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[bookmark: OLE_LINK10][bookmark: OLE_LINK13]Abstract—Conventional evolutionary algorithms are not well suited for solving expensive optimization problems due to the fact that they often require a large number of fitness evaluations to obtain acceptable solutions. To alleviate the difficulty, this paper presents a multi-tasking evolutionary optimization framework for solving computationally expensive problems. In the framework, knowledge is transferred from a number of computationally cheap optimization problems to help the solution of the expensive problem on the basis of the recently proposed multifactorial evolutionary algorithm, leading to a faster convergence of the expensive problem. However, existing multifactorial evolutionary algorithms do not work well in solving multi-tasking problems whose optimums do not lie in the same location or when the dimensions of the decision space are not the same. To address the above issues, the existing multifactorial evolutionary algorithm is generalized by proposing two strategies, one for decision variable translation and the other for decision variable shuffling, to facilitate knowledge transfer between optimization problems having different locations of the optimums and different numbers of decision variables. To assess the effectiveness of the generalized multifactorial evolutionary algorithm, empirical studies have been conducted on eight multi-tasking instances and eight test problems for expensive optimization. The experimental results demonstrate that the proposed generalized multifactorial evolutionary algorithm works more efficiently for multi-tasking optimization and successfully accelerates the convergence of expensive optimization problems compared to single-task optimization. 
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INTRODUCTION
E
[bookmark: OLE_LINK161][bookmark: OLE_LINK162][bookmark: OLE_LINK163][bookmark: OLE_LINK164][bookmark: OLE_LINK165][bookmark: OLE_LINK166][bookmark: OLE_LINK167][bookmark: OLE_LINK170][bookmark: OLE_LINK177]VOLUTIONARY algorithms (EAs) are population based optimization methods that emulate the natural process of natural selection and genetic variations [1]. EAs distinguish themselves with the distinct advantages that do not require analytical formulations of the objective functions and are able to perform global search, among many others. Due to the above advantages, they have achieved widespread applications in real-world complex optimization problems such as production planning [2], job-shop scheduling [3], and aircraft design [4] in the past decades. However, EAs have apparent weaknesses in solving computationally expensive optimization problems, where the evaluation of candidate solutions needs to perform time-consuming numerical simulations or expensive physical experiments [5, 6], mainly because a large number of fitness evaluations are often needed before they can find acceptable solutions. In the past decades, developing efficient evolutionary algorithms for expensive optimization problems has attracted increasing research interests and many surrogate-assisted evolutionary algorithms (SAEAs) have been developed [7, 8, 9, 21, 22, 23, 24, 25]. The basic idea of SAEAs is to use computational cheap surrogate models to replace in part the time-consuming fitness evaluations to reduce computational cost. So far the most commonly used surrogate models include artificial neural network [9], Kriging model [26, 27], and radial basis function (RBF) networks [28, 29]. 
Multi-tasking evolutionary algorithms, also known as multifactorial evolutionary algorithms (MFEAs), were first proposed in [10, 11] to address multifactorial optimization (MFO) problems, which is a problem containing multiple distinct optimization tasks to be solved simultaneously. A main feature of MFEAs is that they are able to transfer knowledge between tasks during the evolution via two approaches, namely, assortative mating and vertical cultural transmission. MFEAs have been shown to be effective in accelerating convergence and enhancing global search capabilities, with the help of positive knowledge transferring among tasks [20]. Inspired by the effectiveness of knowledge transfer in MFEAs, this paper presents a new multi-tasking optimization framework for solving evolutionary expensive computational problems, in which knowledge from computationally cheap problems is used to accelerate the convergence of computationally expensive problems. 
Although MFEAs have been successfully extended to solve many types of problems, such as continuous, discrete, mix-integer, and even combinatorial optimization problems [10, 11, 12, 13, 14], it has been reported that the performance enhancement of MFEAs may become less consistent during the optimization as the degree of separation between the optimums in MFO problem increases. This is due to the fact that the separation of optimums introduces too much diversity in the evolution, slowing down the convergence in the optimization [10]. Unfortunately, this phenomenon is very common as the location of the optimum in an optimization problem is often unknown a priori and can lie anywhere in the decision space. In addition, MFEAs do not work well for MFO problems when the dimensions of decision space of different tasks are different due to inefficient knowledge transfer. To address the above issues, a generalized multifactorial evolutionary algorithm (G-MFEA) consisting of two new strategies, i.e., decision variable translation strategy and a decision variable shuffling strategy, are proposed in this work. While the proposed G-MFEA are suited for conventional multi-tasking problems, in this work, we focus on applying G-MFEA to the solution of expensive optimization problems. The main contributions of this work can be summarized as follows:
1)  A decision variable translation strategy is proposed to address MFO problems in which the locations of the optimums of the tasks are different. The decision variable translation strategy adjusts the location of individuals according to the estimated optimum of each task in order to enhance knowledge transfer in the optimization process. 
 2) A decision variable shuffling strategy is also introduced to deal with MFO problems having different numbers of decision variables. The decision variable shuffling strategy can not only change the order of the decision variables in the chromosome to give every variable an opportunity to communicate with the other tasks, thereby improving the efficiency of knowledge transfer, it can also replace decision variables that are not in use with the corresponding useful information to ensure the quality of the transferred knowledge. 
3) The generalized multi-tasking framework is further extended for solving expensive optimization problems, termed MCEEA. In MCEEA, a number of computationally cheap tasks (C-tasks) are used to accelerate the optimization of a computationally expensive task (E-task), thereby reducing the needed number of fitness evaluations of the E-task. It should be emphasized that, In contrast to existing multi-tasking optimization algorithms, the proposed MCEEA mainly focuses on improving the convergence speed of the E-task. For this reason, there are some notable discrepancies between MCEEA and G-MFEA. For example, multiple C-tasks are included in MCEEA to produce diverse knowledge in order to achieve robust performance enhancement of the E-task. Moreover, only the elite individuals in the C-tasks with useful knowledge for the E-task are selected for knowledge transfer in solving the E-task, thus achieving a faster convergence of the E-task. 
The remainder of this paper is organized as follows. Section II introduces the basic ideas in multifactorial evolutionary algorithms (MFEA) and discuss the motivation of the proposed generalized multifactorial algorithm (G-MFEA). The details of the proposed G-MFEA and its performance validation are described in Section III. Section IV applies the proposed generalized multi-tasking evolutionary algorithm to address expensive optimization problems, known as MCEEA. The experimental results of the proposed MCEEA is presented and discussed in Section V. Section VI concludes the paper.
Preliminaries
In this section, the concept of multi-tasking evolutionary optimization and the related definitions are first introduced. Then the multifactorial optimization algorithm (MFEA) is briefly described. Finally, the motivation of our proposed G-MFEA is presented.
Definitions
[bookmark: OLE_LINK7]Multi-tasking evolutionary optimization was first suggested by Gupta et al in [10], which aims to enhance global optimum search by simultaneously optimizing multiple optimization problems. In multi-tasking evolutionary optimization, the multiple optimization problems to be tackled and the algorithm to solve the multiple optimization problems are denoted as multifactorial optimization (MFO) problems, and multifactorial algorithm (MFEA), respectively. An MFO problem where K continuous single objective minimization problems are to be simultaneously addressed can be formulated as follows:

     (1) 




where, k=1, 2,…, K, represents one distinct optimization task, and is a feasible solution in the k-th task solution space  , Dk is the dimensionality of. 


An MFEA optimizes an MFO problem with a single population in which each individual is associated with one optimization task. Knowledge transfer among tasks is a significant feature of MFEAs to achieve better performance in problem solving. To share knowledge among different tasks, MFEAs introduces a unified search space Y for individuals of all tasks. The dimensionality of this unified search space is defined to be Dmultitask = max{Dk}, k=1, 2,.., K, where Dk is the dimensionality of the k-th task and the boundaries of Y are normalized to [0, 1]. Each individual is decoded into its corresponding task-specific solution space before it is evaluated. In case an individual y is associate with the k-th task, the first Dk decision variables of y are decoded as a task meaningful solution, that is,, where Dk is the dimension of the i-th task, Ui and Li are upper and lower boundary of the k-th task.
In the following, we briefly review the definitions related to each individual pi in an MFEA [10]:

Factorial rank: The factorial rank  of pi for the k-th task is the index of pi in the list of individuals in the population sorted in an ascending order of fk, where fk is the function value of the k-th task.



Skill factor: In the multi-tasking population, each individual only tackles one task and the skill factor of pi represents the task that pi is associated with., where.


Scalar fitness: The scalar fitness of pi is its normalized fitness in its associated task,  The scalar fitness enables to compare the performance of individuals from different tasks.
Multifactorial Optimization Algorithms
The main components of an MFEA is described in Algorithm 1. An MFEA begins with a population with NP candidate solutions randomly initialized in the unified search space Y. Then the skill factor of each individual is assigned and evaluated, where the individuals are evaluated only for the associated task (the assigned skill factor) and the objective values for other tasks are set to be infinite  (a very large number). The offspring generation in an MFEA is based on assortative mating and vertical cultural transmission to transfer knowledge between different tasks. Specifically, assortative mating is adopted to generate offspring, where individuals from the same task have a high probability to mate for generating offspring, while those for different tasks can mate at a smaller probability. Algorithm 2 presents the pseudo code of assortative mating. After the offspring are created, an MFEA uses vertical cultural transmission to assign the skill factor for each offspring individual. In vertical cultural transmission, an offspring imitates one task randomly from its parents associated with, leading to exchanging solutions across the tasks. With vertical cultural transmission, it is easy for a complex optimization problem to find better solutions by obtaining promising solutions from other tasks. Algorithm 3 lists the pseudo code of the vertical cultural transmission. At the end of each iteration, the parents for the next generation are selected according to the scalar fitness.
[bookmark: OLE_LINK92][bookmark: OLE_LINK93][bookmark: OLE_LINK94][bookmark: OLE_LINK95]      
	Algorithm 1: The Framework of an MFEA

	Input: NP, the number of individuals in the parent population; K, the number of tasks;
Output: The best solutions of all tasks.
1:   Randomly generate NP individuals in the unified search space Y as an initial population P


2:   Assign a skill factorfor each individual, for the i-th individual.
3:   Population evaluation
[bookmark: OLE_LINK185][bookmark: OLE_LINK187]4: While the termination criterion is not fulfilled do
5:          Generate offspring population O by assortative mating 
6:          Perform vertical cultural transmission
7:          Evaluate offspring 
8:          R=O∪P
9:          Update the scalar fitness in R
10:        Select NP fittest individuals according to the scalar fitness as the parents of the next generation
11: End while



	Algorithm 2: Assortative mating

	

Input: , two randomly selected parents;, the skill factor of two parents; rmp, the crossover probability of parents from different tasks;

Output: The generated offspring.

1:   If or rand < rmp


2:      = crossover 
3:   Else


4:     =mutate()


5:     =mutate()
6:  End if



Motivation of the Proposed Algorithm G-MFEA
 According to the above descriptions, we can see that assortative mating is one important feature of MFEAs, which is able to promote population diversity by allowing individuals for different tasks to mate [20]. For an MFO problem whose optimums are located in the same position of the unified search space Y, the individuals associated with different tasks are likely to be distributed at different locations during the optimization process and they converge to the same location at the end of the optimization. Therefore, the individuals of each task are able to maintain a high degree of diversity at the early stage of the optimization process and this diversity decreases as the evolution proceeds, which is beneficial for improving the convergence at the later stage of the optimization process. 
However, in case the optimums of the MFO problem are situated at different locations, individuals of each task will remain to be distant from each other even at the later stage of the optimization process. Fig. 1 shows an example of an MFO problem with separate optimums in a one-dimensional unified search space Y. In this situation, assortative mating will introduce diversity to the population during the entire optimization process according to analyzed above. Note however, that excessive diversity may seriously slow down the convergence of searching tasks’ optimal solutions.

