling
(they are statistically significantly better than arbitrary choices with p << 0.01), yet they also
leave considerable room for further improvement (cohesion/coupling can be improved by 25% on
average). However, we also report that optimising the structure is highly disruptive (on average
more than 57% of the structure must change), while our results reveal that developers tend to
avoid such disruption. Therefore, we introduce and evaluate a multiobjective evolutionary ap-
proach that minimises disruption while maximising cohesion/coupling improvement. This allows
developers to balance reticence to disrupt existing modular structure, against their competing
need to improve cohesion and coupling. The multiobjective approach is able to find modular
structures that improve the cohesion of developers’ implementations by 22.52%, while causing
an acceptably low level of disruption (within that already tolerated by developers).

Keywords: Software Modularisation, Software Evolution, Multiobjective Search



Cohesion and Coupling: Balancing Optimisation and Disruption Paixao et al.

1 Introduction

Software modularisation is almost as old as the concept of software engineering itself. The notions
of cohesion and coupling were introduced in the 1970s [58]. Cohesion is the degree of relatedness
enjoyed by code elements residing in the same abstract module, while coupling is the relatedness
between modules. There is long-established evidence that software structure tends to degrade
as the system evolves [26][27][57]. Therefore, one goal of software modularisation research, is to
find ways to improve modular structure, by increasing cohesion and reducing coupling.

Search Based Software Engineering (SBSE) techniques have been widely-studied and devel-
oped as one way to automate this structural modular improvement process, guided by fitness
functions that capture structural cohesion, coupling and combinations thereof. Structural cohe-
sion/coupling is typically measured in terms of dependencies between elements. It is structural,
rather than semantic, because it takes no account of the degree of semantic relations between
elements, other than that which is captured through dependence measurements [9].

Many different search techniques have been proposed and developed that automate the search
for improved modular structure. However, despite more than 30 publications on search based
modularisation, few studies [13][11] have performed an evaluation of the disruptive effects that
automated modular improvement may cause on the original modular structure of the software
systems under study. A thorough study of the disruption caused by modular restructuring is
needed, because there is evidence that software engineers tend to resist structural and architec-
tural improvement in favour of similarity and familiarity [57]. Therefore, high levels of disruption
might undermine the industrial uptake of techniques for software re-modularisation.

Moreover, most of the surveyed publications on search based automated re-modularisation
consider only a single version of the systems under study, ignoring the systems’ history of pre-
vious releases. A study involving a series of consecutive releases would be required in order to
understand software engineers’ decisions with respect to cohesion/coupling and the disruption
that would have been caused by automated attempts to improve cohesion/coupling.

In this paper, we provide the first study of search based modularisation that considers both
the opportunities for improving software structure and the consequent disruption that accrues as
a result, over a series of subsequent releases of software systems. This is also the largest study in
search based modularisation: we study 233 releases of 10 different open source software systems,
from which we extracted the modular structure data.

We start by investigating the validity of the quality metrics that previous work on search based
modularisation has used to improve software modularity. Our survey reveals that out of more
than 30 papers that have previously studied this problem, many have used the Modularisation
Quality (MQ) metric [31][38] to assess modularity quality. We therefore validate the use of this
metric, investigating whether the existing modular structure implemented by developers respects
MQ.

We complement our study of MQ by measuring the raw cohesion of each system. The raw
cohesion is simply the number of dependencies that reside within a single module, and therefore
do not cross any module boundary. The raw coupling, is the obverse; the number of dependencies
that cut across module boundaries. Given the proposed modular structure of a system, we can
thus measure raw cohesion/ coupling, simply by counting intra- and inter-dependencies between
elements. Since raw coupling is the obverse of raw cohesion, we need only measure one of the
two properties. Traditional search based modularisation does not use raw cohesion/coupling as
a fitness function, because it would result in the algorithm moving all elements into one single
module (with maximal cohesion and zero coupling). Such a ‘god class’ structure is undesirable
[10], and various previous authors developed techniques to avoid this [38][17][47]. Although raw
cohesion/coupling cannot be used to optimise the modular structure, it can be used to evaluate

RN/16/07 1



Cohesion and Coupling: Balancing Optimisation and Disruption Paixao et al.

the quality of solutions found by search. Hereinafter, when we refer to ‘cohesion’, we mean this
simple ‘raw cohesion’ metric.

In order to provide an evidence-based assessment of the degree to which developers’ imple-
mentations are cohesion-respecting and MQ-respecting, we introduce an approach to validation
that is grounded in frequentist inferential statistics, widely used elsewhere in software engineer-
ing, and particularly recommended for SBSE [4][15]. Using this statistical approach, we provide
evidence that developers choose modular structures that are highly cohesion- and MQ-respecting.
Furthermore, we show that although developers choose solutions in the local neighbourhood that
have better cohesion and MQ values than at least 97.3% of the possible alternatives, in every
release of every system, the developers implementations are, nevertheless, suboptimal regarding
both cohesion and MQ.

This motivates the study of the degree to which search based modularisation could auto-
matically ‘improve’ on the developer-implemented modular structure, according to cohesion and
MQ. In order to answer this question, we empirically studied the widely-proposed hill climbing
technique (Bunch) for finding improved modular structures [38]. The hill climbing approach is
simple and fast, and has publicly available implementations, making it an obvious first choice
for any developer seeking to use search based techniques for modular improvement. After mod-
ifications to the original approach to cope with the large scale real world systems being studied,
we found that, in most releases, automated modularisation does find modular structures with
statistically significantly better cohesion and MQ values, and with large effect size.

Of course, re-modularisation may not be so straightforward in practice: if there was a dra-
matically improved modular structure available to the developers, then it seems reasonable to
ask why software engineers have not adopted it. There are two potential explanations for this:

1. The developers are unaware of any better solutions; the search space is simply too large
and it defeats human-based search.

2. The developers are aware of at least one better solution, but choose not to implement any
of the better solutions.

In all cases, we found that, even within the nearest neighbourhood to the developers’ given
implementation, there were always alternatives with improved cohesion/coupling. That is, im-
provement could be achieved simply by moving a single element from one module to another, in
all of the 233 releases studied. This provides evidence that it is unlikely that developers were
unaware of any better solution, so we turn our attention to the second possible explanation
above.

If developers could easily find a better solution, even with a simple nearest neighbourhood
search, why did they choose not to implement it? One possible explanation we chose to inves-
tigate, relates to the recent observation that developers are prepared to build up technical debt
[22][32]; resisting the temptation to restructure systems, and tolerating degradation in structure,
in order to obtain fast delivery, retain familiarity of the existing structure and/or to preserve
some other property of interest. Specifically, we investigate the degree of disruption that would
be caused by moving to an improved modular structure, that increases cohesion and reduces
coupling. We measure disruption as the number of elements and modules that would need to
be moved or merged, according to the MoJoFM metric [56]. The results were striking: while a
variation of the well-known Bunch automated re-modularisation approach can improve cohesion
by 25% on average, these improvements result in 57% disruption.

This provides empirical evidence that developers are reluctant to disrupt the modular struc-
ture, even when this might lead to improved cohesion/coupling. Unfortunately, most of the
previous work on search-based re-modularisation has ignored this disruptive effect, leaving open

RN/16/07 2



Cohesion and Coupling: Balancing Optimisation and Disruption Paixao et al.

many questions that we seek to answer in the present paper, such as how large the effect is and
how often it occurs, whether it is correlated with the improvements achievable, and the degree
to which it could be avoided, while maintaining structural improvement.

We found that, although any modular improvement inherently inflicts some degree of dis-
ruption, in general, the disruption caused by the best improvement found by standard SBSE
approaches, for every release of every system, is smaller than the average disruption. Further-
more, we found no evidence that cohesion improvement is correlated with disruption increase.
This is a particularly attractive finding, because it points to the possibility that a multiobjective
search-based approach may be able to find balances and trade-offs between modular disruption
and improvement. This more positive finding, thereby motivated our final set of experiments, in
which we introduced, implemented and evaluated a novel multiobjective search based modulari-
sation technique.

Our new approach to automated re-modularisation seeks pareto-optimal balances between
disruption, as measured by MoJoFM, and improvement. On average, within the developer-
determined ‘acceptable’ level of disruption for each system, which was calculated through lon-
gitudinal analysis between developers-implemented releases, our multiobjective approach was
able to find solutions with average 22.52% and 55.75% improvements for cohesion and MQ,
respectively.

The primary contributions of this paper are the findings concerning the behaviour of both
developers and existing SBSE techniques for automated re-modularisation (on 233 releases of 10
different software systems), the identification of disruption as an important problem for auto-
mated re-modularisation, and the novel multiobjective approach we introduce and evaluate to
tackle this problem. Our empirical study and evaluation is the largest study of search-based re-
modularisation hitherto reported in the literature, and its scientific findings have an actionable
conclusion for researchers and practitioners; any and all approaches to re-modularisation (search
based or otherwise) need to take account of (and balance) the disruption they cause, against the
improvement they offer.

The rest of this paper is organised as follows: Section 2 discusses the related work that was
collected during our survey, alongside some formal definitions and background of automated
software modularisation. Section 3 describes how we collected the modular structure data of
the systems we consider, and Section 4 presents the empirical study we performed over the 233
releases of the 10 systems we collected. In addition, Section 5 reports a qualitative analysis of
the results achieved. Finally, Section 6 discusses the threats to the validity of our empirical study
and Section 7 presents our conclusions and points out some future research directions.

2 Related Work and Background

We collected publications that use search based techniques to improve the modular structure,
where cohesion/coupling and combinations thereof are used to assess the quality of the mod-
ularisations. We cannot guarantee that we covered every paper, but we believe this survey
presents a reasonable sample of the work performed by the search based software modularisation
community.

Table 1 summarizes the 35 papers we collected, and presents them sorted by year of publi-
cation. For each paper we report whether it employs a Single Objective (SO) or MultiObjective
(MO) optimisation approach, and what fitness functions are used to guide the search. We also
report which search algorithms are used to perform the modularisation, and how many systems
and releases were considered in each evaluation.

As one can see, the work on search based software modularisation dates back to late 1990s

RN/16/07 3



Cohesion and Coupling: Balancing Optimisation and Disruption Paixao et al.

Table 1: Related work in Search Based Software Modularisation sorted by year of
publication

Paper Year
Optimisa-

tion
Approach

Fitness Function Search Algorithm

Number of
Different
Systems

Used

Number
of

Releases
Studied

Mancoridis et al. [31] 1998 SO MQ HC 5 5
Doval et al. [12] 1999 SO MQ GA 1 1
Mancoridis et al. [30] 1999 SO MQ HC 1 2
Mitchell et al. [33] 2001 SO MQ HC 7 7
Harman et al. [16] 2002 SO Coh, Cop HC, GA 7 7
Mitchell et al. [36] 2002 SO MQ HC 5 5
Mahdavi et al. [28] 2003 SO MQ HC 19 19
Mitchell et al. [37] 2003 SO MQ HC 13 13
Harman et al. [17] 2005 SO MQ, EVM HC 6 6
Seng et al. [51] 2005 SO Coh, Cop, Complexity, Cycles, Bottlenecks GGA 1 1
Shokoufandeh et al. [52] 2005 SO MQ HC and Spectral Algorithm 13 13
Mitchell et al. [38] 2006 SO MQ HC 2 2
Mitchell et al. [39] 2008 SO MQ HC 5 5
Abdeen et al. [1] 2009 SO Coh, Cop, Cycles SA 4 4
Mamaghani et al. [29] 2009 SO MQ Hybrid GA 5 5
Praditwong et al. [46] 2011 SO MQ GGA 17 17
Praditwong et al. [47] 2011 MO MCA, ECA Two-Archive GA 17 17
Barros et al. [5] 2012 MO MCA, ECA NSGA-II 13 13
Bavota et al. [7] 2012 SO and MO MQ, MCA, ECA GA, NSGA-II 2 2
Hall et al. [14] 2012 SO MQ HC 5 5
Abdeen et al. [2] 2013 MO Coh, Cop, Modifications NSGA-II 4 4
Kumari et al. [24] 2013 MO MCA, ECA Hyper-heuristics 6 6
Ouni et al. [42] 2013 MO Fixed Defects, Effort NSGA-II 6 6
Hall et al. [13] 2014 MO MQ HC 4 4

Barros et al. [6] 2015 SO MQ, EVM HC 1 241

Jeet et al. [20] 2015 SO MQ BHGA 6 6
Mkaouer et al. [40] 2015 MO Coh, Cop, MO, NCP, NP, SP, NCH, CHC NSGA-III,IBEA, MOEA/D 5 5
Paixao et al. [44] 2015 MO MCA, ECA Two-Archive GA 1 1
Saeidi et al. [50] 2015 SO and MO MQ, CQ HC, Two-Archive GA 10 10
Candela et al. [11] 2016 MO Structural and Contextual Coh/Cop NSGA-II 100 100
Huang et al. [19] 2016 SO and MO MQ, MCA, ECA MAEA-SMCPs, GGA, GNE 17 17
Huang et al. [18] 2016 SO MQ, MS HC, GAs and MAEA 17 17
Jeet et al. [21] 2016 SO MQ HC, five GA variations 7 7
Kumari et al. [23] 2016 MO MCA, ECA Hyper-heuristics 12 12
Ouni et al. [43] 2016 MO Fixed Defects, Coherence, Effort, Change History NSGA-II 6 12

Paixao et al.
This

Paper
SO and MO MQ, Disruption HC, Two-Archive GA 10 233

[31][30][12], with the proposal and first evaluations of the Bunch tool. The MQ metric was
first proposed as Bunch’s fitness function, and it is still the most used metric in search based
modularisation to date. In fact, suites of quality metrics more recently used for multiobjective
modularisation [47][7][5] include MQ as one of the metrics to be optimised.

