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Abstract

One of the major distinguishing features of the Dynamic Multiobjective Opti-
mization Problems (DMOPs) is that optimization objectives will change over
time, thus tracking the varying Pareto-Optimal Front (POF) becomes a chal-
lenge. One of the promising solutions is reusing “experiences” to construct a
prediction model via statistical machine learning approaches. However, most
existing methods neglect the non-independent and identically distributed na-
ture of data to construct the prediction model. In this paper, we propose an
algorithmic framework, called Tr-DMOEA, which integrates transfer learning
and population-based evolutionary algorithms (EAs) to solve the DMOPs.
This approach exploits the transfer learning technique as a tool to generate
an effective initial population pool via reusing past experience to speed up
the evolutionary process, and at the same time any population based multi-
objective algorithms can benefit from this integration without any extensive
modifications. To verify this idea, we incorporate the proposed approach
into the development of three well-known evolutionary algorithms, nondom-
inated sorting genetic algorithm II (NSGA-II), multiojective particle swarm
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optimization (MOPSO), and the regularity model-based multiobjective esti-
mation of distribution algorithm (RM-MEDA). We employ twelve benchmark
functions to test these algorithms as well as compare them with some chosen
state-of-the-art designs. The experimental results confirm the effectiveness
of the proposed design for DMOPs.

Keywords: Dynamic multi-objective optimization, Domain adaption,
Dimensionality reduction, Transfer learning, Evolutionary Algorithm.

1 Introduction

One of the essential characteristics of Dynamic Multiobjective Optimization
Problems (DMOPs) [18] is that objective functions will vary over time or
under different environments. This underlying problem characteristic bears
significant implications for real-world applications [12]. A good example is
dynamic portfolio optimization problem, which is common in deregulated
electricity markets in which the operations of different power stations are
controlled and coordinated to maximize profit while minimizing risk. There
are various uncertainties in a deregulated electricity market, including spot
market prices, load obligations, and strip/option prices [54]. The values for
some of these factors change over time, and it is ordinary to optimize for the
market price every hour. However, the optimization approaches including
population-based metaheuristics often find extreme difficulty to address the
challenge since that the POF of a DMOP may change when the environ-
ment changes. Solving the DMOPs efficiently and effectively has become an
important research issue in evolutionary computation community [36, 13].

In recent years, a great deal of progress has been made and different
types of algorithms have been proposed. In all of these methods, one class
of approaches, the prediction based, has gained much attention. This class
of approaches allows evolutionary algorithm (EA) and machine learning to
be seamlessly integrated. After deriving a prediction model via machine
learning techniques, the EAs can sustain the needed performance even if the
environment changes over time. For example, in [45], the authors proposed
a memory-based EA which introduced two kinds of prediction models. The
first one used the linear/nonlinear regression model to predict when the envi-
ronment would change while the second model was based on Markov chains
which was used to forecast changes. In [41], the authors suggested integrat-
ing motion information into an EA, such that the algorithm can track a
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time-changing optimum. In [49], the authors proposed a Kalman-extended
genetic algorithm, and this algorithm was developed to determine when to
re-evaluate an existing individual, when to produce a new individual, and
which individual to re-evaluate.

The basic idea of these methods is “keeping track of good (partial) solu-
tions in order to reuse them under periodically changing environment” [41].
If we consider this view from a statistical point of view, this idea implies
that the solutions of a dynamic optimization problem obey an identical dis-
tribution. In other words, the solutions which are used to construct the
prediction model and the solutions forecasted by the prediction model meet
the Independent Identical Distribution (IID) hypothesis to some extent. This
assumption undoubtedly simplifies the complexity of the problem, however
we have to understand there is an appreciable difference between the good,
but out-of-date solutions and the proper and newly generated solutions, es-
pecially under a dynamic environment. That is to say, the changing POF
may lead to the different distributions of the training samples and the pre-
dicted samples, and this problem is very difficult for the traditional machine
learning methods.

The findings from machine leaning community [38] already showed that a
prediction model built by traditional machine learning methods leaves much
room to be desired when the training samples and the predicted samples
fail to meet the IID hypothesis. Transfer learning [38] allows the distribu-
tion of data used in training and testing to be different and it is becoming
a useful weapon to overcome this difficulty. Therefore, the dynamic mul-
tiobjective optimization algorithms based on traditional machine learning
methods, especially the prediction based algorithms, can also have signifi-
cant performance improvements by overcoming the limitation caused by the
IID, and transfer learning approach is a powerful tool we can use to improve
performance of EAs for DMOPs.

In this paper, we argue that integrating transfer leaning approaches [38]
into an EA can offer significant benefits to performance and robustness for de-
signing better Dynamic Multiobjective Evolutionary Algorithms (DMOEAs).
We adopt a domain adaptation method1, called transfer component analysis
[37], to construct a prediction model. This model uses the gained knowledge
of finding Pareto optimal solutions, but not the population, to generate an
initial population pool for the optimization function at the next time. Based

1a branch of transfer learning.
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on this initial population pool, the optima of the changed environment can
be found more efficiently and effectively. The proposed domain adaptation
learning approach can be easily incorporated into any evolutionary-based
multiobjective optimization algorithms. Please note that in this research,
the dynamic refers to that objective functions will vary over time or under
different environments.

Indeed, how to detect and identify dynamic changes is a crucial part of
solving dynamic multiobjective optimization problems. However, in this pa-
per, our focus is placed solely on how EA can quickly re-optimize a given
dynamic optimization problem once the change is been detected and identi-
fied. This is in a similar spirit as those studies in fault tolerant control where
focus is placed exclusively on designing a controller capable of accommodat-
ing the dynamic changes, leaving the fault detection and identification to be
addressed separately.

The contribution of this research is the integration between transfer learn-
ing and classical evolutionary multiobjective optimization algorithms. This
combination provides two benefits. First, the advantages of the EAs are pre-
served in the improved design for DMOPs. Secondly, the proposed design
can significantly improve the search efficiency via reusing past experience
which is critical for solving the DMOPs. An algorithm requires too much
computing resources, often making it difficult to solve large-scale problems.
The experiments also validate the assumption that the population plays a
very important role for tracking dynamic optima, and [15, 14] proves it from
the theoretical point of view.

The rest of this paper is organized as follows: In Section 2, we will in-
troduce some basic concepts of dynamic optimization problems first and
then discuss the existing works in this field. At the beginning of Section
3, we will present some background on transfer learning, domain adapta-
tion learning, and then introduce the transfer component analysis method
in detail. After that we will propose the Transfer learning based Dynamic
Multi-Objective Evolutionary optimization Algorithm, Tr-DMOEA. In Sec-
tion 4, we will present the experimental results of incorporating our approach
to improve three well-known MOEAs: NSGA-II, MOPSO and RM-MEDA,
specifically for DMOPs and all of the algorithms were tested on the IEEE
CEC 2015 benchmark problems set. In Section 5, we will draw a summary
of this paper and outline the future research directions.
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2 Preliminary Studies and Related Research

2.1 Dynamic Multi-objective Optimazation

Formally, a dynamic multiobjective optimization problem is defined as:

Minimize F (x, t) = 〈f1 (x, t) , f2 (x, t) , ..., fM (x, t)〉

s.t. x ∈ Ω

where x = 〈x1, x2, . . . , xn〉 is the decision vector and t is the time or en-
vironment variable. fi (x, t) : Ω → R (i = 1, . . . , M). Ω = [L1, U1] ×
[L2, U2] × · · · × [Ln, Un]. Li, Ui ∈ R are the lower and upper bounds of the
i-th decision variable, respectively. Please note that dynamic environments
can be classified in different ways. For an in-depth description, the readers
are referred to [45].

Definition 1. [Dynamic Decision Vector Domination] At time t , a decision
vector x1 Pareto dominate another vector x2, denoted by x1 �t x2, if and
only if : {

∀i = 1, . . . ,M, fi(x1, t) ≤ fi(x2, t)

∃i = 1, . . . ,M, fi(x1, t) < fi(x2, t)
. (1)

Definition 2. [ Dynamic Pareto-optimal Set ] Both x and x∗ are decision
vectors, and if a decision vector x∗ is said to be nondominated at time t if
and only if there is no other decision vector x such that x �t x∗ at time t.
The Dynamic Pareto-Optimal Set (DPOS) is the set of all Pareto optimal
solutions at time t, that is :

DPOS = {x∗| 6 ∃x, x �t x∗} .

Definition 3. [Dynamic Pareto-optimal Front] At time t, the Dynamic Pareto-
Optimal Front (DPOF) is the corresponding objective vectors of the DPOS.

DPOF = {F (x∗, t) |x∗ ∈ DPOS} .

For an ideal dynamic multiobjective algorithm, it must be able to find a
set of solutions as close as possible to the changing Pareto-optimal Front and
at the same time, the set of solutions should be as diverse as possible.
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2.2 Related Works

Much progress [36, 40, 2, 20] has been made in the DMOPs field in recent
years, and most existing algorithms can be classified into the following cate-
gories: Increasing/Maintaining Diversity methods, Memory based methods,
Multi-population based methods, and Prediction based methods.

The increasing diversity methods tend to add variety to the population
by using a certain type of methodology when the environment change was
detected. For example, Cobb et al. proposed the triggered hypermutation
method [10], and the basic idea of this method is that when change is iden-
tified, the mutation rate would be increased immediately, and this would
make the converged population divergent again. This approach calls for
some improvements, and one of them is that the mutation rate is in a state
of uncontrolled change during the whole process, and this ultimately results
in reduced performance of the algorithm. Therefore, Vavak et al. [50] pre-
sented a mutation operator, called variable local search (VLS), to address
the problem. The strategy that the VLS adopted was to gradually increase
the mutation rate. Yen et al. [53] proposed a dynamic EA which relocates
the individuals based on their change in function value due to the change in
the environment and the average sensitivities of their decision variables to
the corresponding change in the objective space. This approach can avoid
the drawbacks of previous methods to a certain extent.