	Algorithm 3: Vertical cultural transmission

	


Input: , the generated offspring by crossoveror mutation in assortative mating;


Output: The skill factorof .


1: If generated by crossover
2:      If rand < 0.5


3:          imitates the skill factor of 
4:      Else


5:          imitates the skill factor of 
6:      End if 
7:  Else 


imitates the skill factor of 
8:  End if



[image: ]
Fig. 1. An illustrative example of an MFO with separate optimal tasks in 1-D unified search space. 

Vertical cultural transmission is another key feature of MFEAs that exchanges solutions across different tasks. It aims to transfer high quality solutions from easy tasks to complex tasks in order to enhance the convergence speed of the complex tasks [10]. According to the MFEA framework, all individuals in the population have the same search dimension in the unified search space Y, with only the first Dk variables of an individual being decoded into the k-th task space before fitness evaluation [10], where Dk is the dimensionality of the k-th task.

 
Fig. 2. An example of MFO having two tasks whose dimensions of the decision space are different:  task1 has 7 decision variables and task2 has 10.

In case the dimensions of decision space of different tasks in the MFO problem are different like the example shown in Fig. 2, where the MFO problem contains two tasks, namely task1 and task2, whose dimensions are 7 and 10, respectively. In this situation, only the first part (the first 7 decision variables) of the individuals in task1 represent the solutions, while the remaining variables are not in use. As a result, the last variables of task2 cannot exchange knowledge with task1. In addition, a good solution of task1 is not necessarily good for task2, as it is a nonintegrated solution for task2. Therefore, the effectiveness of knowledge transfer in MFEAs may degrade when the dimensions of task1 and task2 are not the same.
To address the above limitations of MFEAs in solving MFO problems whose optimums are located in different positions in the unified search space Y or whose dimensions of the decision space are different, this paper presents a generalized multifactorial algorithm (G-MFEA). G-MFEA is equipped with two new strategies, one is the decision variable translation strategy aiming to tackle MFO problems having separate optimums, and the other is the decision variable shuffling strategy dealing with different dimensions. More specifically, the decision variable translation strategy maps the solutions of an individual into a new space in which the optimums of all tasks are located in the same position. By applying the decision variable translation strategy, a better balance between enhancing the population diversity and accelerating the convergence of the population can be maintained. Meanwhile, the decision variable shuffling strategy will not only enhance the effectiveness of knowledge transfer by giving every decision variable an opportunity to mate,  but also improve the quality of the transferred solution by replacing the variables bot in use with corresponding information of the task to which the solution is transferred.
Most recently, an algorithm termed linearized domain adaptation that transforms one task to another has been proposed independently [38]. It should be pointed out that the ideas proposed in this work differ from those in [38] in that G-MFEA transforms all tasks to a new space while maintaining the same geometric properties of solutions, thereby avoiding unfavorable influences on MFEAs’ ability to diversify population and perform global search. 
The Proposed Algorithm G-MFEA
In this section, we first present the main framework of the proposed generalized multifactorial algorithm (G-MFEA), followed by a detailed description of the two strategies, the decision variable translation strategy and the decision variable shuffling strategy. After that, the efficiency of G-MFEA is examined on eight MFO problems and the experimental results are analyzed.
Main Framework of G-MFEA



The main framework of G-MFEA is summarized in Algorithm 4. G-MFEA differs from the MFEA mainly in the process of offspring generation. At each generation, the location of the individuals in the original population are first translated to a new location by the proposed decision variable translation strategy, with the population in the new location being denoted by. Algorithm 5 details the decision variable translation strategy. Once the translated population is formed, offspring will be generated from the parents in. Given two randomly selected parents, the order of the decision variables are further perturbed and the variables not in use are replaced by the decision variable shuffling strategy before they undergo assortative mating. The decision variable shuffling strategy is described in Algorithm 6.  

	Algorithm 4: The Framework of the Proposed G-MFEA

	Input: NP, population size; K, the number of tasks;
Output: The best solution of each task.



Set: , the frequency of calculating translated direction; , the threshold of starting the decision variable translation strategy; .
1:   P = Population initialization and evaluation
2: While the termination criterion is not fulfilled do



3:           = Decision variable translation strategy (P,,)
4:          For i=1:NP/2



5:                  Randomly select two parentsand from and obtain their skill factor


6:                   =decision variable shuffling of


7:                 = Assortative mating 


8:                 = Re-transfer the offspring 
9:                  Vertical cultural transmission


10:             = Re-change the order of decision variables of individuals 
11:           End for
12:           Evaluate offspring O
13:           R=O∪P
14:           Update the scalar fitness in R
15:        Select NP fittest individuals according to scalar fitness as the next generation
16: End while






It should be noted that the generated offspring are also in the translated solution space. Therefore, these offspring must be translated back to the original solution space (Step 8). An offspring is translated back to the space of the parent having a closer inheritance relationship with it. Assume an offspring  is generated by one of the following two cases using assortative mating, it will be mapped back to the solution space of the task that  is associated with according to Equation (2), as it inherits more information from:

                        (2)


First perform a crossover operation for parents and as follows:




 (3)   where cf is a random number generated using a distribution designed in [15]. Then, perform a mutation operation from. Otherwise, if [image: ]is generated by or mutation of [image: ], it will be mapped back to the solution space of .
[image: ]
Fig. 3. Illustration of distribution of individuals in the one-dimensional new locations in the unified search space. 

	Algorithm 5: The decision variable translation strategy

	

Input: gen, the current iterations; Maxgen, the maximum iterations; P, the current population; NP, population size; the frequency to change translated direction; the threshold value to start the decision variable translation strategy;

Output: The translated population ;

Set:        .

1:  If gen>

2:       If mod(gen, ) = 0
3:         Calculate the translated direction of each task according to Equation (4)
4:       End if
5:       For i=1:NP

                Calculate  according to Equation (6)

6:            
7:       End for
8:   Else

9:        = P 
10:  End if



After the offspring are assigned a skill factor using vertical cultural transmission, the decision variables of each offspring are also changed back to their original order (Step 10). The details for translating solutions will be presented in III.B, while the decision variable shuffling strategy and the order re-change are detailed in III.C.