2.1 Modular Structure Representation

In this paper, the modular structure of each release under study is represented as a Module
Dependency Graph (MDG) [31]. An MDG is a directed graph G(C,D) where the set of nodes C
represents the code elements of the system and D represents the dependencies between elements.
Usually, software systems organise their elements into higher level modules, which are indicated
as clusters of nodes in the MDG. The allocation of nodes of the MDG to different clusters,
alongside the dependencies between the nodes, is one way to represent the release’s modular
structure. An example of a MDG is presented in Figure 1.

Since all the systems under study are implemented in Java (see Section 3), we are going to
use the Java terminology to refer to the code elements and high level modules; the elements are
thus the classes and interfaces, while the modules are the packages. In this paper, both classes
and interfaces will be referred to simply as “classes”. Dependencies occur by method call, field
access, inheritance and interface implementation.

For each release of each system, the set of classes C is represented by C = {c1, c2, . . . , cN}, where
N is the number of classes in the release. A dependency d(cx, cy) indicates that class cx depends
on class cy to correctly deliver its functionality. The set of all dependencies is represented by
D = {d(cx, cy) | cx, cy ∈ C}. The set of packages P in a release is depicted by P = {p1, p2, . . . , pM},
where M is the number of packages in the release.

RN/16/07 4



Cohesion and Coupling: Balancing Optimisation and Disruption Paixao et al.

p1

p2

p3

c1
c2 c3 c6

c4 c5 c8

c9

c7

Figure 1: Example of a Module Dependency Graph that is used to represent the
modular structure of the systems under study. Nodes represent code elements and
edges represent dependencies between elements. Clusters of nodes (grey regions)
indicate high level modules.

2.2 Modular Structure Quality Metrics

The Modularisation Quality (MQ) metric was proposed by Mancoridis et al. [31] to guide opti-
misation algorithms in the allocation of classes to highly cohesive and loosely coupled packages.
In order to improve MQ’s performance and quality assessment, the metric was re-formulated
over the years [33][34], and its most recent incarnation [38] is adopted.

MQ consists of assigning scores to each package in the system, measuring the packages’
individual trade-off between cohesion and coupling. The cohesion of a package pi is represented
by coh(pi), and it is computed as the number of dependencies between classes within package pi.
Accordingly, the coupling cop(pi) of package pi is computed as the number of dependencies from
classes within pi to classes in other packages in the system. The MQ value of the overall system
is computed as presented in Equations 1 and 2:

MQ =

P∑
i=1

MF(pi) (1)

and, MF(pi) =


0, if coh(pi) = 0

coh(pi)

coh(pi) +
cop(pi)

2

, if coh(pi) > 0
(2)

The MQ is thus given by the sum of the Modularisation Factors (MF) of each package pi in
the system. MF(pi) represents the trade-off between cohesion and coupling for package pi. Since
the dependencies involved in the measurement of the packages’ coupling will be double counted
during MQ computation, cop(pi) is divided by 2.

MQ is a function of the allocation of classes to packages; therefore, the MQ search space
is composed by all possible allocations of classes to packages in the system. In this context,
we define the k–neighbourhood as the subset of the MQ search space that can be achieved by
performing k modifications to the original allocation of classes to packages that was implemented
by the developers.

The raw cohesion/coupling of a system are measured by summing the cohesion/coupling of
its packages. These are straightforward assessments of how many of the system’s dependencies

RN/16/07 5



Cohesion and Coupling: Balancing Optimisation and Disruption Paixao et al.

are contained in the same package and how many are cutting across the packages boundaries.
Since raw cohesion/coupling are the obverse of each other, we need to measure only one of these
properties, and for the rest of this paper the raw cohesion, or simply ‘cohesion’ of the system is
computed as presented in Equation 3.

COH =

P∑
i=1

coh(pi) (3)

Apart from the selected metrics presented above, other measurements of structural cohesion
and coupling have also been proposed [41] to account for different types of dependencies and
different granularity levels. Recent studies reported quantitative and qualitative assessments
of these metrics by investigating open source systems and interviewing developers [11][53]. As
previously mentioned, MQ is the most used quality metric in search based re-modularisation
(see Table 1), yet evidence that software systems respect this metric is scarce. Our empirical
study performs an incremental assessment of the level of respect open source systems have to
MQ; therefore, complementing previous literature and providing insights to the search based
modularisation community regarding its most used fitness function.

2.3 Modular Structure Disruption

The disruption caused by an automated modularisation technique can be measured as the amount
of change developers need to perform in order to adopt the solution proposed by the search
algorithm, where such disruption may be assessed at both source code and modular structure
levels. A previous study by Hall et al. [13] measured how many lines of code ought to be
added/changed in order to apply solutions found by search based modularisation approaches.
Apart from showing that developers would have to change up to 10% of their code base to adopt
solution proposed by automated approaches, they also showed that the LOC to be changed
strongly correlates with the modular structure disruption metric MoJoFM [56].

Mkaouer et al. [40] used the number of refactoring operations as a measurement of system
disruption to be minimised in a search based many-objective approach for re-modularisation.
However, operations at different granularity levels, such as move method and move class, have
the same weight in the disruption computation, even though coarse grained and fine grained
refactorings have a different impact in the system’s modularity.

In the work by Ali et al. [42][43], the authors proposed a disruption assessment of refactoring
operations based on the number of operations to be performed, where each operation is wheighted
by a complexity factor. In this formulation, the possible refactoring operations also include
different granularity levels, e.g. pull up method and extract class, and the different wheights are
based on the authors expertise.

As argued in a recent work by Candela et al. [11], a modular level disruption metric, such as
MoJoFM, better describes the “mental model” developers have of their systems. Therefore, we
draw inspiration from the study performed by Candela et al., and adopt a disruption measure-
ment that is based on the widely used [11][7][35][25] MoJoFM metric.

Given two different modularisations A and B of the same system, MoJoFM(A,B) accounts for
the proportional number of Move and Join operations that are necessary to transform A in B,
such as presented in Equation 4.

1Barros et al. [6] uses 24 releases for the system’s evolution analysis, but the re-modularisation is performed
in only one release.

RN/16/07 6



Cohesion and Coupling: Balancing Optimisation and Disruption Paixao et al.

MoJoFM(A,B) = (1−
mno(A,B)

max(mno(∀A,B))
)× 100% (4)

In this paper, a Move operation represents moving a class from its original package to an-
other package in the system, while the Join operation represents the merge of two packages. The
distance between A and B is the minimal number of operations that transform A in B, computed
by mno(A,B), and this value is normalised by the maximum distance between any possible mod-
ularisation partitioning of the system (denoted by ∀A) and B. MoJoFM is a non-trivial metric
to compute, and for more technical details the reader is referred to [56].

Finally, given the original developers’ implementation A and a solution B suggested by an
automated modularisation technique, we propose DisMoJo in Equation 5, a disruption metric
based on MoJoFM that measures how much of the original implementation developers would
need to change to adopt the modular optimised solution.

DisMoJo(A,B) = 100%−MoJoFM(A,B) (5)

3 Software Systems Under Study

In this section we describe the systems we study in our empirical study of cohesion/coupling be-
haviour and optimisation, including the selection criteria we employed, the process for extracting
the modular structure data and a short description of each system.

The primary criteria for selecting software systems to study in our empirical investigation was
the availability of at least 10 subsequent releases, so that we could evaluate more than one version
of the systems and not only the latest one, like in most of the related work. We conjectured that
10 releases would be sufficient for our analysis.

We avoided general libraries and APIs that provide features that are not necessarily related
to each other in terms of code dependencies. We believe these kind of systems naturally have a
good modular structure in terms of cohesion/coupling, and therefore, would not be valuable for
our investigation. Thus, libraries such as Commons Math, for example, were avoided.

As a result, we selected 10 open source Java systems, which are briefly described in Table 2.
The number of releases of the systems under study varies from 10 to 47, with a median of 17
releases per system. Moreover, the median number of classes varies from 150 to 895 and the
median number of dependencies between classes varies from 568 to 6690, indicating that these
are non-trivial medium to large real world software systems.

We employed a reverse engineering approach based on static analysis to obtain the modular
structure of each release of each system. In order to do so, we used the pf-cda [3] tool to
instrument the jar files of each release and subsequently extract the packages, classes and
dependencies.

In order to facilitate replications of this study, we make available all 233 modularity datasets
in our supporting web page2. In addition, the web page also contains all results from this
investigation, including further details elided for brevity in this paper.

2http://www0.cs.ucl.ac.uk/staff/mpaixao/cohCop/index.html (Please note the url will be activated
upon peer-reviwed publication)

RN/16/07 7



Cohesion and Coupling: Balancing Optimisation and Disruption Paixao et al.

Table 2: Open source systems used in the empirical evaluation of cohesion/coupling
behaviour and optimisation. For each system, we report the number of releases and
the median number of packages, classes and dependencies over releases. Finally, we
report the median number of releases, packages, classes and dependencies for all
systems.

Systems Description Releases Packages Classes Dependencies
Ant Tool to perform the ‘build’ of Java applications 30 25 576 2567

AssertJ Library of assertions for Java 12 15 467 2095
Flume Java logging API 10 17 255 849
Gson Google’s converter of Java objects to JSON 15 6 153 724
JUnit Java unit testing framework 20 23 196 734
Nutch Java web crawler 13 18 272 1007

PDFBox Java PDF manipulation library 31 48 496 3049
Pivot Platform for building Installable Web Applications 12 13 150 568

Procyon Java decompiler 47 36 895 6690
Proguard Java code obfuscator 43 18 329 3513

All - 17 18 300 1551

4 Empirical Study

This section describes and presents the results of the empirical study we carried out in this paper
to investigate cohesion/coupling behaviour and optimisation. Each of our research questions will
be presented and answered, followed by a discussion of the findings.

4.1 RQ1: Is there any evidence that open source software systems
respect structural measurements of cohesion and coupling?

By answering RQ1, we seek to investigate whether there is any evidence that the modular
structure of existing software respects both raw cohesion and the MQ metric. We chose raw
cohesion because it is a simple and intuitive measurement, and MQ because it is the most used
metric in the automated software modularisation literature. Intuition suggests that developers
do care about cohesion/coupling, and so we expect existing systems to exhibit some degree of
‘respect’ for these metrics.

We could survey developers with a questionnaire in order to discover a subjective self-
assessment of the degree to which they care about these metrics, but such a study would be
vulnerable to bias; developers may believe that they ought to care about these metrics, since
cohesion/coupling have been recommended for many years [58][49][54]. Such feelings may lead
to implicit or explicit bias that may influence developers’ self-assessment of the importance that
they attach to measurements of cohesion/coupling. Moreover, any such assessment would be
inherently subjective.

Therefore, although such results would undoubtedly be interesting, we choose to focus on a
quantitative assessment of the degree to which the existing modular structure chosen by devel-
opers respects both the raw cohesion and the MQ metric.

In order to provide such a quantitative assessment of the degree of agreement with these
metrics, we propose three different techniques, each of which produces a probabilistic assessment
that can be used as the basis for an inferential statistical argument, concerning the likelihood of
rejecting the Null Hypothesis (that the modular structure takes no account of the modularity
quality metrics).
RQ1.1: How does the solution implemented by developers compare to a purely
random allocation of classes to packages? As a simple baseline, we start by considering
purely random allocation of classes to packages. Therefore, we are assuming the following Null
Hypothesis H0: The modularity measurements of the releases of the studied open source software
systems follow a purely random distribution. That is, we assume, as a Null Hypothesis, that

RN/16/07 8



Cohesion and Coupling: Balancing Optimisation and Disruption Paixao et al.

Table 3: Likelihood of finding a modular structure with superior measurements of
structural cohesion/coupling than that produced by the systems’ developers, accord-
ing to 3 search strategies. PRD simply searches for random allocations of classes to
packages, while the other two techniques search the neighbourhood of the solution
implemented by the systems’ developers. kRNS randomly searches for solutions in
the k–neighbourhood of the developers’ solution, by moving k classes to randomly
selected packages, while SNS systematically searches the k–neighbourhood for k = 1,
by moving each class to one of each of the other packages. Results indicate the
percentage of solutions found that improve the modular structure, as assessed using
raw cohesion and MQ.

Systems
Purely Random Distribution

(PRD)
k–Random Neighbourhood Search

(kRNS)
Systematic Neighbourhood Search

(SNS)
Cohesion MQ Cohesion MQ Cohesion MQ

Ant 0.000000 0.000000 0.000590 0.000283 0.023026 0.052496
AssertJ 0.000000 0.000000 0.000344 0.000699 0.025063 0.067731
Flume 0.000000 0.000000 0.000413 0.001359 0.025661 0.072067
Gson 0.000000 0.000000 0.002233 0.013831 0.060578 0.142030
JUnit 0.000000 0.000000 0.000560 0.001616 0.029550 0.097797
Nutch 0.000000 0.000000 0.000125 0.000695 0.019316 0.047951

PDFBox 0.000000 0.000000 0.000587 0.001112 0.028475 0.086138
Pivot 0.000000 0.000000 0.000330 0.001147 0.023383 0.065127

Procyon 0.000000 0.000000 0.000042 0.000164 0.009813 0.049230
Proguard 0.000000 0.000000 0.004786 0.001588 0.083427 0.140490

All 0.000000 0.000000 0.001001 0.000866 0.032829 0.082105

developers simply allocate classes to packages without any regard for the cohesion/coupling as
captured by the chosen metrics. If this Null Hypothesis holds, then there is simply no evidence
to suggest that developers care about cohesion or coupling. In such a situation, any attempt to
optimise either raw cohesion or MQ, using search based or other techniques, would be unlikely
to be viewed as beneficial by developers.

