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Abstract—In solving many real-world optimization problems,
neither mathematical functions nor numerical simulations are
available for evaluating the quality of candidate solutions. In-
stead, surrogate models must be built based on historical data
to approximate the objective functions and no new data will be
available during the optimization process. Such problems are
known as offline data-driven optimization problems. Since the
surrogate models solely depend on the given historical data, the
optimization algorithm is able to search only in a very limited
decision space during offline data-driven optimization. This paper
proposes a new offline data-driven evolutionary algorithm to
make the full use of the offline data to guide the search. To this
end, a surrogate management strategy based on ensemble learn-
ing techniques developed in machine learning is adopted, which
builds a large number of surrogate models before optimization
and adaptively selects a small yet diverse subset of them during
the optimization to achieve the best local approximation accuracy
and reduce the computational complexity. Our experimental
results on the benchmark problems and a transonic airfoil design
example show that the proposed algorithm is able to handle
offline data-driven optimization problems with up to 100 decision
variables.

Index Terms—Offline data-driven optimization, surrogate, evo-
lutionary algorithm, ensemble, radial basis function networks.

I. INTRODUCTION

Evolutionary algorithms (EAs) have been shown to be effec-
tive in a number of real-world optimization applications [1],
[2]. One assumption of most EAs is that computationally
cheap analytical functions are available for calculating the
quality of candidate solutions, enabling EAs to afford a large
number of fitness evaluations. This assumption does not hold,
unfortunately, for many real-world optimization problems,
where either computationally intensive numerical simulations
or expensive experiments must be performed for fitness evalua-
tions [3], [4]. To solve these expensive optimization problems,
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it is essential to employ computationally cheap surrogate
models to assist EAs in an attempt to reduce the required
expensive fitness evaluations [5].

Most existing surrogate-assisted evolutionary algorithms
(SAEAs) assume that a small number of expensive real fitness
evaluations, either numerical simulations or experiments, can
still be conducted, which is known as online data-driven opti-
mization [6]. Thus, the main concern in most existing SAEAs
is to properly update the surrogate model by making the best
use of the allowed expensive real fitness evaluations, known as
evolution control or model management [7]. Many regression
or classification techniques can be used as surrogate models
in SAEAs, such as radial basis function networks (RBFNs)
[8], [9], Kriging models [10], [11], [12], [13], polynomial
regression (PR) models [14], among many others. To improve
the accuracy in fitness approximation, surrogate ensembles
have also been used [15], [16], [17], [18], [19], [20].

Many empirical model management strategies have been
developed for online data-driven EAs [5], [21], where the main
idea is either to enhance the accuracy of the surrogates [22],
[23], to ensure correct environmental selection [24], or to
encourage exploration [12], [18], [25], [26]. Another idea is
to use a combination of global and local surrogate models
in which the global model is used to smoothen out the local
optimums while the local ones are utilized for exploiting the
local details of the fitness landscape [27], [28], [29].

A class of more formal model management strategies are
known as infill sampling criteria [30], [31], which help select
the next solution to be evaluated using the expensive fitness
function. Three main infill sampling criteria have been sug-
gested, namely, maximizing the predicted fitness, maximizing
the prediction uncertainty, or combining the previous two
criteria, which in principle agree with the empirical model
management strategies. Infill criteria, including expected im-
provement [32], lower confidence bound (LCB) [33], [34],
and probability of improvement [35], are most widely used
in Kriging or Gaussian process assisted EAs. Most recently,
infill criteria have been extended to surrogates consisting of
heterogeneous ensembles [36].

While most SAEAs focus on developing model management
strategies for online data-driven optimization, relatively little
effort has been dedicated to offline data-driven optimization
with a few exceptions [6], [37], [38], where no new data
can be made available for managing the surrogates. Offline
data-driven optimization poses new challenges to SAEAs,
and how to address the challenges heavily depends on the
problem to be solved and the amount of historical data. For
instance, in trauma system design [6], the historical data are
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the emergency records collected within one year in Scotland,
and the objectives and constraints can be evaluated using
the data. Since a large amount of data is available and
consequently the main challenge is to reduce the computation
time for fitness evaluations, a model management strategy
was proposed to adjust the fidelity of the surrogate model
according to the optimization process [6]. By contrast, only a
small amount of historical data from manufacturing processes
is available for blast furnace optimization [37]. As the data is
very noisy, the data must be preprocessed before being used for
constructing the surrogate. In another example of optimization
of fused magnesium furnaces [38], only historical data from
manufacturing processes is available for optimization. The idea
is to construct a smooth global PR model before optimization
starts and to use this model as the real fitness function for
managing local surrogates during the optimization.

In this work, we aim to design a generic and problem-
independent offline data-driven EA. The main challenge here
is to make full use of the available historical data to guide
the evolutionary search. To this end, a large number of surro-
gates are generated offline using the bagging technique [39],
[40] and a subset of them is adaptively selected for fitness
estimation as the evolutionary optimization process proceeds.
We term the proposed algorithm data-driven evolutionary
algorithm using selective ensemble (DDEA-SE).

The rest of this paper is organized as follows. In Section
II, main challenges in data-driven evolutionary optimization
are discussed together with a short review of the related work.
Then, bagging is briefly introduced in Section III. Section IV
describes the details of the proposed algorithm, focusing
on the generation of ensembles using bagging and selection
of the ensemble subset. To further analyze the behavior of
the proposed algorithm, experimental results on benchmark
problems and an example of transonic wing system design are
presented in Sections V and VI. Section VII concludes the
paper and suggests a few possible future research directions
for offline data-driven evolutionary optimization.

II. OFFLINE DATA-DRIVEN EVOLUTIONARY
OPTIMIZATION

A wide range of real-world optimization problems can be
solved only using offline data-driven optimization approaches,
as no new data can be made available during the optimiza-
tion [6], [37], [38]. As shown in Fig. 1, offline data-driven
EAs can be divided into three main parts, i.e., data collection,
surrogate modeling and management, and optimization. At
first, data is collected, and pre-processed if necessary. Before
optimization starts, the optimization problem needs to be
properly formulated, including the specification of the fitness
and constraint functions to be approximated by the surrogates.
Then, global surrogate models are built using the historical
data. Finally, an optimizer performs optimization by searching
the surrogates created offline, although local surrogates can
also be constructed during the optimization using the historical
data.
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Fig. 1. A diagram of a generic offline data-driven EA.

A. Main Challenges

The available data may pose a challenge to the model man-
agement strategy, including the strategy for model selection
and the infill criterion, regardless whether offline or online
data-driven EAs are used. In contrast to online data-driven
EAs, however, offline data-driven EAs have no chance to
sample new data to improve the quality of the surrogate models
or to validate the found optima. These make offline data-
driven EAs more challenging than online data-driven EAs,
particularly when the data is imbalanced [41], [42], [43], noisy
[44], time-varying [45] or heterogeneous [46].