Decision Variable Translation Strategy
The main purpose of the decision variable translation strategy is to map individuals to a new location so that the optimums of all tasks are located at the same position in the unified search space Y to facilitate knowledge transfer and strike a good balance between the population diversity and convergence during evolutionary optimization. The details of the decision variable translation strategy is summarized in Algorithm 5.


The center point of the unified search space Y, that is, is the designated location to which all optimums are transferred to. To achieve this, it is important to estimate the distance from its current location of each task to the center point, called translated direction, k=1,2,…,K, where K is the number of tasks. The translated directions are estimated based on the promising solutions of each task at the current generation as follows:

                    (4)




where is the estimated optimum by calculating the mean value of the  percent best solutions of the k-th task. Since the estimated optimum may be different from the true one and may be smaller than the truth translated directions, it can happen that the tasks cannot be translated to the same space even until at the end of the evolutionary optimization. To make sure that the locations of the two tasks are able to overlap at certain time during the optimization, we slightly speed up the translated distance at each step using a scale factor (sf) in Equation (4). Sensitivity analysis of the parameter will be discussed in Section III.D. 
	Algorithm 6: The decision variable shuffling strategy

	


Input:  , , two randomly selected parents from 


Output: The two parents after shuffling, , the order list l1 , l2
Set:   Dmax = max(D1,D2); l1 = 1,2,…,Dmax; l2 = 1,2,…,Dmax;


1:      Obtain the skill factor of  and 
2:    If  D1 < Dmax



3:            = randomly select one individual from that has the same skill factor as 
4:           Randomly perturb the order of l1

5:            

6:            
7:     Else if D2 < Dmax



8:            = randomly select one individual form that has the same skill factor to
9:            Randomly perturb the order of l2

10:          

11:          
12:    Else

13:          
14:    End if 




















Fig. 4. An example illustrating the decision variable shuffling strategy. (a) Two randomly selected individuals  and from task1 and task2, where the search dimension of task1 and task2 is 7 and 10, respectively; (b) , which is obtained by perturbing the order of the decision variables of,  is equal to;  (c) , two offspring generated by  and; (d) if is assigned to task1 and assigned to task2, the decision variables of which index are in the first 7 l1 are extracted as the useful variables of, while the order list of remained unchanged.





To keep a stable translation, the distance is calculated at everygenerations as shown in steps 2-4 in Algorithm 5. Considering the inaccurate estimation of optimums at the early optimization process, is initialized to zero and increases gradually as the evolution proceeds from thegeneration: 

                       (5)
where Maxgen is the maximum number of generations and gen is the current number of generations. 

	Once the translated direction are estimated, each individual is moved to a new location according to the following equation:

,            (6)

where is the skill factor of i-th individual, and NP is the population size. The population in the new location is shown in Fig. 3.
Decision Variable Shuffling Strategy
The proposed decision variable shuffling strategy in G-MFEA aims to enhance the effectiveness of knowledge transfer between tasks of an MFO whose dimensions are different. To be specific, the decision variable shuffling strategy first randomly changes the order of the variables in the solutions with a lower dimension to give each variable an opportunity of knowledge transfer between two tasks. Then, the decision variables of the individual for the lower-dimensional task that are not in use are replaced with those of the individual for the higher-dimensional task. For this reason, the decision variable shuffling strategy can be applied only on the parents that have a lower dimension.


























Fig. 4 presents an example to illustrate the main idea of the decision variable shuffling strategy, where two parents,and, are randomly selected from the transferred populationand are associated with task1 and task2, respectively. Suppose the dimension of task1 is lower than task2, as shown in Fig. 4(a). Therefore, only  will be subject to the decision variable shuffling strategy. We first record the order of the decision variables of these two individuals as l1 =1,2,…,Dmax, l2 =1,2,…,Dmax, where Dmax=max(D1,D2). Then an extra individualthat is associated with task2 (the task that  is associated with), which is used to replace the variables that are not in use in, is randomly selected from. After that, the alternated will be obtained by mergingand. Specifically, the list l1 is randomly changed and the variables whose index are in the first D1 elements of list l1 are from, while the remaining variables are from. Fig. 4 (b) illustrates the results of the decision variable shuffling strategy applied, where the disturbed list l1=(1,2,4,5,6,9,10,7,3,8), the index in the first D1 elements of l1 inare from the first D1 variables of, while the remaining variables are from. Once decision variable shuffling has been performed, the initial offspring will be generated by and via assortative mating. Fig. 4(c) illustrates the offspringand that are moved back to their original space from the initial offspring (Step8 in the Algorithm4). Before an offspring is passed to the population, the order of the decision variable needs to be re-changed if it is assigned a task whose dimension is lower. Fig. 4(d) shows an example where is assigned to task1 and  assigned to task2. Then, which is obtained by, is set to be the offspring of task1, whileitself will be the offspring  of task2.
Multifactorial Problem Experiments
In this section, the efficiency of G-MFEA is empirically investigated by comparing it with the original MFEA [10] and the base single task evolutionary algorithm, denoted as SOEA, on eight MFO problems.


 
TABLE I
The Best Fitness of Two Tasks And The Performance Score Results of The Three Algorithms on Eight Test Intestances, Where The Best Results Are Highlighted

	Name
	Task1
	Task2
	Performance Score

	
	G-MFEA
Mean(Std)
	MFEA
Mean(Std)
	SOEA
Mean(Std)
	G-MFEA
Mean(Std)
	MFEA
Mean(Std)
	SOEA
Mean(Std)
	G-MFEA
	MFEA
	SOEA

	F1
	0
(0)
	0                  =
(0)
	
16.8              
(9.66e-12)
	0
(0)
	0               =
(0)
	
31.23        
(14.99)
	-12.54
	-12.54
	25.08

	F2
	0
(0)
	0                  = 
(0)
	
19.82          (0.064)
	0 
(0)
	0               =
(0)
	
107.91      
(19.49)
	-13.76
	-13.76
	27.52

	F3
	5.37
(0.92)
	