In order to test H0, a random distribution of class allocations was performed for each release
of each system. A random allocation for a given release is performed by randomly allocating
its set of classes to packages. The probability of a class to be allocated to a certain package is
uniform. One million random class allocations were performed for each release of each system,
thereby forming a sample of the space of all possible allocations of classes to packages.

Since we have 233 different releases of the 10 systems under investigation, this means that
the experiment conducted to answer research question RQ1.1 involves the computation of 233
million randomly constructed modularisations. One (very obvious) advantage of our approach,
from an inferential statistical point of view, is the ability to work with such a large sample. This
large sample size enable us to produce precise assessments of the corresponding p-values.

The first two columns of Table 3 present the results of this analysis for each system under
consideration, for raw cohesion and MQ, respectively. Raw coupling is simply the obverse of
raw cohesion so, for brevity, we report only the values for raw cohesion. The entries in these
columns indicate the percentage of Random modularisations (over all releases) that achieve
cohesion (or MQ) values that are equal to or greater than those achieved by the developers’
implementation. As can be seen from these columns, not one of the 233 million randomly
constructed modularisations produce a cohesion or MQ value equal to or greater than that
achieved by the developers.

We can safely reject the Null Hypothesis H0, and claim that raw cohesion and MQ values of
open source software systems do not follow a random distribution. This result does not provide
evidence that developers actually care about these metrics (it could simply be that they care
about some other property that happens to correlate to significantly higher cohesion and MQ
values). Nevertheless, these findings do strongly reject the claim that their allocation of classes
to packages fails to respect modularity measurements; an obvious, yet important “sanity check”

RN/16/07 9



Cohesion and Coupling: Balancing Optimisation and Disruption Paixao et al.

result that has not hitherto been reported upon in the literature on search based modularisation,
despite the large body of previous work that use these metrics to guide modular optimisation.

Our Null Hypothesis was based on purely random allocation of classes to packages, so the
rejection of such a ‘weak’ Null Hypothesis can provide only a ‘weak sanity check’ on the intuition
that developers’ modularisation structure respects modularity measurements. This last observa-
tion motivates the next two research questions, which seek to set a stronger baseline comparison,
against which the developers’ modularisation structure is compared.
RQ1.2: How does the developers’ modularisation structure compare to randomly
identified k–neighbour modularisations? The k–Random Neighbourhood Search (kRNS)
searches a randomly selected sample of solutions in the “k–neighbourhood” of the solution im-
plemented by the developers, as defined in Section 2.2. For this investigation, we use a value k

equal to the number of classes in the systems. Therefore, kRNS proceeds by randomly selecting
a subset of the classes in the system and randomly moving each of these classes to another pack-
age, to produce a single element of the sample. This process is repeated, using a freshly selected
subset of classes on each occasion, to produce a sample of solutions from the k–neighbourhood.
In our case, as with the previous experiment, we repeat this process 1 million times, for each
release.

The third and fourth columns of Table 3 present the percentage of kRNS results that produce
equal or higher cohesion and MQ values than those for the developers’ modularisation. Consider
Flume, for example. For all its releases, 0.000413% of k–neighbours found by kRNS had higher
cohesion than the original solution, while 0.001359% of the k–neighbours had higher MQ. As
can be seen from Table 3, over all the 10 systems, 0.004786% and 0.013831% are the highest
number of cohesion-improved and MQ-improved modularisations found by the kRNS approach,
respectively. Indeed, at the 0.01 α level, we would still reject the (strengthened) Null Hypoth-
esis that “Developers simply pick an arbitrary re-allocation of classes to packages within the
neighbourhood of the current solution, when producing a new version of the system”.

However, it can also be observed that, for every system, there does exist a member of the
k–neighbourhood that enjoys a higher cohesion and/or higher MQ than that pertaining to the
modularisation implemented by the system’s developers. These results for RQ1.2 therefore pro-
vide a deeper insight than was possible from the purely random search used to answer RQ1.1.
They show that, while modular structure tends to respect structural cohesion and coupling, de-
velopers, nevertheless, do not produce an optimal solution; a random search within the wider
neighbourhood of the developers’ solutions can improve the modularity in each and all the re-
leases. Furthermore, one can observe that in the k–neighbourhood of all systems under study, the
number of cohesion-improved solutions is different from the number of MQ-improved solutions.
We will return to a deeper investigation of these observed differences later.

We now turn to a more systematic investigation of the neighbourhood. Clearly, for a system-
atic investigation of all k–neighbours, the computational cost rises exponentially (in k), and, in
the limit, as k tends to the number of classes in the system, the systematic investigation tends
to an exhaustive enumeration of all possible modularisations of the systems under investigation.
This is clearly infeasible [34]. Indeed, avoiding such an exponential explosion was our motiva-
tion for sampling from the overall k–neighbourhood for RQ1.2. However, it is computationally
feasible to consider the nearest of all neighbourhoods; the k–neighbourhood for k = 1, and this
allows us to answer an interesting research question:
RQ1.3: What portion of modularisation allocations within the nearest possible
neighbourhood (k = 1) would yield an improvement in modularity? The systematic
enumeration of the 1–neighbourhood is interesting because this is the set of neighbouring modu-
larisations that can be achieved by moving only a single class to another package in the system.
As such, it is the single simplest (and least disruptive) possible modification to the modularisa-

RN/16/07 10



Cohesion and Coupling: Balancing Optimisation and Disruption Paixao et al.

tion structure chosen by the developers. In order to answer this research question, we took each
class and moved it to each of the other packages which the class was not originally assigned by
the developers. This yields (M − 1)×N 1–neighbours (or ‘nearest neighbours’), for a system con-
sisting of M packages and N classes, thereby systematically covering the entire 1-neighbourhood.
The results of this analysis are presented in the final columns of Table 3.

As can be seen, for each system investigated, there are a nontrivial number of such single
moves that can improve both the cohesion and the MQ score. Nevertheless, the solutions chosen
by the developers are better than at least 96.7% and 91.7% of the whole 1–neighbourhood, for
cohesion and MQ, respectively. This provides evidence for a strong developer preference for
structures that respect modularity metrics. Moreover, as observed in RQ1.2, the number of
cohesion-improved solutions is different from the number of MQ-improved solutions. In fact,
all systems presented more MQ-improved solutions than cohesion-improved solutions in the 1–
neighbourhood.

Overall, as an answer to RQ1, we conclude that there is strong evidence to suggest that the
developers’ allocation of classes to packages does respect structural cohesion/coupling, as assessed
by the metrics of raw cohesion and MQ. Furthermore, there is equally strong evidence that the
developers’ allocation of classes could be improved, possibly with relatively little disruption to
the system’s modular structure, since there do always exist nearest neighbour modularisations
that enjoy better modular structure. This is interesting and important for work on automated
software modularisation, since these metrics (MQ in particular) are widely used fitness functions
to guide such work on automated modularisation.

As observed in RQ1.2 and RQ1.3, when searching both the k–neighbourhood and the 1–
neighbourhood of the systems under study, raw cohesion and MQ sometimes do not agree in
assessing the modular structure of different solutions. We define “agreeing solutions” to be those
modularisations that improve on the developers implementation according to both cohesion and
MQ, while “disagreeing solutions” are those that have either higher cohesion or higher MQ, but
not both.

Interestingly, and importantly for search based modularisation research, we observe that, on
average, 83.04% of the neighbourhood solutions that present an improvement on the original
implementation in either cohesion or MQ are “disagreeing” and only 16.96% are “agreeing”.
Moreover, for the disagreeing solutions, 67.61% present higher MQ than the original implemen-
tation but lower cohesion, and 32.39% present higher cohesion than the original implementation
but lower MQ. These fidings replicate previous results [41]. In addition, we have presented
evidence that developers’ solutions more closely respect raw cohesion than MQ. Since MQ is a
popular metric for search based re-modularisation, it is interesting and important for the commu-
nity to understand how this metric is related to raw cohesion, which is a more basic and intuitive
assessment of modular structure. This observation motivates our next research question.

4.2 RQ2: What is the relationship between raw cohesion and the MQ
metric?

We performed three different analyses to investigate the relationship between MQ and raw co-
hesion. Each of these analyses employ a different technique to search for better modularisations.
RQ2.1: What is the relationship between raw cohesion and MQ for the solutions
identified in RQ1? RQ1 performed neighbourhood search in the developers’ implemented
solutions to find better allocations of classes to packages. For RQ2.1, all neighbour solutions
that improved on the original developers’ implementation in at least one of the metrics (raw
cohesion/coupling and/or MQ) were considered for analysis, which, on average, represents 0.35%
of the solutions found by the kRNS and SNS in RQ1.

RN/16/07 11



Cohesion and Coupling: Balancing Optimisation and Disruption Paixao et al.

Table 4: Cohesion, Coupling and MQ results with standard deviation for Neigh-
bourhood, Bunch and Package-constrained searches for improved modularisations.
Cohesion, Coupling and MQ entries denote the average difference between the op-
timised modularisation in comparison to the original developers’ implementation.
In addition, we report the Kendall-τ correlation coefficients between Cohesion and
MQ results for each system.

Systems
Neighbourhood Search Bunch Package-constrained HC

Cohe-
sion

Cou-
pling

MQ K-τ
Cohe-

sion
Cou-
pling

MQ K-τ
Cohe-

sion
Cou-
pling

MQ K-τ

Ant
0.423% -0.423% -1.907%

-0.18*
-45.919% 45.919% 376.611%

0.56*
30.063% -30.063% 40.598%

0.44*± 1.116% ± 1.116% ± 3.644% ± 2.279% ± 2.279% ± 0.378% ± 5.348% ± 5.348% ± 1.078%

AssertJ
-0.174% 0.174% 0.102%

-0.27
-62.888% 62.888% 522.197%

0.41*
0.714% -0.714% 61.167%

0.46*± 1.066% ± 1.066% ± 1.130% ± 1.772% ± 1.772% ± 0.293% ± 4.217% ± 4.217% ± 1.816%

Flume
-1.092% 1.092% 0.857%

-0.22
-35.977% 35.977% 336.829

0.57*
19.379% -19.379% 51.026%

0.55± 2.273% ± 2.273% ± 0.594% ± 2.100% ± 2.100% ± 0.594% ± 4.030% ± 4.030% ± 1.232%

Gson
-5.269% 5.269% 2.934%

0.08*
-55.559% 55.559% 584.924%

0.45*
19.832% -19.832% 97.978%

0.64± 7.090% ± 7.090% ± 0.569% ± 3.133% ± 3.133% ± 0.940% ± 5.988% ± 5.988% ± 4.089%

JUnit
-0.449% 0.449% 0.292%

-0.14*
-28.240% 28.240% 226.341%

-0.37*
30.157% -30.157% 66.530%

0.48*± 1.797% ± 1.797% ± 1.446% ± 2.900% ± 2.900% ± 0.998% ± 4.850% ± 4.850% ± 1.608%

Nutch
-1.252% 1.252% 1.018%

-0.27
-42.993% 42.993% 321.843%

0.50*
17.564% -17.564% 56.962%

0.44*± 1.977% ± 1.977% ± 0.414% ± 2.015% ± 2.015% ± 0.420% ± 5.603% ± 5.603% ± 0.746%

PDFBox
-0.377% 0.377% 0.119%

-0.18
-33.100% 33.100% 180.531%

0.43*
31.387% -31.387% 79.773%

0.43*± 1.398% ± 1.398% ± 1.537% ± 3.595% ± 3.595% ± 0.350% ± 5.532% ± 5.532% ± 0.979%

Pivot
-1.258% 1.258% 0.519%

-0.20
-43.776% 43.776% 266.257%

0.63
3.927% -3.927% 44.875%

0.51*± 2.273% ± 2.273% ± 0.549% ± 1.680% ± 1.680% ± 0.508% ± 4.102% ± 4.102% ± 1.155%

Procyon
-0.064% 0.064% 0.102%

-0.20
-71.726% 71.726% 408.408%

0.57
-4.799% 4.799% 56.538%

0.44*± 0.289% ± 0.289% ± 0.054% ± 1.194% ± 1.194% ± 0.145% ± 4.312% ± 4.312% ± 0.634%

Proguard
1.035% -1.035% -2.494%

-0.10*
-42.355% 42.355% 295.561%

0.48*
102.282% -102.282% 86.169%

0.46*± 1.435% ± 1.435% ± 3.805% ± 5.383% ± 5.383% ± 0.357% ± 10.911% ± 10.911% ± 2.606%

All
0.750% 0.750% 0.154%

-0.19*
-46.253% 46.253% 351.950%

0.49*
25.050% -25.050% 64.161%

0.46*± 2.071% ± 2.071% ± 1.374% ± 2.625 ± 2.625 ± 0.498% ± 5.489% ± 5.489% ± 1.594%

The first three columns of Table 4 present the average differences and standard deviation in
cohesion, coupling and MQ for the neighbourhood search solutions, respectively. Consider the
Gson system, for example. The neighbourhood solutions offer an average difference in cohesion,
coupling and MQ of -5.269%, 5.269% and 2.934%, respectively. These values indicate that within
the set of Gson neighbourhood solutions that improve on the original implementation in at least
one of the metrics, the average differences in cohesion, coupling and MQ are -5.269%, 5.269%
and 2.934%, respectively.

