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Abstract—Surrogate-assisted evolutionary algorithms have
been developed mainly for solving expensive optimization prob-
lems where only a small number of real fitness evaluations
are allowed. Most existing surrogate-assisted evolutionary algo-
rithms are designed for solving low-dimensional single or multi-
objective optimization problems, which are not well suited for
many-objective optimization. This paper proposes a surrogate-
assisted many-objective evolutionary algorithm that uses an
artificial neural network to predict the dominance relationship
between candidate solutions and reference solutions instead of
approximating the objective values separately. The uncertainty
information in prediction is taken into account together with
the dominance relationship to select promising solutions to be
evaluated using the real objective functions. Our simulation
results demonstrate that the proposed algorithm outperforms
the state-of-the-art evolutionary algorithms on a set of many-
objective optimization test problems.

Index Terms—Surrogate-assisted evolutionary optimization,
Pareto dominance, expensive many-objective optimization, clas-
sification

I. INTRODUCTION

MULTI-objective optimization problems (MOPs) are
commonly seen in the real world, e.g., electrical en-

gineering [1], industrial scheduling [2], and robotics [3].
These problems aim to simultaneously optimize more than
two often conflicting objectives, which can be mathematically
formulated as follows.

minimize F (x) =(f1(x), f2(x), . . . , fm(x)) (1)
subject to x ∈ X,

where m is the number of objectives and x is the decision
vector [4]. A large number of multi-objective evolutionary
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algorithms (MOEAs) were proposed in the past decades,
e.g., the region-based selection algorithm (PESA-II) [5], the
improved strength Pareto evolutionary algorithm (SPEA2) [6],
the elitist non-dominated sorting genetic algorithm (NSGA-
II) [7], the improved indicator based evolutionary algorithm
(IBEA) [8], and the multi-objective evolutionary algorithm
based on decomposition (MOEA/D) [9]. These algorithms
have been shown to be effective in solving MOPs with two or
three objectives [10].

The performance of MOEAs, in particularly those based
on dominance relation comparisons, dramatically degenerates
on MOPs with more than three objectives, also known as
many-objective optimization problems (MaOPs) [11]. The
performance deterioration can be largely attributed to the fact
that the rate of non-dominated solutions in a limited population
increases exponentially as the number of objectives increases,
making traditional Pareto-based MOEAs fail to distinguish
these solutions [12], [13].

Plenty of research efforts have been dedicated to designing
MOEAs for many-objective optimization and their applica-
tions [14], [15], e.g., the evolutionary many-objective opti-
mization algorithm using reference-point based non-dominated
sorting approach (NSGA-III) [11], the hypervolume based
evolutionary algorithm (HypE) [16], the knee-point driven
evolutionary algorithm (KnEA) [17], the improved two-archive
algorithm for many-objective optimization (Two Arch2) [18],
the reference vector based evolutionary algorithm (RVEA)
[13], and the region division based many-objective optimiza-
tion evolutionary algorithm (RdEA) [19]. Note that most
existing MOEAs for solving MaOPs typically require tens of
thousands of fitness evaluations.

One grand challenge in solving many real-world MaOPs
is that one single fitness evaluation (FE) is computationally
and/or financially very expensive, since it requires time-
consuming computer simulations or physical experiments [20],
[21], e.g., in aerodynamic design optimization [22], drug
design [23] or flowshop scheduling problems in [24]. Take
a ten-job and five-machine flowshop scheduling problem as
an example [24], it will take over 200 days for a conventional
MOEA if a total of 10,000 FEs is used, which is impractical.

One popular approach to expensive optimization problems is
to introduce computationally efficient surrogates for approx-
imating the expensive fitness evaluations [25], [26]. Various
types of surrogates are commonly used in expensive opti-
mization, including polynomial response surface methodology
[27], radial basis function [28], Gaussian process model, also
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known as Kriging model [29], or sometimes as efficient
global optimization (EGO), artificial neural networks [30],
and support vector machines [31]. A variety of surrogate-
assisted evolutionary algorithms (SAEAs) were proposed to
handle single-objective optimization using classification or
regression based fitness approximation, e.g., the neural net-
work assisted evolution strategy [32], the feasibility structure
modeling assisted memetic algorithm [33], the classification-
assisted memetic algorithm [34], and the surrogate-assisted
cooperative particle swarm optimization [35]. Furthermore,
many SAEAs for expensive multi-objective optimization were
proposed in the past decades, e.g., the generalized surrogate-
assisted multi-objective memetic algorithm (GS-MOMA) [36],
the weighted aggregation based multi-objective optimization
assisted by efficient global optimization (ParEGO) [37], the
efficient global optimization assisted MOEA/D (MOEA/D-
EGO) [21], the Pareto rank learning MOEA [38], and the
Kriging assisted RVEA (K-RVEA) [39], for solving MaOPs.
These SAEAs have been shown promising in reducing the
number of FEs for expensive multi-objective optimization
[40].

Although numerous SAEAs have been proposed for solv-
ing expensive optimization problems, four main challenges
remain in designing effective surrogate-assisted optimization
algorithms. First, choice of the surrogate model is not straight-
forward as there are many different types of surrogates but
there is no simple rule for determining which type should
be chosen [41]. Second, it is non-trivial to determine what
should be predicted by the surrogate [42]. Third, it is hard
to decide in which component of the MOEA the surrogate
should be applied [43], [44]. Last but not the least, surrogate
management, i.e., to decide which solution within the current
population should be re-evaluated using the expensive fitness
evaluation method, is critical for the performance of SAEAs.

As suggested in [39], building surrogates for MaOPs will
incur increasing computational costs as the number of objec-
tives increases, if the surrogates are used for approximating
the objective functions. Thus, it is very desirable to build
surrogates that can directly predict the dominance relation-
ship of compared solutions [45], [46], or the ranking of the
solutions [47], [48]. Inspired by the above ideas, this work
proposes a classification based surrogate-assisted evolutionary
algorithm (CSEA) for expensive many-objective optimization.
Different to the majority of the aforementioned work, the
surrogate in CSEA aims to learn the dominance relationship
between the candidate solutions and a set of selected reference
solutions, instead of the dominance relationship between the
candidate solutions. In addition, the degree of uncertainty
in prediction is estimated, which plays an important role in
surrogate management. The main new contributions of the
paper can be summarized as follows:
(1) Different to conventional SAEAs using surrogates to

approximate the fitness or objective functions, or using
surrogates to learn the dominance relationship between
the candidate solutions, the surrogate in the proposed
CSEA predicts the dominance relationship between the
candidate solutions and the selected reference solutions.
Its main advantage is that only one single surrogate

is needed compared to those SAEAs using surrogates
for fitness prediction, and the dominance relationship
is more predictable compared to those using surrogates
for predicting the dominance relationships between the
candidate solutions.

(2) A degree of reliability is estimated using a validation data
set, which divides the objective space into three regions of
uncertainty. The uncertainty information is then used in
model management for selecting solutions to be evaluated
using the expensive fitness evaluation method.

The rest of this paper is organized as follows. In Section
II, an introduction to surrogate-assisted optimization and ra-
dial projection is given. The details of the proposed CSEA
for expensive many-objective optimization are described in
Section III. Experimental settings and comparisons of CSEA
with the state-of-the-art methods on the benchmark problems
are presented in Section IV. Conclusions and future work are
drawn in Section V.

II. BACKGROUNDS

In this section, we first provide some backgrounds of
surrogate-assisted evolutionary optimization, together with a
description of the artificial neural network model used in this
work. We then present the details of the radial projection based
grid division, which is used for selecting reference points for
separating solutions in candidate solutions into two classes for
training the surrogate.