20.72           
(0.9358)
	
31.1             
(1.45)
	7.06
(1.56)
	
11.44       
(1.89)
	
68.43         
 (12.35)
	-20.08
	-4.44
	24.56

	F4
	137.75 (18.31)
	
146.26        
(18.48)
	114.14          +
 (18.84)
	4.31e+03 (340.36)
	
4.66e+03 
(539.27)
	
5.67e+03         
(234.84)
	-5.96
	2.86
	3.10

	F5
	0
(0)
	
105.56        
(14.06)
	
143.34         
(23.28)
	0
(0)
	0              =
(0)
	0                 =
(0)
	-24.4278
	12.05
	12.37

	F6
	3.07e-14
(1.94e-15)
	
19.84          
(0.0441)
	
19.94           
(0.03)
	2.41e-05
(5.4e-05)
	
23.9        
(3.33)
	
30.71        
(0.75)
	-13.45
	5.46
	7.99

	F7
	1.08e-11 (2.2e-12)
	
1.02e-11     
(0.58) 
	
1.72e-11      
(5.8e-12)
	26.68
 (1.6792)
	27.13       =
(1.72) 
	
58.05        
 (5.41)
	-12.06
	-10.43
	22.49

	F8
	105.13
12.10
	
122.78        
19.79
	
128.63         
18.76
	2.46e+03
 328.40
	
2.69e+03
 257.26
	2.34e+03   +
284.93
	-7.76
	7.54
	0.21
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Fig. 5 Comparison of G-MFEA, the decision variable translation strategy: Gt-MFEA, the decision variable shuffling strategy: Ga-MFEA, MFEA, on F8 over 10 independent runs.

     Test Instances 
To assess the performance of G-MFEA, eight MFO test instances are employed, as listed in Table A in the Supplementary Materials, in which F1, F2, F4 and F7 belong to complete intersection and high similarity (CI+HS), complete intersection and medium similarity (CI+MS), no intersection and low similarity (NI+LS), and no intersection and high similarity (NI+HS), respectively, as categorized in [33]. The rest test functions are proposed in this paper. The value of Spearman’s rank correlation coefficient [37] (Rs) is also calculated and listed in Table A for each test instance using 1000000 randomly generated points in the unified search space. These test instances are constructed from seven commonly used single objective optimization problems [16], namely, Sphere, Schwefel, Rosenbrock, Rastrigin, Griewank, Ackley and Weierstrass. They can be categorized into the following four groups according to the dimensions of the decision space and the locations of the optimums. 1) F1 and F2, which have the same number of decision variables and the optimums are located in the same position in the unified search space Y; 2) F3 and F4, whose decision spaces are of the same dimension but the optimums are located in different positions in the unified search space Y; 3) F5 and F6, which have different numbers of decision variables but the optimums are located in the same position; 4) F7 and F8,which have different number of decision variables and their optimums are located in different places.
Parameter Settings 
1) Public parameter settings:
For fair comparisons, all compared algorithms adopt the same genetic operators, i.e., the simulated binary crossover (SBX) [15] and Gaussian mutation [17]. The distribution indexes of crossover is set to be 20. The crossover probability is set to pc=1.0, mutation probability in multifactorial optimization algorithm is pm=1/Dmultitask, where Dmultitask is the maximum dimensionality of all tasks. For single task optimization, the pm=1/D, where D denotes the number of decision variables.
The population size is set to be 100 and a maximum of 50000 fitness evaluations are allowed. As suggested in [10], each individual in G-MFEA undergo a learning step via BFGS quasi-Newton method and the principle of Lamarckian [18, 19] in order to obtain high-quality solutions.
2) Parameters in G-MFEA: 



The percentage of the best solutions to estimate current optimums, as discussed and recommend in [36]. The threshold of triggering the variable translation strategy: , where gen is the maximum number of generations. The frequency of changing the translate direction, where gen is the maximum number of generations. The scale factor sf in Equation (4) is set to be 1.25.
Performance Indicators
 In multi-tasking optimization, a performance score [33] evaluating an algorithm on all tasks is proposed, in addition to the obtained best fitness of each single task.  Consequently, we adopt the same performance indicator to compare the three algorithms, MFEA, G-MFEA, and SOEA in this work. 
Let K be the number of tasks in a test problem, denoted by T1, T2,…, TK, and the best fitness obtained by an algorithm in a run for Tk be denoted as Ik, k = 1, 2, . . . K. If each algorithm is executed for L times, the performance score of the i-th algorithm is defined as follows:

                                (7)