One should notice that, as mentioned before, cohesion and coupling differences are the obverse
of each other. Since we are considering cohesion to be the number of dependencies within packages
and coupling to be the number of dependencies between packages, in the case of a certain
dependency being moved from between packages to inside a package, cohesion will increase and
coupling will decrease. Similarly, a dependency that is moved from inside a package to between
packages is going to decrease cohesion and increase coupling. Therefore, for brevity purposes,
only cohesion values will be reported and discussed in the rest of the paper.

We use correlation analysis to investigate more precisely the relationship between cohesion
and MQ. For each release of each system, the non-parametric Kendall-τ correlation test was
applied for the cohesion and MQ values of the neighbourhood solutions. The fourth column of
Table 4 presents the correlation coefficient of each system, which is computed as the median
coefficient of all releases of each system. An asterisk (*) decorates the coefficient entry when not
all releases exhibit a significant coefficient at the 0.01 α level. Most coefficients range from -0.2
to 0.2, which suggests little or no correlation between cohesion and MQ for the neighbourhood
solutions.

However, we must be careful to not over generalize this observation, because only simple
local search procedures were employed to find the solutions that were considered in the analysis,
and the search space covered by the neighbourhood solutions is small. This motivated our next
research question, in which we apply more sophisticated search based approaches for software
re-modularisation.
RQ2.2: What is the relationship between raw cohesion and MQ for solutions found

RN/16/07 12



Cohesion and Coupling: Balancing Optimisation and Disruption Paixao et al.

by widely used search based cohesion/coupling optimisation approaches? For this
analysis, we use the Bunch tool [38]. Bunch is a tool for search based modularisation that
implements a simple hill climbing approach. There are other more sophisticated techniques
for search based modularisation, that may produce superior results [47] in terms of cohesion,
coupling, and the MQ metric, but at far greater computational cost. We wish to investigate
whether developers can use simple and fast search-based modularisation techniques to quickly
produce alternative solutions that significantly improve on the developers’ given modularisations,
according to MQ.

We applied the Bunch optimisation tool to all releases. Since Bunch’s hill climbing algorithm
is a randomized search algorithm, we performed 30 executions of Bunch for each release. The
30 resulting cohesion, coupling and MQ values found by Bunch for each release were compared
with the developer’s implementation, and the results are presented in the fifth, sixth and seventh
columns of Table 4, alongside the respective standard deviation.

As one can see, the Bunch tool is able to find modularisations with remarkable MQ improve-
ment (of more than 500% for some systems). However, all these MQ-optimised solutions have
lower cohesion values than the developer’s original implementation. Such a surprising result can
be explained by the design of the MQ metric. As one can see in the MQ definition in Section 2.2,
the MQ score is composed of the sum of the scores of each package in the modularisation; so,
solutions with more packages tend to have higher MQ values. In fact, the solutions found by
Bunch have, on average, 493.11% more packages than the developers’ implementation. As a
result, fewer classes are allocated to each package, thereby creating several dependencies that
cut across package boundaries. We will refer to this phenomena as the MQ’s ‘inflation effect’.

The Kendall-τ correlation test was also applied to measure the correlation between raw cohe-
sion and MQ of the Bunch solutions. Apart from JUnit, all systems have a moderate positive
correlation between cohesion and MQ, which is a surprising result given that all Bunch solutions
had worse cohesion than the original implementation. First of all, one needs to keep in mind
that this correlation was computed using the 30 Bunch solutions of each release of each system.
A positive correlation, in this case, indicates that in spite of the fact that all cohesion values of
Bunch solutions are worse than the developers’ implementation, the solutions with higher MQ
tend to have a higher cohesion too.

As an example, the scatter plot in Figure 2 presents the cohesion and MQ differences of the
30 solutions found by Bunch for Pivot 2.0.2 in comparison to the original implementation.
As one can see, all the 30 solutions have higher MQ than the developers’ implementation, yet
lower cohesion; however, the solutions with higher MQ tend to have a higher cohesion too, which
elucidates the positive correlations between cohesion and MQ reported in Table 4.

After an analysis of the 30 Bunch solutions, we noticed that these solutions have similar
number of packages, where 16 (out of 30) solutions have 58 packages, 10 solutions have 57
packages and 4 solutions have 59 packages. This suggests that for modularisations with similar
numbers of packages, higher MQ values usually denote higher cohesion. These observations
motivate our next research question, where we introduce and evaluate a package-constrained
approach for search based software re-modularisation as an attempt to improve the modular
structure of software systems as assessed by both cohesion and MQ.
RQ2.3: What is the relationship between raw cohesion and MQ for solutions found
by a package-constrained search for improved cohesion/coupling? The MQ metric was
originally designed to optimise the cohesion/coupling of software systems from scratch, without
any previous information on the modular structure other than the dependencies between ele-
ments. However, when Bunch is applied to large-scale real world software systems, the ‘inflation
effect’ induced by MQ may be undesirable. Because of this effect, new packages are created
and existing classes are moved to these new packages, causing a (large) decrease in the system’s

RN/16/07 13



Cohesion and Coupling: Balancing Optimisation and Disruption Paixao et al.

−44.5%

−44.0%

−43.5%

−43.0%

−42.5%

−42.0%

275.0% 275.5% 276.0% 276.5% 277.0%

MQ Difference

C
o
h
e
s
io

n
 D

if
fe

re
n
c
e

Pivot 2.0.2

Figure 2: Cohesion and MQ differences for 30 modularisations found by Bunch for
Pivot 2.0.2 when compared to the original developers’ implementation

cohesion.
We performed a longitudinal analysis of the allocation of classes to packages throughout re-

leases as implemented by the developers themselves. We found no release (out of 233) where a
new package was created and only existing classes were moved to the new package. Therefore,
apart from decreasing the cohesion of the system, a Bunch re-modularisation might also be un-
realistic because developers rarely create new packages to accommodate existing classes. This
observation adds evidence to recent claims [13][11] against “Big Banlowere-modularisation ap-
proaches (i.e., a complete re-allocation of the system’s classes in packages), where recent studies
have used the original modular structure implemented by developers as a guide to find more
suitable packages for certain classes [1][8].

Thus, in this research question, we introduce a package-constrained version of search based
re-modularisation that maximises MQ and constrains the search algorithm to search only for
modularisations with the same number of packages of the original developers’ implementation.
This way we avoid the creation of new packages, so that classes are only moved to packages that
developers are already familiar with. Moreover, as suggested in RQ2.2, higher MQ values may
lead to higher cohesion values for the same number of packages. Therefore, by maintaining the
same number of packages as the original implementation, we might be able to optimise MQ and
improve the overall cohesion of the system.

Hence, we re-implemented the hill climbing search approach of the Bunch tool including
the number of packages as a constraint to the search. We executed the approach 30 times for
each release of each system, and the average cohesion, coupling, MQ and standard deviations
achieved by the package-constrained search are reported in the ninth, tenth and eleventh columns
of Table 4, respectively.

Apart from the Procyon system, all package-constrained solutions yield improvements in

RN/16/07 14



Cohesion and Coupling: Balancing Optimisation and Disruption Paixao et al.

both cohesion and MQ. On average, the cohesion of the systems under study was improved
by 25.05%, and the biggest cohesion improvement was in Proguard with 102.28%. However,
similar results were not achieved in some of the systems, such as AssertJ and Pivot that
had small cohesion improvements, and Procyon that had an worse average cohesion than the
original implementation. The results for these three systems indicate that in some cases, even
in a package-constrained setting, MQ optimisation do not lead to better modularity, as assessed
by raw cohesion. It might be possible that these systems already have a good cohesion, and
cannot be further optimised. Nevertheless, the modularity of these systems need to be further
investigated, so that accurate conclusions can be drawed.

The Kendall-τ correlation coefficients between cohesion and MQ for the package-constrained
search are reported in the last column of Table 4. The moderate positive coefficients that can
be seen for the package-constrained search resemble the coefficients computed for the Bunch
solutions. These results reinforce the observation that MQ can indeed guide the search towards
solutions with better cohesion when the search is package-constrained. This is an important
finding for the search based re-modularisation community.

As an answer to RQ2, we showed that raw cohesion and MQ do not commonly agree in
assessing the modularity of software systems. We noticed that this is mainly due to the ‘inflation
effect’ of MQ, where Bunch creates an average of 493.11% new packages in the system, which
decreases the cohesion when compared to the original developers’ implementation. However, we
observed that in solutions with similar number of packages, MQ and cohesion have a moderate
positive correlation, which mainly led us to introduce a new package-constrained search as an
attempt to mitigate MQ’s ‘inflation effect’. In general, package-constrained automated modular-
isation was able to improve the cohesion of the systems under study by 25.05% without creating
new packages.

Considering the results presented in RQ1 and RQ2, we showed that developers have some
degree of respect for structural measurements of cohesion and coupling as the original solutions
are better than the ones found by random and neighbourhood search; however, optimal values of
cohesion and coupling might not be pursued since developers’ solutions are worse than the ones
found by the hill climbing search. This observation endorses a recent study [11] that compared
developers’ modularisations of open source systems with alternatives found by multiobjective
search for cohesion/coupling improvement. Even though the empirical studies presented in this
and in the related paper [11] use different quality metrics, different search procedures and different
software systems, they complement each other by presenting evidence that developers do respect
structural measurements of cohesion and coupling, but optimisation of these properties is not
sought.

4.3 RQ3: What is the disruption caused by search based approaches
for optimising software modularisation?

The previous section showed that search-based algorithms can be used to optimise the trade-off
between cohesion and coupling in open source software systems. In fact, candidate solutions
in the package-constrained search usually present improved modular structure, as measured by
both cohesion and MQ metrics. This raises the obvious question: if systems can be optimised
for modularity, and there is evidence that systems respect structural measurements, then why
do developers implement solutions with a sub-optimal modular structure?

One answer to this question lies in the potential size and complexity of the search space;
humans have been shown, repeatedly, to be sub optimal, in their ability to find solutions to
SBSE problems such as this [45][55]. However, it is also important to explore another possibility:
perhaps the improvement in modular structure achieved using SBSE comes with a price of

RN/16/07 15



Cohesion and Coupling: Balancing Optimisation and Disruption Paixao et al.

Table 5: Disruption to the modular structure caused by Bunch and Package-
constrained search based approaches for modularisation improvement. We report
the mean disruption caused by the 30 executions of each search approach. In ad-
dition, we report the disruption caused by the best solutions (out of the 30), as
assessed by Cohesion and MQ. Each entry in the table is an average over all releases
of the system.

Systems
Bunch Package-constrained

Mean
Best -

Cohesion
Best - MQ Mean

Best -
Cohesion

Best - MQ

Ant 82.70% 80.63% 81.70% 57.86% 53.50% 55.73%
AssertJ 90.11% 89.66% 90.11% 59.02% 55.51% 56.54%
Flume 79.90% 79.09% 79.19% 62.20% 57.57% 58.16%
Gson 88.49% 85.22% 87.78% 56.04% 48.72% 51.16%
JUnit 69.87% 68.24% 69.23% 52.11% 49.53% 50.12%
Nutch 77.22% 75.92% 76.45% 61.91% 60.30% 60.15%

PDFBox 66.78% 64.18% 65.96% 53.12% 51.49% 51.74%
Pivot 79.26% 78.39% 78.32% 60.47% 56.36% 56.36%

Procyon 85.98% 84.39% 85.23% 56.94% 53.94% 54.88%
Proguard 83.66% 82.02% 82.74% 58.59% 56.44% 58.24%

All 80.39% 78.77% 79.67% 57.82% 54.33% 55.30%

significant disruption to the existing modularity. There is evidence in the literature [57] that
developers are reluctant to change the structure of systems, choosing instead, to retain the
familiar structure rather than move to an improved version. Therefore, we turn our attention
to assessing the degree of disruption that would result from an improvement performed by the
SBSE approaches to automated software re-modularisation presented in RQ2. For this analysis,
we use the DisMoJo metric, which is formally defined in Section 2.3.
RQ3.1: What is the disruption caused by widely used search based tools for au-
tomated software modularisation? In this research question we want to assess how much
disruption developers would have to endure when using a widely used tool for modularity opti-
misation. For this analysis, the solutions found by the Bunch tool in RQ2.2 will be considered.
Each of the 30 solutions found by Bunch for each release of each system are compared to the
original developers’ implementation. The average disruption caused by Bunch, as assessed by
DisMoJo, for each system under study is presented in the first column of Table 5.

Considering all systems, the average disruption that developers would need to endure in
order to optimise the modular structure using Bunch is 80.39%. This observation provides ev-
idence that even though existing SBSE techiniques can improve modular structure, the high
disruption caused to the original system might inhibit wider industrial uptake of search based
re-modularisation.