Most of the methods in the maintaining diversity category assume that
avoiding population convergence can help the algorithm track the changing
optimum as soon as possible, and maintain diversity as one of the effective
means to that end. Grefenstette [22] proposed a Random Immigrants Ge-
netic Algorithm (RIGA), and the method replaces some individuals in the
population randomly. The idea of the RIGA is that introducing new genetic
materials into the population can avoid the whole population converging to-
ward a small area in the process of evolution. However, the drawback of
the primitive immigrant method was the fitness values of the introduced
individuals were usually low, so large amounts are eliminated during the se-
lection stage, and as a result, it is very difficult to introduce different genes
into the population. For solving this problem, Yang [57, 32] proposed the
hybrid immigrants scheme, memory-based immigrants [55] and elitism-based
immigrants [55], and these methods are effective for dealing with periodically
changing DMOPs. However, if the knowledge about the dynamic environ-
ment is limited, they would obtain a greatly reduced efficiency.
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Dynamic NSGA-II (DNSGA-II) [16] proposed by Deb et al. also shares a
similar idea, and this method handles the DMOPs by introducing diversity
when change is detected. There are two versions of the proposed DNSGA-
II and they are respectively known as DNSGA-II-A and DNSGA-II-B. In
the DNSGA-II-A, the population is replaced by some individuals with new
randomly created solutions, while in the DNSGA-II-B, diversity was guarded
by replacing a percentage of the population with mutated solutions.

Memory mechanism enables EAs to record past information, and when it
detects changes have occurred, stored information can be reused to improve
the performance of the algorithm. Existing research showed that memory-
based approaches tend to be more effective on the DMOPs with periodically
changing environments.

Branke [6] proposed a direct memory scheme where the best individuals in
the population will be saved in an archive, and when the algorithm detects a
change, those saved individuals can be retrieved and returned to the popula-
tion to replace the same number of individuals. In [21], the author proposed
a co-evolutionary multiobjective algorithm which hybridizes competitive and
cooperative mechanisms to solve the DMOPs. In this algorithm, the out-of-
date archived solutions are replaced by an external population. In [51], the
authors presented an algorithm called MS-MOEA to tackle the challenges
of DMOPs. In the method, adaptive genetic and differential operators were
used to speed up the convergence speed and a Gaussian local search operator
was employed to prevent from premature convergence. At the same time the
fast hyper-volume strategy [52] was proposed to achieve a better starting
population when changes occur frequently. The above methods meet some
problems, e.g. slow convergence and poor diversity, when the environment
changes. As a result the authors in [1] proposed an adaptive hybrid popula-
tion management strategy using memory, local search and random strategies
to effectively handle environment dynamicity in DMOPs. The special feature
of this algorithm is that it can adjust the number of memory and random
solutions to be used according to the change severity.

The Multi-population strategy is considered as one efficient solution for
the DMOPs, especially for the multiple peaks and the competing peaks prob-
lems. Branke et al. [7] proposed the self-organizing scouts method, and this
method splits the population into scout and base populations, and the two
populations are responsible for exploitation and exploration respectively. In
other words, the base population searches for the optimal solution and if
the base population finds a peak, then the scout population is generated

7



to track the change of this new peak. Li and Yang [31] employed a multi-
population particle swarm optimization (PSO) algorithm to solve multiple
peaks problems. In their method, a population uses evolutionary program-
ming, which shows a better global search ability when compared to other
EAs, to explore the most hopeful areas in the whole search space, and at
the same time, several subpopulations use the fast PSO algorithm to find
the local optima. Yang [56] used hierarchical clustering technique to divide
the population into different subpopulations, and the main advantage of this
design is that the initial individuals of the subpopulations can be generated
automatically according to the fitness landscape.

In general, a good dynamic optimization algorithm should be able to
track the changing optimal solution even under high severity and frequency
of changes. It must be able to reuse as much information available from pre-
vious generations to speedup the optimization search. As a result, in recent
years the prediction-based DMOPs algorithms have received much attention.
This class of methods predicts the state of the changing environment typi-
cally using the information that already exists and some forms of machine
learning techniques, and then makes a decision such that the algorithms can
accommodate the changes in advance. This is one of the reasons why the
prediction-based approaches can improve performance of an algorithm han-
dling the DMOPs, compared with other types of approaches.

Bosman [5] believed that the decision made at one point would affect the
optima obtained in the future, so for the dynamic optimization problems,
he proposed an algorithmical framework which integrated machine learning,
statistic learning, and evolutionary computation, and this framework can
effectively predict what the state of environment is going to be. In [41], the
authors suggested that the state of an optimum should contain the location
and the speed information, so the Kalman filter technique can be used to
estimate the state of the system and the error. The authors proposed an EA
to measure the state of the past optimum and then use the Kalman filter to
obtain an estimated value of the optimum in the next time instance.

Stroud [49] proposed the Kalman-extended Genetic Algorithm (KGA),
and the basic idea of the KGA was that two types of uncertainties surrounded
the estimated value of an individual in a dynamical environment. The first
type of uncertainty is produced by the dynamic of the environment while the
second type was related to the evaluation of individuals. For the different
situations, the KGA has two different ways to update the covariances, and
uses the Kalman filter technique to predict the two uncertainties which allows
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the algorithm to work well in a dynamic environment.
In [59], Zhou et al. presented an algorithm, called Population Prediction

Strategy (PPS), to predict a whole population instead of predicting some
isolated points. There are two key concepts here: center point and manifold.
Whenever a change is detected, the algorithm uses a sequence of center points
obtained from the search progress to predict the next center point, and at the
same time, the previous manifolds are used to estimate the next manifold.
The main problem of this method is that, it is difficult to obtain historical
information at the beginning stage, and this may lead to poor convergence.

Recently, there are some works exploiting knowledge reuse techniques
or machine learning in evolutionary computation that have been proposed.
In [26], the authors propose an approach based on transfer learning and ge-
netic programming to solve complex image classification problems. The basic
idea of the proposed algorithm is that the knowledge learned from a simpler
subtask is used to solve a more complex subtask, and reusing knowledge
blocks are discovered from similar as well as different image classification
tasks during the evolutionary process. In [25], the authors present a genetic
programming-like representation to identify building blocks of knowledge in
a learning classifier system, and the proposed method can extract useful
building blocks from simpler and smaller problems and reuse them to learn
more complex multiplexer problem. In [19], the authors present an evolution-
ary memetic computing paradigm that is capable of learning and evolving
knowledge meme that traverses two different but related problem domains,
capacitated vehicle routing problem and capacitated arc routing problem,
for greater search efficiency. Experimental results show that evolutionary
optimization can benefit from this approach.

However, we are not exactly sure if the data we using to construct the pre-
diction model and the data we are going to predict by the above model obey
a similar distribution. Conversely, the real-world applications repeatedly re-
minded us that, it is not wise to assume the IID hypothesis as a prerequisite,
especially for the DMOPs. Unfortunately, most of the existing methods of-
ten assume that the solutions at different times have an IID structure, and
we believe that this assumption is one of main reasons for the failure of ex-
isting DMOEA algorithms. After all, a poor prediction model is very likely
to bring the search process to a hopeless place, which means actual results
will be worse than a method which does not use predictive technique, if the
prediction model turn out to be inaccurate.

We believe that historical information about the POF or POS is very
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useful, and the reason is that for a DMOP, the POSs or POFs at different
times may not be exactly the same, but they must be correlated. Therefore
we conjecture that an appropriate use of the information extracted from the
obtained POS or POF will bring great benefits to track the changing POF,
but at the same time, we must admit the rationality and the generality of
the assumption of non-independently and identically distributed data. From
these basic points of view, we propose a framework which integrates transfer
learning and EAs for solving the DMOPs. Two of the major advantages of
the proposed approach are as follows: at first, the proposed method does not
assume IID hypothesis as a prerequisite, and it is enabled to escape serious
consequences of an unsuitable model. Secondly, this approach is designed
to generate a population-building prediction model, so that any population-
based optimization algorithms may benefit from this integration without any
extensive modification.

3 Transfer Learning based Dynamic Multi-

objective Optimization Algorithm

In this section, we propose a transfer learning based dynamic optimization
algorithm. Our motivation is that the solutions of a dynamic optimiza-
tion problem under different environments obey different probability distri-
butions, and these distributions are not identical but are correlated. If we
can map these different distributions into a latent space, and in this space
the distributions are as “similar” as possible, then we can use the available
solutions to generate an initial population, such that the solutions under a
new environment can be computed with low computational cost. In principle,
this design is a reuse process of the knowledge we already obtained.

Before giving the details of the proposed approach, we need to introduce
background information of the domain adaptation learning we will use it in
our design.

3.1 Transfer Component Analysis

Briefly speaking, Domain Adaptation Learning (DAL) [3, 39, 27], a branch
of transfer learning, is to reuse the knowledge acquired from a source domain
to perform a task in a target domain, which is related to, but distinct from
the source domain. In the context of this research, a domain includes a
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sample space X and the corresponding marginal distribution P (X), where
X = {x1, x2, . . . , xn} ⊆ X . We say that two domains are different, which
means they have different sample spaces and the marginal distributions are
different.

The researchers [4] believe that it is a promising solution using the DAL to
find a good representation to decrease the difference between the distributions
of source and target domains. Gretton et al. [23] noted that the distance
between two different distributions can be evaluated by a particular function,
and in the Reproducing Kernel Hilbert Space (RKHS), the computational
cost of the evaluation can be reduced. Based on this observation, Gretton
et al. [23, 46] proposed a nonparametric distance estimation method called
Maximum Mean Discrepancy (MMD) to differentiate distributions in the
RKHS [48]. The MMD measures the discrepancy between two distributions
by computing the difference of the mean values for the source domain and
target domain. The advantages of the MMD approach is its simplicity and
accuracy.