whereandare the mean and standard value of  obtained by all compared algorithms. The smaller the performance score, the better an algorithm is. 
Results and Analysis
The mean and standard deviations of the best fitness of each task obtained by each algorithm and the performance score of three algorithms G-MFEA, MFEA, SOEA on the eight test instances are presented in Table I and Fig. A in the Supplementary Materials, respectively, where the results are obtained over 20 independent runs. In Table I, the best result of each test instance is highlighted. The Wilcoxon rank sum test is also performed at a significance level of 0.05. In the table, symbols ‘+’,’-’,’=’ denote that the result is significantly better, significantly worse, or comparable with that of G-MFEA, respectively. From these results, the following observations can be made.
1) The overall performance of both the G-MFEA and MFEA are better than SOEA. These results confirm that implicit knowledge transfer across tasks in multi-tasking optimization is capable of accelerating convergence and finding better solutions.
2)  G-MFEA and MFEA perform similarly on F1 and F2. This can be attributed to fact that these two instances have the same optimum and search dimension, thus both G-MFEA and MFEA can work well on this type of MFO. 
3) For F3 and F4, whose locations of the optimum are different, the final performance of G-MFEA is better than that of MFEA. Fig. A in the Supplementary Materials also shows that G-MFEA continues to converge quickly at the later optimization stage, whereas MFEA nearly stagnates. This is due to the fact that offspring generated in the translated solution space enables G-MFEA to transfer knowledge between tasks more effectively, thereby striking a better balance between diversity and convergence and enhancing the convergence. 
4) G-MFEA achieves much better performance than MFEA on F5 and F6. Taking a closer look at the results on F5, it can be seen that SOEA is able to quickly converge to the global optimum of task2, as shown in Table I and Fig. A in the Supplementary Materials. By contrast, G-MFEA has achieved a better solution for task1 than MFEA. The results on F6 show that G-MFEA converges rapidly on both tasks even though MFEA and SOEA have not improved much. This may be attributed to the decision variable shuffling strategy in G-MFEA that keeps the better quality of solutions transferred from task1 to task2 by replacing the decision variables not in use for task1 with corresponding information of task2. 
5) On F7 and F8, the two most challenging problems, G-MFEA outperforms MFEA and SOEA, owing to the decision variable shuffling strategy and the decision variable translation strategy in G-MFEA. 
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Fig. 6 The mean best fitness obtained by G-MFEA with different over 30 runs on F3 and F8
To further demonstrate the contribution of the two strategies,  two variants of G-MFEA, one with the decision variable translation strategy only, termed Gt-MFEA, and the other with the decision variable shuffling strategy only, termed Ga-MFEA, are compared with G-MFEA, MFEA and G-MFEA on  F8. The results from the compared algorithms over 10 independent runs are presented in Fig. 5, showing that Ga-MFEA and G-MFEA perform better than Gt-MFEA and MFEA on task1. This indicates that the decision variable shuffling strategy is able to maintain the quality of the transferred knowledge between tasks. In addition, G-MFEA and Gt-MFEA outperform Ga-MFEA and MFEA on task2 and the performance score of Ga-MFEA and Gt-MFEA are not better than G-MFEA, confirming that search operator has benefited from the decision variable translation strategy. 
Sensitivity Analysis of the Control Parameters





We first examine the sensitivity of the performance to the threshold for starting the variable translation strategy. We set in the experiments. The test instances and other parameters remain the same as those in Section IV.D.2. Fig. 6 shows the mean best fitness values obtained by G-MFEA with different thresholds  on F3 and F8. Fig. 6 shows that G-MFEA with different has different performance on each instance. Moreover, a small threshold is appropriate for G-MFEA. When, G-MFEA has the fastest convergence speed on F3 and F8.
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Fig. 7 The mean best fitness obtained by G-MFEA with differentover 30 runs on F3 and F8
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    (a) F3                                                            (b) F8
Fig. 8 The mean best fitness obtained by G-MFEA with different sf over 30 runs on F3 and F8





Second, we test the sensitivity of the algorithm to the frequency of changing the translate direction. To this end, are separately tested on F3 and F8. The remaining parameters are the same as those in Section IV.D.2. Fig. 7 shows the mean best fitness values obtained by G-MFEA with different thresholds  on each test instance. From Fig. 7 we can find that on F3 and F8, the final results obtained by G-MFEA with different for each instance are different. Moreover, it can also be discovered that when, G-MFEA has a relative better performance on all the instances. Fig. 7 reveals that the appropriate setting of is problem-dependent.

Third, we examine the influence of the scale factor sf in Equation (4) on the performance. To this end, we compare the performance of G-MFEA using five different scale factors  on F3 and F8. The other parameter settings of G-MFEA are the same as those described in Section IV.D.2. Fig. 8 summarizes the results of average best fitness values obtained by G-MFEA over 30 independent runs. According to the results shown in Fig. 8, G-MFEA is able to achieve the best performance when the scale factor is around 1.25, which is adopted in all empirical studies.
 IV. Multi-tasking Optimization For Expensive Optimization Problems
Computationally expensive optimization problems have been attracted increasing attention in the past decades as they commonly exist in the real world [2, 3, 4]. Most conventional EAs cannot be directly employed for solving such computationally expensive problems as they often need a large number of fitness evaluations. One popular way to address this issue is to replace part of the computationally expensive fitness evaluations with surrogate models to reduce the computation time. These algorithms are usually referred to as surrogate assisted evolutionary algorithms (SAEAs). In the literature of SAEAs, the research effort has been dedicated to enhancing the quality of surrogate models and designing efficient model management strategies [6, 7, 8, 31, 32]. 
According to multi-tasking optimization, the convergence of optimization can be significantly enhanced by simultaneously optimizing multiple tasks thanks to knowledge transfer between the tasks. Inspired by this idea, this section proposes to speed up the optimization of expensive optimization by transferring knowledge from computationally cheap problems (C-tasks) to computationally expensive problem (E-task), thereby accelerating the convergence of the E-tasks. Consequently, the required number of fitness evaluations of the expensive problem to achieve acceptable solutions can be reduced.
Knowledge transfer in multitasking is realized by exchanging solutions of different tasks. Therefore, the more and better solutions of one task can obtain, the more the solutions of other tasks will benefit from those of this task. To accelerate the convergence in solving the E-task with the help of C-tasks, high quality knowledge transfer from C-tasks to the E-task becomes essential. To this end, MCEEA incorporates multiple computationally cheap problems to ensure the diversity of the transferred knowledge. Note that multi-fidelity optimization algorithms [34, 35] are also able to take advantage of multiple low-fidelity models to speed up convergence in solving computationally expensive problems, they work very differently from the proposed MCEEA.
In addition, in order to ensure positive knowledge transfer, the results of C-tasks after a certain number of generations (TM generations) of optimization is stored as the useful knowledge. As knowledge is acquired from the individuals of the C-tasks, MCEEA selects the best individuals of the C-tasks at every TM generations and transfers it to the individuals solving the E-task. The flowchart of the proposed MCEEA is presented in Fig. 9.