A. Surrogate-Assisted Optimization

The surrogate model in surrogate-assisted optimization typ-
ically aims to approximate the objective function or a fitness
function of a candidate solution x:

f̂(x) = f∗(x) + ξ(x), (2)

where f∗ is the true value of the objective or fitness value
of the solution, f̂ is the approximated value, and ξ is the
error function, which reflects the degree of “uncertainty” of
the approximation of the surrogate model [36]). The main
idea of surrogate-assisted optimization is to replace expensive
fitness evaluations with the computationally cheap surrogate,
thereby reducing the computation time for solving expensive
optimization problems [21].

In recent years, a plenty of multi-objective SAEAs have
been shown to be very effective in reducing the needed number
of FEs in solving MOPs [20], [49], [50], referring to [51]
for a recent review. However, few multi-objective SAEAs
have been particularly designed for solving MaOPs. Most
recently, a Kriging based surrogate-assisted reference vector
guided evolutionary algorithm was proposed for expensive
many-objective optimization [39]. In K-RVEA, the model
management strategy focuses on the balance between diversity
and convergence by making use of the uncertainty information
in the approximated objective values, on the basis of the
angel-based penalized distance proposed the original reference
vector based evolutionary algorithm (RVEA) [13]. K-RVEA
was demonstrated to be competitive compared to a few state-
of-the-art SAEAs for expensive many-objective optimization.
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In multi-objective or many-objective SAEAs, the surrogate
can be used to approximate different functions apart from
the objective function to accelerate the evolution. Roughly
speaking, existing SAEAs can be classified into two different
categories according to the target function of the surrogate.
In the first category, the fitness function is approximated
using single or multiple surrogates. Note that, in this cat-
egory, the fitness function can be an objective function, or
an aggregation function of all objective functions, or even
a performance indicator. For example, in ParEGO [37], a
single Kriging model is built to approximate an aggregation
function at each generation, where the aggregation function
is constructed with a weight vector randomly selected from
a set of uniform weight vectors. In SMS-EGO, the fitness of
an individual is defined as the contribution of this individual
to the hypervolume score of the population, and a Kriging
model is built to approximate the function of the hypervolume
[52]. In K-RVEA, a separate surrogate model is employed for
approximating m objective functions, while in MOEA/D-EGO
one Kriging model is built for the objective function of each
sub-problem [21].

In the second category of SAEAs, the surrogate serves
as a classifier [53], [48] that divides the candidate solutions
into good or bad solutions, e.g., dominated or non-dominated
solutions. So far, relatively less work has been published that
uses surrogate as a classifier, e.g., the classification and Pareto
domination based MOEA (CPS-MOEA) [46] and the MOEA
based on decomposition and preselection (MOEA/DP) [54]. In
CPS-MOEA, the population is divided into two equal groups,
one positive group and one negative group, according to the
non-dominated sorting. Then a classification and regression
tree (or k-nearest neighbor, KNN) is applied to predict the
categories of the newly generated offspring for reducing the
number of FEs, which is shown to be effective in compari-
son with the regularity modeling multi-objective evolutionary
algorithm (RM-MEDA) [55]. A classification- and regression-
assisted differential evolution (DE) algorithm, named CRADE,
is proposed for expensive single-objective optimization in
[47]. During the environmental selection in CRADE, offspring
solutions worse than their parents are discarded according
to the classification surrogate, and the fitness of the rest
offspring solutions are predicted by the regression surrogate.
In [34], classification was used to assist a memetic algorithm
in choosing individuals to be refined for solving optimization
problems with single equality constraint. In this algorithm,
a support vector machine was used to determine whether a
solution is close to the feasible region and whether local
refinement should be carried out. A significant reduction of
computation time was achieved.

B. Feedforward Neural Network

Feedforward neural networks (FNNs) are one type of artifi-
cial neural networks in which connections between the neurons
do not form a cycle [56], and they have been widely applied in
surrogate-assisted evolutionary algorithms [57]. A three-layer
FNN involves an input layer, a hidden layer and an output
layer, where each layer consists of several neurons, as shown

in Fig. 1, where the number of neurons in the input, hidden
and output layers is d, q, and l, respectively.

The structure and weights of the FNN are important for
its approximation performance. For a d-dimensional input x,
its weighted sums of the input nodes α are fanned into the
hidden layer. Then the outputs of the hidden neurons b are
also weighted by the output weights and summed up to be the
final output y, where y is a l-dimensional vector. Khidden(·)
is known as the activation function of the hidden neurons[58],
which is typically the sigmoid function or the hyperbolic
tangent function, and Koutput(·) is the activation function of
the output neurons, which is a sigmoid or linear function.
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Fig. 1. A 3-layer feedforward neural network, where the number of neurons
in the input, hidden and output layer is d, q, and l, respectively, with Khidden

and Koutput being the activation functions of the hidden and output neurons.

In the FNN shown in Fig. 1, a supervised learning algorithm
can be used to train the weight matrices v and w, and the error
back-propagation (BP) algorithm is one most popular super-
vised learning algorithm [59]. In this paper, the Levenberg-
Marquardt back-propagation algorithm is adopted to train the
FNN surrogate as it has been shown to be one of the fastest BP
algorithm [60]. Once the FNN is trained, a prediction result
can be obtained when a new input is given to the trained FNN.

C. Radial Projection Based Selection

In the proposed CSEA, the radial projection based selection
strategy [61] is employed to select a set of reference solutions
to construct the classification boundary. RSEA is also adopted
for selecting individuals in the environmental selection. The
details of the radial projection based selection are presented
in Algorithm 1.

First, the radial projection is used to map a set of normalized
m-dimensional objective vectors as 2-dimensional points in
the radial space, and the region occupied by these points
are divided into a sequence of grids (Algorithm 1 line 2).
A detailed description of these operations are presented in
Algorithm 2, where W is the projection matrix, K the number
of required solutions, and 1 an m×1 unit matrix with θi
being equal to 2π(i−1)/m. Note that the number of required
solutions K can be the number of reference solutions or the
population size for environmental selection.

Subsequently, K solutions are selected one by one using a
combined criterion for convergence and diversity, referring to
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Algorithm 1 RadialSelection(P,K)

Output:
PR (reference population).

1: [Y,G]← RadialGrid(P,K)
2: C ← 0
3: Con(P )← || P−minP

maxP−minP ||
4: PR ← argPR∈P minCon(P )
5: Crowd(PR)← 1
6: while |PR| < K do
7: Q← arg minCrowd(P )
8: Fit(Q,PR)← 0.1·m·Con(Q)−min ||YQ − YPR

||
9: Pq ← argq∈K minFit(Q,PR)

10: PR ← PR ∪ {Pq}
11: P ← P\{Pq}
12: Crowd(q)← Crowd(q) + 1
13: end

Algorithm 2 RadialGrid(P,K)

Output:
Y (coordinate in radial space), G (rectangle labels).

1: PN ← P−minP
maxP−minP

2: θi ← 2π(i− 1)/m /*i = 1, 2, . . . ,m*/
3: W1 ← (cos (θ1), . . . , cos (θm)),
W2 ← (sin (θ1), . . . , sin (θm))

4: Z ← (PN1)−1

5: Y ← (PNW1Z,PNW2Z)
6: n← b

√
Kc

7: Bl ← minY ,Bu ← maxY
8: G← bn(Y −Bl)/(Bu −Bl)c

/*Calculate the label of each projected point*/

line 9 in Algorithm 1. In the radial projection based selection,
function Con is used to measure the convergence property of
a solution by its Euclidean distance to the ideal point in the
objective space, and function Crowd is used to calculate the
degree of diversity of a solution using the number of selected
solutions in the same grid in the radial space.

III. THE PROPOSED ALGORITHM

In this work, a classification based surrogate-assisted evo-
lutionary algorithm (CSEA) is proposed for expensive many-
objective optimization. A diagram describing the main frame-
work of the proposed CSEA is given in Fig. 2. From the figure,
we can see that CSEA consists of a main loop representing
the evolutionary process using the real objective functions,
and a second loop in which solutions are selected using the
classification surrogate.