Definition 4. (Maximum Mean Discrepancy [23]) : Let p and q be two Borel
probability measures defined on a domain X ; and X = {x1, · · · , xm} and
Y = {y1, · · · , yn} be two observations drawn from p and q respectively. Let
F be a class of functions f : X → R, then the maximum mean discrepancy
(MMD) can be defined as :

MMD(F , p, q) := sup
f∈F

(
1

m

m∑
i=1

f(xi)−
1

n

n∑
i=1

f(yi)

)
.

In a Reproducing Kernel Hilbert Space, f can be written as f(x) =
〈φ(x), f〉, where φ(x) : X → H. So the empirical estimate of MMD can be
rewritten as:

MMD(F , p, q) :=

∥∥∥∥∥ 1

m

m∑
i=1

φ(xi)−
1

n

n∑
i=1

φ(yi)

∥∥∥∥∥
2

H

. (2)

By using the so-called “kernel trick”[43], we can rewrite Equation (2) as

MMD(F , p, q) :=
m∑
i=1

n∑
j=1

tr[K̂(
1

m×m
Lii −

1

m× n
Lij (3)
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− 1

n×m
Lji +

1

n× n
Ljj)]

:= tr(K̂L),

where tr(A) refers to the trace of the matrix A, and the matrix

K̂ =

(
K̂X,X K̂X,Y

K̂Y,X K̂Y,Y

)
∈ R(m+n)×(m+n). (4)

K̂X,Y is a kernel matrix with ki,j = κ(xi, yj) = φ(xi)
Tφ(yj), where κ(·, ·)

is a kernel function and φ(·) is a feature mapping function. This matrix
reflects data similarity in the domains X and Y . K̂X,X , K̂Y,X and K̂Y,Y have
the similar meanings. Matrix L contains the coefficients to scale matrix
according to Equation (2) and its elements are as follows.

L(i, j) =


1

m×m , xi, xj ∈ X
1

n×n , xi, xj ∈ Y
− 1
m×n , otherwise

. (5)

On the basis of the MMD, Pan et al. proposed a dimension reduction
method [37] called Maximum Mean Discrepancy Embedding (MMDE) to
(1) find a low-dimensional space to reduce the difference between source and
targets distributions as well as (2) to preserve the main statistical properties,
maximization of data variance in the first extracted orthogonal components
of the original data X and Y . In MMDE, the kernel function κ is learned
(or optimized) from the data, which makes it computationally expensive,
so the authors in [37] proposed other dimension reduction-based methods
called Transfer Component Analysis (TCA) and its Semi-Supervised version
of TCA, SSTCA, to transform the problem of learning an entire kernel matrix
to a low-rank matrix W instead.

Now let us consider how to obtain the martix W by using the TCA
method. Suppose that W is a (m + n) × d matrix. For any vector x, let
φ(x) = W Tκx ∈ Rd, where φ(·) is a feature mapping function. Let κx =
[κ(x1, x), . . . , κ(xm, x), κ(y1, x), . . . , κ(yn, x)]T , and the matrix K̂ in Equation
(4) can be transformed as follows.

K̂ = [φ(x1), . . . , φ(xm), φ(y1), . . . , φ(yn)]T×
[φ(x1), . . . , φ(xm), φ(y1), . . . , φ(yn)]

12



= [W Tκx1 , . . . ,W
Tκxm ,W

Tκy1 , . . . ,W
Tκyn ]T×

[W Tκx1 , . . . ,W
Tκxm ,W

Tκy1 , . . . ,W
Tκyn ]

= [κx1 , . . . , κxm , κy1 , . . . , κyn ]TWW T

[κx1 , . . . , κxm , κy1 , . . . , κyn ]

= KTWW TK

= KWW TK. (6)

Please note that the matrix K is a symmetric matrix, so KT = K, and
then tr(K̂L) = tr(KWW TKL). According to the property of the trace of a
matrix, we can rewrite Equation (3) as follows.

MMD(F , p, q) =tr(K̂L)

=tr(KWW TKL)

=tr(W TKLKW ). (7)

Now the optimization problem for the TCA algorithm can be written as
follows:

arg min
W

µ · tr(W TW ) + tr(W TKLKW )

subject to W TKHKW = I,
(8)

where H = I− 1
m+n

11T and I is a (m+n)×(m+n) identity matrix. W TW is
a regularization term. 1 is a (m+ n)× 1 all-ones matrix. m and n represent
the numbers of samples in the source and target domains, respectively. µ
is the tradeoff parameter. This optimization problem can be transformed
into a trace maximization problem. According to the method presented
in [42], the trace maximization problem can be solved by the Generalized
Eigenvalue Decomposition (GED), and the solution is composed of the d
leading eigenvectors. The pseudo-code of TCA is given in Algorithm 1.

3.2 Tr-DMOEA

Dynamic multiobjective optimization problem is a computationally expen-
sive task. This implies that it requires a lot of computational resources to
search for the varying POS at a certain time. If the knowledge about the
POS and POF can be reused to predict future POFs or POSs under differ-
ent environments, this usually implies performance improvement as well as
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Algorithm 1: TCA

Input: Source domain X; target domain Y ; a kernel function κ(·, ·);
Output: Matrix W

1 Construct the Kernel Matrix K̂, the Matrix L, and the Matrix H
according to (4), (5) and (8) ;

2 Construct the Matrix W by using the d leading eigenvectors of
(KLK + µI)−1KHK ;

3 return the matrix W ;

less computational resource consumption. As a result, we believe that the
prediction-based dynamic multiobjective optimization algorithm presents a
promising solution.

However, the existing algorithms generally neglect the assumption of Non-
Independent Identically Distributed (Non-IID), and it is obvious that the
individuals under different environments obey different distributions. This
also means that those dynamic optimization algorithms based on the tradi-
tional machine learning approach leave much room for improvement. So we
put forward the use of the domain adaptation technique to develop a novel
DMOEA.

The approach developed is to map different distributions that the solu-
tions obey at different times into a new latent space via the domain adapta-
tion method. In the latent space, the MMD value of different distributions
will be as small as possible while variance of the data will be kept the same.
In other words, we will make those distributions that the solutions under dif-
ferent environments obey as similar as possible in the latent space, so we can
map the POF we have obtained into the space, and then use those mapped
solutions to construct a population which will be used to search for the POF
under a new environment.

In the following Tr-DMOEA algorithm, Ft is the current dynamic op-
timization function assuming its POF has already been found. Ft+1 is the
optimization function at the next time. The major part of the algorithm, Tr-
IPG, utilizes the POF at time t and the transfer learning method to generate
a population which can be used to search for the POF at time t + 1. More
specifically, we take the obtained Pareto-optimal Front (POF) at time t as a
source domain; the feasible solutions of the next time, time t+ 1, as the tar-
get domain, and then construct a mapping function ϕ by using the domain
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adaptation approach. This mapping function will embed the distributions
that the source and target domain obey separately into a latent space, and
in that space the difference between the two distributions will become as
small as possible. From this, we can use the POF already found to generate
an initial population which can be used to search for the POF of the next
moment.

Algorithm 2: Tr-IPG: Transfer Learning based Initial Population Gen-
erator

Input: The Dynamic Optimization Function Ft+1(·); the POF of the
function Ft(·) at time t, POFt = {p1, . . . pm}; a kernel function
κ(·, ·).

Output: A population Pop-init.

1 Initialization;
2 For the optimization functions Ft(·) and Ft+1(·), randomly generate

two sets of the solutions Xs and Yt ; /* Remark 1 */

3 Calculate the objective values of the optimization functions Ft(Xs)
and Ft+1(Yt);

4 W ← TCA({Ft(Xs)}, {Ft+1(Yt)}, κ);
5 PLS ← ∅; /* Remark 2 */

6 for every p ∈ POFt do

7 κp ← [κ (Ft(Xs(1)), p) , . . . , κ (Ft+1(Yt(nt)), p)]
T

8 ϕ(p)← W Tκp;
9 PLS = PLS ∪ {ϕ(p)};

10 end
11 for every l ∈ PLS do
12 x← argmin

x
‖ϕ (Ft+1 (x))− l‖/* Remark3 */

13 Pop-init = Pop-init ∪{x} ;

14 end
15 return Pop-init ;

In order to help the readers quickly grasp the basic idea of the algorithm
Tr-IPG, Figure 1 has been presented to illustrate the key elements of the
algorithm. This diagram describes the operational process from Line 6 to
Line 15 of the Tr-IPG.

Please note that the input to the TCA are the samples from the solutions
at time t and t + 1, and its output is a transformation matrix W . We can

15



 

Figure 1: The key steps of the Tr-IPG algorithm. Step 1: Map the obtained
POF into the latent space; Step 2: Find individuals for Ft+1(·); Step 3:
Generate initial population pool for the problem Ft+1(·).

use the matrix W to construct the latent space. The Step 1 (i.e., the upper
left corner of the diagram) depicts the process of mapping the POF at time
t into the latent space, and the Steps 2 and 3 describe how to search for an
initial population which can be used to solve the dynamic optimization at
time t+ 1.

Remark 1. The numbers of the elements of Xs and Yt are predefined. Let
|Xs| = ns and |Yt| = nt. In general, more sampling often means a better
result, but it also needs to pay a higher computational cost, so the decision
about how many solutions needed to be produced in this step depends on the
resources available.

Remark 2. PLS is the acronym of Particle in the Latent Space and it can
be regared as a set of the mapped solutions in the latent space.

Remark 3. We want to find a decision variable x, such that in the latent
space, ϕ(Ft+1(x)) is closet to l ∈ PLS in the latent space. This also means
that we need to solve a single objective optimization problem here, and any
single objective optimization algorithm can be applied to solve the problem.
In this research, we use the Interior Point Algorithm to solve the problem.