After an inspection of all 30 Bunch solutions of each release of each system, we collected the
solutions with higher cohesion and MQ, and reported the average disruption caused by these best
solutions over all releases. The disruption caused by the best cohesion and best MQ solutions
found by Bunch are presented on the second and third columns of Table 5, respectively.

Since the modularity optimisation process consists in moving classes around packages, one
might expect that the most optimised solutions will also be the most disruptive ones. However,
as can be seen from Table 5, the disruption caused by the best cohesion and MQ solutions are
actually smaller than the average disruption. This counterintuitive observation suggests that,
in the scenario where developers are willing to endure considerable disruption to optimise their
system modular structure, it is possible to find solutions with less modifications than expected.
RQ3.2: What is the disruption caused by the package-constrained search based ap-
proach for automated software modularisation? The package-constrained search approach
for software modularisation was introduced in RQ2.3 as an alternative to mitigate the ‘inflation
effect’ of the Bunch tool. The average disruption caused by the package-constrained search is

RN/16/07 16



Cohesion and Coupling: Balancing Optimisation and Disruption Paixao et al.

presented in the fourth column of Table 5.
As expected, the disruption caused by the package-constrained search is smaller (57.82%),

but it still denotes a high number of modifications to the original system in order to optimise
the modular structure.

The average disruption caused by the best cohesion and MQ solutions for the package-
constrained search are presented in the last two columns of Table 5, respectively. Similarly
to the Bunch results, the disruption of the solutions with best modular structure is smaller than
the average disruption caused by the 30 executions for each release.

In general, the disruption caused by the package-constrained optimisation approach is smaller
than the disruption caused by the Bunch tool. An unexpected observation from these analyses
was that solutions with the best modular structure, as assessed by both cohesion and MQ,
presented smaller disruption than the average.

As an answer to RQ3, the disruption caused by search based approaches to automated re-
modularisation is high. The results found in this paper complement a recent disruption analysis
performed by Candela et al. [11], where despite using different optimisation algorithms, different
cohesion/coupling metrics and different software systems, both studies showed that search based
modularisation is highly disruptive. We conjecture that such disruption inhibit industrial uptake
of these techniques.

4.4 RQ4: Can multiobjective search find allocations of classes to pack-
ages with a good trade-off between modularity improvement and
disruption of the original modular structure?

Summarizing the findings of RQ1-3: open source software systems respect structural measure-
ments of cohesion and coupling (RQ1), but although search based techniques can substantially
improve the systems’ modular structure (RQ2), these techniques tend to dramatically disrupt
the original developers’ implementations (RQ3).

Motivated by these findings, we introduce a multiobjective evolutionary search based ap-
proach to find candidate modularisations with a good trade-off between modular improvement
and disruption. Our intuition is that since the systems under study exhibit considerable respect
for structural measurements of cohesion and coupling, developers might be willing to improve
their systems’ modular structure when the changes required for improvement lie within an ac-
ceptable range.

In order to carry out this analysis, we propose two different multiobjective experiments,
each of which uses different search strategies; therefore, providing different insights on how
multiobjective search can be used to improve software modularity, while taking disruption into
account.

For all multiobjective experiments we use the Two-Archive Genetic Algorithm [48], which was
demonstrated to perform well in a previous multiobjective investigation of automated software
modularisation [47]. The Two-Archive GA settings are mostly based on this earlier work [47],
and are the same for all experiments: The population size is set to N , where N is the number
of classes in the system. Single point crossover is employed with a 0.8 probability when N < 100,
and 1.0 probability otherwise. Swap mutation is performed with a probability of 0.004 logN2 .
Parents are selected by tournament, with a tournament size of 2. In addition, the probability of
selecting parents from the convergence archive is 0.5, and the size of the archives is limited to 100

individuals. Finally, the number of generations is set to 50N .
RQ4.1: What is the trade-off between modularity improvement and disruption for
the package-free search? The first multiobjective experiment is concerned with the widely
used [38][47] optimisation approach to improve software modularity where the search algorithm

RN/16/07 17



Cohesion and Coupling: Balancing Optimisation and Disruption Paixao et al.

has no constraints on the number of packages it can create. We call this search strategy “package-
free”. In order to identify the trade-off between modularity improvement and disruption, the
search algorithm attempts to maximise MQ and minimise DisMoJo. In addition, we measure
the raw cohesion of the solutions found by the multiobjective search.

In RQ2.2 we used the Bunch tool to find MQ-optimised solutions for each release of each
system under study; therefore, the solutions found by Bunch can be used as starting points
(seeds) for the multiobjective algorithm in its search for solutions with high MQ value. Similarly,
the original developers’ implementation of each release is also used to seed the Two-Archive GA.

Figure 3 presents some of the pareto fronts found for the package-free multiobjective execu-
tion. We selected one release as a representative of each system to be discussed in this paper.
However, we make all results available on the paper’s complementary web page3. As one can see,
the results for the different systems are considerably similar, where all releases present a clear
and almost constant trade-off between MQ improvement and DisMoJo, which is an expected
behavior because MQ improvement is achieved by adding new packages; therefore, leading to
large scale disruption.

RQ2 showed that an improvement in MQ does not necessarily indicate an improvement in
the raw cohesion of the system; therefore, we also measured the raw cohesion of all different
modularisations found by the multiobjective search that targets MQ improvement. When con-
sidering all the package-free MQ-optimised modularisations in the pareto fronts, most of them
have a cohesion value that is worse than the original developers’ implementation. These results
add evidence to the observation in RQ2, that MQ-optimised solutions may decrease the cohesion
of the original system. In fact, when considering the pareto fronts computed for Nutch, PDFBox
and Proguard, for example, all the modularisations are worse than the original system in terms
of raw cohesion.
RQ4.2: What is the trade-off between modularity improvement and disruption for
the package-constrained search? This second multiobjective experiment is concerned with
the automated software re-modularisation approach proposed in RQ2.3, where the search algo-
rithm is package-constrained. Similarly to RQ4.1, the multiobjective search tries to maximise
MQ and minimise DisMoJo; however, the search algorithm is constrained to the same number
of packages as those in the original developers’ implementation.

For this research question, the Two-Archive GA is seeded with the original system (as in
RQ4.1) and the MQ-optimised solutions found by our package-constrained implementation of
the hill climbing algorithm used by the Bunch tool (see RQ2.3). Figure 4 presents the pareto
fronts found by the package-constrained multiobjective search.

Similarly to RQ4.1, there is a clear trade-off between MQ and DisMoJo; however, the pareto
front structure is different: we observe a larger number of gaps and ‘knee points’ in the package-
constrained pareto fronts than in the package-free ones.

The cohesion improvements achieved by all modularisations in the the package-constrained
pareto fronts were also measured. In most of the systems, the number of MQ-optimised modulari-
sations with better cohesion than the original implementation is noticeably bigger than in RQ4.1.
Moreover, for almost all the systems, it is possible to find modularisations with a considerable
improvement in cohesion and yet a relatively small disruption. This is a very positive outcome;
although re-modularisation approaches may be too disruptive, multiobjective search migth be
able to find solutions with useful compromises between modular improvement and disruption.

As one can notice in the package-constrained pareto fronts in Figure 4, sometimes the mod-
ularisation found by the hill climbing package-constrained search is not part of the pareto front.
Considering Ant, Flume and JUnit, for example, the hill climbing modularisation has higher dis-

3http://www0.cs.ucl.ac.uk/staff/mpaixao/cohCop/index.html (Please note the url will be activated
upon peer-reviwed publication)

RN/16/07 18



Cohesion and Coupling: Balancing Optimisation and Disruption Paixao et al.

Ant 1.5

0%

20%

40%

60%

80%

100%

0% 100% 200%

MQ Improvement

D
is

M
o

J
o

AssertJ 1.0

0%

20%

40%

60%

80%

100%

0% 200% 400%

MQ Improvement

D
is

M
o

J
o

Flume 1.3.1

0%

20%

40%

60%

80%

100%

0% 100% 200%

MQ Improvement

D
is

M
o

J
o

Gson 2.3.1

0%

20%

40%

60%

80%

100%

0% 200% 400% 600%

MQ Improvement
D

is
M

o
J
o

JUnit 4.2

0%

20%

40%

60%

80%

100%

0% 50% 100% 150% 200%

MQ Improvement

D
is

M
o

J
o

Nutch 1.2

0%

20%

40%

60%

80%

100%

0% 100% 200% 300%

MQ Improvement

D
is

M
o

J
o

PDFBox 1.4

0%

20%

40%

60%

80%

100%

0% 50% 100% 150% 200%

MQ Improvement

D
is

M
o

J
o

Pivot 1.5.2

0%

20%

40%

60%

80%

100%

0% 100% 200%

MQ Improvement

D
is

M
o

J
o

Procyon 0.3.5

0%

20%

40%

60%

80%

100%

0% 100% 200% 300% 400%

MQ Improvement

D
is

M
o

J
o

Proguard 3.4

0%

20%

40%

60%

80%

100%

0% 50% 100% 150% 200%

MQ Improvement

D
is

M
o

J
o

Developers’ Implementation Bunch Solution

Figure 3: Pareto fronts reporting the trade-off between MQ and DisMoJo for the
package-free multiobjective search

RN/16/07 19



Cohesion and Coupling: Balancing Optimisation and Disruption Paixao et al.

Ant 1.5

0%

20%

40%

60%

80%

100%

0% 10% 20% 30% 40%

MQ Improvement

D
is

M
o

J
o

AssertJ 1.0

0%

20%

40%

60%

80%

100%

0% 25% 50% 75% 100%

MQ Improvement

D
is

M
o

J
o

Flume 1.3.1

0%

20%

40%

60%

80%

100%

0% 10% 20% 30% 40%

MQ Improvement

D
is

M
o

J
o

Gson 2.3.1

0%

20%

40%

60%

80%

100%

0% 50% 100% 150% 200%

MQ Improvement
D

is
M

o
J
o

JUnit 4.2

0%

20%

40%

60%

80%

100%

0% 30% 60% 90%

MQ Improvement

D
is

M
o

J
o

Nutch 1.2

0%

20%

40%

60%

80%

100%

0% 20% 40% 60%

MQ Improvement

D
is

M
o

J
o

PDFBox 1.4

0%

20%

40%

60%

80%

100%

0% 25% 50% 75%

MQ Improvement

D
is

M
o

J
o

Pivot 1.5.2

0%

20%

40%

60%

80%

100%

0% 20% 40% 60%

MQ Improvement

D
is

M
o

J
o

Procyon 0.3.5

0%

20%

40%

60%

80%

100%

0% 20% 40% 60%

MQ Improvement

D
is

M
o

J
o

Proguard 3.4

0%

20%

40%

60%

80%

100%

0% 25% 50% 75%

MQ Improvement

D
is

M
o

J
o

Developers’ Implementation Package−constrained Search Solution

Figure 4: Pareto fronts reporting the trade-off between MQ and DisMoJo for the
package-constrained multiobjective search

RN/16/07 20



Cohesion and Coupling: Balancing Optimisation and Disruption Paixao et al.

ruption and lower MQ than other solutions in the pareto front. Differently, in the package-free
pareto fronts in Figure 3, the Bunch solution is always the one with highest MQ in all pareto
fronts.

This might be possible because even though we followed what was described in the PhD
thesis [34] of one of Bunch’s creators, the Bunch tool has continued to be improved over the years
[38][39], so that our implementation might only be able to find local optima modularisations.
According to Table 4, the standard deviation of our implementation of the hill climbing search
is higher than Bunch’s, which may be an indicator of the conjecture above. However, it might
also be the case that the MQ search space of the package-constrained envinronment is different
than the package-free one, where solutions with bigger MQ improvement can be found on the
neighbourhood of solutions with small disruption. Nevertheless, this is an interesting finding
that needs further investigation.

The main goal of RQ4 (and Figures 3 and 4) is to illustrate the trade-off between improvement
in modular structure and disruption to the original implementation that can be achieved with
multiobjective search. The state of the art techniques for automated software modularisation,
both single [38] and multi [47] objective, are mostly concerned with modularity improvement,
which we know usually causes a large disruption to the original implementation (see RQ3).
Previously, developers who would like to optimise the modular structure of their systems using
search based approaches would have two choices: improve the system as much as possible and
thereby considerably change the original structure, or keep the original implementation and do
not perform any improvement. With the multiobjective approach proposed to answer RQ4.1 and
RQ4.2, developers would have a wider range of options.

The analyses performed in RQ4 took into consideration all solutions in the computed pareto
fronts, providing general insights on the shape of the fronts and on the quality of the solutions
within the fronts. In RQ5 we show how developers can pick a particular modularisation from
the pareto fronts according to their needs and constraints.

4.5 RQ5: What is the modularity improvement provided by the mul-
tiobjective search for acceptable disruption levels?

In RQ4 we showed that the proposed multiobjective search can find solutions that improve
the modularity of the original developers’ implementation, as assessed by MQ and cohesion,
especially for package-constrained search. However, we did not discuss how developers can use the
proposed multiobjective approach. We believe that the multiobjective optimisation of modularity
and disruption can be used by developers at different moments during the software lifecycle,
depending on how much disruption they are willing to endure in order to achieve modularity
improvement.

As an example, consider the scenario where developers are planning amajor release of the
software system. Since it is a major release, the system will possibly undergo large changes to
accommodate the new features. In this case, developers can take advantage of the fact the system
is going to undergo substantial change, and perform large refactorings to improve the modular
structure. On the other hand, in minor or bug-fixing releases, developers may be less willing
to change modular structure, therefore, favouring smaller changes. However, this ‘acceptable
disruption’ level is not obvious.