The pseudo code of CSEA is presented in Algorithm 3,
which can be divided into six main steps as follows.
(1) Initialization (Line 1 to 4): An initial population P

with 11d−1 solutions is generated using Latin hyper-
cube sampling [62], where d is the number of decision
variables. An FNN with H hidden neurons is initialized
using randomly generated weights and the activation
function is the sigmoid function. In the initialization, the
number of solutions to be evaluated using the expensive

Fig. 2. A diagram of the proposed CSEA consisting of two loops. In the
main loop, the solutions are selected according to the real objective function,
while in the second loop, solutions are selected according to the surrogate.

objective function t equals 11d−1, and these solutions
are copied to archive Arc.

(2) Selection of Reference Solutions (Line 6): A set of
reference solutions PR is selected from those evaluated
by the expensive fitness function using the radial pro-
jection based selection method. The reference solutions
are used to construct the classification boundary.

(3) Surrogate Update and Validation (Line 7 to 10):
The solutions in the archive are categorized into two
classes according to classification boundary. Then these
solutions are divided into a training data set (75%)
and a test data set (25%). The training set is used for
training the FNN and the test set is for cross-validation
to estimate the reliability of the classification surrogate.

(4) Surrogate-Assisted Selection (Line 11): Reproduction
operators like crossover and mutation are applied on the
parent solutions to create offspring solutions. Promising
solutions from the offspring are selected according to
the classification results and reliability of classification
obtained in Step 3.

(5) Environmental Selection (Line 13): Population P is
combined with offspring population Q, then environ-
mental selection is performed to select N solutions from
the combined population to be the parent individuals of
the next generation (as given in Algorithm 1 with K
being set to N ).

(6) Repeat Steps (2), (3), (4), and (5) until the maximum
number of FEs is reached.

In CSEA, the classification criterion and the surrogate
management strategy are crucial for the success of the algo-
rithm. We will discuss them in greater detail in the following
subsections.

A. Classification Criterion

In CSEA, a classification criterion is proposed to distinguish
good solutions from poor ones for selecting promising solu-
tions. This classification criterion is crucial for CSEA as the
classification accuracy heavily depends on the classification
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Algorithm 3 The Framework of CSEA
Input:

N (population size), K (number of reference solutions),
H (number of hidden neurons), tmax (maximum number
of FEs), gmax (maximum number of surrogate predictions
before being updated).

Output:
P (final population).

1: P ← Initialize the population with 11d−1 solutions using
Latin hypercube sampling method

2: t← 11d− 1 /* d is the number of decision variables */
3: net ← Initialize the neural network with H hidden

neurons /*m is the number of objectives*/
4: Arc← P
5: while t ≤ tmax do
6: PR ← UpdateReference(P,K)
7: C ← Classify(PR, Arc)
8: rr ← The rate of category II solutions in C
9: tr ← min {rr, 1− rr}

10: [Dtrain, Dtest]← DataPartition(Arc,C)
11: net← Train(net,Dtrain, T )
12: [p1, p2]← Validation(net,Dtest)
13: Q← SASelection(P, PR, p1, p2, gmax, tr)
14: Arc← Arc ∪Q
15: P ← RadialSelection(P ∪Q,N)
16: t← t+ |Q|
17: end

criterion. In multi-objective optimization, a basic criterion for
comparing two solutions is the Pareto dominance relationship
[7], [63], [64], which categorizes solutions into dominated
solutions and non-dominated solutions. Based on this idea,
a set of reference solutions are chosen to construct the Pareto
dominance boundary, which will divide all solutions into two
different categories. An illustrative example is provided in
Fig. 3, where three reference points are used to classify nine
solutions into two different categories. Solutions on the right
side of the non-dominance boundary are category I solutions
and those on the left side are category II solutions. Algorithm
4 presents the details of the classification criterion in pseudo
code.

Reference Solution

Category I solution

Category II solution

Classification

Bounary

Fig. 3. An illustration of the proposed classification criterion using a set of
reference solutions. A classification boundary is formed by three reference
solutions (denoted by stars), which classifies solutions into category I (filled
hexagons) and category II solutions (denoted by unfilled hexagons).

Algorithm 4 Classify(R,P )

Output:
C (categories of solutions in P ).

1: for i← 1 : |P | do
2: c← true
3: for j ← 1 : |R| do
4: c← c||(Pi Dominate Rj)
5: end
6: if c is false then
7: Ci ← 0 /*Category I solution*/
8: else
9: Ci ← 1 /*Category II solution*/

10: end
11: end

B. Selection of Reference Solutions

To choose a set of reference solutions to form the clas-
sification boundary, a radial space division based selection
strategy, as described in Algorithm 1, is adopted the proposed
CSEA. In this selection strategy, all solutions evaluated using
the expensive fitness function are first projected into a 2-
dimensional radial space.

The reference solutions play a key role in the performance
of CSEA. Fig. 4 provides an example showing the impact
of the number of reference solutions on the performance of
the proposed algorithm in terms of convergence and diversity
balancing. In the figure, there are three possible classification
boundaries, B1, B2, and B3, where B1 is formed by one
reference solution only, B2 by seven reference solutions,
and B3 by three reference solutions. If B1 is adopted as
the classification boundary, then three solutions are classified
as good category solutions, but the diversity of these good
category solutions is poor, which may lead to the loss of
diversity in the population. By contrast, if B2 is used as the
boundary, all the six candidate solutions are classified into
the same category and some poorly converged solutions like
s2 will be considered as a good solution and convergence
may be slowed down if it is selected as a promising solution.
However, if B3 is adopted as the classification boundary,
solutions s1, s3, s5 are classified as good solutions. We can see
that these good solutions are able to achieve a proper balance
between convergence and diversity, which can enhance the
performance of the proposed algorithm.

Classification Boundary B1

Classification Boundary B2

Classification Boundary B3

Candidate solution
1s

4s

5s

2s

3s
6s

1f

2f

Fig. 4. An example illustrating the impact of the number of reference solutions
on the performance of the proposed algorithm, where the classification
boundaries B1, B2, and B3 are constructed by one, seven, and two reference
solutions, respectively.
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In summary, a small number of reference solutions will
result in a small number of category II solutions that have
better convergence performance but are poor in terms of
diversity. By contrast, a large number of reference solutions
will result in a large number of category II solutions which are
poorly converged but have good diversity. The choice of the
number of reference solutions provides a way of balancing the
convergence and diversity of the selected category II solutions.

The relationship between the number of objectives and
the number of reference solutions K is also considered.
For problems with three to four objectives, CSEA should
emphasize on diversity maintenance, so a relative big K is
chosen. Instead, the convergence enhancement is crucial for
CSEA on problems with more than four objectives due to
the high rate of non-dominated solutions in the population,
and CSEA with a small K could classify most non-dominated
solutions as category I solutions and ensure the convergence
of the category II solutions.

To empirically investigate the impact of the number of
reference solutions K on the performance of CSEA for solving
problems with different numbers of objectives, CSEA with
different settings of parameter K is tested on DTLZ1, DTLZ2,
DTLZ5, DTLZ7 with different objectives. Fig. 5 shows the
IGD results achieved by CSEA with 2, 4, 6, 8, 10, 12, and 14
reference solutions on 3-, 4-, 6-, 8-, and 10-objective DTLZ1,
respectively. Note that, these four test problems have different
properties. DTLZ1 is a multi-modal problem with a regular
Pareto optimal front, which is difficult for conventional many-
objective evolutionary algorithms (MaOEAs) to converge to
the PF; DTLZ2 is a relatively simple test problem, which is
used to test the diversity maintenance in MaOEA; DTLZ5
has a degenerated PF, which is difficult for MaOEAs with
predefined reference information; DTLZ7 has a discontinuous
PF, which is difficult for most MaOEAs to achieve a set of
uniformly distributed solutions.