What the Tr-IPG algorithm outputs is a population, so it is not diffi-
cult to find that we can combine any type of population-based optimization
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algorithms with the Tr-IPG to obtain a transfer learning based dynamic
multiobjective EA.

Remark 4. For the TCA algorithm, the major time is spent on eigenvalue
decomposition. It takes O(d(m1 + m2)

2) time when d nonzero eigenvectors
are to be extracted, where m1 and m2 are the numbers of the solutions which
are generated to construct the latent space. The Tr-IPG spends O(n1) time
to map an individuals in the POFt to the latent space and we use the Interior
Point Algorithm to find an indidvidual in the objective space of Ft+1(·). For
the primal dual interior point method, suppose the constraint matrix A has
n rows and m columns, and n < m, it has O(

√
mL) iterations and O(m3L)

arithmetic operations, where L is total number of bits of the input.

Example 1. A specific numerical example is helpful in understanding how
the Tr-IPG algorithm works. For example, we employ the Tr-IPG algorithm
to solve the FDA4 problem, which is a three-objective dynamic optimization
problem. Let us suppose that the POF of the FDA4 problem [24] at time t,
POFt, has been found and p ∈ POFt. The Tr-IPG uses the TCA algorithm
to obtain a mapping function ϕ(·), and this mapping function is utilized to
map the p into a twenty-dimensional latent space2, and it means that l = ϕ(p)
is a twenty-dimensional vector. After that the Tr-IPG algorithm will find a
solution x for the FDA4 problem at time t + 1, and this solution x satisfies
the requirement that it is nearest to l in the latent space. The Tr-IPG will
output the solution x as one of the individuals of the initial population which
can be used to solve the FDA4 problem at time t+ 1.

4 Empirical Study

Practically speaking, the proposed approach is compatible with any type of
population-based optimization algorithms. As a case study, in our experi-
ments, we select three well-represented algorithms with different operating
metaphors to verify our approach. The first one is the NSGA-II [17] and
it is a multiobjective genetic algorithm that applies nondominated sorting
and crowding distance. The second multiobjective optimization algorithm
is based on particle swarm optimization and it is simply called as MOPSO

2The dimensionality of the latent space depends on the parameters of the TCA algo-
rithm.
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Algorithm 3: Tr-DMOEA: Transfer Learning based Dynamic Multi-
objective Evolutionary Algorithm

Input: The Dynamic Optimization Function F (X); a population based
multiobjective algorithm MOA; a kernel function κ(·, ·).

Output: the POFs of F (X).

1 Initialization ;
2 Use MOA to solve F0(X) to get a POF0 ;
3 for t = 1 to n do
4 Next-Pop = Tr-IPG(Ft(·), POF(t−1), κ(·, ·)) ; /* When a change

occurred, we use Tr-IPG to generate an init

population. */

5 POFt = MOA(Next-Pop) ;
6 return POFt ;

7 end

[11]. The third one is the RM-MEDA [58], which is a regularity model based
multiobjective estimation of distribution algorithm.

The three corresponding algorithms with the proposed transfer learning
are called Tr-NSGA-II, Tr-MOPSO, and Tr-RM-MEDA, respectively for dy-
namic optimization. It should be noted that the original designs, NSGA-II,
MOPSO, and RM-MEDA are not appropriate for dynamic optimization. It
is not difficult to find that these three algorithms belong to different cate-
gories, but all of them are well-developed, so it can strengthen the persuasive
power and the confidence level to incorporate the proposed technology. At
the same time, we also compare the new algorithms with other state-of-art
designs.

One thing we need to emphasize is that in all our experiments, the pa-
rameters are set the same. In other words, for these twelve test functions
and three different algorithms, we have used the same parameters and do
not tune the parameters in TCA under different configurations for a better
performance.
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4.1 Performance Metrics, Testing Functions and Set-
tings

In this research, we use four performance metrics, the Inverted Generational
Distance (IGD) and its variants, the Reactivity measure (React) and its
variants, to evaluate the quality of the solutions obtained by these competing
algorithms.

1. The inverted generational distance (IGD) [44] is a metric to quantify
the performance of a multiobjective optimization algorithm. Let P ∗ be
the set of uniformly distributed Pareto optimal solutions in the POF
and P represent the POF obtained by the algorithm, the definition of
the IGD is

IGD(P ∗, P, C) =

∑
v∗∈P ∗ minv∈P ‖v∗ − v‖

|P ∗|
. (9)

If we want the value of IGD to be as small as possible, the P should
be close enough to P ∗. In other words, the IGD depicts the differ-
ence between the ideal POF and the POF obtained by the competing
algorithms.

Please note that the definition of the IGD is slightly different from the
original one, and the major difference is the parameter C in Equation
(9). The parameter C is a combination of the benchmark functions
parameters. We call it as configuration of the benchmark functions.
The configurations we used in our experiments are described in Table
2.

2. One variant of the IGD, called MIGD, can also be used to evaluate
dynamic multiobjective optimization algorithms [34, 33] , and it takes
the average of the IGD values in some time steps over a run as the
performance metric, given by

MIGD(P ∗, P, C) =
1

|T |
∑
t∈T

IGD(P ∗t , Pt, C), (10)

where P ∗t and P t represent the points set of the ideal POF and the
approximate POF obtained by the algorithm at time t. We also want
to evaluate those algorithms under different environments, so a novel
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metric, DMIGD, is defined based on the MIGD, and the definition of
the DMIGD is as follows:

DMIGD(P ∗, P, C) =
1

|E|
∑
C∈E

MIGD(P ∗t , Pt, C), (11)

where |E| is the number of the different environments experienced. In
our experiments, we choose eight different configurations. As a result,
|E| equals to eight. What we want to point out is that the DMIGD
can evaluate a dynamic optimization algorithm from a high-level view
and it bears a significant difference with the MIGD since the MIGD
just considers the dynamics in one environment.

3. The reactivity measure (React) [47] is used to measure the robustness
of an algorithm, and its definition is as follows:

Reactε(t, C) = min

{
t′ − t|t < t′ ∈ N,

acc(t′)

acc(t)
≥ 1− ε

}
,

where acc(t) = HV (POF (t))
maxHV (POF )

implies the accuracy rate of computing

the POF at time t, and HV refers to the value of Hypervolume [35].
The React describes how quickly a dynamic optimization algorithm can
recover from a change, or convergence speed after changes. The value
of the React is the smaller the better. We also want to evaluate the
algorithms on a macro-scale, so we derive two additional metrics based
on the React,

MReactε(T,C) =
1

|T |
∑
t∈T

Reactε(t, C),

DMReactε(T,C) =
1

|E|
∑
C∈E

MReactε(T,C). (12)

The MReact value can be considered as an average of the React values
at different time points, but under the same configuration; DMReact is an
average of the MReact values over different configurations considered.

In the experiments, we apply the IEEE CEC 2015 Benchmark problems
set in Table 1 as test functions and the problem set has twelve testing func-
tions [24]. In the definitions, the decision variables are x = (x1, . . . , xn) and
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t = 1
nt

⌊
τT
τt

⌋
, where nt, τT , and τt are the severity of change, maximum num-

ber of iterations, and frequency of change, respectively. Table 2 describes
the different combinations of nt, τt, and τT . Please note that for each nt-τT
combination, there will be τT

τt
environment changes. In other words, in all of

our experiments, there are altogether twenty changes for the twelve dynamic
problems.

 

Figure 2: The true POFs of the twelve testing functions. The red, green
and blue lines depict the true POFs at the time steps zero, one and two,
respectively.

The POFs of the testing functions have different shapes and each function
belongs to a certain DMOPs type. Fig. 2 describes the true POFs of the
twelve testing functions and we let the functions change three times. Type
I implies POS changes, but POF does not change; Type II means that the
POS and the POF change as well; Type III refers to the condition where
the POF changes, but the POS does not change. From Table 1, we can
find that the POF of the functions could be non-convex, convex, isolated,
deceptive, continuous or discontinuous. FDA4 and FDA5 are 3-objective
functions while all of the remaining are 2-objective functions.

The dimensions of the decision variables are from 10 to 30-dimension.
Please note that the A, B and C values for the functions FDA5iso, FDAdec,
DMOP2iso and DMOP2dec are set to G(t), 0.001 and 0.05 respectively.

In all of the experiments, we set the population size to 200 and in each
generation every algorithm will generate no more than 200 solutions. As
mentioned above, we force each benchmark function to change 20 times, and
in every change, we let the population carry out 50 iterations.
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For the TCA parameters, we set the Gaussian kernel function to the
default value and the expected dimensionality was set to be 20. The value
of µ was set to 0.5.

Table 1: The Benchmark Func-
tions

Name Dim. # of Obj. Type

FDA4 12 3 TYPE I

FDA5 12 3 TYPE II

FDA5iso 12 3 TYPE II

FDA5dec 12 3 TYPE II

DIMP2 10 2 TYPE I

DMOP2 10 2 TYPE II

DMOP2iso 10 2 TYPE II

DMOP2dec 10 2 TYPE II

DMOP3 10 2 TYPE I

HE2 30 2 TYPE III

HE7 10 2 TYPE III

HE9 10 2 TYPE III

Table 2: Configurations of the Benchmark
Functions Parameters

nt Tt TT

C1 10 5 100

C2 10 10 200

C3 10 25 500

C4 10 50 1000

C5 1 10 200

C6 1 50 1000

C7 20 10 200

C8 20 50 1000

4.2 Experimental Results

4.2.1 IGD Metric

For each benchmark function, we perform tests under eight different config-
urations which are listed in Table 2. Each function will change 20 times, and
after each change the algorithms would return a POS, and then we calculated
the IGD, MIGD, and DMIGD values, respectively.