Therefore, in this research question we introduce three different methods to estimate the
‘acceptable’ level of modularity disruption that can be sustained by developers in order to obtain
modularity improvement. All methods are based on a longitudinal analysis of the developers’
implementations of each release of each system under study. Later, we show how these different
‘acceptable’ levels of disruption can be used to select solutions from the pareto fronts found by

RN/16/07 21



Cohesion and Coupling: Balancing Optimisation and Disruption Paixao et al.

the multiobjective search approach.
RQ5.1: What is the longitudinal modular disruption introduced by developers? As
a software system evolves, new features are added, changed or removed; as such, the modular
structure of the system needs to change in order to cope with the new requirements and demands.
Therefore, the modular structure of a software system is constantly disrupted by its developers
during the system’s lifetime, in which we call the ‘natural disruption’ of the system. Although
the ‘acceptable disruption’ level that developers are willing to endure to improve the modularity
is difficult to measure, we argue that the ‘natural disruption’ level that developers introduced
during the system evolution is a good proxy. Thus, we introduce three different methods to assess
the ‘natural disruption’ of the systems under study, each of which are used as an estimation of
the ‘acceptable’ level of disruption.

The first two methods use the DisMoJo metric in a different way than used in RQ3 and RQ4.
DisMoJo(A,B), as defined in Section 2.3, is used to measure the disrution between A and B when
both modularisations are composed by the same set of classes. Therefore, since classes can be
added or removed between two different releases of the same system, DisMoJo cannot be used to
measure the disruption between releases of the same system. In order to provide a lower and an
upper bound of the disruption between releases, we introduce Intersection DisMoJo and Union
DisMoJo, respectively.

Consider two subsequent releases A and B of the same system. Intersection DisMoJo is
computed by considering only the subset of classes that belongs to both A and B. We say this is
a lower bound disruption between releases because it considers the minimum number of classes
that can be moved between releases. Accordingly, Union DisMoJo is computed by aggregating
all classes that belong to both A and B, where classes that belong to A but do not belong to
B, and vice-versa, are allocated to a separate package. This is an upper bound of disruption
because all possible classes that can be moved, added or deleted between A and B are taken into
account.

Finally, our third method to assess the ‘natural disruption’ of a software system is based on
the analysis of the proportional increase in the number of classes over releases. As the system
evolves, the number of classes added in each release is a simple and straightforward way to asses
how much of the modular structure changes during the system evolution.

Each of the three methods to assess the ‘natural disruption’ described above was computed
for each pair of subsequent releases of the systems under study, and the results are presented in
Table 6. For each system we report the minimum, maximum, median and mean values for each
method. This way we can assess what is the biggest and smallest disruption levels each system
has undergone during its lifecycle, and also what is the average disruption developers are used
to introduce during systems’ evolution.

As one can see, the minimum ‘natural disruption’ for all systems, according to all three
estimation methods, is 0.00%. This means that for all systems, there is at least one pair of
subsequent releases that has the same modular structure. The Itersection DisMoJo values are
the smallest for all systems (as expected), and for Flume and Procyon, Intersection DisMoJo
is always 0.00%. These results add evidence to the observation in RQ2.3 that existing classes
rarely move between packages. Furthermore, all disruption values reported by both Intersection
and Union DisMoJo lie within the range of the proportional addition of classes, which is a
straightforward way for developers to understand the ‘natural disruption’.
RQ5.2: How much modularity improvement can be achieved within lower and upper
bounds of ‘acceptable’ disruption? In this analysis, the ‘natural disruption’ levels computed
in RQ5.1 are used as proxies for the ‘acceptable’ level of disruption that developers would be will-
ing to endure in order improve the modular structure of their systems. As previously mentioned,
developers have different ‘acceptance’ levels at different moments of the software lifetime; there-

RN/16/07 22



Cohesion and Coupling: Balancing Optimisation and Disruption Paixao et al.

Table 6: ‘Natural disruption’ levels caused by developers during system’s evolu-
tion, as assessed by three differement methods. Intersection DisMoJo computes
the DisMoJo metric considering the intersection of classes between two subsequent
releases, while Union DisMoJo computes the DisMoJo metric considering all classes
of two subsequent releases. The proportional addition of classes accounts for the
proportional increase in the number of classes between two subsequent releases of
the same system. Each method was used to compute the ‘natural disruption’ of each
release of each system, and we report the minimum, maximum, median and mean
results for each system.

Systems
Intersection DisMoJo Union DisMoJo Proportional Addition of Classes

Min Max
Me-
dian

Mean Min Max
Me-
dian

Mean Min Max
Me-
dian

Mean

Ant 0.00% 2.12 % 0.00% 0.07% 0.00% 36.92% 0.59% 6.48% 0.00% 72.54% 0.05% 11.05%
AssertJ 0.00% 0.79 % 0.00% 0.12% 0.00% 19.34% 3.53% 4.68% 0.00% 47.89% 3.78% 8.50%
Flume 0.00% 0.00 % 0.00% 0.00% 0.00% 36.55% 1.98% 8.60% 0.00% 59.59% 2.37% 14.52%
Gson 0.00% 16.45% 0.00% 1.23% 0.00% 38.71% 6.76% 10.60% 0.00% 64.70% 8.31% 14.09%
JUnit 0.00% 9.09 % 0.00% 0.79% 0.00% 41.89% 2.92% 9.34% 0.00% 196.93% 4.34% 23.30%
Nutch 0.00% 0.43 % 0.00% 0.03% 0.00% 35.15% 1.82% 5.67% 0.00% 51.77% 2.41% 7.09%

PDFBox 0.00% 2.06 % 0.00% 0.10% 0.00% 26.72% 1.57% 5.41% 0.00% 35.00% 2.54% 8.24%
Pivot 0.00% 0.79 % 0.00% 0.07% 0.00% 14.53% 1.14% 5.77% 0.00% 32.03% 1.08% 9.47%

Procyon 0.00% 0.00 % 0.00% 0.00% 0.00% 3.78 % 0.02% 0.54% 0.00% 3.03% 0.38% 0.63%
Proguard 0.00% 11.48% 0.00% 0.58% 0.00% 56.36% 1.28% 5.32% 0.00% 75.37% 1.55% 6.56%

fore, we report the modularity improvement that can be achieved at lower and upper bounds of
the ‘acceptable disruption’.

The lower bound denotes the smallest greater than zero disruption level we could ascribe from
the average disruption caused by developers over the period of evolution of the systems studied.
This is a reasonable lower bound because it is chosen to be the lowest possible value (median
or mean, using either intersected or unioned DisMoJo) over all releases, for each system. If the
developers are prepared to tolerate this amount of disruption during the system’s development,
on average, then it is not unreasonable that they might allow this amount of disruption when it
can occasionally improve the modular structure.

The upper bound denotes the largest possible disruption value we can ascribe from the dis-
ruption caused by developers in any release of the system studied (using either intersected or
unioned DisMoJo). This is a reasonable upper bound because we know that there does exist a
release of the software that causes this level of disruption, and therefore we know that it was, at
least on one occasion, tolerated by the developers.

Therefore, for each system, we identified the lower and upper bounds of ‘acceptable disruption’
as described above; then, we selected modularisations from the pareto fronts computed in RQ4
according to these lower and upper bounds. Consider the Ant system, for example. The lower
and upper bounds for ‘acceptable disruption’ were identified as 0.07% and 36.92%, respectively.
For each release of Ant we selected the solutions with best cohesion and MQ improvements
found by both package-free and package-constrained search approaches that have a DisMoJo
value equal or smaller the lower and upper bounds of ‘acceptable disruption’. Results for all
systems under study are reported in Table 7.

As can be seen from the table, the modularity improvements achieved within the lower bound
disruption, for both package-free and package-constrained are small. In fact, for most of the
systems, neither package-free nor package-constrained has found any improvement in neither
cohesion nor MQ within the lower bound disruption. However, for some software systems it
is possible to have modularity improvements even considering a lower bound disruption, such
as Gson, where package-constrained search found a 4.70% cohesion improvement within the
minimum ‘acceptable disruption’ level.

As expected, modular improvements within the upper bound disruption levels are the biggest

RN/16/07 23



Cohesion and Coupling: Balancing Optimisation and Disruption Paixao et al.

Table 7: Modularity improvement, as assessed by cohesion and MQ, that can be
achieved within the lower and upper bounds of the ‘acceptable disruption’ level.

Systems
Package-Free Package-Constrained

Lower Bound Upper Bound Lower Bound Upper Bound
Coh MQ Coh MQ Coh MQ Coh MQ

Ant 0.00% 0.00% 1.24% 148.00% 0.00% 0.00% 7.66% 35.21%
AssertJ 0.00% 0.00% 0.52% 157.01% 0.00% 0.00% 4.73% 41.02%
Flume 0.00% 7.82% 0.54% 168.65% 1.25% 15.21% 21.35% 59.73%
Gson 1.28% 8.57% 8.97% 365.62% 4.70% 17.09% 40.98% 121.53%
JUnit 0.10% 0.00% 3.16% 148.37% 0.76% 2.22% 22.21% 49.09%
Nutch 0.00% 0.00% 0.00% 159.76% 0.00% 0.00% 1.89% 70.03%

PDFBox 0.00% 0.00% 2.73% 66.65% 0.00% 0.00% 6.61% 45.47%
Pivot 0.00% 0.00% 0.46% 83.23% 0.00% 0.00% 9.80% 45.44%

Procyon 0.00% 0.00% 0.00% 8.32% 0.00% 0.00% 0.00% 0.00%
Proguard 0.00% 0.00% 6.19% 200.29% 0.21% 0.00% 110.00% 94.05%

All 0.13% 1.63% 2.38% 150.28% 0.69% 3.45% 22.52% 55.75%

for all systems. When considering the biggest disruption level the systems have already under-
gone, package-constrained search was able to find modularisations with considerable cohesion
improvements, such as 40.98% and 110.00% for Gson and Proguard, respectively.

As an answer to RQ5, multiobjective search can find modularisations with improved mod-
ular structure, as assessed by both cohesion and MQ, even within lower and upper bounds of
disruption introduced by developers between releases.

5 Qualitative Analysis

In this section we select one of the systems we studied in our empirical study and describe
with more details some of the results we achieved throughout our research questions. Table 8
reports detailed results for each release of JUnit, including the cohesion and MQ values of the
original developers’ implementations and the results achieved by Bunch, package-constrained and
multiobjective search. Finally, we also report the natural disruption between all releases of the
system. We have chosen JUnit because it presented a wide range of modularity variation during
its releases, enabling us to illustrate different aspects of the studies we performed.

The second and third columns of Table 8 report the cohesion and MQ values of the original
modularisation implemented by JUnit developers for the 20 subsequent releases we collected.
Both cohesion and MQ metrics are affected by the size of the system, where a higher number of
classes and dependencies usually leads to a higher cohesion and MQ; therefore, different releases
of JUnit cannot be compared by neither MQ nor cohesion. However, the techniques described
in this paper optimise the modular structure for each particular release, so that comparisons
‘within release’ are valid.

The average and standard deviation values of cohesion and MQ for Bunch search are reported
in the fourth and fifth columns of the table, while the results for package-constrained search are
reported in the sixth and seventh columns. As discussed in RQ2, the cohesion of the Bunch
optimised modularisations is always lower than their original counterparts, even though the MQ
is considerably higher. Differently, all package-constrained solutions are able to improve upon
the original implementation in both cohesion and MQ.

In release 4.2, for example, the average Bunch solution has a cohesion value of 107 while
the developers’ implementation has a cohesion value of 164, which corresponds to a difference of
-34.94%. On the other hand, the average package-constrained modularisation for release 4.2 has
a cohesion value of 214, which represents an improvement of 30.16% over the original modulari-
sation. This particular case elucidates the MQ ‘inflation effect’ discussed in RQ2, showing how

RN/16/07 24



Cohesion and Coupling: Balancing Optimisation and Disruption Paixao et al.

Table 8: Detailed results for all releases of JUnit. For each release, we report the raw
cohesion and MQ values for the original developers’ implementation and the results
achieved by both Bunch and Package-constrained search. In addition, we report the
lower and upper bounds of the natural disruption between releases, computed by
Intersection and Union DismoJo, respectively. Finally we report the cohesion and
MQ results achieved by the proposed multiobjective approach to maximise modu-
larity improvement and minimise disruption, where we use the natural disruption
of each release to pick a solution from the pareto front.

