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Abstract—Model management plays an essential role in
surrogate-assisted evolutionary optimization of expensive prob-
lems, since the strategy for selecting individuals for fitness evalu-
ation using the real objective function has substantial influences
on the final performance. Among many others, infill criterion
driven Gaussian process assisted evolutionary algorithms have
been demonstrated competitive for optimization of problems with
up to 50 decision variables. In this paper, a multi-objective
infill criterion that considers the approximated fitness and
the approximation uncertainty as two objectives is proposed
for a Gaussian process assisted social learning particle swarm
optimization algorithm. The multi-objective infill criterion uses
non-dominated sorting for model management, thereby avoiding
combining the approximated fitness and the approximation un-
certainty into a scalar function, which is shown to be particularly
important for high-dimensional problems, where the estimated
uncertainty becomes less reliable. Empirical studies on 50- and
100-dimensional benchmark problems and a synthetic problem
constructed from four real-world optimization problems demon-
strate that the proposed multi-objective infill criterion is more
effective than existing scalar infill criteria for Gaussian process
assisted optimization given a limited computational budget.

Index Terms—Expensive optimization, multi-objective infill
criterion, Gaussian process, social learning particle swarm opti-
mization.

I. INTRODUCTION

EVOLUTIONARY algorithms (EAs) typically assume that
analytic objective functions exist for calculating the fit-
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ness functions. However, many real-world optimization prob-
lems, such as antenna design [1], power system design [2],
trauma system design [3], blast furnace optimization [4], and
aerodynamic wing design [5] usually involve computationally
intensive numerical simulations or costly experiments to eval-
uate the performance of candidate solutions [6]. For example,
high-fidelity crashworthiness analysis in automotive industry
may take several days for one analysis and therefore more
than ten years are needed to complete 1000 analyses [7].
Thus, EAs will be prohibited from being used to solve these
computationally expensive optimization problems because a
large number of fitness evaluations are typically required
before they locate a sub-optimal solution. In recent years,
fitness approximation techniques with the help of computa-
tionally efficient surrogate models (also called meta-models)
have received increasing attention in evolutionary computation
for solving expensive or data-driven optimization problems [3]
[8] [9] [10] [11]. Commonly used surrogate models include the
polynomial repression models [12] [13], Kriging models [14]
[15] [16], which are also known as Gaussian processes [17]
[18] [19] [20] [21] or Bayesian optimization [22], artificial
neural networks [23] [24], radial basis functions [25] [26] [27]
[28] [29], and support vector machines [30] [31].

The surrogate model and the model management, i.e., the
strategy for selecting candidate individuals to be evaluated
using the expensive real objective function, are critical for
the success of surrogate-assisted evolutionary algorithms [8]
[10]. In the present work, we adopt the Gaussian process (GP)
model as the surrogate mainly for its capability of providing
an estimate of the fitness approximation uncertainty together
with the approximated fitness value. The benefits of using GP
model have been shown empirically in many papers, readers
can refer to [14] [32] [33] [34] [22]. However, the model
management strategy for selecting individuals to be evaluated
using the real objective function, which is often called infill
criterion in Gaussian process assisted evolutionary algorithms,
remains the most important issue to be studied [35] [36].
Generally speaking, there are two main criteria for determining
which individuals are to be evaluated using the real objective
function. One commonly used criterion is to evaluate the
individuals that have the global or local best approximated
fitness. For example, the best individual in each cluster (which
can be seen as local best individual) is suggested to be
evaluated using the real objective function in [37] [38]. In
[28] and [39], it is proposed to evaluate both the global and
personal best particles. The second widely used criterion is
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to select the individual whose predicted fitness value has a
large amount of uncertainty for fitness evaluation using the real
fitness function. Selection of individuals whose approximated
fitness has a large degree of uncertainty is out of the following
two reasons. First, a large degree of uncertainty in fitness
approximation of the individuals indicates that the fitness
landscape around these individuals has not been well explored
and therefore evaluation of these individuals are very likely to
find a good solution [40]. Second, evaluating the individuals
with a large degree of uncertainty can most effectively improve
the accuracy of the surrogate model [10]. Many methods have
been proposed for calculating the degree of uncertainty. For
example, the degree of uncertainty is defined to be inversely
proportional to the average distance between the individual and
training samples which are used for constructing the surrogate
[40]. In [37] [41] [42], authors proposed to use multiple
surrogates or surrogate ensembles for fitness approximation so
as to obtain a degree of uncertainty according to the different
fitness values approximated by multiple models.