The detailed results of these experiments are described in twelve tables,
and Supplemental Material contains those tables. These tables recorded the
MIGD values of the algorithms running on different testing functions under
different environments. In these tables, the “ROC” refers to the ratio of
change of the MIGD values and we used bold face to identify those experi-
ments where performance has been improved.

For the convenience of the readers and at the same time owing to space
constraints, we summarize these experimental results in three tables, Table
3, Table 4 And Table 5. These three tables illustrate the rate of change of the
three new algorithms compared to their original designs. For example, the
value of the first row (under C1 configuration) and the first column (under
FDA4) of Table 3 is 61.32, and this shows that the Tr-NSGA-II algorithm
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Table 3: The Ratio of Change of MIGD Value between Tr-NSGA-II and
NSGA-II

ROC(%) C1 C2 C3 C4 C5 C6 C7 C8

FDA4 61.32 62.15 59.42 59.60 78.57 79.75 56.17 61.02

FDA5 41.13 37.80 -14.36 14.45 37.12 39.04 20.39 33.09

FDA5iso -48.91 -17.37 -31.83 -31.98 -20.14 -28.66 -2.44 -6.15

FDA5dec 19.83 17.09 26.06 40.23 22.52 3.07 51.88 41.34

DIMP2 30.70 42.41 39.57 34.61 47.30 38.69 37.57 44.54

DMOP2 74.97 66.52 78.43 67.01 -676.29 88.96 61.22 72.65

DMOP2iso -4.84 -4.46 -6.81 -3.18 -7.54 -13.79 -2.98 -2.48

DMOP2dec 44.91 51.25 44.39 40.13 23.26 42.45 45.66 25.58

DMOP3 72.70 73.61 83.50 57.65 -514.50 4.32 74.18 76.29

HE2 2.73 -17.45 1.67 5.86 67.45 77.01 28.07 -19.57

HE7 57.10 58.57 59.45 61.57 53.47 58.34 57.77 61.98

HE9 14.79 13.02 16.64 12.99 14.98 14.61 16.14 15.49

improves the NSGA-II algorithm by 61.32% when dealing with the FDA4
problem under the Configuration C1.

Please note that our experimental results are obtained without explicitly
tuning the parameters one by one, and if we adjust the parameters sepa-
rately for different algorithms, we have reason to believe that we can get
better experimental results. The reason that we did not tune the parame-
ters specifically for getting better results is that the twelve test functions are
not exactly the same, so we can set different parameters to obtain the best
performance for each test function. For example, we can construct differ-
ent latent spaces for the twelve benchmark functions individually via setting
different parameters of the TCA method. However, we think that this one-
by-one-adjustment strategy does not effectively explain the advantages of
our approach since almost all algorithms can obtain a better performance
via such parameter-tuning, and this makes no contribution to explain the
superiority of the proposed algorithm.

We tabulate all the experimental results and obtain the following observa-
tions. For the NSGA-II, the overall effective rate of the Tr-NSGA-II was 78%
(i.e., 75 cases with improving performance out of 96 total tests), of which 33
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Table 4: The Ratio of Change of MIGD Value between Tr-MOPSO and
MOPSO

ROC(%) C1 C2 C3 C4 C5 C6 C7 C8

FDA4 18.01 16.44 15.85 17.34 14.15 13.09 18.98 18.88

FDA5 43.09 56.21 25.44 21.56 60.00 57.88 29.65 23.78

FDA5iso -11.03 -7.58 -2.12 -1.49 -12.51 -5.11 -6.98 -8.00

FDA5dec 17.54 30.66 50.61 23.97 10.64 11.78 28.18 20.68

DIMP2 86.54 88.36 93.05 94.73 73.76 87.17 83.68 89.37

DMOP2 92.85 96.77 96.51 94.93 -478.53 78.24 26.14 84.36

DMOP2iso -0.26 2.55 1.64 2.82 -0.01 -0.04 -0.58 3.31

DMOP2dec 89.96 93.98 93.92 96.53 92.54 92.10 97.14 96.66

DMOP3 -296.04 54.28 19.34 28.14 -1371.99 94.39 51.00 26.72

HE2 14.04 34.03 11.11 34.34 38.46 36.01 -1.96 14.06

HE7 2.88 -3.40 -1.78 -0.49 13.96 8.11 -14.43 -9.12

HE9 -11.81 -11.45 -12.29 -14.04 -37.00 -33.30 -16.15 -13.57

testing cases increased by more than 50%, 38 increased by 5% -50% and 4
cases improved by 0 - 5%; for the MOPSO, the total effective rate was 70%
(i.e., 67 cases with improving performance out of 96 total tests), including
29 testing cases improved by more than 50%, 33 performance improved by
5% - 50%, and five improved by 0 - 5%; For the RM-MEDA, the total effec-
tive rate was 73% (i.e., 70 cases with improving performance out of 96 total
tests), including 23 of the test cases increasing by more than 50%, 39 lifting
5% to 50%, and 8 improved by 0 - 5%.

These experimental results demonstrate that the transfer learning tech-
nique can improve the performance of the existing multiobjective EAs ap-
preciably without significant modifications for solving the DMOPs. On the
other hand, we would like to point out that most of the testing cases of perfor-
mance degradation came from two functions - FDA5iso and DMOP2iso. The
common characteristic of these two functions is the isolated POFs, so we
suspect that the reason why the performance is poor for the two benchmark
functions is inappropriate parameters settings.

We also compare the DMIGD value with some chosen state-of-the-art de-
signs, including Multidimensional Bayesian Network based Estimation Distri-
bution Algorithm (MBN-EDA) [30], Random immigrants strategy based mul-
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Table 5: The Ratio of Change MIGD Value between Tr-RM-MEDA and
RM-MEDA

ROC(%) C1 C2 C3 C4 C5 C6 C7 C8

FDA4 21.47 22.74 22.42 22.91 25.75 27.71 22.32 23.08

FDA5 54.07 59.96 61.66 57.40 76.55 69.49 56.24 54.71

FDA5iso -0.29 -0.09 0.08 -0.30 1.81 -0.06 -0.63 -0.08

FDA5dec 39.69 33.15 37.16 35.83 65.97 65.59 41.72 45.66

DIMP2 5.91 -8.53 -2.03 -3.49 -1.08 1.01 -2.33 -4.57

DMOP2 -827.79 -52.71 37.53 33.36 -3.34 -1.67 21.07 -13.04

DMOP2iso -0.01 -0.09 -0.05 -0.06 0.01 -0.01 0.07 -0.09

DMOP2dec 53.72 64.32 51.05 60.02 1.39 3.85 57.93 49.28

DMOP3 24.65 22.08 -25.15 0.49 -0.45 -0.79 10.75 27.48

HE2 86.81 87.01 86.74 88.01 89.99 89.59 88.42 87.91

HE7 13.31 21.82 21.40 20.29 19.23 14.87 21.32 22.57

HE9 7.48 7.61 6.95 6.91 8.35 7.53 6.74 5.43

tiobjective Differential evolutionary algorithm with Decomposition (RND)
and the Kalman Filter prediction based DMOEA (MOEA/D-KF) [34, 33],
and the results are depicted in Table 6. The experimental results show that
the transfer learning based algorithms have much better performance over
different problem characteristics in these benchmark functions. Even com-
pared with chosen state-of-the-art algorithms, these transfer learning based
algorithms can be much more efficient.

4.2.2 React Metric

Table 7 depicts the DMReact values of all competing algorithms. We found
that the Tr-NSGA-II and Tr-MOPSO have shown improvements, which sug-
gest that, at least at this parameters setting, the proposed approach can
improve the adaptability of the NSGA-II and the MOPSO under dynamic
environments. However the robustness of the RM-MEDA seems to be re-
duced, and one reason we envision is that the TCA method have coincidently
reduced the diversity of the solutions. So how to improve the diversity and
the robustness at the same time is an interesting topic for the future re-
search. The optimal choice of the parameter setting will be a topic in our
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future research.

Table 6: DMIGD Values of Different Algorithms

DMIGD NSGA-II Tr-NSGA-II MOPSO Tr-MOPSO RM-MEDA Tr-RM-MEDA MBN-EDA RND MOEA/D-KF

FDA4 0.2634 0.0858 0.0732 0.0609 0.0680 0.0520 0.43 0.1698 0.1913

FDA5 0.3301 0.2306 0.2131 0.1196 0.2089 0.0776 0.51 0.5323 0.4963

FDA5iso 0.1048 0.1292 0.1106 0.1181 0.0650 0.0649 0.64 0.1433 0.1465

FDA5dec 0.5923 0.4559 0.2746 0.2139 0.5779 0.3275 1.27 0.5403 0.5476

DIMP2 3.8986 2.3502 2.3684 0.2937 4.8892 4.9769 6.97 17.9537 22.9536

DMOP2 0.4202 0.3439 0.2129 0.2538 4.5942 4.7130 1.4 1.4329 3.0619

DMOP2iso 0.0325 0.0358 0.0319 0.0318 0.0290 0.0290 2.56 0.0315 0.0316

DMOP2dec 0.6303 0.3930 0.4192 0.0254 0.1449 0.0940 2.89 9.0504 9.2188

DMOP3 0.8851 1.0133 0.2851 0.2650 4.5897 4.6177 1.38 0.0697 0.0836

HE2 0.2096 0.1501 0.0847 0.0640 0.8451 0.1017 0.83 0.0744 0.0745

HE7 0.0946 0.0390 0.0582 0.0583 0.0428 0.0342 0.21 0.1787 0.2365

HE9 0.2954 0.2508 0.2459 0.2887 0.2565 0.2383 0.36 0.3432 0.4108

5 Conclusion and Future Works

In this paper, we propose an approach of exploiting a transfer learning tech-
nique to enhance the performance of dynamic multiobjective evolutionary
algorithms. Our idea is that the solutions of a given DMOP at different
times have different distributions, though there are some relationships be-
tween these probability distributions, they are not identical. This is a typi-
cal non-independent identically distributed (Non-IID) problem, and classical
machine learning methods are difficult to solve it.