Release
Original Implementation Bunch Package-constrained HC

Multiobjective Package-constrained
Natural Disruption

Lower Bound Upper Bound
Cohe-

sion
MQ Cohesion MQ Cohesion MQ Cohesion MQ Cohesion MQ Lower Bound Upper Bound

3.7 175 2.92 118 ± 3 10.69 ± 0.15 186 ± 9 4.78 ± 0.17 175 2.92 175 2.92 0.00% 0.00%
3.8 175 3.02 116 ± 2 11.00 ± 0.07 198 ± 7 4.28 ± 0.15 175 3.02 183 3.55 0.00% 7.50%

3.8.1 176 3.03 115 ± 2 11.06 ± 0.04 194 ± 7 4.21 ± 0.13 176 3.03 177 3.13 0.00% 1.27%
3.8.2 183 3.10 126 ± 2 11.60 ± 0.06 201 ± 8 4.33 ± 0.17 183 3.10 183 3.24 0.00% 2.50%
4.0 147 3.83 97 ± 6 11.02 ± 0.07 193 ± 9 6.31 ± 0.29 167 5.27 185 6.07 9.09% 39.86%
4.1 164 4.01 105 ± 6 11.72 ± 0.06 215 ± 11 6.62 ± 0.30 164 4.01 174 4.72 0.00% 3.66%
4.2 164 3.98 107 ± 7 11.95 ± 0.06 214 ± 9 7.14 ± 0.31 164 3.98 169 4.34 0.00% 1.20%
4.3 541 3.82 365 ± 15 28.90 ± 0.06 711 ± 23 9.15 ± 0.27 541 3.82 668 5.14 0.00% 2.92%

4.3.1 168 4.03 114 ± 6 12.01 ± 0.06 213 ± 9 6.93 ± 0.33 168 4.03 168 4.03 0.00% 1.10%
4.4 232 6.85 173 ± 5 17.40 ± 0.05 323 ± 13 10.67 ± 0.30 256 7.58 298 9.83 2.60% 41.89%
4.5 265 7.39 220 ± 14 20.89 ± 0.05 373 ± 16 13.20 ± 0.37 282 8.48 345 11.15 2.40% 32.42%
4.6 297 8.53 223 ± 10 22.99 ± 0.06 412 ± 13 14.31 ± 0.35 297 8.53 339 10.54 0.00% 5.43%
4.7 320 9.06 236 ± 8 25.78 ± 0.10 447 ± 17 14.90 ± 0.39 320 9.06 365 11.18 0.00% 5.34%
4.8 327 9.70 243 ± 8 26.62 ± 0.07 452 ± 12 15.48 ± 0.37 327 9.70 327 9.70 0.00% 0.00%

4.8.1 327 9.70 246 ± 16 26.58 ± 0.08 455 ± 17 15.51 ± 0.33 327 9.70 327 9.70 0.00% 0.00%
4.8.2 327 9.70 236 ± 9 26.59 ± 0.09 455 ± 18 15.49 ± 0.37 327 9.70 327 9.70 0.00% 0.00%
4.9 334 9.49 248 ± 9 27.70 ± 0.09 469 ± 12 16.08 ± 0.29 334 9.49 352 10.75 0.00% 2.33%
4.10 336 9.48 278 ± 14 27.72 ± 0.09 469 ± 15 15.99 ± 0.40 336 9.48 340 10.39 0.00% 1.83%
4.11 311 8.71 249 ± 9 27.34 ± 0.06 404 ± 16 15.45 ± 0.49 312 9.34 339 11.80 0.49% 6.19%
4.12 471 11.00 334 ± 11 33.94 ± 0.08 603 ± 14 18.04 ± 0.42 472 11.61 509 14.72 0.50% 22.05%

package-constrained search can be used to avoid this undesirable behavior and improve structural
cohesion of software systems.

In the last columns of Table 8 we report the natural disruption caused by each release of
JUnit, in comparison to the previous immediate release. For each release, we computed lower
and upper bound levels of disruption according to Intersection and Union DisMoJo (described in
RQ5), where the first is a disruption measurement that considers only the classes that remained
between releases and the latter considers not only classes that remained but also classes that
were added or removed between releases.

As one can see, the most disruptive release of JUnit was release 4.4 with an upper bound
disruption of 41.89%, yet still smaller than the average disruption caused by Bunch and package-
constrained search (see Table 5). This observation adds evidence to the claim that even though
cohesion and coupling optimisation is achievable, complete re-modularisations are unrealistic
in real world software development, so that approaches that seek for a compromise between
modularity improvement and familiarity to previously stablished structure are more likely to be
adopted by software developers.

Therefore, we report on columns 8-11 of Table 8 the results achieved by the proposed mul-
tiobjective approach for modularity improvement and disruption minimisation. For each release
of JUnit, we used the lower and upper bounds of natural disruption to pick solutions from the
pareto front. Consider release 4.5, for example. For the lower bound cohesion value, we picked
the modularisation from the pareto front with highest cohesion and disruption smaller than
2.40%. Similarly, for the upper bound cohesion improvement, we picked the solution with high-
est cohesion and disruption smaller than 32.42%. This way we are able to suggest modularity
improvements that are bounded by the same range of disruption that is already familiar to the
system’s developers.

As an example, we report part of the pareto front found by the proposed multiobjective ap-
proach for release 4.0 of JUnit in Table 9, where duplicate or very similar solutions were omitted.

RN/16/07 25



Cohesion and Coupling: Balancing Optimisation and Disruption Paixao et al.

Table 9: Modularisations suggested by the package-constrained multiobjective
search for JUnit 4.0. For each solution, we report the raw cohesion, the disruption
given by DisMoJo and the number of moved classes in comparison to the original
developers’ implementation. We also highlight the solutions that best match the
lower and upper bounds disruption levels of release 4.0.

Modularisation Cohesion Disruption Number Of Moved Classes
(Original) 1 147 0.00% 0

2 150 3.70% 2
3 155 4.94% 3

(Lower Bound) 4 162 6.10% 4
5 167 9.76% 7
6 168 10.98% 8
7 169 14.81% 11
8 172 17.28% 13
9 175 18.52% 14

10 177 22.22% 17
11 183 23.46% 18

(Upper Bound) 12 185 28.40% 22

For each solution in the table, we present the cohesion value, disruption given by DisMoJo and
the number of classes developers would need to move to a different package in comparison to the
original implementation. As one can see, the multiobjective approach proposed in this paper is
able to suggest modularisations with different levels of improvement and disruption, in a way
that developers can choose the one the better suits the project needs in a specific scenario.

Release 4.0 of JUnit has a lower bound disruption of 9.09%; therefore, modularisation number
4 is the one that presents the most similar level of disruption, as depicted in Table 9. This solution
moves only 4 classes from the original implementation, affecting only 3 out of the 11 packages in
the system. More specifically, class Description is moved from package org.junit.runner
to package org.junit.internal.runners, which is a reasonable refactoring because this
class is used to describe different test runners in package org.junit.internal.runners.
Moreover, class Request is moved from package org.junit.runner to package org.junit.
internal.requests, which contains all classes related to requests in the system.

On another hand, developers can select the solution that is more similar to the upper bound
disruption caused by release 4.0, which is modularisation 12 in Table 9. Interestingly, this solution
performs the same modifications discussed above plus some “follow ups” to improve the cohesion
even more, such as moving other classes related to Request to the org.junit.internal.
requests package. In total, this solution moved 22 classes and affected 8 out of 11 packages of
the system, achieving a cohesion improvement of 25.85%.

This case study illustrates how multiobjective search can be used in conjunction with longitu-
dinal analysis of disruption to propose a set of modularisation solutions that present a compromise
between modularity improvement and familiarity to existing structure, yet still bounded by the
level of disruption inflicted by the developers of the system.

6 Threats to the Validity

This section describes the threats that might affect the validity of the empirical study reported
in this paper and discusses our attempts to mitigate these threats.

Conclusion Threats are related to the analyses we performed and the conclusions we drawed
from these analyses. Random and k-neighbourhood searches were executed one million times for
each release, while the systematic search covered the whole nearest neighbourhood of the releases
under study. Furthermore, both Bunch and Package-constrained search were executed 30 times

RN/16/07 26



Cohesion and Coupling: Balancing Optimisation and Disruption Paixao et al.

for each release. In total, our analyses of RQ1-3 were based in more than 466 million different
modularisations of the 10 systems and 233 releases under study, which we believe thoroughly
accounts for the random nature of the algorithms we applied. In RQ4, the multiobjective ap-
proaches were only executed once for each release due to the large computation effort required
to run the multiobejctive GA for 233 releases of medium to large real world software systems.
However, we applied the Two-Archive GA, which was demonstrated to be stable and perform
well in previous work [47][44].

Internal Threats consider the design of the experiments we carried out and the effects our
design choices might have in our analyses. All the algorithms, fitness functions and parame-
ters were based on previous and widely used literature on automated software modularisation
[31][38][47][56]. Moreover, our data collection was performed based on a clear selection criteria
and involved manual validation of all systems, releases and modularity data that were extracted.

External Threats are related to the generalisation of the findings reported by the empirical
study. We performed the largest empirical study on automated software modularisation to date,
involving subsequent releases of medium to large real world software systems. Furthermore, we
make available in our supporting web page4all the modularity data we used in our empirical
study to facilitate replications and extensions.

7 Conclusion and Future Work

The notions of software modularisation and cohesion/coupling have been proposed as good prac-
tices for software development since the 1970s, and many SBSE techniques have been proposed
and evaluated since late 1990s to automate the decomposition of softaware systems in highly
cohesive and loosely coupled modules. However, after surveying more than 30 related papers, we
could not identify any study that has investigated the trade-off between the modularity improve-
ment these automated techniques offer and the inherently disruption they cause to the original
modular structure of software systems. Moreover, most of the surveyed papers only consider
a single version of the systems under study, ignoring the previous releases. Therefore, we per-
formed the largest empirical study on search based software re-modularisation so far, involving
233 subsequent releases of 10 medium to large real world software systems.

This study revealed that the modular structure of existing systems respect the raw cohesion
and the MQ quality metrics, where the developers’ implementation have better cohesion and/or
MQ of more than 96% of the alternative modularisations created by random and neighbourhood
search. However, we noticed that raw cohesion and MQ do not commonly agree when assess-
ing the modularity of software systems due to the ‘inflation effect’ of the MQ metric that we
exposed by applying the Bunch tool to the systems under study. Modularisations with more
packages favour the MQ metric; therefore, Bunch creates an average of 493.11% new packages
and decreases the cohesion of the systems in -46.25%, on average. As an attempt to miti-
gate the MQ’s ‘inflation effect’, we introduced the package-constrained approach for automated
re-modularisation, in which the search algorithm is constrained by the number of packages im-
plemented by the developers. The package-constrained search was able to find modularisations
with an average cohesion improvement of 25%.

Even though search based approaches can be used to improve the modular structure of
software systems as assessed by both cohesion and MQ, we showed that the disruption caused
by these approaches is high. On average, developers would have to change 80.39% and 57.82%
of the structure to adopt modularisations suggested by Bunch and package-constrained search,

4http://www0.cs.ucl.ac.uk/staff/mpaixao/cohCop/index.html (Please note the url will be activated
upon peer-reviwed publication)

RN/16/07 27



Cohesion and Coupling: Balancing Optimisation and Disruption Paixao et al.

respectively. Surprisingly, the disruption caused by Bunch and package-constrained solutions
with very best modularity, as assessed by both cohesion and MQ, caused less disruption than the
average. Motivated by this opportunity, we employed a multiobjective optimisation approach for
automated software re-modularisation that attempts to maximise the modularity improvement
and minimise disruption.

We showed that modularity improvement and disruption have a clear and constant trade-off
over the pareto fronts of all systems under study. Moreover, based on a longitudinal analysis of
developers implementations over releases, we estimated lower and upper bounds of ‘acceptable’
levels of disruption that developers have introduced. We found that our new multiobjective
approach was able to improve, on average, 3.45% and 22.59% of the cohesion of the systems
within this range of ‘acceptable’ disruption.

Finally, we performed a more detailed and qualitative analysis of some of the results we
achieved for the JUnit system, where we presented in a series of case studies how the experiments
and analyses carried out in this paper can be used together to provide a full picture of cohesion
and coupling optimisation for a certain system. Among other things, we showed the evolution
of cohesion throughout JUnit’s releases, providing insights on how package-constrained search is
able to avoid MQ’s ‘inflation effect’, and how multiobjective search can be used in conjunction
with longitudinal analysis of disruption to suggest re-modularisation solutions.

As future work, we discuss a set of extensions to the empirical study presented in this pa-
per alongside further research that can be done by employing the techniques described in this
work. In RQ1 and RQ2 we performed an incremental analysis of the respect developers have
for measurements of cohesion and coupling by employing a range of search procedures. How-
ever, due to our experiment design and space constraints, we restrained this analysis to state of
the art single objective search and did not assess developers’ solutions regarding multiobjective
approaches using the MCA and ECA suite of metrics. Such extension would benefit the search
based modularisation community by providing insights on the fitness functions being employed
by other approaches.

Our disruption analysis is based on the widely used MoJoFM metric, which in spite of its
popularity, only considers “move class” and “join package” refactoring operations to measure the
distance between two modularisations. The incorporation of other refactoring operations, such
as “split package”, in the distance metric may lead to a better assessment of the disruptive effect
of search based re-modularisation.

We employed the Two-Archive GA as an optimisation algorithm to find solutions with a
trade-off between modularity improvement and disruption. However, in spite of the good results
achieved in this paper and also in previous research, a further comparison of the Two-Archive
GA with other multiobjective algorithms and a simple weighted GA is needed to assess the
most suitable optimisation algorithm for the task of finding software modularisations with high
improvement and low disruption.

Finally, we plan to extend the investigations performed in this paper to consider not only
structural measurements of software systems, but also other metrics of cohesion and coupling,
such as semantic, co-changes and information theoretic. We also plan to use/adapt the techniques
and analyses described in this paper to assess/measure structural and architectural debt of
software systems.