As the surrogate models cannot be updated during the
optimization in offline data-driven EAs, the quality of the
surrogates created before the optimization starts becomes
especially important in offline data-driven EAs. Therefore,
the main challenge lies in the construction of surrogates of
sufficiently high quality in case only a limited amount of data
are available.

B. Countermeasures

To address the above challenge, effective countermeasures
that enhance the quality of data or models must be taken in
designing offline data-driven EAs. On the one hand, enhancing
the quality of the offline data can indirectly improve the quality
of the surrogate models. On the other hand, surrogate models
built from very limited data are expected to be able to guide
the search properly. Although not much research on offline
data-driven EAs has been reported, the following ideas can be
used to handle the aforementioned challenges.

• Pre-processing the data. The non-ideal nature of the
offline data may seriously degrade the quality of the
surrogate models. Thus, pre-processing the offline data
is indispensable to reduce noise or to remove outliers,
e.g., in offline optimization of blast furnaces [37].

• Creating synthetic data. As lack of data is one main
challenge in offline data-driven EAs, one straightforward
idea is to generate a certain amount of synthetic data
to augment the available historical data for updating the
surrogate models. Synthetic data can be generated using
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a surrogate model [38] or resampling the given data [39],
[42], [43].

• Transferring knowledge from other optimization prob-
lems. Multi-tasking optimization [47], [48], [49] provides
an effective means to transfer knowledge between dif-
ferent problems to speed up optimization. Thus, transfer
learning [50] can be extended to SAEAs to alleviate the
issue of data paucity [51].

• Employing advanced machine learning techniques. For
example, semi-supervised learning [52] can be used to
address data paucity [53], ensemble learning [54] can
be employed to enhance the prediction performance of
surrogate models [55], and clustering techniques can be
adopted to reduce the amount of data to save computation
time for each fitness evaluation in an offline data-driven
trauma system design application [6].

III. PRELIMINARIES OF SELECTIVE BAGGING

Ensemble learning refers to a class of machine learning
methods that construct a set of base learners and combine them
to create a strong learner [54]. Ensembles have been shown
to have advantages over single learners in terms of accuracy
and robustness [56]. Bootstrap aggregating [39] (bagging for
short) and boosting [57] are two popular ensemble generation
methods. Bagging is a parallel ensemble method minimizing
variance while boosting is a sequential ensemble method
minimizing bias [58]. In SAEAs, bias introduced by surrogates
is less critical as long as the ranking of candidate solutions
is correct. Out of this reason, this work adopts bagging
for generating surrogate ensembles. To further improve the
approximation quality of ensembles, a subset of base learners
are selected [59] for calculating the output. Bagging algorithms
with model selection strategies are known as selective bagging.
Fig. 2 is a diagram showing the process of selective bagging,
which consists of bootstrap sampling, model training, model
selection, and model combination [57].
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Fig. 2. A diagram of selective bagging.

A. Model Generation

Model generation in selective bagging is composed of
bootstrap sampling and model training. First, bootstrap sam-
pling [60] is performed for T independent times to generate T
data subsets (S1, S2,...,ST ) resampled from the original data.
As shown in Fig. 2, each data subset contains a random portion
of the original data, which is denoted by black dots. Then
T different models are generated, each using one of the T
datasets.

It is well known that the accuracy of a bagging ensemble
converges as the size of the ensemble (T ) increases [57]. Fur-
ther, since a higher degree of ensemble diversity is expected
to deliver better performance, highly nonlinear models that
have a large change in their output in response to a small
change in the input are usually preferred in bagging [54].
Those data points left out in each data subset, termed out-
of-bag samples [61], result in diversity in ensembles. For
bootstrap sampling without replacement [62], typically half
of the original dataset size (known as half-sampling [40]) is
used as the number of out-of-bag samples [63], leading to a
well-performing bagging ensemble [64].

B. Model Combination

Model combination in selective bagging consists of model
selection and averaging. Before combining the models, only
Q of T (Q < T ) models are selected to produce the ensemble
output. An illustrative example is shown in Fig. 2, where the
second model is not selected for generating the final output of
the ensemble. In this work, the final output of the ensemble
is the plain average of the outputs of the selected models.

The model selection strategies play an important role in
selective bagging, which affect the accuracy, diversity and
computational efficiency. In fact, the process can be formulated
as a combinatorial optimization problem where the decision
variables are T models and the objective is the accuracy
and/or diversity. Existing model selection strategies can be
classified into two categories depending on whether global
or local search is employed [65]. Global search strategies
include sparse optimization [66], [67], genetic algorithms
[68], and clustering [69]. By contrast, local search based
model selection strategies are greedy, which successively add
models by starting from an empty set, or successively delete
models from the full set of models. The criterion to evaluate
whether a model should be selected or not can be based
on complementarity, orientation, or margin distance [70]. It
has been shown that the local search based model selection
strategies are computationally more efficient than the global
search based strategies [71].

IV. PROPOSED ALGORITHM

Offline data-driven EAs distinguish themselves from online
data-driven EAs in many aspects. Whereas online data-driven
EAs can use various infill sampling criteria [30], [31] to
include additional training data for updating the surrogates
during the optimization, offline data-driven EAs have no
access to the real fitness evaluations and no model update can
be carried out. In addition, online data-driven EAs are able to
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Fig. 3. A generic diagram of DDEA-SE.

validate the optimums found so far during the optimization, but
unfortunately, offline data-driven EAs have no opportunity to
validate the solutions before they are actually implemented. As
a result, offline data-driven EAs should focus on building high-
quality surrogate models based on the offline data. To address
the above challenges, we proposed a novel offline data-driven
EA assisted by a selective ensemble (DDEA-SE).

A. The Framework

A generic diagram of DDEA-SE is shown in Fig. 3. Before
running the optimizer (a canonical EA), offline data is created,
from which T subsets (S1, S2,..., ST ) are generated using
bootstrap. Then, T models (M1, M2,...,MT ) are independently
built based on T subsets. During the optimization, DDEA-
SE selects Q (Q ≤ T ) models from T surrogates using a
model selection strategy, and the fitness values are estimated
by combining those Q models. When the stopping criterion is
met, DDEA-SE outputs the final optimal solution.

In the following, we will present the details for building the
surrogate ensemble via bagging and surrogate management.

B. Ensemble Generation

Before initializing the population for optimization, DDEA-
SE creates training data subsets using bootstrap sampling and
builds surrogate ensembles using a proper learning algorithm.
As recommended in [57], highly nonlinear models are pre-
ferred as base learners in bagging. Thus, we employ RBF
networks, which are highly nonlinear, as basic learners to build
the surrogate model pool. Accordingly, a large model pool size
(T ) can be used.

As discussed in [64], the optimal number of out-of-bag
samples may be problem-dependent, although half-sampling
has been widely used by default. In this work, we employ a
probability-dependent sampling instead of using the standard
half-sampling. To generate a data subset Si, every data point
in the offline data has a probability of 0.5 to be included in

Si. As a result, the size of Si is not fixed as in half-sampling,
which in principle can promote ensemble diversity.