For this reason, it is not surprise to understand why the traditional dy-
namic optimization algorithms designed based on classical machine learning
find it hard to achieve satisfactory performance. To overcome these problems,
we employ the techniques from the transfer learning to develop an algorithmic
framework, which creates benefits for a variety of population-based dynamic
multiobjective evolutionary algorithms.

In our approach, we consider different probability distributions that the
solutions obey at various times as the source and target domains, respec-
tively. We can exploit the gained POF from the source domain to improve
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Table 7: DMReact Value of the Algorithms

DMREACT NSGA-II Tr-NSGA-II MOPSO Tr-MOPSO RM-MEDA Tr-RM-MEDA

FDA4 1.9803 1.7664 1.4934 1.2895 1.5033 1.7072

FDA5 1.7204 1.5625 1.4375 1.3092 2.9638 1.6086

FDA5iso 1.7105 1.4539 1.6283 1.7039 1.0329 1.0066

FDA5dec 1.7928 1.8224 1.5132 1.9375 2.5000 2.5263

DIMP2 2.2697 2.2763 1.4013 1.1151 1.9243 2.0197

DMOP2 2.1645 1.9671 1.5592 1.8487 1.5789 1.7467

DMOP2iso 1.4375 1.4836 1.4704 1.3586 1.3355 1.4605

DMOP2dec 2.2961 2.0164 1.5461 2.1809 1.9309 2.1316

DMOP3 1.7039 1.3816 1.5329 1.3026 1.0987 1.1349

HE2 2.0428 1.9474 1.0987 1.2862 2.1086 1.4572

HE7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

HE9 1.0000 1.0000 1.0000 1.3125 1.0000 1.0000

computational efficiency in searching for the POF at the next time instance.
To achieve this goal, the transfer learning technique is applied to find a latent
space where the global feature, MMD value, of the source and target domains
is as small as possible. Meanwhile the major statistical characteristics of the
data, i.e., the variance will remain unchanged. In this way, we can use the
obtained POS to construct an initial population which can be employed by
any population-based optimization algorithms to find the POS of the next
time instance.

We applied the proposed idea to improve three well-known multidob-
jective optimization algorithms: NSGA-II, MOPSO, and RM-MEDA. The
enhanced algorithms are compared with the original designs and some cho-
sen competing algorithms on a well-adopted benchmark set which involves
twelve testing functions. Almost all the experimental results validate that
introducing the transfer leaning technique into the dynamic optimization al-
gorithm can greatly improve the quality of the solutions and robustness of
the algorithms. This line of research proposed herein can be regarded as a
new avenue for designing effective and efficient evolutionary algorithms for
DMOPs. A rich body of machine learning techniques can inspire further in-
novations in solving real-world application [9, 29, 8, 28] with various degrees
of complexities and uncertainties.
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6 supplemental Materials

This part includes twelve tables. These tables recorded the MIGD values
of the six algorithms, NSGA-II, Tr-NSGA-II, MOPSO, Tr-MOPSO, RM-
MEDA and Tr- RM-MEDA, running on the twelve testing functions under
eight environments, from C1 to C8. In these tables, the “ROC” refers to the
ratio of change and we used bold face to identify those experiments where
performance has been improved.

Table 8: FDA4

NSGA-II Tr-NSGA-II ROC (%) MOPSO Tr-MOPSO ROC (%) RM-MEDA Tr-RM-MEDA ROC (%)

C1 MIGD 0.2276 0.0881 61.3188 0.0764 0.0627 18.0104 0.0678 0.0533 21.4710VAR 1.8246E-05 9.2507E-07 7.7743E-05 1.3804E-08 5.2059E-07 3.2465E-07

C2 MIGD 0.2244 0.0849 62.1480 0.0760 0.0635 16.4435 0.0678 0.0524 22.7386VAR 4.8821E-05 2.8997E-07 7.7034E-05 3.6274E-08 3.3605E-07 4.7269E-07

C3 MIGD 0.2123 0.0861 59.4203 0.0756 0.0636 15.8521 0.0673 0.0522 22.4152VAR 6.7454E-05 6.7844E-07 6.4871E-05 2.1779E-09 1.7372E-07 1.7532E-07

C4 MIGD 0.2121 0.0857 59.6021 0.0766 0.0633 17.3353 0.0684 0.0527 22.9059VAR 1.3541E-05 1.2315E-06 6.4677E-05 1.3470E-07 1.6080E-07 1.5401E-07

C5 MIGD 0.3982 0.0853 78.5738 0.0624 0.0536 14.1528 0.0673 0.0500 25.7460VAR 4.6983E-04 1.9502E-07 4.8391E-05 7.7322E-07 4.6476E-07 5.0149E-11

C6 MIGD 0.4151 0.0840 79.7524 0.0616 0.0535 13.0936 0.0693 0.0501 27.7051VAR 5.8715E-05 3.7560E-07 5.8574E-05 1.5520E-09 2.2626E-08 6.8992E-08

C7 MIGD 0.2003 0.0878 56.1683 0.0789 0.0639 18.9788 0.0674 0.0523 22.3155VAR 2.9321E-10 7.0748E-06 1.3014E-04 4.5717E-10 4.1111E-07 8.7830E-08

C8 MIGD 0.2174 0.0847 61.0192 0.0779 0.0632 18.8763 0.0687 0.0529 23.0764VAR 1.6242E-04 5.8681E-07 9.0152E-05 3.5372E-08 9.4215E-09 3.9562E-09

Table 9: FDA5

NSGA-II Tr-NSGA-II ROC (%) MOPSO Tr-MOPSO ROC (%) RM-MEDA Tr-RM-MEDA ROC (%)

C1
MIGD 0.2400 0.1413

41.1326
0.2077 0.1182

43.0924
0.1741 0.0800

54.0663VAR 1.5776E-03 5.1236E-06 4.5041E-03 5.1385E-09 3.1584E-04 1.3341E-06

C2
MIGD 0.2309 0.1437

37.7968
0.2721 0.1191

56.2091
0.1973 0.0790

59.9575VAR 4.9722E-05 2.2216E-04 3.4133E-02 3.8575E-06 1.7169E-03 2.6424E-07

C3
MIGD 0.2283 0.2611

-14.3646
0.1660 0.1238

25.4400
0.2091 0.0802

61.6615VAR 1.9969E-07 2.0216E-04 1.3965E-04 2.5556E-06 1.5582E-03 2.8186E-07

C4
MIGD 0.2254 0.1929

14.4507
0.1545 0.1212

21.5557
0.1863 0.0793

57.4027VAR 3.4071E-04 1.9428E-05 9.5470E-04 2.9989E-08 9.5869E-06 7.8247E-08

C5
MIGD 0.6507 0.4092

37.1174
0.2825 0.1130

60.0003
0.2978 0.0698

76.5526VAR 1.4819E-04 1.2949E-03 1.6887E-04 1.7385E-05 4.1144E-03 4.0474E-07

C6
MIGD 0.6709 0.4090

39.0381
0.3015 0.1270

57.8789
0.2682 0.0818

69.4866VAR 2.0832E-03 7.0414E-04 2.8644E-03 1.0997E-03 2.0990E-03 1.6960E-04

C7
MIGD 0.1884 0.1499

20.3940
0.1654 0.1164

29.6483
0.1726 0.0755

56.2418VAR 2.4646E-05 3.2471E-08 1.0135E-04 6.6345E-05 4.3048E-05 6.5608E-10

C8
MIGD 0.2057 0.1377

33.0929
0.1547 0.1179

23.7802
0.1661 0.0752

54.7071VAR 1.9567E-05 5.2939E-04 1.8381E-05 2.1885E-05 2.7332E-04 4.7222E-08
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Table 10: FDA5iso

NSGA-II Tr-NSGA-II ROC (%) MOPSO Tr-MOPSO ROC (%) RM-MEDA Tr-RM-MEDA ROC (%)

C1
MIGD 0.0990 0.1474

-48.9093
0.1143 0.1270

-11.0275
0.0666 0.0668

-0.2884VAR 7.4915E-06 2.1071E-03 4.7170E-09 1.2904E-04 3.7265E-09 2.6494E-08

C2
MIGD 0.1062 0.1246

-17.3705
0.1137 0.1223

-7.5808
0.0662 0.0663

-0.0852VAR 1.7928E-04 1.5697E-03 1.9681E-05 3.2967E-05 5.3824E-09 3.0749E-08

C3
MIGD 0.0999 0.1318

-31.8317
0.1169 0.1194

-2.1164
0.0669 0.0669

0.0839VAR 5.3260E-06 4.5014E-04 2.2940E-08 4.5508E-06 1.7117E-07 2.6062E-09

C4
MIGD 0.0959 0.1266

-31.9813
0.1156 0.1174

-1.4932
0.0659 0.0661

-0.2978VAR 3.9586E-06 9.6354E-05 2.3902E-05 1.6925E-04 4.5401E-09 1.5496E-08

C5
MIGD 0.1245 0.1496

-20.1368
0.1026 0.1155

-12.5111
0.0624 0.0613

1.8057VAR 1.0807E-04 2.2636E-06 2.1496E-07 7.3640E-05 4.0145E-06 1.0112E-07

C6
MIGD 0.1098 0.1413

-28.6611
0.1053 0.1107

-5.1149
0.0611 0.0612

-0.0557VAR 3.2348E-06 1.4977E-04 1.6652E-05 1.4460E-10 1.2519E-08 2.1923E-09

C7
MIGD 0.0950 0.0973

-2.4419
0.1062 0.1136

-6.9763
0.0651 0.0655

-0.6285VAR 1.4644E-06 1.9496E-05 2.3870E-06 1.1739E-06 5.1521E-08 1.9050E-07

C8
MIGD 0.1081 0.1148

-6.1528
0.1100 0.1188

-8.0000
0.0653 0.0654

-0.0824VAR 3.9038E-04 5.5916E-04 2.5876E-06 9.8240E-05 2.1896E-09 6.6672E-09

Table 11: FDA5dec

NSGA-II Tr-NSGA-II ROC (%) MOPSO Tr-MOPSO ROC (%) RM-MEDA Tr-RM-MEDA ROC (%)