For DTLZ1 with different number of objectives, the IGD
values fluctuate slightly as the number of reference solutions
increases, and CSEA can achieve its best performance around
K=6. As for DTLZ2, the IGD values decrease as the number
of reference solutions increases before K reaches 6, but the
IGD values rebound when K further increases, indicating
that CSEA achieves the best performance when K=6. The
change of IGD values on DTLZ5 is similar to that on DTLZ1,
and CSEA achieves the best performance when K=4. The
IGD values on DTLZ7 remain nearly constant as K changes,
nevertheless we can still observe that CSEA with K being
around 8 can achieve its best performance. All in all, CSEA
with K = 6 can achieve stable performance in terms of
both convergence enhancement and diversity maintenance on
these four test problems. Accordingly, the number of reference
solutions will be fixed to six for all the test instances.

C. Surrogate Management

In the proposed CSEA, the surrogate management method,
as shown in Algorithm 3, consists of the following four parts:

1) Surrogate initialization, which initializes the parame-
ters and structure of the FNN (Line 3);

Algorithm 5 DataPartition(P,C)

Output:
Dtrain (training set), Dtest (test set).

1: D0 ← Find the category I solutions in P
2: D1 ← Find the category II solutions in P
3: i0 ← Randomly select b3/4|D0|c solutions from D0

4: i1 ← Randomly select b3/4|D1|c solutions from D1

5: Dtrain ← {Pi0 , Ci0}
6: Dtest ← {Pi1 , Ci1}

2) Surrogate update, which updates the weights of the
FNN with the training data set (Line 11);

3) Surrogate validation, where the trained network is
verified by cross-validation using the test data and the
test errors are calculated (Line 12);

4) Surrogate-assisted selection, which aims to select
promising solutions to be evaluated using the expensive
fitness function. The selection is based on the predicted
performance as well as the reliability (Line 12 and 13).

Note that before surrogate management is completed, all so-
lutions evaluated by the expensive fitness function are divided
into training and test sets. This data partition procedure aims to
alleviate the negative impact of possible categories imbalance
in the data and improve the classification performance of the
FNN. The solutions are randomly divided into two sets where
|training set| : |test set| is set to 3:1 in this work, and the
percentages of category I solutions in both sets are the same.
The details of the data partition procedure is presented in
Algorithm 5.

1) Surrogate Initialization: Three main components of the
FNN, including the network structure, the weights and the
activation function, need to be initialized. In this work, a
3-layer FNN is constructed with d-dimensional input, one-
dimensional output and H hidden layer neurons, where d is
the number of decision variables. All weights are initialized
with a random number in [0, 1]. Finally, the sigmoid function
is used as the activation function in the hidden and output
layer neurons [65]:

S(x) =
1

1 + e−λx
, (3)

where x is the input variable and parameter λ is set to one in
this work.

2) Surrogate Update: The training set data obtained by
Algorithm 5 is used for updating the weights of the FNN. As
previously mentioned, Levenberg-Marquardt back-propagation
method is adopted in this work. The details of the Levenberg-
Marquardt back-propagation method can be found in [66]. In
training the FNN update, the maximum number of training
epochs T is set to 500 for all the test instances. In addition,
an archive is used to store all solutions evaluated using the
expensive fitness function.

3) Surrogate Validation: Cross validation is performed for
calculating the error on the test data as a measure for esti-
mating the prediction uncertainty of the FNN. It is important
that the predicted classification is reliable as wrong predictions
will mislead the evolutionary search. Instead of calculating
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Fig. 5. The IGD results achieved by CSEA with 2,4,6,8,10,12, and 14 reference solutions on 3-,4-,6-,8-, and 10-objective DTLZ1, DTLZ2, DTLZ5, and
DTLZ7, respectively.

the error on the entire test data, the error of the category I
solutions (denoted as p1) and that of the category II solutions
(denoted as p2) in the test set (denoted as Dtest) are calculated
separately. Suppose Qc is the set of category c solutions, and
their predicted categories are Cp1 , Cp2 , . . . , Cp|Q| . The mean
absolute error (MAE) of the prediction is defined as follows:

MAE =

∑|Qc|
i=1 abs(c− Cpi)

|Qc|
, (4)

where |Qc| denotes the number of solutions in Qc, abs(∗)
denotes the absolute value of ∗. MAE is adopted as the test
error of category c solutions. Then the values of p1 and p2 can
be worked out using Eq. (4), respectively. These two values
indicate the reliability of the surrogate classifier, and the use
of these two errors will be further discussed in the following
subsection.

4) Surrogate-Assisted Solution Selection: The errors on
the test data, p1 and p2 are jointly used to estimate the
reliability of the prediction of the FNN. Fig. 6 presents the
reliability configuration formed by the test errors based on
the relationship between the uncertainty of the FNN and its
test errors. Once point (p1, p2) is located in a region of the
reliability configuration, the uncertainty of the FNN can be
estimated.

In reliability configuration, region R1 represents the region
in which all category II solutions are reliably predicted and
therefore the FNN is able to select the right category II
solutions to be evaluated using the expensive fitness function.
Actually, this region consists of two parts.
• For p2 < tr, the classifier is able to predict category II

solutions.
• For p1<tr AND p2<(1−tr), the prediction of category I

solutions is reliable and the predicted category I solutions
can be discarded, hence the boundary of p2 can be relaxed
to sample some promising category II solutions to benefit
from the uncertainty. In this case, if a poor classifier
that always predicts solutions to belong to category II,
some category I solutions may be selected. This problem
might be mitigated by using a stricter threshold (line 11
in Algorithm 6) to select some very certain category II
solutions.

Note that a large R1 does not necessarily mean that a large
number of candidate solutions will be evaluated using the ex-
pensive objective functions. Meanwhile, the predicted category
I solutions will not be evaluated using the expensive objective
functions, which helps save a lot of real function evaluations.

Region R2 represents the region in which the FNN can
correctly predict neither category I solutions nor category II
solution. Hence, none of these predicted solutions will be
evaluated using the real objective function, implying that the
FNN fails to provide useful information for predicting the
dominance relationship of solutions.

Region R3 represents the region in which category I so-
lutions will be very likely to be predicted as category II
solutions. Therefore, solutions predicted to be category I in
R3 should be chosen to be evaluated using the expensive real
fitness function, as they are very likely category II solutions.

The reliability configuration is formed using a threshold far
from 0.5, ensuring that the classification decision is reliable
enough. A rescaling method [67] is adopted to determine the
threshold value so that the influence of different classes on
the learning process is reduced. Further discussions about the
threshold will be given in the following subsection. In this
paper, the threshold tr is set to 0.5×min {rr, 1− rr}, where
rr is given in Eq. (6).
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Fig. 6. The reliability configuration of the FNN constructed by the test errors
p1 and p2 for estimating the uncertainty of the prediction.

A surrogate-assisted selection strategy is applied in CSEA
to select potentially well converged solutions (category II
solutions) from the offspring solutions, as presented in Al-
gorithm 6 according to the reliability configuration. In this
strategy, a set of offspring solutions is first generated by
reproduction operators, e.g., the simulated binary crossover
[68] and polynomial mutation [69]. Then the location of
the test errors p1 and p2 on the reliability configuration is
determined. If a solution is located in region R1, the solutions
predicted to be category II are used to generate offspring
solutions until the termination condition is satisfied; if the
solution is located in region R3, the solutions predicted to
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Algorithm 6 SASelection(P, PR, p1, p2, gmax, tr)

Output:
Q (offsprings).