After T datasets are generated, T RBF models are trained
separately using the T datasets S1, S2,...,ST . Each RBF model
contains d neurons (Gaussian radial basis functions) in the
hidden layer, where d is the number of the decision variables.
The whole process of preparing the data subsets and training
the pool of surrogate models are shown in Algorithm 1.

Algorithm 1 Pseudo code of setting up the surrogate ensemble
in DDEA-SE.
Input: Doffline-the offline data, d-the dimension of x, T -the

size of the model pool.
1: for i = 1 : T do
2: Set Si empty.
3: for each data points in Doffline do
4: if U(0, 1) < 0.5 then
5: Add this point to Si.
6: end if
7: end for
8: end for
9: for i = 1 : T do

10: Train an RBF model Mi based on Si.
11: end for
Output: the data subset pool (S1, S2,..., ST ) and model pool

(M1, M2,..., MT ).

C. Model Management
As the experimental results in [57] show, the accuracy of

bagging enhances as the ensemble size increases, when the
ensemble size is smaller than 100. However, the accuracy does
not necessarily continue to improve when the ensemble size
further increases. This finding indicates that it is helpful to
reduce the ensemble size without degrading the accuracy by
using a model selection strategy [54].

Existing model selection strategies are guided by the global
ensemble accuracy. We cannot simply adopt these strategies
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as the surrogate management strategy in DDEA-SE, since the
population in each generation is distributed in a local area.
To address the issue, we propose two different strategies for
selecting a subset of bagging models in each generation.

• Fixed subset size selection strategy: The number of
selected models (base learners) is fixed in the whole
optimization process.

• Adaptive subset size selection strategy: The number of
selected models is adaptively changed according to the
distribution of the population.

For the strategy selecting a fixed number of models in each
generation, the model can be randomly or adaptively selected
from the model pool. The surrogate ensemble can be seen as
a global model when the base learners are selected randomly,
while the surrogate ensemble becomes local when the base
learners are selected considering a particular local region of
interest in the search space. Here, we adaptively select a subset
of bagging models as the population moves around in the
search space. The main idea is to use the best individual
(estimated by the surrogates) in the current generation as a
reference for selecting the diverse models in the interesting
regions for the next generation, which can be seen as a best
strategy [5].

More specifically, the fixed subset size selection will be
applied to select Q models from T models. Let xb be the
best individual according to the surrogate ensemble consisting
of Q RBF models, then the fitness value according to the i-th
(1 ≤ i ≤ T ) individual RBF model is calculated, denoted by
Pi. This is followed by sorting the T RBF models (denoted
by M1, M2,...,MT ) according to the estimated fitness, denoted
by P1, P2,...,PT . Afterwards, the sorted RBF models are
equally divided into Q groups. Finally, one RBF model is
randomly selected from each of the Q groups to form a new
surrogate ensemble to be used for fitness estimation in the
next generation. This way, a set of diverse models local to
the current population will be selected so that the locally
most accurate fitness estimation can be achieved. The details
of the fixed subset size selection strategy are presented in
Algorithm 2.

Algorithm 2 Pseudo code of the fixed subset size selection
strategy.
Input: Q: the ensemble size after model selection, xb: the

current predicted best solution, M1, M2,..., MT : the model
pool.

1: if it is the first generation then
2: Randomly choose Q models from the pool.
3: else
4: Using (M1, M2,...,MT ) to predict xb.
5: Sort T RBF models based on their predictions on xb.
6: Equally divide T sorted RBF models into Q groups.
7: for each group do
8: One random model is selected to construct the en-

semble.
9: end for

10: end if
Output: Q selected RBF models.

To elaborate Algorithm 2, we take a model pool having six
models (M1, M2,..., M6) as an example. The estimated fitness
of xb is P1 = 2.1, P2 = 2.3, P3 = 2.0, P4 = 1.9, P5 = 2.2,
and P6 = 2.4, respectively. To select three models for the
surrogate ensemble in the next generation, these models are
sorted based on their estimated fitness value and clustered into
three groups denoted by (M3, M4), (M1, M5), and (M2, M6).
Then, one model is randomly chosen in each group. Thus, M4,
M1, and M6 can be one possible output of Algorithm 2.

The ensemble size Q is a parameter to be specified, af-
fecting both the accuracy and computational complexity. To
investigate the relationship between the ensemble size and
fitness estimation accuracy, we examine the change of the root
mean square error (RMSE) of the ensemble over the ensemble
sizes up to 5000 on both uni- and multi-modal test problems
(Ellipsoid and Rastrigin) with 10, 30, 50, and 100 decision
variables. The experiments are conducted following the steps
below:

• Generate 10000 random samples as the test dataset.
• Generate 11d solutions using the Latin hypercube sam-

pling (LHS) [72] and calculate their fitness using the real
objective function. These solutions are used as the offline
training data.

• Build 5000 RBF models from the offline training dataset
according to Algorithm 1.

• Calculate the RMSEs of the ensemble on the test dataset
by sequentially adding RBF models to the ensemble.
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Fig. 4. Change of the average RMSE of the bagging ensembles over
the ensemble size on the Ellipsoid and Rastrigin functions with up to 100
dimensions.

The RMSE averaged over 20 independent runs as the
ensemble size increases is shown in Fig. 4, from which we
note that the error profiles on both uni- and multi-modal
problems with different numbers of decision variables are quite
similar. It is straightforward that the computational cost of
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the bagging ensemble linearly grows as the ensemble size
increases. By contrast, the RMSE of the bagging ensemble
decreases as the ensemble size increases in the beginning, but
drops very slowly when the size is larger than 100. Based on
this observation, we set Q to be 100 and T to be 2000 in
DDEA-SE, hoping to achieve sufficiently good approximation
accuracy with relatively low computational cost.

A fixed Q in Algorithm 2 might be unsuited for the whole
optimization process, since the population tends to converge
as the search proceeds. When the individuals are distributed in
a small area, the surrogate ensemble should be able to capture
local details of the fitness landscape by decreasing the number
of selected models. We use an average distance (Dg) of the

population in the g-th generation to the best individual xb to
measure the population distribution in the decision space. The
subset size Qg in the g-th generation is adjusted as below:

Qg =

⌊
T
Dg

D0

⌋
, (1)

where D0 is the average distance of the initial population to
its best individual. Thus, the smaller the local region in which
the population are distributed, the smaller number of models
will be selected in DDEA-SE.

Three different model selection strategies are designed for
DDEA-SE. The first strategy randomly selects a fixed number
of models, the second strategy selects a fixed number of
models according to the location of the best solution, and the
third strategy selects an adaptive number of models according
to the population distribution and the location of the best
solution. As the initial population of DDEA-SE is distributed
across the whole search space, the surrogate ensemble is
expected to be able to describe the global fitness landscape in
the decision space. Therefore, Q models are randomly selected
from T models for fitness estimation in the first generation.
From the second generation onward, one of the three strategies
presented will be applied to select models.