Several infill criteria have been proposed for model man-
agement when Gaussian processes are adopted for both single-
and multi-objective surrogate-assisted optimization [35]. Com-
monly used infill criteria include the lower confidence bound
(LCB) [15] [43], the expected improvement (EI) [44] [45] and
the probability of improvement (PI) [26] [46]. Emmerich et al.
[47] compared the above three criteria in surrogate-assisted
optimization of low-dimensional (20-dimensional) problems1,
which showed that the EI criterion yields the best performance
but requires the highest computing cost. In [45] and [48], EI is
applied to surrogate-assisted multiobjective optimization and
surrogate-assisted optimization of multiple problems, respec-
tively. Liu et al [21] proposed to choose the individual with the
smallest LCB value for fitness evaluation at each generation.
Although the individual with the smallest LCB value might
not be the best estimated solution, but it is a reasonably good
solution that is able to balance the considerations of searching
the promising region and less explored region.

In recent years, surrogate-assisted evolutionary algorithms
have received increasing attention in solving expensive multi-
and many- objective optimization problems. Namura et al.
[49] proposed a new infill criterion, in which the EI of the
Penalty-based Boundary Intersection (PBI) and the inverted
PBI are utilized for selecting additional sample points to
update the Kriging model. In [50], Zhan et al. suggested to
aggregate the elements of the EI matrix into a scalar function.
Chugh et al. [51] suggested a GP-assisted reference vector
guided evolutionary algorithm for solving computationally
expensive many-objective optimization, in which the individ-
uals that have either the maximum amount of uncertainty or
the minimum angle penalized distance are evaluated using
the real objective functions. Wang et al. [52] proposed an
ensemble-based model management strategy for surrogate-
assisted evolutionary algorithm, in which both uncertainty and
performance based infill criteria were utilized.

1In this paper, we call optimization problems with up to 30, from 30 to 50,
and more than 50 decision variables, respectively, low-dimensional, medium-
dimensional, and high-dimensional problems.

To the best of our knowledge, although both the approxi-
mated fitness and the uncertainty of the approximated fitness
have been considered in model management, most of them
either use one criterion or aggregate multiple criteria into
a scalar one to select the individuals to be evaluated using
the real computationally expensive objective function. In this
paper, a multi-objective infill criterion, MIC for short, is pro-
posed. Different from the existing infill criteria, the proposed
MIC considers the minimization of the approximated fitness
(for maximization problems, the maximize the fitness is, the
better) and the maximization of the uncertainty of the fitness
approximation as two separate objectives and a non-dominated
sorting strategy is used to determine which individuals are
to be chosen for fitness evaluation using the real expensive
fitness function. The MIC has two main advantages for model
management, particularly for optimization of high-dimensional
problems. First, the proposed MIC sorts the population using
non-dominated sorting and selects the completely dominated
individuals (in terms of the approximated fitness and the de-
gree of uncertainty) for fitness evaluation, thereby taking into
account both exploration of the search space and enhancing the
model quality. Second, MIC avoids pre-specifying a problem-
specific hyper-parameter to linearly or nonlinearly combine
the estimated fitness and the uncertainty, as done in LCB and
EI, significantly enhancing the algorithm’s ability to strike a
good balance between performance and uncertainty. We will
show that avoiding specifying the hyper-parameter becomes
extremely important when the search dimension increases due
to the fact that the estimated uncertainty becomes less reliable
when only a small number of training samples is allowed to
construct the Gaussian process model.