Fig. 9 Flowchart of MCEEA
 Below is a description of the main components of MCEEA:
Step1: Initialize the population and assign the skill factors. Denote population size of each task to be Sub_NP.
Step2: Evaluate the individuals. 
Step3: Once the C_tasks have been optimized for TM generations, go to steps 4 and 5, otherwise go to step 6.
Step4: Sub_NP elite individuals are selected from C-task individuals according to the scalar fitness to make up the Eli_pop.
Step5: The E-task and the Eli_pop are optimized by G-MFEA.
Step6: All the C-tasks are optimized by G-MFEA.
Step7: If the termination condition is fulfilled, terminate the optimization and output the optimal solution of the E-task, otherwise return to Step 3.
V. Experimental Results And Discussions
In this section, the performance of MCEEA is examined and compared with the single task algorithm SOEA.
Experimental Settings
Test Instances
The proposed MCEEA framework for solving expensive problem is examined on eight test instances we construct for evaluating the performance of MCEEA. In each instance, there exists one computationally expensive problem, denoted as the E-task, and three computationally cheap problems, termed C-task1, C-task2, and C-task3, as presented in Table II. In addition, we also constructed two test instances using the artificial test problems designed in [35], denoted as Real1 and Real2. The function fidelity 6 is considered to be a computationally expensive problem, while Fidelity 1, 4 and 5 are cheap problems in Real1. In Real2, Fidelity 5 is the expensive problem and Fidelity 2 and Fidelity 3 are considered to be the computationally cheap problems.
Parameter Settings
To reduce the needed number of fitness evaluations of computationally expensive problems, a small population is adopted for MCEEA in the experiments. The subpopulation size of each task is set to 16, resulting in a total number of 64 individuals in the whole population for one E-task and three C-tasks. The maximum number of fitness evaluations for the E-task is set to 3200, and the optimization is terminated once this computational budget is exhausted. Knowledge transfer from the C-tasks to the E-task is carried out at every TM=50 generations.
Performance Indicators
In this work, the obtained best fitness of the E-task is applied for evaluating the performance the compared algorithms.
Results and Analysis of MCEEA
The results of the E-task obtained by the two algorithms over 20 independent runs on the eight test instances are summarized in Table III, the convergence profiles of the two algorithms are plotted in Fig. 10. In Table III, the best result of each test instance is highlighted, the Wilcoxon rank sum test at a significance level of 0.05 is also adopted, where symbols ‘+’,’-’,’=’ denotes that the result is significantly better, significantly worse or comparable with that of MCEEA. Results in Table III and Fig.10 demonstrate that MCEEA performs much better than SOEA on all test instances in terms of both convergence speed and the final results. This indicates that the knowledge transferred from the C-tasks can significantly enhance the convergence of the E-task in MCEEA. According to the different characteristics of the test instances, the following two observations can be made.
1)  MCE1 and MCE2 are test instances where all C-tasks and the E-task have the same number of decision variables and the same optimums. For MCE3 to MCE5, the optimum of the C-tasks are the same as that of the E-task, while the dimensions of the C-tasks are different from that of the E-task. For MCE8, the optimum of the C-tasks deviates slightly from that of the E-task. On these six test instances, the results show that MCEEA achieves significantly better performance than SOEA. The promising performance of MCEEA may be attributed to the high-quality knowledge transferred from the C-tasks to the E-task during the optimization process.



2) The locations of the optimums of the E-tasks of MCE7 and MCE7 are randomly distributed in their search spaces. The locations of the optimums of all C-tasks in MCE6 are also randomly distributed in the search space. The optimums of C-tasks of MCE7 are located at and, respectively, in the unified search space. The comparative results of MCEEA and SOEA on these two instances show that MCEEA outperforms SOEA. This indicates that although the optimums of the C-tasks and the E-task are located in different positions, the E-task can still benefit from the C-tasks during the search process. The above results confirms that MCEEA can enhance the convergence performance of the computationally expensive problems by transferring knowledge from the computationally cheap problems.
3)  In the last two test instances Real1 and Real2, all C-tasks as well as the E-task have the same optimum. Note that the C-tasks are considered to be the low-fidelity models of the E-task. The results from these test instances are presented in Table III and Fig. 10, revealing that the MCEEA is able to converge faster and find better solutions for the E-task.



TABLE II
The Eight Test Intestances of MCEEA, Where M Is The Randomly Rotated Matrix, o Is The Optimal Solution
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Parameters Sensitivity Analysis 
Influence of the frequency in knowledge transfer (TM) 
In MCEEA, the C-task is optimized for once at every TM generations. The purpose of this is to obtain sufficiently good knowledge from C-tasks to be transferred to the E-task. Therefore, TM has a great impact on the performance of MCEEA as it can influence the quality of knowledge transferred from the C-tasks. Fig. 11 plots the best fitness of the E-task obtained on the three instances when TM is set to 1, 20, 50, 75 and 100, averaged over 30 runs. The three instances are: (a) the E-task and the third C-task of test instance MCE1; (b) 

TABLE III
The Best Fitness of E-task of The Two Algorithms on Eight Test Intestances, Where The Best Results Are Highlighted
	Name
	MCEEA
Mean (Std)
	SOEA
Mean (Std)

	MCE1
	0.0048 (8.9e-04)
	
20.59 (0.08)                    

	MCE2
	71.56 (10.21)
	
1.01e+04 (797.84)          

	MCE3
	3.27 (1.19)
	
68.49 (4.43)                    

	MCE4
	1.14e+03 (207)
	
7.58e+03 (812)               

	MCE5
	3.15e+03 (928)
	
2.55e+08 (6e+07)           

	MCE6
	25.11 (1.16)
	
28.95 (3.24)                    

	MCE7
	73.02 (0.97)
	
77.10 (2.99)                    

	MCE8
	839.62 (138)
	
1.9e+07 (1.3e+07)          

	Real1
	-16.47 (9.0e-08)
	
-16.27  (0.3999)              

	Real2
	-15.20(3.2e-08)
	