1: Q← Variation(P ∪ PR)
2: L← Prediction(net,Q)
3: i← 0
4: if p2 < tr OR (p1 < tr AND p2 < 1− tr) then
5: while i < gmax do
6: H ← Select |PR| solutions from Q with the largest

L values
7: Q← Variation(H ∪ PR)
8: L← Prediction(net,Q)
9: i← i+ |Q|

10: end
11: Q← Select solutions from Q with L > 0.9
12: else if p1 > 1− tr AND p2 > tr then
13: while i < gmax do
14: H ← Select |PR| solutions from Q with the smallest

L values
15: Q← Variation(H ∪ PR)
16: L← Prediction(net,Q)
17: i← i+ |Q|
18: end
19: Q← Select solutions from Q with L < 0.1
20: else
21: Q← ∅
22: end

be category I are used to generate offspring solutions until the
termination condition is satisfied; otherwise, no solution will
be selected. During the surrogate-assisted selection strategy,
a maximum number of gmax solutions are predicted by the
trained FNN, and this number indicates the frequency that the
surrogate has been used before the surrogate is updated. Note
that only a few candidate solutions are selected to be evaluated
using the expensive fitness function.

D. Surrogate Accuracy Analysis

In this section, the impact of the imbalance of different
categories in the training data set on the performance of
the proposed CSEA and the accuracy of the FNN will be
investigated. Firstly, we introduce a new metric for assessing
the accuracy of the FNN. Assuming that the set of candidate
solutions is Q (as shown in Algorithm 6 step 2), and the pre-
dicted categories of solutions in Q are {Cp1, Cp2, . . . , Cp|Q|}
with their true categories (classified according to the objective
values calculated using the expensive objective functions)
are {Cr1, Cr2, . . . , Cr|Q|}. The predicted rate of category II
solutions rp is defined as

rp =

∑|Q|
i=1 (Cpi is category II)

|Q|
. (5)

The real rate of category II solutions rr is defined as

rr =

∑|Q|
i=1 (Cri is category II)

|Q|
. (6)

Note that a smaller difference between rp and rr indicates a
better accuracy of the FNN.

The CSEA without the data partition is tested on DTLZ1
with three objectives, and the variations of rp and rr are
plotted in Fig. 7(a). Then the variations of rp obtained by
FNN with the data partition procedure and that of the real
rate rr are plotted in Fig. 7(b). It can be observed from these
two figures that the CSEA without data partition has failed
to predict the categories of the most candidate solutions as
the rate of category II solutions obtained by FNN is quite
different from the real rate. However, CSEA with the data
partition procedure performs much better, and the FNN has
achieved good prediction results, where the variations of rp
obtained by the FNN and that of rr are similar.
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(b) CSEA with data partition on 3-objective DTLZ1
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(c) CSEA with data partition on 5-objective DTLZ1
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(d) CSEA with data partition on 10-objective DTLZ1
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Fig. 7. The variations of the rate of category II solutions in the current
population predicted by the FNN in CSEAs with and without data partition
rp and that of the real rate rr on DTLZ1 with different numbers of objectives.

The rp obtained by CSEA with data partition is compared
with the corresponding rr on DTLZ1 with 5 and 10 objectives,
respectively, which aims to investigate the influence of class
imbalance in the data during the evolution on the prediction
accuracy, as the number of objectives increases. The variations
of rp and rr on DTLZ1 with 5 and 10 objectives are shown
in Fig. 7(c) and Fig. 7(d), respectively. In these figures, we
can see that rp and rr are over 50%, and these two rates
increase as the number of objectives increases, since the
rate of non-dominated solutions increases as the number of
objectives increases and more non-dominated solutions are
predicted as category II solutions. Meanwhile, the tendency
of the variation of rp matches the variation of rr well, and
the difference between them becomes smaller and smaller as
the number of objectives increases, which is due to the fact that
the prediction accuracy increases as the number of objective
increases. In summary, the class imbalance in data becomes
worse as the number of objectives increases (rr increases),
and the FNN with data partition can achieve a satisfactory
prediction accuracy also on MaOPs.

E. The Effectiveness of the Surrogate

To investigate the effectiveness of the surrogate in the
proposed CSEA, we compare the CSEA with its variant
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without using the surrogate, denoted by CSEA−, on DTLZ1,
DTLZ3, DTLZ5 with 3, 6, and 10 objectives, respectively.
Note that CSEA− is similar to CSEA except that the second
loop in Fig. 2 using the surrogate is removed. The experimental
results are presented in Table I.

TABLE I
THE RESULTS OF CSEA- AND CSEA ON 9 TEST INSTANCES. THE BEST

RESULT IN EACH ROW IS HIGHLIGHTED.

Problem Obj. CSEA− CSEA

DTLZ1
3 9.71e+1(2.30e+1)− 4.36e+1(8.82e+0)
6 2.58e+1(1.11e+1)− 1.32e+1(4.43e+0)
10 3.87e-1(7.15e-2)− 2.86e-1(4.37e-2)

DTLZ3
3 2.47e+2(5.91e+1)− 1.09e+2(2.73e+1)
6 1.05e+2(2.60e+1)− 4.78e+1(1.38e+1)
10 1.26e+0(2.49e-1)− 1.00e+0(9.63e-2)

DTLZ5
3 2.21e-1(3.21e-2)− 8.07e-2(2.22e-2)
6 1.13e-1(1.90e-2)− 6.53e-2(2.20e-2)
10 8.36e-2(2.96e-2)− 1.00e-2(9.22e-4)

It can be observed from the table that CSEA significantly
outperforms CSEA− on all the test instances, confirming the
effectiveness and importance of using the surrogate in CSEA.
More results are presented in the supplementary materials.

IV. EMPIRICAL STUDIES

In this section, we examine the performance of CSEA
by empirically comparing it with a few state-of-the-art algo-
rithms, namely, NSGA-III [11], ParEGO [37], CPS-MOEA
[46], MOEA/D-EGO [21], and K-RVEA [39]. (All the com-
pared algorithms are implemented in PlatEMO [70]). Note
that ParEGO, MOEA/D-EGO, and K-RVEA are SAEAs for
solving many-objective optimization using Kriging models to
approximate the objective values and the aggregation function
values, respectively, while CPS-MOEA [46] is also a classifi-
cation based SAEA using k-nearest neighbor method to predict
the quality of a solution. NSGA-III is not an SAEA per se, but
is also adopted for comparison to illustrate the competitiveness
of the SAEAs in reducing the number of FEs for expensive
many-objective optimization. This set of the experiments are
conducted on 35 test instances taken from test suite DTLZ
[71] with 3, 4, 6, 8, and 10 objectives, respectively. We also
compared the algorithms on the WFG test suite [72], MaF test
suite [73], and a car cab design problem [11]. The comparative
results are presented in the Supplementary materials.

In the experiments, the number of decision variables is set
to ten (or an integer closest to ten for WFG2 and WFG3).
The Wilcoxon rank sum test is adopted to compare the results
achieved by CSEA and other algorithms under comparison at
a significance level of 0.05 over 30 independent runs. Symbols
‘+’ and ‘−’ denote that the compared algorithm performs sig-
nificantly better and significantly worse than CSEA according
to the Wilcoxon rank sum test, while ‘≈’ indicates there is no
statistically significant difference between the two compared
algorithms.

A. Performance Indicator

For comparisons, the inverted generational distance (IGD)
is adopted for evaluating the performance of the compared

algorithms. IGD is believed to be able to account for both
convergence and diversity of the non-dominated solutions,
and a smaller IGD value indicates better performance of the
MOEA. Since IGD requires a reference set, which should be
evenly distributed on the Pareto optimal front of test problems.
For all test problems, the closest integer to 5000 is used as the
number of reference points for IGD calculation, as an exact
number of 5000 is impossible to be set for all test instance.
In this paper, the hypervolume (HV) [74] is not used to assess
the performance of the compared algorithms as the obtained
solutions of expensive many-objective optimization problems
are not yet well converged due to the smaller number of FEs
allowed, often leading to a zero HV. In the supplementary
materials, the HV metric is used to assess the performance
of different algorithms when the obtained results are well
converged.