References

[1] Hani Abdeen, Stéphane Ducasse, Houari Sahraoui, and Ilham Alloui. Automatic package
coupling and cycle minimization. In Reverse Engineering, 2009. WCRE’09. 16th Working

RN/16/07 28



Cohesion and Coupling: Balancing Optimisation and Disruption Paixao et al.

Conference on, pages 103–112. IEEE, 2009.

[2] Hani Abdeen, Houari Sahraoui, Osama Shata, Nicolas Anquetil, and Stéphane Ducasse. To-
wards automatically improving package structure while respecting original design decisions.
In Reverse Engineering (WCRE), 2013 20th Working Conference on, pages 212–221. IEEE,
2013.

[3] Programmer’s Friend Class Dependency Analyzer. http://www.
dependency-analyzer.org/, 2016. Accessed in: May 2016.

[4] Andrea Arcuri and Lionel Briand. A hitchhiker’s guide to statistical tests for assessing ran-
domized algorithms in software engineering. Software Testing, Verification and Reliability,
24(3):219–250, 2014.

[5] Marcio de Oliveira Barros. An analysis of the effects of composite objectives in multiobjective
software module clustering. In Proceedings of the 14th annual conference on Genetic and
evolutionary computation, pages 1205–1212. ACM, 2012.

[6] Márcio de Oliveira Barros, Fábio de Almeida Farzat, and Guilherme Horta Travassos. Learn-
ing from optimization: A case study with apache ant. Information and Software Technology,
57:684–704, 2015.

[7] Gabriele Bavota, Filomena Carnevale, Andrea De Lucia, Massimiliano Di Penta, and Rocco
Oliveto. Putting the developer in-the-loop: an interactive ga for software re-modularization.
In Search Based Software Engineering, pages 75–89. Springer, 2012.

[8] Gabriele Bavota, Malcom Gethers, Rocco Oliveto, Denys Poshyvanyk, and Andrea De Lucia.
Improving software modularization via automated analysis of latent topics and dependencies.
ACM Transactions on Software Engineering and Methodology, 23(1):1–33, feb 2014.

[9] James M Bieman and Linda M Ott. Measuring functional cohesion. Software Engineering,
IEEE Transactions on, 20(8):644–657, 1994.

[10] William H Brown, Raphael C Malveau, and Thomas J Mowbray. Antipatterns: refactoring
software, architectures, and projects in crisis. 1998.

[11] Ivan Candela, Gabriele Bavota, Barbara Russo, and Rocco Oliveto. Using Cohesion and
Coupling for Software Remodularization : Is It Enough ? ACM Transactions on Software
Engineering and Methodology, 25(3):1–28, 2016.

[12] Diego Doval, Spiros Mancoridis, and Brian S Mitchell. Automatic clustering of software
systems using a genetic algorithm. In Software Technology and Engineering Practice, 1999.
STEP’99. Proceedings, pages 73–81. IEEE, 1999.

[13] Mathew Hall, Muhammad Ali Khojaye, Neil Walkinshaw, and Phil McMinn. Establishing
the Source Code Disruption Caused by Automated Remodularisation Tools. In 2014 IEEE
International Conference on Software Maintenance and Evolution, pages 466–470. IEEE,
sep 2014.

[14] Mathew Hall and Phil McMinn. An analysis of the performance of the bunch modularisation
algorithms hierarchy generation approach. In 4 th Symposium on Search Based-Software
Engineering, page 19, 2012.

RN/16/07 29



Cohesion and Coupling: Balancing Optimisation and Disruption Paixao et al.

[15] M. Harman, P. McMinn, J. T. Souza, and S. Yoo. Search based software engineering:
Techniques, taxonomy, tutorial. In Empirical Software Engineering and Verification, pages
1–59. Springer, 2012.

[16] Mark Harman, Robert M Hierons, and Mark Proctor. A new representation and crossover
operator for search-based optimization of software modularization. In GECCO, volume 2,
pages 1351–1358, 2002.

[17] Mark Harman, Stephen Swift, and Kiarash Mahdavi. An empirical study of the robustness
of two module clustering fitness functions. In Proceedings of the 2005 conference on Genetic
and evolutionary computation, pages 1029–1036. ACM, 2005.

[18] Jinhuang Huang and Jing Liu. A similarity-based modularization quality measure for soft-
ware module clustering problems. Information Sciences, 2016.

[19] Jinhuang Huang, Jing Liu, and Xin Yao. A multi-agent evolutionary algorithm for software
module clustering problems. Soft Computing, feb 2016.

[20] Kawal Jeet and Renu Dhir. Software Architecture Recovery using Genetic Black Hole
Algorithm. ACM SIGSOFT Software Engineering Notes, 40(1):1–5, feb 2015.

[21] Kawal Jeet and Renu Dhir. Software module clustering using bio-inspired algorithms. Hand-
book of Research on Modern Optimization Algorithms and Applications in Engineering and
Economics, page 445, 2016.

[22] Philippe Kruchten, Robert L Nord, and Ipek Ozkaya. Technical debt: from metaphor to
theory and practice. Ieee software, (6):18–21, 2012.

[23] A. Charan Kumari and K. Srinivas. Hyper-heuristic approach for multi-objective software
module clustering. Journal of Systems and Software, 117:384–401, jul 2016.

[24] A. Charan Kumari, K. Srinivas, and M. P. Gupta. Software module clustering using a
hyper-heuristic based multi-objective genetic algorithm. In Proceedings of the 2013 3rd
IEEE International Advance Computing Conference, IACC 2013, pages 813–818. IEEE,
2013.

[25] Duc Minh Le, Pooyan Behnamghader, Joshua Garcia, Daniel Link, Arman Shahbazian,
and Nenad Medvidovic. An empirical study of architectural change in open-source software
systems. In Proceedings of the 12th Working Conference on Mining Software Repositories,
pages 235–245. IEEE Press, 2015.

[26] Meir M Lehman. On understanding laws, evolution, and conservation in the large-program
life cycle. Journal of Systems and Software, 1:213–221, 1980.

[27] Meir M Lehman, Juan F Ramil, Paul D Wernick, Dewayne E Perry, and Wladyslaw M
Turski. Metrics and laws of software evolution-the nineties view. In Software Metrics
Symposium, 1997. Proceedings., Fourth International, pages 20–32. IEEE, 1997.

[28] Kiarash Mahdavi, Mark Harman, and Robert M Hierons. A multiple hill climbing approach
to software module clustering. In Software Maintenance, 2003. ICSM 2003. Proceedings.
International Conference on, pages 315–324. IEEE, 2003.

[29] Ali Safari Mamaghani and Mohammad Reza Meybodi. Clustering of software systems using
new hybrid algorithms. In Computer and Information Technology, 2009. CIT’09. Ninth
IEEE International Conference on, volume 1, pages 20–25. IEEE, 2009.

RN/16/07 30



Cohesion and Coupling: Balancing Optimisation and Disruption Paixao et al.

[30] Spiros Mancoridis, Brian S Mitchell, Yihfarn Chen, and Emden R Gansner. Bunch: A
clustering tool for the recovery and maintenance of software system structures. In Software
Maintenance, 1999.(ICSM’99) Proceedings. IEEE International Conference on, pages 50–
59. IEEE, 1999.

[31] Spiros Mancoridis, Brian S Mitchell, Chris Rorres, Yih-Farn Chen, and Emden R Gansner.
Using automatic clustering to produce high-level system organizations of source code. In
IWPC, volume 98, pages 45–52. Citeseer, 1998.

[32] Antonio Martini, Jan Bosch, and Michel Chaudron. Investigating architectural technical
debt accumulation and refactoring over time: A multiple-case study. Information and Soft-
ware Technology, 67:237–253, 2015.

[33] Brian Mitchell, Martin Traverso, and Spiros Mancoridis. An architecture for distributing the
computation of software clustering algorithms. In Software Architecture, 2001. Proceedings.
Working IEEE/IFIP Conference on, pages 181–190. IEEE, 2001.

[34] Brian S Mitchell. A heuristic search approach to solving the software clustering problem.
PhD thesis, Drexel University, 2002.

[35] Brian S Mitchell and Spiros Mancoridis. Comparing the decompositions produced by soft-
ware clustering algorithms using similarity measurements. In Proceedings of the IEEE In-
ternational Conference on Software Maintenance (ICSM’01), page 744. IEEE Computer
Society, 2001.

[36] Brian S Mitchell and Spiros Mancoridis. Using heuristic search techniques to extract design
abstractions from source code. In GECCO, volume 2, pages 1375–1382, 2002.

[37] Brian S Mitchell and Spiros Mancoridis. Modeling the Search Landscape of Metaheuristic
Software Clustering Algorithms. In Genetic and Evolutionary Computation Conference,
GECCO 2003, pages 2499–2510, Chicado, IL, USA, 2003. Springer Berlin Heidelberg.

[38] Brian S Mitchell and Spiros Mancoridis. On the automatic modularization of software
systems using the bunch tool. Software Engineering, IEEE Transactions on, 32(3):193–208,
2006.

[39] Brian S Mitchell and Spiros Mancoridis. On the evaluation of the bunch search-based
software modularization algorithm. Soft Computing, 12(1):77–93, 2008.

[40] Wiem Mkaouer, Marouane Kessentini, Adnan Shaout, Patrice Koligheu, Slim Bechikh,
Kalyanmoy Deb, and Ali Ouni. Many-Objective Software Remodularization Using NSGA-
III. ACM Transactions on Software Engineering and Methodology, 24(3):1–45, may 2015.

[41] Mel Ó Cinnéide, Laurence Tratt, Mark Harman, Steve Counsell, and Iman
Hemati Moghadam. Experimental assessment of software metrics using automated refac-
toring. In Proceedings of the ACM-IEEE international symposium on Empirical software
engineering and measurement, pages 49–58. ACM, 2012.

[42] Ali Ouni, Marouane Kessentini, Houari Sahraoui, and Mounir Boukadoum. Maintainability
defects detection and correction: a multi-objective approach. Automated Software Engi-
neering, 20(1):47–79, mar 2013.

[43] Ali Ouni, Marouane Kessentini, Houari Sahraoui, Katsuro Inoue, and Kalyanmoy Deb.
Multi-Criteria Code Refactoring Using Search-Based Software Engineering. ACM Transac-
tions on Software Engineering and Methodology, 25(3):1–53, jun 2016.

RN/16/07 31



Cohesion and Coupling: Balancing Optimisation and Disruption Paixao et al.

[44] Matheus Paixao, Mark Harman, and Yuanyuan Zhang. Multi-objective module clustering
for kate. In Search-Based Software Engineering, pages 282–288. Springer, 2015.

[45] Justyna Petke, Mark Harman, William B Langdon, and Westley Weimer. Using genetic
improvement and code transplants to specialise a c++ program to a problem class. In
Genetic Programming, pages 137–149. Springer, 2014.

[46] Kata Praditwong. Solving software module clustering problem by evolutionary algorithms.
In Computer Science and Software Engineering (JCSSE), 2011 Eighth International Joint
Conference on, pages 154–159. IEEE, 2011.

[47] Kata Praditwong, Mark Harman, and Xin Yao. Software module clustering as a multi-
objective search problem. Software Engineering, IEEE Transactions on, 37(2):264–282,
2011.

[48] Kata Praditwong and Xin Yao. A new multi-objective evolutionary optimisation algorithm:
the two-archive algorithm. In Computational Intelligence and Security, 2006 International
Conference on, volume 1, pages 286–291. IEEE, 2006.

[49] Roger S Pressman. Software engineering: a practitioner’s approach. Palgrave Macmillan,
2005.

[50] Amir M Saeidi, Jurriaan Hage, Ravi Khadka, and Slinger Jansen. A search-based approach
to multi-view clustering of software systems. In Software Analysis, Evolution and Reengi-
neering (SANER), 2015 IEEE 22nd International Conference on, pages 429–438. IEEE,
2015.

[51] Olaf Seng, Markus Bauer, Matthias Biehl, and Gert Pache. Search-based improvement of
subsystem decompositions. In Proceedings of the 7th annual conference on Genetic and
evolutionary computation, pages 1045–1051. ACM, 2005.

[52] Ali Shokoufandeh, Spiros Mancoridis, Trip Denton, and Matthew Maycock. Spectral
and meta-heuristic algorithms for software clustering. Journal of Systems and Software,
77(3):213–223, 2005.

[53] Chris Simons, Jeremy Singer, and David R. White. Search-Based Refactoring: Metrics
Are Not Enough. In Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 9275, pages 47–61.
2015.

[54] I. Sommerville. Software Engineering. Addison Wesley, 2011.

[55] J. T. Souza, C. L. Maia, F. G. Freitas, and D. P. Coutinho. The human competitiveness
of search based software engineering. In Search Based Software Engineering (SSBSE), 2010
Second International Symposium on, pages 143–152. IEEE, 2010.

[56] Zhihua Wen and Vassilios Tzerpos. An effectiveness measure for software clustering algo-
rithms. In Program Comprehension, 2004. Proceedings. 12th IEEE International Workshop
on, pages 194–203. IEEE, 2004.

[57] Michel Wermelinger, Yijun Yu, Angela Lozano, and Andrea Capiluppi. Assessing architec-
tural evolution: a case study. Empirical Software Engineering, 16(5):623–666, 2011.

[58] Edward Yourdon and Larry L Constantine. Structured design: Fundamentals of a discipline
of computer program and systems design, volume 5. Prentice-Hall Englewood Cliffs, NJ,
1979.

RN/16/07 32