V. EXPERIMENTAL RESULTS ON BENCHMARK PROBLEMS

In this section, we will empirically analyze the performance
of the proposed algorithm. The basic EA adopted in the
proposed algorithm is a real-coded genetic algorithm with
the simulated binary crossover (SBX) (η = 15), polynomial
mutation (η = 15), and tournament selection. Further, the
activation function of the RBF models is the Gaussian radial
basis functions and there are d nodes (neurons) in the hidden
layer, where d is the dimension of the decision space. The
centers of the Gaussian functions of the RBF models are
specified using the k-means clustering algorithm, the widths
are set to be the maximum distance between the centers, and
the weights from the hidden nodes to the output node are
determined using the pseudo-inverse method [73].

In the experiments, we use five benchmark problems [34]
of a dimension up to 100 decision variables, as presented in
Table I. Here, we consider these benchmark problems to be
computationally expensive and play the role of ground truth
for examining the performance of the proposed offline data-
driven EA. It should be emphasized that offline data-driven
EAs cannot sample any new data during the optimization.

TABLE I
TEST PROBLEMS.

Problem d optimum Characteristics
Ellipsoid 10,30,50,100 0.0 Uni-modal

Rosenbrock 10,30,50,100 0.0 Multi-modal
Ackley 10,30,50,100 0.0 Multi-modal

Griewank 10,30,50,100 0.0 Multi-modal
Rastrigin 10,30,50,100 0.0 Multi-modal

Therefore, the real objective function will be used for perfor-
mance assessment only and the data created for performance
assessment are not available to the EA.

A. Empirical results

1) Comparison of Surrogate Management Strategies: In
this work, three different model selection strategies are pro-
posed as the surrogate management method in DDEA-SE.
In this subsection, we examine the influence of the different
surrogate management methods on the performance of DDEA-
SE. Therefore, the following four DDEA-SE variants with or
without these strategies are compared:

• DDEA-SE-random: the proposed algorithm randomly se-
lecting Q models from T models in each generation
(T = 2000 and Q = 100),

• DDEA-SE-fixed: the proposed algorithm selecting Q
models from T models according to xb in the current
generation (T = 2000 and Q = 100),

• DDEA-SE-adaptive: the proposed algorithm selecting an
adaptive number of models from T models according to
xb in the current generation (T = 2000),

• DDEA-E: the proposed algorithm without using any
surrogate management method (T = 2000).

In the comparisons, the four compared algorithms all use a
population size of 100 and terminate after running 100 genera-
tions. We test the four compared algorithms on 11d offline data
of Ellipsoid and Rastrigin functions (d = 10, 30, 50, 100) using
LHS. For each instance, each algorithm repeats for 20 times.
The obtained optimal solution and runtime are presented in
Table II. From the table, we can see that the DDEA-SE variants
perform very similarly on the uni-modal Ellipsoid function.
Also, the runtime of all algorithms increases as the dimension
increases, however, the runtime of DDEA-E (T = 2000)
grows much faster than other three algorithms, resulting in
almost 10 times of runtime compared to that of DDEA-
SE-fixed on the 100-dimensional test problems. We use the
Friedman test with the Bergmann-Hommel post-hoc test [74]
to analyze the results in Table II, and the p-values are shown
in Table III. DDEA-SE-fixed significantly outperforms DDEA-
SE-random and DDEA-SE-adaptive, but slightly outperforms
DDEA-E (T = 2000). Comparing the p-values of DDEA-
SE-fixed and DDEA-E (T = 2000) on running time, we find
that DDEA-SE-fixed needs much shorter running time than
DDEA-E (T = 2000).

From the above results, we observe that the model man-
agement strategy in DDEA-SE-fixed is able to significantly
reduce the computation time without degrading the perfor-
mance. DDEA-SE-random uses a global surrogate ensemble
during the whole algorithm, which is the reason for its poor
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TABLE II
RESULTS OBTAINED BY DDEA-SE VARIANTS ON ELLIPSOID AND RASTRIGIN PROBLEMS.

11d LHS Obtained optimum Execution time (s)
P d DDEA-SE-random DDEA-SE-fixed DDEA-SE-adaptive DDEA-E DDEA-SE-random DDEA-SE-fixed DDEA-SE-adaptive DDEA-E

E
lli

ps
oi

d 10 1.0±0.1 1.0±0.1 1.0±0.2 1.0±0.1 6.5±0.3 24.1±0.1 21.5±1.0 87.7±0.2
30 3.9±0.4 4.2±0.6 4.9±0.9 3.9±0.3 20.9±0.4 42.2±0.1 75.0±2.9 291.6±1.2
50 15.7±2.9 11.6±2.0 14.3±2.8 13.7±3.2 82.4±8.7 73.9±0.8 264.8±12.9 747.9±10.5

100 328.7±63.7 317.2±74.4 323.7±76.7 319.4±80.7 279.5±13.3 214.8±4.7 1343.4±62.7 2035.1±10.4

R
as

tr
ig

in 10 66.6±3.8 34.0±4.6 65.9±8.9 66.5±2.2 11.0±1.2 41.5±0.3 18.5±2.9 88.0±0.5
30 178.0±7.8 116.8±7.2 183.3±12.6 180.6±5.5 49.6±3.7 70.1±3.6 73.2±6.9 294.4±6.7
50 207.6±18.9 189.5±16.4 218.8±20.2 197.2±15.4 128.6±28.7 84.5±8.1 335.7±32.3 671.0±17.8

100 840.2±78.3 833.8±70.2 858.1±69.5 838.2±65.0 324.5±85.4 282.0±110.7 1323.4±274.9 2291.7±37.5
Average rank 3.3 1.5 3.1 2.1 1.5 1.8 2.8 4.0

TABLE III
ADJUSTED p-VALUES OF THE FRIEDMAN TEST WITH THE

BERGMANN-HOMMEL POST-HOC TEST (SIGNIFICANCE LEVEL=0.05) FOR
THE COMPARISONS OF DDEA-SE VARIANTS. DDEA-SE-RANDOM,

DDEA-SE-FIXED, AND DDEA-SE-ADAPTIVE ARE SHORTED TO
RANDOM, FIXED, AND ADAPTIVE.

Random Fixed Adaptive DDEA-E

O
pt

im
um

Random NA 0.0067 0.8465 0.0814
Fixed 0.0067 NA 0.0118 0.3329

Adaptive 0.8465 0.0118 NA 0.1213
DDEA-E 0.0814 0.3329 0.1213 NA

Ti
m

e

Random NA 0.6985 0.0528 0.0001
Fixed 0.6985 NA 0.1213 0.0005

Adaptive 0.0528 0.1213 NA 0.0528
DDEA-E 0.0001 0.0005 0.0528 NA

performance. DDEA-SE-adaptive was expected to perform
better than DDEA-SE-fixed in Section IV-C, but its average
rank is larger than that of DDEA-SE-fixed, indicating a worse
performance. In fact, the objective function in DDEA-SE can
be seen as a dynamic optimization problem, as the surrogate
ensemble changes over the generations. However, no strategies
handling the changing fitness landscape have been adopted in
DDEA-SE. The severity of changes in DDEA-SE-adaptive is
larger than that in DDEA-SE-fixed. In other words, DDEA-
SE-adaptive deals with harder problems than DDEA-SE-fixed.
Therefore, DDEA-SE-fixed performs better than DDEA-SE-
adaptive.