Suppose that P ∗ is a set of evenly distributed reference
points on the PF and Ω is the set of achieved non-dominated
solutions, IGD is defined as follows:

IGD(P ∗,Ω) =

∑
x∈P∗ dis(x,Ω)

|P ∗|
, (7)

where dis(x,Ω) is the minimum Euclidean distance between
x and points in Ω and |P ∗| the number of elements in P ∗.

B. Experimental Settings

For a fair comparison, we adopt the recommended param-
eter settings for the compared algorithms that have achieved
the best performance reported in the literature and the details
are given below.

1) Reproduction Operators. In this work, simulated binary
crossover [68] and polynomial mutation [69] are adopted in the
compared algorithms for offspring generation except for CPS-
MOEA. The distribution index of crossover is set to nc = 20
and the distribution index of mutation is set to nm = 20, as
recommended in [75]. The crossover probability pc is set to 1.0
and the mutation probability pm is set to 1/d, where d is the
number of decision variables. In CPS-MOEA and MOEA/D-
EGO, differential evolution (DE) operators [76] are used for
offspring generation, where the control parameters are set to
F = 0.5, pm = 1/d, and η = 20 as recommended in [46].

2) Population Size. The population size of CPS-MOEA,
ParEGO and CSEA is set to 50. For NSGA-III, MOEA/D-
EGO and K-RVEA, a two-layer reference vector generation
strategy is applied to generate reference (weight) vectors on
both the outer boundaries and inside layers of the Pareto
optimal fronts, where p1 and p2 are parameters controlling the
numbers of weight vectors along the boundary of the Pareto
front and inside it, respectively [11]. The settings of these
two parameters for generating a population size nearest to 50
for different test instances are list in Table II. Note that the
population size is set to an extremely small number as only
hundreds of FEs are allowed and a smaller population size will
make it possible to run a relative larger number of generations.

(3) Termination Condition. For all the test instances, the
maximum number of FEs is adopted as the termination condi-
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TABLE II
SETTING OF THE POPULATION SIZE IN NSGA-III AND K-RVEA, WHERE
p1 AND p2 ARE PARAMETERS CONTROLLING THE NUMBERS OF WEIGHT
POINTS (VECTORS) ALONG THE BOUNDARY OF THE PARETO FRONT AND

INSIDE IT, RESPECTIVELY.

Obj. Parameter(p1, p2) Population size (N )

3 (8,0) 45
4 (4,0) 35
6 (2,2) 42
8 (2,1) 44

10 (2,0) 55

tion, which is set to 300 as the problems involved are assumed
to be computationally expensive.

(4) Specific Parameter Setting in Each Algorithm. For
ParEGO, the number of weight vectors is set to 11 for bi-
objective problems and 15 for tri-objective problems, and the
maximum number of surrogate-assisted fitness approximation
before the surrogate update is set to 200000 as recommended
in [37]. For CPS-MOEA, k-nearest neighbor classification
approach is used for solutions classification, where k is set to
five as recommended in [46]. For MOEA/D-EGO, the number
of surrogate-assisted fitness evaluations before updating the
models is set to 20×(11d−1), and the other parameter settings
are the same as in [21].1 For K-RVEA, parameter δ is set to
0.05N with N being the population size, and the number of
generations wmax before updating the Kriging models is set to
20 as recommended in [39]. All the parameters are the same
as recommended in [13]. Regarding the settings of CSEA, the
number of surrogate-assisted prediction before updating the
models is equal to that in K-RVEA and MOEA/D-EGO, the
maximum epochs for training the FNN T is set to 500 and
the training is terminated once the change of the weights is
smaller than 0.001, the number of hidden neurons H is set to
10, and the number of reference solutions is set to 6 for all
the test instances.

C. Results on DTLZ Problems

The statistical results of the IGD values achieved by the
six algorithms under comparison over 20 independent runs on
DTLZ1 to DTLZ7 are summarized in Table III, where the
best results are highlighted. It can be observed that CSEA has
achieved the best results on the 35 test instances (mostly on
DTLZ1 to DTLZ5), followed by MOEA/D-EGO (mostly on
DTLZ6 and DTLZ7).

DTLZ1 and DTLZ3 are difficult due to their multimodal
landscapes, which means that it is difficult to obtain a set
of well converged solutions using a small number of FEs.
It is obvious that CSEA has achieved the best converged
solutions, followed by MOEA/D-EGO, K-RVEA, ParEGO,
CPS-MOEA and NSGA-III. The final non-dominated solutions
achieved by the compared algorithms on 3-objective DTLZ1
in the run associated with the median IGD values are plotted

1The implementation of MOEA/D-EGO is adapted from the codes avail-
able at http://www.cs.cityu.edu.hk/∼qzhang/publications.html. However, we
replace the DE algorithm with the method in a kriging toolbox called DACE
[77] to optimize the hyperparameters, since it is time-consuming to optimize
the hyperparameters in kriging using DE.

in Fig. 8. It can be concluded that the proposed CSEA
is effective in accelerating convergence on expensive many-
objective optimization.

The results on DTLZ2 and DTLZ4 show good convergence
but poor diversity. It can be seen from the table that, CSEA and
MOEA/D-EGO have achieved the best results, and the other
four compared algorithms exhibit similar performance. This
might be attributed to the radial space division based strategy
in CSEA for updating the reference solutions and the cluster
based selection strategy in MOEA/D-EGO for selecting the
candidate solutions for expensive fitness evaluation.

The PF of DTLZ5 and DTLZ6 are degenerated curves,
therefore, it is difficult to achieve a set of diverse and well
converged solutions. It can be observed that CSEA together
with MOEA/D-EGO have achieved all the best results on
these problems. The final non-dominated solutions achieved
by the compared algorithms on 10-objective DTLZ5 in the run
associated with the median IGD values are presented in Fig. 9.
It can be seen that CSEA has achieved a set of well converged
and evenly distributed solutions, MOEA/D-EGO has achieved
a set of well distributed but less converged solutions, K-RVEA
has achieved a set of well distributed but not well converged
solutions. By contrast, NSGA-III, ParEGO and CPS-MOEA
fail to achieve a set of well converged solutions.

The PF of DTLZ7 is discontinuous, and therefore diversity
maintenance is challenging. It can be observed that MOEA/D-
EGO performs best on the five test instances, followed by
K-RVEA, CPS-MOEA, CSEA, NSGA-III and ParEGO. Al-
though CSEA has not achieved the best results on these five
test instances, it has been shown competitive compared with
other five algorithms.

D. Influence of the Number of Hidden Neurons
This part of the empirical studies aims to verify the influence

of the number of hidden neurons H on the performance of
CSEA in expensive many-objective optimization. Since an
FNN is adopted as the surrogate in the proposed CSEA,
the complexity of the surrogate and its approximation abil-
ity increase as the number of hidden neurons of the FNN
increases. So is the risk of overfitting. Hence, an appropriate
number of hidden neurons is important for achieving accept-
able prediction. In the study, 0.5d, d, 1.5d and 2d hidden
neurons are tested on DTLZ1 with 3, 5 and 10 objectives,
respectively, where d is the number of decision variables. The
experimental results are listed in Table IV. It can be observed
that CSEA with 2d hidden neurons has achieved the best
results on DTLZ1 with 3 and 5 objectives, which might be due
to the fact that the FNN with a large number of hidden neurons
has better approximation capability. On the other hand, CSEA
with 0.5d hidden neurons has achieved the best result on 10-
objective DTLZ1 and the second best on the other two test
instances, as a simple surrogate is capable of achieving good
approximation result while a complex surrogate may suffer
from overfitting. Hence, the number of hidden neurons is set
to 0.5d as a general setting for all test instances, which can
achieve good approximation ability while reducing the risk of
overfitting. This is intuitive as the total number of training data
is limited to 11d− 1.
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TABLE III
THE STATISTIC RESULTS OF THE FIVE COMPARED ALGORITHMS ON 35 TEST INSTANCES. THE BEST RESULT IN EACH ROW IS HIGHLIGHTED.