-15.14(0.0720)                
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Fig. 10 The statistical results of E-task on the eight test instances. In each subplot, the x-axis represents the evaluations of E-task and the y-axis is the log mean value of best fitness obtained via 20 independent runs.
the E-task and the second C-task of test instance MCE4, and (c) the E-task and the first C-task of test instance MCE6.
From the results shown in Fig. 11, we can see that the performance of the E-task enhances rapidly as TM increases. However, when TM reaches 50, the performance no longer improves significantly. This implies that knowledge transferred from the C-tasks is good enough after 50 generations to be benefitted by the E-task.
Influence of the number of C-tasks:
In this work, multiple C-tasks (Three tasks in this experiment) are integrated to assist the optimization of the E-task in MCEEA. To further demonstrate the benefit of using multiple C-tasks, the results on two test cases are compared when multiple C-tasks are used and one single C-task is adopted. Fig. 12 plots the statistical results on instances MCE1 and MCE6.
From the results shown in Fig. 12(a), it can be seen that although each C-task has a positive influence on the E-task throughout the optimization process, the performance of the algorithm using three C-tasks is much better than using any of the single C-task. The results on MCE6 in Fig. 12(b) can be discussed in two different stages in the optimization process, the early stage before 1000 fitness evaluations and the later stage after 1000 evaluations. In the early stage, C-task1 does not have much influence while C-task3 has relatively larger positive influence on the E-task. The performance of using all C-tasks (C-task1, C-task2, C-task3) is much better than C-task1 but a little worse than C-task3. The reason may lie in the fact that the E-task has not benefited much from C-task1. From the comparative results of the later stage, it can be seen that the overall performance using three C-tasks is better than using any single C-task, implying that knowledge from the three C-tasks has positive influence on the optimization of the E-task.
The results of MCE1 and MCE6 in Fig. 12 also demonstrate that the contribution to the E-task of each C-task may be different, where the contribution of C-task2 and C-task3 to E-tasks are more than C-task1 in MCE1 and MCE6. To take a closer look at these results, Fig. 13 plots the convergence trend of each C-task in MCE1 and MCE6 averaged over 20 runs, which are scaled between [0,100] for fair comparisons. From Fig. 13, we can see that the convergence speed on C-task2 and C-task3 are much faster than on C-task1, which implies that C-task2 and C-task3 are easier to solve among the three C-tasks in both MCE1 and MCE6. From above observations we may conclude that the easier the C-tasks are, the more effectively they can speed up the convergence of the E-task.
From the above analysis, we conclude that MCEEA may benefit from using multiple computationally cheap problems in two different cases: 1) In case every single C-task is able to have positive influence on the E-task, multiple C-tasks can more significantly speed up the convergence of the E-task; 2) In  case some C-tasks are not able to positively influence the convergence of the E-task, the E-task can still obtain useful knowledge from a combination of the C-tasks. This means that use of multiple C-tasks can ensure a more robust performance enhancement of the E-task.
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(a)                                                                           (b)                                                                               (c)
Fig. 11 The performance of MCEEA over the changing of multi-tasking of T-task TM, (a) the E-task and the third C-task on test instance MCE1; (b) the E-task and the second C-task on test instance MCE4; (c) the E-task and the first C-task on test instance MCE6 
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Fig. 12 Comparative results of the multiple integrated C-tasks averaged over 20 runs on instances MCE1 and MCE6. MCEEA, C1, C2 and C3 denotes the results of the integrated C-tasks, the first C-task (C-task1), the second C-task (C-task2) and the third C-task (C-task3), respectively.
Remarks on C-task selection
Selecting C-tasks is critical for the success of multi-tasking optimization for assisting solving expensive problems. Actually, some ideas for quantifying the synergies between different optimization tasks have been discussed in [33]. The selection of C-tasks in the context of this work may be slightly different from other multi-tasking optimization problems for two reasons. First, we are mainly concerned with the convergence of the E-task and the slow-down in the convergence of the C-tasks is less problematic. Second, since the computational budget for the E-task is very limited, it might be not affordable to test the similarity between the E-task and C-tasks based on a large number of fitness evaluations as done in [33]. Based on our empirical results in V.B and V.C, we can conclude that the C-tasks should have a similar optimum to that of the E-task, but since the optimum of the E-task is unknown, it is recommended that a large number of C-tasks having slightly different fitness landscapes should be used. In addition, the C-tasks to be used for speeding up the E-task should be easy tasks, i.e., the EA should be able to converge quickly on the C-tasks. Although it is non-trivial in general to select appropriate C-tasks since the optimum of the E-task is unknown, low-fidelity tasks of the original optimization problem may serve very well as the C-tasks in expensive optimization.
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Fig. 13 The scaled convergence trend of each C-task averaged over 20 runs in MCE1 and MCE6. C1, C2 and C3 denotes the results of C-task1, C-task2 and C-task3, respectively.
VI. Conclusions And Future Work
In this work, a multi-tasking optimization approach for reducing the computational costs in optimization of expensive computational problems, termed MCEEA, has been suggested. MCEEA allows knowledge to be transferred from computationally cheap optimization problems to expensive optimization problem, leading to a faster convergence of the expensive problem. In MCEEA, multiple computationally cheap problems are optimized together with the expensive problem to generate diverse knowledge for the optimization of the expensive problem, which is made possible by a generalized multi-tasking evolutionary algorithm, termed G-MFEA.  The main differences between the G-MFEA and existing multi-tasking EAs lie in newly introduced decision variable translation strategy and decision variable shuffling strategy. The decision variable translation strategy shifts the population to a new location so that the optimums of all optimization tasks have the same location in the translated solution space, which ensures positive knowledge transfer even if the optimums of the tasks in MFO are located in different positions. In addition, the decision variable shuffling strategy changes the order of the decision variables and replaces the variables not in use with corresponding useful information from other tasks, enhancing the quality of knowledge transfer between the tasks. The effectiveness of the G-MFEA and MCEEA are empirically verified and compared with existing algorithms on eight test instances. 
Although MCEEA shows promises in solving computationally expensive problems on all test instances studied in this work, it only considers the use of the elite individuals of the computationally cheap problems in assisting the expensive computational problem. In the future, we are going to develop strategies that are able to identify which computationally cheap problems are able to speed up the   convergence of the expensive problem during the optimization process. The proposed framework also remains to be compared with conventional surrogate-assisted EAs on both single and multi-objective optimization problems. Indeed, surrogates can be seen as related tasks of an expensive optimization problem and thus it would be of great interest to explore the synergy between multi-tasking optimization and surrogate-assisted optimization.  
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