To take a closer look at the behavior of the ensemble during
the optimization, we show, in Figs. 5 and 6, respectively,
the average percentage of the correctly selected individuals
(meaning those should be selected when the fitness evaluations
are based on the exact fitness function) before and after model
selection in DDEA-SE-fixed on the two test problems. This
percentage can be viewed as an assessment of the selection
accuracy using the surrogates. By selecting Q RBF models,
the selection accuracy for uni-modal Ellipsoid is slightly
improved. In contrast, the selection accuracy on the multi-
modal Rastrigin function has been significantly enhanced at
the later stage of the search. These results indicate that the
selective ensemble is able to distinguish better solutions from
worse ones in the exploitation stage.

2) Comparison of Ensemble Generation Strategies: From
the results in Section V-A1, DDEA-SE-fixed is the best-
performing variant. We use the strategy to select a fixed num-
ber models according to xb in DDEA-SE for the following
experiments.

The ensemble generation strategy is an important step of
DDEA-SE, where every data point in the offline data has
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Fig. 5. Average selection accuracy before and after model selection in DDEA-
SE-fixed on Ellipsoid problems with different numbers of decision variables.
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Fig. 6. Average selection accuracy before and after model selection in DDEA-
SE-fixed on Rastrigin problems with different numbers of decision variables.
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Fig. 7. Optimum obtained by DDEA-SE with the ensemble generation strategies of different probabilities (0.3, 0.5, 0.7, 0.9) on Ellipsoid and Rastrigin
problems with different numbers of decision variables.

a probability to be included in the dataset for generating a
model. Different probabilities lead to different ensemble gen-
eration strategies. In this subsection, we examine the effects
of those different probabilities (0.3, 0.5, 0.7, and 0.9) in the
ensemble generation strategy on DDEA-SE.

In the comparisons, the four DDEA-SE variants (using
different probabilities) all use a population size of 100 and
terminate after running 100 generations. We test those four
compared algorithms on 11d offline data of Ellipsoid and
Rastrigin functions (d = 10, 30, 50, 100) using LHS. For each
offline data, each algorithm repeats for 20 times. The optimal
solutions obtained using different probabilities are shown in
Fig. 7. For both multi- and uni-modal problems, DDEA-SE
has shown the best performance when the probability is 0.5.
The reason is that a probability of 0.5 can offer the most
diverse data subsets, leading to the generation of the most
diverse models. These results indicate that the diversity of
the generated models of the ensemble heavily influence the
optimization performance. In the following experiments, we
set the probability of the ensemble generation strategy to be
0.5 in DDEA-SE.

3) Comparison of Offline Data-Driven EAs: In this sub-
section, we compare the proposed algorithm with two offline
data-driven EAs:

• DDEA-SE: DDEA-SE-fixed with the settings of Q = 100
and T = 2000,

• DDEA-E: the proposed algorithm without the surrogate
management strategy (T = 100),

• DDEA-RBF: an EA using a single RBF model as the
surrogate built from all offline data.

It has been shown that DDEA-E with 2000 RBF models is
computationally very intensive. One natural question is what
if we generate a smaller ensemble in the beginning. To answer
this question, we compare here a variant of DDEA-E that
generates 100 RBF models offline and no model selection is

carried out during the optimization.
In the comparisons, the three compared algorithms all use

a population size of 100 and terminate after running 100
generations. Unlike online data-driven EAs, offline data-driven
EAs are tested on different offline datasets. Therefore, we
use two sampling methods (LHS and random sampling) to
generate offline data. We test the compared algorithms on
three different types of offline data for each test problem:
datasets with 11d and 5d solutions generated by LHS and
a dataset with 11d solutions generated by random sampling.
To avoid possible biases from different datasets, each dataset
is generated independently for three times as three instances.
For each instance, each algorithm repeats for 20 times.

The comparative results of DDEA-SE, DDEA-E, and
DDEA-RBF on the Ellipsoid and Rastrigin test problems
are shown in Table IV. From these results, we can see that
DDEA-SE and DDEA-E outperform DDEA-RBF on most
instances compared in this study. Then we apply the Friedman
test with the Bergmann-Hommel post-hoc test (significance
level=0.05) [74] to compare these results, where DDEA-SE
is the control method. Overall, DDEA-SE performs the best,
followed by DDEA-E, and DDEA-RBF performs the worst. In
other words, surrogate ensemble improves the performance of
the offline data-driven EAs and selective surrogate ensemble
can further enhance the performance. However, the compared
algorithms behave slightly differently on different datasets.
For example, data generated by LHS can result in better
performance than randomly generated data, as evidenced by
the results of DDEA-RBF using a single surrogate. In addi-
tion, DDEA-SE improves its performance when the data size
increases from 5d to 11d and the performance enhancement
by using ensemble surrogates becomes more significant as the
dimension increases.

To study the scalability of the proposed algorithm, we inves-
tigate its performance on 10-, 30-, 50-, and 100-dimensional
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TABLE IV
OPTIMAL SOLUTIONS OBTAINED BY DDEA-SE, DDEA-E AND DDEA-RBF, WHERE I# MEANS THE INSTANCE NUMBER OF OFFLINE DATA. THE

RESULTS ARE SHOWN IN THE FORM OF MEAN ± STANDARD DEVIATION. THE RESULTS ARE ANALYZED BY THE FRIEDMAN TEST WITH THE
BERGMANN-HOMMEL POST-HOC TEST (DDEA-SE IS THE CONTROL METHOD AND THE SIGNIFICANCE LEVEL IS 0.05). THE BEST FITNESS VALUES

AMONG ALL THE COMPARED ALGORITHMS FOR EACH PROBLEM ARE HIGHLIGHTED.