Problem Obj. NSGA-III ParEGO CPS-MOEA K-RVE MOEA/D-EGO CSEA

DTLZ1

3 7.87e+1(1.49e+1)− 1.08e+2(1.95e+1)− 7.79e+1(1.21e+1)− 1.25e+2(2.35e+1)− 9.64e+1(1.94e+1)− 4.36e+1(8.82e+0)
4 5.96e+1(1.39e+1)− 8.24e+1(1.97e+1)− 5.68e+1(1.24e+1)− 8.08e+1(2.01e+1)− 6.39e+1(6.63e+0)− 3.18e+1(9.29e+0)
6 2.97e+1(1.40e+1)− 4.15e+1(8.11e+0)− 3.24e+1(8.59e+0)− 4.45e+1(1.06e+1)− 2.71e+1(7.52e+0)− 1.32e+1(4.32e+0)
8 9.65e+0(3.71e+0)− 1.36e+1(4.69e+0)− 1.17e+1(2.89e+0)− 1.51e+1(4.33e+0)− 1.05e+1(3.21e+0)− 4.36e+0(2.25e+0)
10 7.12e-1(4.74e-1)− 5.44e-1(1.75e-1)− 5.16e-1(3.83e-1)− 4.71e-1(1.96e-1)− 3.88e-1(1.13e-1)− 2.86e-1(4.37e-2)

DTLZ2

3 2.76e-1(3.57e-2)− 3.42e-1(2.17e-2)− 2.91e-1(2.97e-2)− 2.92e-1(2.77e-2)− 3.12e-1(2.59e-2)− 1.89e-1(1.13e-2)
4 3.47e-1(1.64e-2)− 3.86e-1(2.59e-2)− 4.51e-1(4.06e-2)− 3.69e-1(3.41e-2)− 3.48e-1(1.92e-2)− 2.63e-1(1.98e-2)
6 5.19e-1(2.28e-2)− 4.96e-1(2.49e-2)− 6.34e-1(2.80e-2)− 4.49e-1(5.30e-2)− 4.48e-1(1.30e-2)− 3.93e-1(3.28e-2)
8 6.33e-1(3.47e-2)− 5.55e-1(2.64e-2)≈ 6.70e-1(2.77e-2)− 6.11e-1(2.85e-2)− 5.32e-1(1.30e-2)+ 5.47e-1(1.75e-2)
10 7.44e-1(5.91e-2)− 6.18e-1(2.72e-2)+ 6.85e-1(2.77e-2)− 6.71e-1(3.92e-2)− 5.14e-1(1.67e-2)+ 6.25e-1(2.47e-2)

DTLZ3

3 2.55e+2(4.34e+1)− 2.63e+2(5.27e+1)− 2.13e+2(4.49e+1)− 3.57e+2(4.36e+1)− 2.06e+2(2.06e+1)− 1.09e+2(2.73e+1)
4 1.65e+2(6.51e+1)− 1.96e+2(3.84e+1)− 1.59e+2(2.94e+1)− 2.57e+2(5.26e+1)− 1.83e+2(6.18e+1)− 8.69e+1(2.19e+0)
6 1.02e+2(3.56e+1)− 1.14e+2(2.72e+1)− 1.19e+2(4.23e+1)− 1.28e+2(4.13e+1)− 9.17e+1(1.63e+1)− 4.78e+1(1.38e+0)
8 2.35e+1(1.33e+1)− 3.55e+1(1.48e+1)− 5.02e+1(1.29e+1)− 3.22e+1(1.98e+1)− 3.63e+1(8.15e+0)− 7.76e+0(4.37e+0)
10 1.56e+0(1.13e+0)− 1.68e+0(5.61e-1)− 7.29e+0(6.48e+0)− 1.84e+0(5.65e-1)− 1.26e+0(3.36e-1)− 1.01e-1(9.63e-2)

DTLZ4

3 6.44e-1(1.02e-1)− 6.81e-1(7.26e-2)− 5.85e-1(5.94e-2)− 5.26e-1(1.51e-1)− 6.50e-1(2.74e-2)− 3.89e-1(5.76e-2)
4 7.00e-1(1.68e-1)− 7.24e-1(5.21e-2)− 6.23e-1(2.75e-2)− 6.43e-1(1.08e-1)− 6.58e-1(5.26e-2)− 4.13e-1(5.21e-2)
6 7.61e-1(1.25e-1)− 6.88e-1(3.33e-2)− 6.59e-1(2.46e-2)− 7.18e-1(8.64e-2)− 6.64e-1(3.21e-2)− 5.48e-1(4.46e-2)
8 7.32e-1(3.55e-2)− 6.69e-1(1.90e-2)− 6.61e-1(1.82e-2)− 7.43e-1(3.64e-2)− 6.34e-1(1.82e-2)− 6.17e-1(3.19e-2)
10 7.84e-1(3.31e-2)− 6.12e-1(1.36e-2)+ 6.46e-1(7.00e-3)− 7.12e-1(3.77e-2)− 6.50e-1(0.00e+0)− 6.39e-1(1.41e-2)

DTLZ5

3 1.82e-1(3.94e-2)− 2.84e-1(2.20e-2)− 2.11e-1(2.81e-2)− 2.81e-1(4.96e-2)− 2.48e-1(1.92e-2)− 8.07e-2(2.22e-2)
4 1.91e-1(3.28e-2)− 2.35e-1(2.21e-2)− 2.12e-1(5.22e-2)− 2.21e-1(2.52e-2)− 1.94e-1(8.94e-3)− 9.87e-2(1.73e-2)
6 1.60e-1(2.87e-2)− 1.52e-1(2.14e-2)− 1.89e-1(2.89e-2)− 1.42e-1(2.59e-2)− 1.44e-1(1.34e-2)− 6.53e-2(2.20e-2)
8 1.29e-1(3.28e-2)− 7.09e-2(8.92e-3)− 1.25e-1(2.88e-2)− 7.78e-2(1.09e-2)− 7.00e-2(1.22e-2)− 3.27e-2(4.58e-3)
10 1.59e-1(1.73e-2)− 1.74e-2(1.91e-3)− 5.79e-2(1.20e-2)− 2.00e-2(0.00e+0)− 2.00e-2(0.00e+0)− 1.00e-2(9.22e-4)

DTLZ6

3 5.96e+0(3.22e-1)− 6.33e+0(1.83e-1)− 3.39e+0(8.41e-1)+ 6.01e+0(4.48e-1)− 2.43e+0(5.36e-1)+ 4.13e+0(8.36e-1)
4 5.62e+0(4.30e-1)− 5.47e+0(1.50e-1)− 3.21e+0(6.92e-1)− 5.16e+0(5.19e-1)− 1.87e+0(8.81e-1)+ 3.01e+0(6.19e-1)
6 3.85e+0(4.10e-1)− 3.63e+0(2.74e-1)− 2.64e+0(4.76e-1)− 3.60e+0(4.11e-1)− 1.19e+0(2.76e-1)+ 2.41e+0(6.28e-1)
8 2.28e+0(3.40e-1)− 2.02e+0(2.36e-1)− 1.18e+0(4.80e-1)− 1.91e+0(2.51e-1)− 6.72e-1(2.26e-1)+ 1.24e+0(4.20e-1)
10 8.44e-1(2.23e-1)− 6.21e-1(1.11e-1)− 1.82e-1(1.11e-1)− 4.58e-1(2.27e-1)− 1.82e-1(8.20e-2)− 7.53e-2(3.42e-2)