C1 MIGD 0.3701 0.2967
19.8300

0.2068
0.1706 17.5353

0.6791 0.4096
39.6884VAR 1.6658E-03 4.1428E-07 1.1357E-04 6.6137E-04 3.0126E-04

C2 MIGD 0.3640 0.3018
17.0947

0.2113
0.1465 30.6647

0.6170 0.4124
33.1499VAR 2.5492E-03 1.1655E-03 4.5714E-03 1.6537E-04 5.1870E-06

C3 MIGD 0.4321 0.3194
26.0648

0.2840
0.1403 50.6122

0.6352 0.3992
37.1567VAR 1.9916E-02 8.9818E-06 4.2669E-05 2.5114E-03 4.9007E-04

C4 MIGD 0.4584 0.2740
40.2280

0.1882
0.1431 23.9749

0.6393 0.4102
35.8319VAR 1.5253E-03 1.6655E-04 4.4340E-05 5.9788E-04 4.2766E-04

C5 MIGD 1.1684 0.9052
22.5197

0.4569
0.4083 10.6388

0.3726 0.1268
65.9669VAR 6.3473E-04 4.1290E-02 4.1138E-03 6.1639E-06 1.4866E-05

C6 MIGD 1.1842 1.1479
3.0703

0.4802
0.4237 11.7771

0.3802 0.1308
65.5900VAR 1.1343E-02 4.5164E-02 4.8785E-03 3.4097E-03 7.1229E-04

C7 MIGD 0.4179 0.2011
51.8789

0.1897
0.1363 28.1784

0.6260 0.3648
41.7235VAR 4.7462E-03 5.6786E-05 2.8357E-05 1.7293E-04 1.9517E-05

C8
MIGD 0.3431 0.2013

41.3357
0.1794

0.1423 20.6783
0.6739 0.3662

45.6626VAR 1.8925E-05 2.4026E-03 9.9454E-04 3.7766E-03 1.9394E-04
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Table 12: DIMP2

NSGA-II Tr-NSGA-II ROC (%) MOPSO Tr-MOPSO ROC (%) RM-MEDA Tr-RM-MEDA ROC (%)

C1
MIGD 3.6287

2.5147 30.6992
2.9797

0.4010 86.5408
5.2097

4.9018 5.9113VAR 1.8027E-01 5.3940E-02 1.7667E-02

C2
MIGD 4.0771

2.3481 42.4074
2.4547

0.2857 88.3599
4.8282

5.2399 -8.5262VAR 4.7095E-02 1.8199E+00 1.1118E-03

C3
MIGD 4.1530

2.5097 39.5693
2.1233

0.1475 93.0529
4.8860

4.9851 -2.0293VAR 1.1714E-01 3.1945E-02 2.2842E-01

C4
MIGD 3.6302

2.3739 34.6066
2.7988

0.1476 94.7278
4.6559

4.8186 -3.4948VAR 1.6550E-01 1.1552E+00 5.6086E-05

C5
MIGD 4.4689

2.3552 47.2980
1.8512

0.4857 73.7642
4.9163

4.9695 -1.0823VAR 1.2814E-01 2.7176E-01 8.7425E-02

C6
MIGD 3.5897

2.2009 38.6900
2.2850

0.2932 87.1703
5.0086

4.9583 1.0050VAR 9.8967E-03 2.5271E-01 2.7665E-01

C7
MIGD 3.7563

2.3449 37.5743
2.0250

0.3306 83.6751
4.7298

4.8399 -2.3276VAR 2.4725E-04 6.1787E-03 1.6563E-03

C8
MIGD 3.8851

2.1546 44.5419
2.4292

0.2581 89.3735
4.8794

5.1023 -4.5683VAR 2.5013E-01 5.2389E-01 3.5292E-02

Table 13: DMOP2

NSGA-II Tr-NSGA-II ROC (%) MOPSO Tr-MOPSO ROC (%) RM-MEDA Tr-RM-MEDA ROC (%)

C1
MIGD 0.1367 0.0342

74.9665
0.1472 0.0105

92.8490
0.0039 0.0366

-827.7905VAR 8.3806E-05 2.2300E-07 1.4966E-05 6.4208E-06 8.9592E-08 2.9249E-04

C2
MIGD 0.1097 0.0367

66.5239
0.2784 0.0090

96.7735
0.0043 0.0066

-52.7081VAR 3.4897E-04 5.6430E-06 1.7974E-02 9.0819E-07 1.6877E-06 2.7414E-05

C3
MIGD 0.1392 0.0300

78.4328
0.2780 0.0097

96.5132
0.0047 0.0029

37.5324VAR 1.5812E-03 2.4597E-07 2.3922E-05 2.0104E-06 4.4530E-07 4.7458E-08

C4
MIGD 0.1234 0.0407

67.0124
0.1821 0.0092

94.9274
0.0041 0.0027

33.3552VAR 3.4172E-04 1.5152E-04 8.6546E-03 1.1422E-07 1.1866E-07 2.5738E-08

C5
MIGD 0.2939 2.2819

-676.2864
0.3241 1.8752

-478.5327
18.3749 18.9887

-3.3402VAR 1.5190E-04 8.0239E+00 1.1403E-01 6.3602E+00 9.8567E-03 1.3102E-01

C6
MIGD 2.3484 0.2593

88.9568
0.4015 0.0874

78.2424
18.3544 18.6601

-1.6652VAR 7.5218E+00 1.3435E-03 1.8818E-02 8.9815E-06 5.7303E-03 3.1135E-02

C7
MIGD 0.0967 0.0375

61.2215
0.0252 0.0186

26.1430
0.0035 0.0028

21.0670VAR 5.6724E-05 9.6483E-05 6.0961E-08 2.2825E-04 6.1515E-08 7.2391E-08

C8
MIGD 0.1136 0.0311

72.6521
0.0668 0.0104

84.3618
0.0034 0.0038

-13.0372VAR 8.9671E-04 1.3546E-05 4.3184E-03 3.9726E-06 5.6020E-08 3.1823E-08
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Table 14: DMOP2iso

NSGA-II Tr-NSGA-II ROC (%) MOPSO Tr-MOPSO ROC (%) RM-MEDA Tr-RM-MEDA ROC (%)

C1
MIGD 0.0026 0.0027

-4.8403
0.0048 0.0049

-0.2598
0.0019 0.0019

-0.0057VAR 1.4710E-12 7.0791E-10 9.0873E-09 3.2098E-10 5.4961E-14 1.0336E-11

C2
MIGD 0.0026 0.0027

-4.4605
0.0050 0.0049

2.5526
0.0019 0.0019

-0.0855VAR 7.0355E-10 2.1892E-10 8.0595E-09 6.0198E-11 4.1426E-12 3.8878E-13

C3
MIGD 0.0026 0.0027

-6.8106
0.0049 0.0048

1.6411
0.0019 0.0019

-0.0549VAR 1.4253E-09 2.3627E-09 9.2590E-09 1.0770E-08 5.3240E-13 3.5049E-12

C4
MIGD 0.0026 0.0027

-3.1781
0.0051 0.0050

2.8216
0.0019 0.0019

-0.0609VAR 4.3446E-11 5.6923E-09 8.3902E-13 3.4667E-09 2.7556E-12 1.2409E-13

C5
MIGD 0.1212 0.1304

-7.5446
0.1127 0.1127

-0.0139
0.1104 0.1104

0.0017VAR 1.4153E-05 1.2108E-05 5.5578E-08 6.6161E-10 3.0130E-12 7.3002E-12

C6
MIGD 0.1232 0.1402

-13.7891
0.1127 0.1128

-0.0400
0.1104 0.1104

-0.0004VAR 1.4552E-05 2.1830E-06 4.6055E-08 1.7908E-08 7.9401E-16 2.4929E-12

C7
MIGD 0.0025 0.0026

-2.9765
0.0048 0.0049

-0.5804
0.0019 0.0019

0.0712VAR 5.2352E-10 3.4636E-10 1.3988E-08 2.4884E-09 4.2732E-12 1.5004E-12

C8
MIGD 0.0026 0.0026

-2.4833
0.0050 0.0049

3.3136
0.0019 0.0019

-0.0935VAR 1.1559E-10 8.7427E-10 1.6665E-08 3.8434E-08 6.8648E-12 2.1063E-12

Table 15: DMOP2dec

NSGA-II Tr-NSGA-II ROC (%) MOPSO Tr-MOPSO ROC (%) RM-MEDA Tr-RM-MEDA ROC (%)