Offline Data 11d LHS 11d Rand 5d LHS
P d I# DDEA-SE DDEA-E DDEA-RBF DDEA-SE DDEA-E DDEA-RBF DDEA-SE DDEA-E DDEA-RBF

E
lli

ps
oi

d

10

1 1.0±0.1 1.7±0.7 3.2±2.0 3.9±0.3 4.6±1.0 6.0±3.7 2.6±0.2 4.2±1.6 7.1±3.0
2 0.6±0.1 1.2±0.6 2.7±1.6 3.7±0.2 3.7±1.0 5.6±2.7 1.1±0.1 2.8±1.5 5.7±4.9
3 1.5±0.1 2.0±0.9 5.6±2.7 3.0±0.2 3.7±1.1 5.0±1.4 1.2±0.2 2.3±0.9 4.6±3.2

30

1 4.2±0.6 5.4±1.1 15.8±5.5 17.4±1.5 20.3±3.0 33.5±11.5 5.7±0.5 9.9±2.6 28.6±14.0
2 2.8±0.2 5.5±1.6 12.4±4.1 14.2±0.8 16.4±2.3 28.4±14.6 9.7±0.8 14.5±3.1 36.1±15.8
3 4.3±0.4 7.0±1.7 16.0±4.9 6.3±0.8 10.1±2.2 20.0±10.5 7.3±0.8 12.2±2.0 23.6±8.5

50

1 11.6±2.0 18.5±3.5 54.2±22.9 25.6±3.9 33.8±6.8 89.2±36.2 17.3±2.7 25.1±5.8 67.9±38.6
2 14.3±2.7 20.4±2.9 52.1±20.7 30.7±3.9 37.4±6.4 89.8±45.4 27.2±3.1 37.7±6.8 91.9±36.0
3 12.1±2.3 18.6±4.2 65.4±23.4 28.2±3.7 34.4±6.1 81.8±29.7 19.6±3.6 30.1±6.4 65.9±20.6

10
0 1 317.2±74.4 371.0±89.2 2186.0±1665.8 331.6±43.8 364.2±63.8 1823.1±1235.8 321.6±53.8 339.8±67.4 757.6±443.7

2 330.8±48.8 489.0±189.5 2593.2±897.5 327.7±66.5 384.6±98.6 2143.5±1123.6 293.5±65.2 312.2±73.7 746.5±425.9
3 294.9±36.3 364.0±66.5 1245.5±776.5 306.7±41.8 380.6±75.4 1531.4±851.5 321.8±72.2 353.2±41.6 597.9±151.0

R
as

tr
ig

in

10

1 34.0±4.6 76.6±11.7 80.1±21.5 47.3±3.1 58.9±14.6 78.9±18.5 131.0±5.9 105.0±24.7 102.4±20.8
2 52.4±4.6 93.3±16.7 76.7±33.6 69.9±3.7 75.4±17.3 101.9±27.8 82.0±3.9 96.9±17.1 93.6±27.6
3 57.1±1.8 109.2±14.0 90.8±26.2 66.8±3.7 79.5±22.5 92.7±18.5 76.1±5.1 79.6±18.1 102.9±21.4

30

1 116.8±7.2 208.3±29.2 286.8±39.2 214.6±9.6 233.9±14.4 295.0±31.9 162.8±8.7 207.9±35.6 290.4±31.6
2 90.5±4.5 122.4±22.3 191.5±37.8 179.5±7.3 195.5±21.4 252.2±23.6 162.5±11.4 213.4±36.4 268.4±54.9
3 100.8±5.0 134.5±22.4 238.7±44.2 162.2±6.1 190.4±30.2 255.7±47.9 240.7±12.3 248.8±33.3 295.4±34.9

50

1 189.5±16.4 233.3±41.0 408.4±74.2 209.2±18.4 246.7±35.2 424.2±57.0 238.6±17.7 298.1±34.6 422.1±62.1
2 158.6±16.0 233.7±32.8 421.4±41.0 280.5±26.6 328.2±35.5 480.5±69.2 287.0±27.0 333.4±36.3 470.5±51.9
3 180.0±18.1 263.9±40.8 441.0±48.2 180.4±18.1 236.7±33.4 425.5±67.7 232.1±15.6 301.4±40.3 426.7±45.5

10
0 1 833.8±70.2 891.8±103.3 1053.3±57.3 825.1±88.3 920.5±96.1 1013.0±71.3 800.1±65.8 903.2±64.8 1042.5±64.0

2 848.3±82.7 949.4±75.2 1068.7±96.8 868.9±73.7 935.8±88.2 1070.0±73.7 794.7±110.7 837.4±66.5 1013.3±82.9
3 762.2±99.7 860.6±94.9 1003.1±74.0 832.0±67.8 883.2±75.2 1046.5±69.4 828.2±82.8 874.9±48.7 1015.6±86.1

Average rank 1.0 2.1 2.9 1.0 2.0 3.0 1.1 2.0 2.9
Adjusted p-value NA 0.0002 0.0000 NA 0.0005 0.0000 NA 0.0009 0.0000
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Fig. 8. Average convergence profiles of DDEA-SE, DDEA-E and DDEA-
RBF on Ellipsoid test problems with different numbers of decision variables.

Ellipsoid and Rastrigin problems when 11d data are sampled
using LHS. The results are presented in Figs. 8 and 9,
respectively. Note that in Figs. 8 and 9, the best solution in
each generation is evaluated using the real objective function.
From these results, we can see that DDEA-SE outperforms
DDEA-RBF and DDEA-E on the 10-dimensional Ellipsoid
problem. However, the performance of DDEA-SE becomes
less advantageous as the number of decision variables in-
creases. By contrast, DDEA-SE outperforms both DDEA-
RBF and DDEA-E on the 10-dimensional Rastrigin problem.
On the 30-dimensional Rastrigin problem, both DDEA-E and

0 20 40 60 80 100
20

40

60

80

100

120

140

160

Generation

A
ve

ra
ge

 O
b

ta
in

ed
 F

it
n

es
s 

V
al

u
e 10-dimensional Rastrigin

 

 
DDEA-SE
DDEA-E
DDEA-RBF

0 20 40 60 80 100
100

200

300

400

500

Generation

A
ve

ra
ge

 O
b

ta
in

ed
 F

it
n

es
s 

V
al

u
e 30-dimensional Rastrigin

 

 
DDEA-SE
DDEA-E
DDEA-RBF

0 20 40 60 80 100

200

300

400

500

600

700

800

900

Generation

A
ve

ra
ge

 O
b

ta
in

ed
 F

it
n

es
s 

V
al

u
e 50-dimensional Rastrigin

 

 
DDEA-SE
DDEA-E
DDEA-RBF

0 20 40 60 80 100

800

1000

1200

1400

1600

1800

Generation

A
ve

ra
ge

 O
b

ta
in

ed
 F

it
n

es
s 

V
al

u
e 100-dimensional Rastrigin

 

 
DDEA-SE
DDEA-E
DDEA-RBF

Fig. 9. Average convergence profiles of DDEA-SE, DDEA-E and DDEA-
RBF on Rastrigin test problems with different numbers of decision variables.

DDEA-SE significantly outperform DDEA-RBF, where the
advantage of ensemble becomes more obvious. Both DDEA-
E and DDEA-SE performs comparably well but much better
than DDEA-RBF on the 50- and 100-dimensional Rastrigin
problems.

From the above results, we can make the following observa-
tions. First, surrogate ensembles help improve the performance
of data-driven EAs in general compared with a single surro-
gate. Second, selective ensembles are able to further enhance
the performance of offline data-driven EAs while significantly
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reducing the computation time. Finally, EAs assisted by a
selective ensemble are likely to perform much better on multi-
modal problems than EAs assisted by a non-selective ensemble
or a single surrogate.