DTLZ7

3 3.97e+0(1.28e+0)− 5.78e+0(8.43e-1)− 4.15e+0(1.46e+0)− 2.23e+0(9.79e-1)− 2.30e-1(8.60e-2)+ 1.39e+0(6.83e-1)
4 5.38e+0(1.21e+0)− 7.79e+0(1.19e+0)− 4.19e+0(1.63e+0)− 2.75e+0(7.48e-1)− 5.62e-1(4.32e-2)+ 2.52e+0(4.86e-1)
6 8.53e+0(2.63e+0)− 8.73e+0(2.18e+0)− 3.19e+0(1.49e+0)+ 4.02e+0(1.25e+0)+ 8.46e-1(7.67e-2)+ 4.45e+0(6.94e-1)
8 9.39e+0(4.58e+0)− 6.67e+0(2.70e+0)− 2.25e+0(9.94e-1)+ 3.83e+0(2.64e+0)+ 9.88e-1(4.09e-2)+ 4.41e+0(3.15e-1)
10 9.70e+0(7.95e+0)− 1.68e+0(2.21e-1)+ 1.77e+0(2.87e-1)≈ 1.59e+0(2.46e-1)+ 1.19e+0(3.21e-2)+ 1.85e+0(2.29e-1)

+/− / ≈ 0/35/0 3/31/1 3/31/1 3/32/0 11/24/0

‘+’, ‘−’ and ‘≈’ denote that the result is statistically significantly better, worse and comparable to that obtained by CSEA, respectively.
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Fig. 8. The non-dominated front obtained by each algorithm on 3-objective DTLZ1 in the run associated with the median IGD value.

TABLE IV
THE STATISTIC RESULTS OF CSEA WITH DIFFERENT NUMBERS OF

HIDDEN LAYER NEURONS ON DTLZ1. THE BEST RESULT IN EACH TEST
INSTANCE IS HIGHLIGHTED.

H
Obj.

3 5 10

0.5d 3.82e+1(7.57e+0) 2.11e+1(5.42e+0) 2.31e-1(1.89e-2)
d 4.66e+1(6.40e+0) 2.70e+1(6.37e+0) 2.79e-1(4.35e-2)

1.5d 5.26e+1(1.29e+1) 2.15e+1(1.01e+1) 2.75e-1(4.50e-2)
2d 3.29e+1(5.20e+0) 2.08+1(3.93e+0) 2.73e-1(3.55e-2)

E. Problems with More than Ten Decision Variables

Most existing SAEAs have been tested only on optimization
problems with up to 30 decision variables [78], and those
using Kriging models [21], [39] have typically been tested
on problems with up to ten decision variables. This is mainly
due to the fact that the computation time for training Kriging
models can become prohibitive when the amount of data for
training the surrogate increases [79]. As a result, locating the
global optimum or global Pareto front of high-dimensional
multi-modal problems becomes hardly tractable as an accurate
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Fig. 9. The non-dominated front obtained by each algorithm on 10-objective DTLZ5 in the run associated with the median IGD value.

approximation of the fitness landscape will usually require a
very large number of FEs [25]. Only very recently, some work
has been reported on addressing high-dimensional expensive
single-objective problems with up to 100 decision variables
[35], and large-scale single-objective optimization problems
with up to 500 decision variables [80].

To investigate the performance of the proposed CSEA on
expensive optimization problems with more than ten decision
variables, the performance of CSEA and other four algorithms,
namely NSGA-III, CPS-MOEA, ParEGO, MOEA/D-EGO,
and K-RVEA, is examined on ZDT1 [81] with 10, 20, and
30 decision variables.

In this set of experiments, the maximum numbers of FEs are
set to 300, 600, and 900 for test instances with 10, 20, and
30 decision variables, respectively. The final non-dominated
solutions achieved by each algorithm on ZDT1 with 10, 20,
and 30 decision variables in the run associated with the median
IGD value are shown in Fig.10. Note that, MOEA/D-EGO has
achieved the best results on ZDT1 with 10 decision variables,
but the non-dominated solutions achieved by MOEA/D-EGO
on ZDT1 with 20 and 30 decision variables are far from
the Pareto optimal front and the solutions achieved by other
algorithms, hence these solutions are not included.

It can be observed from these three figures that CSEA has
achieved the best performance on these three test instances
compared with other five state-of-art algorithms, which further
demonstrates the efficiency of CSEA on problems with up to
30 decision variables.

F. Runtime Comparison

For conventional SAEAs using Kriging models, the compu-
tation time for training the surrogates varies a lot depending
on the number of training samples, which may become pro-
hibitively large if a large number of training samples are used.
For the proposed CSEA, an FNN is adopted as the surrogate,
whose training time is much more scalable to the number of
training data in contrast to the Kriging models.

To investigate the computational efficiency of CSEA, the
runtime of different SAEAs on 3-objective DTLZ2 are com-
pared. The results over the number of the evaluations achieved
by CSEA, CPS-MOEA, ParEGO, MOEA/D-EGO, and K-
RVEA are shown in Fig. 11. Since NSGA-III does not involve
any surrogates, NSGA-III is not included in comparing the
computation time.

It can be observed that the runtime of CSEA, ParEGO, K-
RVEA, and MOEA/D-EGO increases linearly with the number
of evaluations, where the runtime of ParEGO and MOEA/D-
EGO increases most rapidly. By contrast, the computation
time of CSEA increases most slowly. The runtime of CSEA
is significantly less than that of K-RVEA, MOEA/D-EGO,
and ParEGO, and CPS-MOEA consumes the least runtime.
The main reason is that CPS-MOEA adopts KNN to predict
the candidate solutions and the computational complexity of
KNN is far less than that of Kriging or FNN. In conclusion,
CSEA is computationally efficient in comparison with K-
RVEA, MOEA/D-EGO, and ParEGO.

V. CONCLUSION

In this work, we have proposed a classification based
surrogate-assisted multi-objective SAEA, called CSEA, for ex-
pensive many-objective optimization. A classification criterion
is proposed to divide solutions evaluated using the expen-
sive objective functions into two different categories. Then
a surrogate is employed to learn the classification criterion
to predict the category of new candidate solutions and select
potentially better converged solutions to be evaluated using
the expensive objective functions. Assisted by the surrogate,
the proposed CSEA is capable of solving expensive many-
objective optimization problems satisfactorily with only a few
hundreds instead of tens of thousands FEs.

An FNN is adopted as the classifier for predicting the
possible category of new candidate solutions. Cross-validation
is carried out to calculate the test errors for estimating the reli-
ability of the predictions. The test errors are used to construct
the reliability configuration for surrogate management taking
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Fig. 11. Runtime over the number of evaluations in CSEA, CPS-MOEA,
ParEGO, MOEA/D-EGO, and K-RVEA on 3-objective DTLZ2.

advantage of the uncertainty of the prediction for enhancing
the accuracy of the FNN, which has been demonstrated to play
a key role in enhancing the performance of CSEA.

CSEA is compared with NSGA-III, CPS-MOEA, ParEGO,
MOEA/D-EGO, and K-RVEA on the widely used test suites
DTLZ and WFG to demonstrate its effectiveness. The effec-
tiveness of CSEA is examined in ZDT problems with up to
30 decision variables, mainly because the computational effi-
ciency of FNNs is more scalable to the increase in the number
of training data than that of the Kriging. It is also encouraging
that the performance of CSEA is relatively insensitive to its
parameters. Therefore, the overall performance of CSEA is
highly competitive compared with the state-of-the-art SAEAs
for expensive many-objective optimization.

The present work demonstrates that surrogates classifying
solutions into dominated and non-dominated solutions are
promising for solving expensive many-objective optimization
problems. Therefore, it deserves further efforts to develop sur-
rogate management strategies in classification based surrogate-
assisted evolutionary algorithms for enhancing the conver-
gence and promoting diversity. In addition, the effectiveness
of other machine learning models for classification based
surrogates remains to be investigated. Finally, the proposed
method will be extended to solve even higher dimensional
expensive optimization problems.
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