C1
MIGD 0.3575 0.1969

44.9115
0.3054 0.0307

89.9592
0.1104 0.0511

53.7191VAR 5.4036E-03 8.4656E-04 5.7504E-02 4.0371E-05 4.5859E-05 4.4133E-06

C2
MIGD 0.4193 0.2044

51.2453
0.2230 0.0134

93.9837
0.1465 0.0523

64.3164VAR 3.3718E-03 1.3931E-06 7.8028E-05 1.0865E-06 2.0992E-04 4.1956E-05

C3
MIGD 0.3923 0.2182

44.3910
0.2267 0.0138

93.9166
0.0912 0.0446

51.0528VAR 2.2371E-03 3.4360E-06 3.7621E-03 4.9494E-08 2.5922E-05 8.8813E-07

C4
MIGD 0.4062 0.2432

40.1262
0.4104 0.0142

96.5336
0.1104 0.0441

60.0153VAR 1.5897E-03 1.2597E-03 6.8751E-02 2.4467E-06 1.6155E-04 4.1179E-05

C5
MIGD 1.2991 0.9970

23.2553
0.6897 0.0514

92.5402
0.2322 0.2290

1.3929VAR 5.5417E-02 7.5395E-06 1.4321E-03 1.1253E-05 1.6904E-05 1.2066E-04

C6
MIGD 1.5098 0.8689

42.4497
0.6992 0.0553

92.0972
0.2301 0.2213

3.8511VAR 2.8521E-02 1.6001E-03 2.3515E-01 2.8605E-05 3.4389E-05 7.2266E-06

C7
MIGD 0.3701 0.2011

45.6631
0.4014 0.0115

97.1391
0.1315 0.0553

57.9290VAR 3.8975E-03 4.6698E-03 2.3974E-05 9.5240E-08 5.0617E-05 4.0637E-05

C8
MIGD 0.2878 0.2142

25.5755
0.3977 0.0133

96.6628
0.1066 0.0540

49.2849VAR 1.7600E-03 1.8550E-04 2.0118E-02 7.5405E-07 5.8950E-05 8.2834E-05
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Table 16: DMOP3

NSGA-II Tr-NSGA-II ROC (%) MOPSO Tr-MOPSO ROC (%) RM-MEDA Tr-RM-MEDA ROC (%)

C1
MIGD 0.1084 0.0296

72.7002
0.0105 0.0416

-296.0364
0.0033

0.0025 24.6490VAR 7.3738E-05 7.9556E-06 1.6573E-05 2.4358E-03 4.5813E-11

C2
MIGD 0.1359 0.0359

73.6077
0.0143 0.0065

54.2790
0.0031

0.0024 22.0849VAR 2.3903E-04 2.2027E-04 4.9260E-05 5.5000E-09 6.8391E-09

C3
MIGD 0.1486 0.0245

83.5041
0.0077 0.0062

19.3390
0.0030

0.0038 -25.1478VAR 1.0447E-06 3.2505E-05 3.1252E-07 8.9046E-09 3.3853E-09

C4
MIGD 0.0922 0.0390

57.6545
0.0090 0.0064

28.1404
0.0030

0.0030 0.4896VAR 7.5602E-05 2.6008E-08 7.6625E-09 1.0967E-08 1.0279E-08

C5
MIGD 0.3562 2.1887

-514.5040
0.1310 1.9281

-1371.9864
18.3638

18.4456 -0.4455VAR 1.0547E-03 7.7773E+00 4.5042E-04 6.4553E+00 3.4346E-03

C6
MIGD 5.9830 5.7247

4.3171
2.0842 0.1169

94.3914
18.3348

18.4792 -0.7879VAR 8.8697E+00 8.1335E+00 7.5217E+00 2.9454E-06 8.5653E-03

C7
MIGD 0.1395 0.0360

74.1808
0.0155 0.0076

51.0026
0.0029

0.0026 10.7489VAR 3.9562E-04 5.3965E-06 1.0151E-04 2.2629E-08 4.1482E-09

C8
MIGD 0.1174 0.0278

76.2864
0.0086 0.0063

26.7219
0.0033

0.0024 27.4789VAR 1.1919E-04 1.0728E-04 1.9468E-06 2.4955E-07 3.5712E-07

Table 17: HE2

NSGA-II Tr-NSGA-II ROC (%) MOPSO Tr-MOPSO ROC (%) RM-MEDA Tr-RM-MEDA ROC (%)

C1
MIGD 0.1942 0.1889

2.7314
0.0795 0.0683

14.0445
0.8809

0.1162 86.8097VAR 1.2666E-03 1.7182E-04 1.9892E-04 1.6164E-05 9.0862E-05

C2
MIGD 0.1522 0.1788

-17.4533
0.1019 0.0672

34.0322
0.9015

0.1171 87.0121VAR 1.3660E-04 6.1378E-04 2.6750E-03 1.4320E-05 3.6855E-04

C3
MIGD 0.1572 0.1546

1.6659
0.0784 0.0697

11.1071
0.9025

0.1196 86.7433VAR 1.6637E-06 4.0007E-05 3.2323E-04 1.1259E-05 1.0819E-04

C4
MIGD 0.1875 0.1765

5.8589
0.0949 0.0623

34.3376
0.8906

0.1068 88.0113VAR 5.7780E-04 4.0523E-05 1.7837E-03 4.6907E-07 1.1358E-04

C5
MIGD 0.2700 0.0879

67.4516
0.0967 0.0595

38.4635
0.6971

0.0697 89.9980VAR 9.1661E-04 1.4581E-04 2.5397E-04 1.3812E-05 1.1198E-06

C6
MIGD 0.3545 0.0815

77.0146
0.0894 0.0572

36.0087
0.6974

0.0726 89.5874VAR 1.2909E-03 1.5771E-04 2.3229E-04 9.3198E-08 2.5975E-05

C7
MIGD 0.2078 0.1495

28.0723
0.0638 0.0650

-1.9613
0.8962

0.1038 88.4222VAR 4.0462E-06 1.0892E-04 9.4058E-07 6.6609E-06 7.6239E-07

C8
MIGD 0.1531 0.1830

-19.5666
0.0728 0.0626

14.0586
0.8944

0.1082 87.9062VAR 2.3195E-04 5.1881E-04 4.2019E-05 2.7083E-07 3.6057E-04
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Table 18: HE7

NSGA-II Tr-NSGA-II ROC (%) MOPSO Tr-MOPSO ROC (%) RM-MEDA Tr-RM-MEDA ROC (%)

C1
MIGD 0.0971 0.0417

57.1039
0.0612 0.0594

2.8756
0.0438 0.0354

19.3090VAR 1.4370E-06 1.7339E-06 2.9389E-04 3.4081E-06 1.7793E-04 4.5205E-06

C2
MIGD 0.0988 0.0409

58.5736
0.0588 0.0608

-3.3986
0.0440 0.0344

21.8204VAR 1.8807E-06 2.0477E-06 7.8924E-05 6.3404E-08 1.7464E-04 1.9297E-06

C3
MIGD 0.1012 0.0410

59.4455
0.0600 0.0611

-1.7770
0.0449 0.0353

21.4040VAR 1.0019E-05 2.4940E-10 5.2104E-05 1.3924E-06 1.5950E-04 1.9108E-07

C4
MIGD 0.1036 0.0398

61.5666
0.0596 0.0598

-0.4940
0.0440 0.0351

20.2879VAR 3.2259E-05 1.9226E-06 3.2056E-05 3.3301E-06 1.7977E-04 1.4912E-06

C5
MIGD 0.0779 0.0362

53.4686
0.0613 0.0528

13.9572
0.0397 0.0321

19.2266VAR 2.4013E-05 9.3120E-08 7.4316E-05 1.4570E-05 1.1893E-04 4.0164E-06

C6
MIGD 0.0781 0.0326

58.3400
0.0579 0.0532

8.1117
0.0391 0.0333

14.8676VAR 7.6260E-06 6.2165E-08 1.5637E-05 2.0849E-05 1.4266E-04 6.3904E-06

C7
MIGD 0.0939 0.0396

57.7739
0.0523 0.0599

-14.4283
0.0433 0.0340

21.3226VAR 3.4045E-05 1.9975E-06 1.2234E-05 1.8850E-06 1.3745E-04 4.2448E-07

C8
MIGD 0.1059 0.0403

61.9792
0.0547 0.0597

-9.1221
0.0436 0.0337

22.5674VAR 2.5446E-06 4.2571E-06 2.3103E-06 2.1898E-06 1.5031E-04 4.0268E-06

Table 19: HE9

NSGA-II Tr-NSGA-II ROC (%) MOPSO Tr-MOPSO ROC (%) RM-MEDA Tr-RM-MEDA ROC (%)

C1
MIGD 0.3028 0.2580

14.7877
0.2648 0.2961

-11.8097
0.2653 0.2455

7.4804VAR 2.9107E-05 1.5525E-06 8.0165E-06 3.5768E-05 4.0274E-08 3.9133E-07

C2
MIGD 0.3009 0.2617

13.0234
0.2712 0.3023

-11.4461
0.2637 0.2437

7.6087VAR 2.0520E-06 5.9900E-06 7.1836E-07 4.6393E-05 3.1215E-07 2.4694E-07

C3
MIGD 0.3057 0.2548

16.6490
0.2675 0.3004

-12.2867
0.2634 0.2451

6.9490VAR 2.2473E-05 2.2159E-05 1.6559E-06 2.1955E-05 1.4103E-06 3.2609E-07

C4
MIGD 0.3029 0.2635

12.9993
0.2655 0.3028

-14.0407
0.2639 0.2457

6.9055VAR 4.6335E-05 8.2176E-05 1.0313E-06 2.9225E-05 3.7052E-06 2.2156E-05

C5
MIGD 0.2670 0.2270

14.9754
0.1877 0.2572

-37.0047
0.2365 0.2168

8.3525VAR 1.1548E-06 1.5988E-06 5.1013E-06 1.0775E-04 1.3658E-05 5.3162E-10

C6
MIGD 0.2669 0.2279

14.6107
0.1908 0.2544

-33.2995
0.2356 0.2179

7.5252VAR 3.1621E-06 2.7471E-05 4.2148E-08 2.3717E-05 2.7905E-07 5.3859E-06

C7
MIGD 0.3050 0.2558

16.1353
0.2551 0.2963

-16.1533
0.2626 0.2449

6.7409VAR 8.0651E-05 1.5958E-05 3.2539E-07 4.7023E-05 3.7952E-06 1.0545E-05

C8
MIGD 0.3051 0.2579

15.4894
0.2645 0.3003

-13.5733
0.2609 0.2467

5.4267VAR 2.4933E-05 3.7407E-06 1.2709E-07 1.0673E-05 5.5975E-07 5.4257E-09
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