4) Scalability on Size of Offline Data: In this subsection,
we compare DDEA-SE, DDEA-E and DDEA-RBF on the
Rastrigin problem for different data sizes (100, 300, 500, 700,
and 1000) generated using LHS. In the experiment, all the
compared algorithms repeat for 20 independent times. Note,
however, that for 50- and 100-dimensional problems, at least
300 data samples are considered.
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Fig. 10. Average fitness obtained by DDEA-SE, DDEA-E, and DDEA-RBF
on the Rastrigin problems with different offline data sizes.

The average fitness obtained by DDEA-SE, DDEA-E and
DDEA-RBF on the Rastrigin problems with different data
sizes are plotted in Fig. 10. For 10-, 30- and 50-dimensional
Rastrigen problems, the performance of all compared al-
gorithms consistently enhances as the data size increases,
although it is noticed the performance improvement becomes
less significant when the size is larger than 700. Note also
that all algorithms perform even worse on the 100-dimensional
Rastrigin problem, when the size of data is increased to 1000.
The performance degradation can be also observed from Table
IV, which might be attributed to the fact that the Rastrigin
function is a multi-modal function and a large data size may
enable the surrogates to capture more local optima, leading to
worse search performance.

B. Comparison with Online Data-Driven EAs

To further examine the performance of the proposed offline
data-driven EA, we compare DDEA-SE with a few online
data-driven EAs on the test problems listed in Table I, although
such comparisons may not be completely fair. Since DDEA-SE
is ensemble-based, we choose one ensemble-assisted and two
single surrogate-assisted data-driven EAs as compared algo-
rithms: committee-based active learning for surrogate-assisted
particle swarm optimization algorithm (CAL-SAPSO) [18],
Gaussian process surrogate model assisted evolutionary algo-
rithm for medium-scale expensive problems (GPEME) [34],

and surrogate-assisted cooperative swarm optimization algo-
rithm (SA-COSO) [28]. The characteristics of these three
algorithms are briefly discussed below.

• CAL-SAPSO is an online ensemble-assisted data-driven
EA assisted by multiple surrogates, namely, PR, RBF, and
Kriging models, using an active learning-based surrogate
management strategy.

• GPEME is an online single surrogate-assisted data-driven
EA assisted by a Kriging model with the LCB-based infill
sampling criterion as its surrogate management strategy.

• SA-COSO is an online data-driven EA assisted by a
single RBF model with two swarms in its surrogate
management strategy.

TABLE V
OPTIMAL SOLUTIONS OBTAINED BY DDEA-SE, CAL-SAPSO AND

GPEME, WHERE THE RESULTS ARE ANALYZED BY THE FRIEDMAN TEST
WITH THE BERGMANN-HOMMEL POST-HOC TEST (DDEA-SE IS THE

CONTROL METHOD AND THE SIGNIFICANCE LEVEL IS 0.05). THE BEST
FITNESS VALUES AMONG THE COMPARED ALGORITHMS FOR EACH

PROBLEM ARE HIGHLIGHTED.

Problem d DDEA-SE CAL-SAPSO CAL-SAPSO GPEME GPEME
online offline online offline

Ellipsoid 10 1.0±0.5 0.9±0.9 0.0±0.0 37.8±15.3 129.8±34.3
30 5.0±1.5 4.0±1.1 30.2±10.8 1228.6±223.6 2013.3±246.1

Rosenbrock 10 29.1±6.3 16.0±3.4 157.2±120.4 186.0±66.9 625.6±196.7
30 53.5±4.5 51.0±11.5 184.5±28.1 2441.0±809.5 4998.6±646.9

Ackley 10 6.3±1.3 20.1±0.2 18.2±0.8 13.8±2.5 19.2±0.5
30 4.8±0.5 16.2±0.4 12.6±2.3 19.5±0.4 20.4±0.1

Griewank 10 1.3±0.1 1.1±0.1 0.0±0.0 27.2±11.3 103.6±31.4
30 1.3±0.1 1.0±0.0 2.6±0.8 283.6±52.5 488.6±29.9

Rastrigin 10 1.0±0.5 0.9±0.9 0.0±0.0 37.8±15.3 129.8±34.3
30 5.0±1.5 4.0±1.1 30.2±10.8 1228.6±223.6 2013.3±246.1

Average rank 1.9 2.0 2.8 3.5 4.8
Adjusted p-value NA 0.8875 0.2031 0.0237 0.0000

Since CAL-SAPSO and GPEME were not meant for high-
dimensional problems, we compare them with DDEA-SE
only on 10- and 30-dimensional problems. For the problems
with 50 and 100 decision variables, we compare DDEA-
SE with SA-COSO. The parameter settings (including the
hyperparameter optimization for their surrogate models) of
CAL-SAPSO and GPEME are exactly the same as in [18],
those for SA-COSO are taken from [28]. In addition to the
original versions of those three online SAEAs, we compare
their offline versions. The offline versions of CAL-SAPSO,
GPEME, and SA-COSO start with training the surrogate using
all allowed computational budget and stop once the first real
fitness evaluation is required. This means that the surrogate
models in the offline versions are better than those in the
original online versions before the optimization starts. In this
section, all the compared algorithms repeats 20 times. 11d real
fitness evaluations are allowed for all compared algorithms.

The results of DDEA-SE, CAL-SAPSO and GPEME on the
10- and 30-dimensional problems are given in Table V. The
results are analyzed by the Friedman test with the Bergmann-
Hommel post-hoc test (significance level=0.05) [74], where
DDEA-SE is the control method. From the Friedman test,
we can see that DDEA-SE significantly performs better than
GPEME. DDEA-SE is the best-performing algorithm on two
test problems, CAL-SAPSO (online) is the best-performing al-
gorithm on five test problems, and CAL-SAPSO (offline) is the
best-performing algorithm on three 10-dimensional problems.
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For 10-dimensional problems, 11d samples are sufficient to
train a single well-performing surrogate model, which is the
reason why CAL-SAPSO (offline) has the best performance.
However, for 30-dimensional problems, 11d samples become
insufficient for training surrogate models, thus the performance
of CAL-SAPSO (offline) dramatically degenerates. With the
help of active sampling or ensemble surrogate, CAL-SAPSO
(online) and DDEA-SE outperform CAL-SAPSO (offline) on
30-dimensional problems. Note that CAL-SAPSO (online)
actively samples part of the data during the optimization, while
DDEA-SE collects all samples offline before the optimization
starts. Nevertheless, DDEA-SE can still achieve relatively
good performance on low-dimensional problems.

TABLE VI
OPTIMAL SOLUTIONS OBTAINED BY DDEA-SE AND SA-COSO, WHERE

THE RESULTS ARE ANALYZED BY THE FRIEDMAN TEST WITH THE
BERGMANN-HOMMEL POST-HOC TEST (DDEA-SE IS THE CONTROL
METHOD AND THE SIGNIFICANCE LEVEL IS 0.05). THE BEST FITNESS

VALUES AMONG ALL THE COMPARED ALGORITHMS FOR EACH PROBLEM
ARE HIGHLIGHTED IN BOLDFACE.

Problem d DDEA-SE SA-COSO SA-COSO
online offline

Ellipsoid 50 15.4±3.8 226.8±66.4 179.8±44.5
100 312.2±59.1 957.9±236.4 931.2±219.4

Rosenbrock 50 84.0±6.3 615.9±216.1 565.1±112.9
100 250.6±37.4 2078.9±447.8 2035.8±649.8

Ackley 50 4.6±0.3 13.0±0.9 13.1±0.9
100 7.0±0.5 15.9±0.6 15.5±0.5

Griewank 50 1.9±0.2 27.2±5.6 24.7±5.5
100 17.3±3.0 74.2±16.5 57.8±15.7

Rastrigin 50 181.8±32.0 417.7±34.2 422.2±39.1
100 809.8±102.2 821.6±69.0 857.1±67.1

Average rank 1.0 2.7 2.3
Adjusted p-value NA 0.0001 0.0037

The results obtained by DDEA-SE and SA-COSO on the
50- and 100-dimensional problems are shown in Table VI. The
results are analyzed by the Friedman test with the Bergmann-
Hommel post-hoc test (significance level=0.05) [74], where
DDEA-SE is the control method. Surprisingly, DDEA-SE
significantly outperforms both SA-COSOs. Although the
model in offline SA-COSO is better than that in online SA-
COSO, the improvement of offline SA-COSO is not signif-
icant. This indicates that the use of ensemble surrogates is
more reliable than single surrogate, in particular for high-
dimensional problems.

From the above experimental results, we can conclude
that the performance of DDEA-SE is comparable with two
online data-driven EAs on low-dimensional problems and is
better than one online data-driven EAs on high-dimensional
problems, demonstrating that DDEA-SE is able to perform
robustly on different problems, even if compared with online
data-driven SAEAs.

VI. APPLICATION TO AIRFOIL DESIGN

In this section, we apply the proposed algorithm to the
RAE2822 airfoil test case in the GARTEUR (Group for
Aeronautical Research and Technology in Europe) AG52
project [75], where nine European collaborative partners aim
to promote research on surrogate-based aerodynamic shape
optimization1. For the RAE2822 airfoil test case, 70 different

1http://www.garteur.org/

geometries in the defined parameterization were given as a
starting point. The partners then tried to find an optimal
geometry by using their own optimization methods, together
with computational fluid dynamic (CFD) simulations to pro-
vide quality evaluation for candidate geometries. Then, the
optimal candidates found by all the partners were compared
and cross validated using the other partner’s CFD simulations.
Advantages and disadvantages of different optimization meth-
ods, surrogate models, model management strategies, and CFD
simulators are assessed.

However, CFD simulations are computationally very expen-
sive and directly integrating an EA with a CFD tool is not
always straightforward (sometimes the end user is hesitant to
give out the code too). In this study, we run CFD simulations
(VGK) [76], [77] for the 70 geometries as used in GARTEUR,
as the data to verify the performance of offline data-driven
EAs.

A. Problem Description

As described in [18], the airfoil design problem has 14
decision variables, which define the geometry of a candidate
airfoil design. The objective is to minimize the drag over lift
ratio, which is calculated from CFD simulations. The detailed
objective functions are described as follows:

fAirfoil = min
1

2

(
D1

L1

/
Db

1

Lb
1

+
D2

L2

/
Db

2

Lb
2

)
, (2)

where two design conditions are considered, Di and Li are
the drag and lift coefficients in design condition i, Db

i and Lb
i

are the drag and lift coefficients of baseline design in design
condition i. Each drag or lift coefficients need to be calculated
using CFD simulations. The fitness of the baseline design is
normalized to be 1.

B. Results

In the comparisons, we run DDEA-SE, DDEA-E, and
DDEA-RBF for 20 independent times. Those three compared
algorithms are set as Section V-A3. As the airfoil design
optimization problem has been tested on online data-driven
EAs in [18], we use those reported results of CAL-SAPSO and
GPEME as a reference. Noted that, these online data-driven
EAs use the same offline data as the compared algorithms
but 84 more online data. To verify the performance of the
compared algorithms, all obtained designs are verified using
CFD simulations, which are shown in Table VII and the best
geometries (in X-Z coordinates) obtained by the compared
algorithms are shown in Fig. 11.

TABLE VII
EXACT FITNESS VALUES OBTAINED BY DDEA-SE, DDEA-E, AND

DDEA-RBF ON THE RAE2822 AIRFOIL TEST CASE. THE BEST RESULTS
ARE HIGHLIGHTED.

Offline algorithm
DDEA-SE 0.8470±0.0079
DDEA-E 0.9473±0.0358

DDEA-RBF 3.4194±10.4958

Online algorithm CAL-SAPSO 0.6843±0.0108
GPEME 0.7781±0.0100
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Fig. 11. The baseline design and the best designs obtained by DDEA-SE,
DDEA-E and DDEA-RBF.

From Table VII, we can see that the best designs obtained
by DDEA-SE, DDEA-E and DDEA-RBF are all better than
the baseline design and the one obtained by DDEA-SE is the
best. In addition, DDEA-SE has achieved the best average
fitness and the minimum variance. This confirms that DDEA-
SE performs robustly on this airfoil design optimization prob-
lem. It should be noted that the average fitness obtained by
DDEA-RBF is much worse than the baseline design mainly
because the CFD simulation for one out of the 20 runs has
failed, resulting in an abnormally large value for the objective
function. Note also that the above results are worse than those
reported in [18], which might be due to the fact that all
compared algorithms in [18] are online data-driven EAs using
70 offline data and 84 online data.

VII. CONCLUDING REMARKS

This paper aims to address offline data-driven optimization
problems, which are challenging, widely seen in the real-
world, but are largely neglected in the evolutionary optimiza-
tion community. For offline data-driven optimization problems
where only limited data is available, the optimization becomes
extremely difficult and it becomes critical to fully exploit the
data to guide the search. In this work, we propose a data-
driven EA using an adaptive selective ensemble. The proposed
algorithm builds a large number of surrogate models on the
basis of probability-based sampling of the given data before
the optimization starts and adaptively selects a small subset
of the models built offline. The experimental results on five
benchmark problems demonstrate that the proposed algorithm
can deal with various problems with up to 100 decision
variables, no matter whether the data are created randomly
or sampled using the Latin hypercube method. Additionally,
the effectiveness of the proposed algorithm is verified on the
RAE2822 airfoil test case.

Despite of the promising results, we must emphasize that the
work reported in this paper is still a first step towards solving

offline data-driven optimization problems. Several possible
improvements could be considered in the future. First, the
surrogate management strategy plays an important role in
data-driven EAs. More sophisticated surrogate management
strategies that more explicitly take into account of the local
and global fitness landscapes need to be designed. Second,
advanced machine learning techniques such as stacking [78],
transfer learning [51], and deep learning should be explored.
Fusion of heterogeneous data might be needed for solving
more complex real-world problems. Last but not least, the
proposed algorithm can be used to deal with the offline part
of online data-driven EAs, and the performance improvement
should be further studied.
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