The rest of this paper is organized as follows. Section II
provides a brief overview of the related techniques used in the
proposed algorithm. A multi-objective infill criterion together
with a Gaussian process assisted social learning particle swarm
optimization is then presented in Section III. The proposed
algorithm is empirically evaluated and compared with a few
state-of-the-art algorithms on six 50- and 100-dimensional
benchmark problems and a synthesized real-world problem
in Section IV. Finally, Section V summarizes the paper and
discusses future work.

II. RELATED TECHNIQUES

Without loss of generality, the optimization problem con-
sidered in this work can be formulated as follows:

min f(x)

s. t. xl ≤ x ≤ xu (1)

where x ∈ RD is the feasible solution set, denotes the dimen-
sionality of the search space, f(x) is the objective function,
xl and xu are the lower and upper bounds of the decision
variables. In the following, we give a concise description of
the Gaussian process and the social learning particle swarm
optimization algorithm [53], which is adopted in this work as
the base optimizer, as it was shown to perform robustly on
medium to high-dimensional optimization problems [29] [53].
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A. Gaussian process

The utilization of Gaussian process model can be traced
back to 1970s, when it was used to solve regression problems
in geostatistics, which was known as Kriging [54]. It became
popular in 1990s, when Bayesian neural networks were investi-
gated for machine learning [55]. As a kernel method developed
on the basis of statistical learning and Bayesion theorem,
theoretically sound methods are available for managing GP
models for surrogate-assisted optimization [10], [22], [56].
Therefore, in this paper, the GP model, which can provide
both fitness approximation uncertainty and the approximated
fitness value as well, is employed as surrogate.

A Gaussian process is a collection of random variables that
have a joint multivariate Gaussian distribution. Suppose DB is
a training set that includes n samples (xi, yi), i = 1, 2, . . . , n.
For any new input x (which corresponds to the decision
variables of a candidate solution when the GP is used as
a surrogate), its output y (which is the estimated fitness of
the candidate solution) is a sample of µ + ε(x), where µ is
the prediction of a regression model and ε (x) is a normal
distribution (N(0, σ2)) of zero mean and variance σ2.

µ=k(x)K−1y (2)

σ2=κ (x)− k(x)
T
K−1k(x) (3)

where K is a matrix and each element in K, Kij = C(xi,xj),
describes the correlation between yi and yj related to the dis-
tance between xi and xj . k(x)=[C(x,x1), · · ·C(x,xn)]T is an
n×1 vector of covariance between x and X, X = (x1, . . . ,xn)
is the inputs of the training set, and κ(x)=C(x,x) is the
covariance between x itself. The covariance function C(·,·)
can be any function that generates a positive semi-definite
covariance matrix. According to the discussions and the em-
pirical results comparing the performance and computational
efficiency of various covariance functions provided in Section
I (A) and Section II (A) of the Supplementary material, we
adopt Matérn32 as the covariance function in this work, which
is given as follows:

C(x,xi) = kMatern32(r) = σ2
f (1 +

√
3r

σl
)exp(−

√
3r

σl
) (4)

where r is the Euclidean distance r =

√
(x− xi)

T
(x− xi),

σl is the characteristic length scale, and σf is the standard
deviation. Both σl and σf can be defined by a parameterization
vector θ = (θ1, θ2) , where θ1 = log σl and θ2 = log σf . The
standard deviation σf defines the differentiability of the covari-
ance functions, and σl, which are characteristic length scales,
describe the relevance between different inputs. To reduce the
run time and memory complexity, we use sequential quadratic
programming [57] to optimize the hyper-parameters, which
iteratively estimates the Hessian matrix of the Lagrangian us-
ing the Broyden−Fletcher−Goldfarb−Shanno algorithm [58].
The reader is referred to Section I (B) of the Supplementary
material for more discussions.

The prediction and uncertainty at x are expressed as below:

ŷ(x) = µ+ k(x)K−1(y − Iµ) (5)

s2(x) = σ2(1+kT (x)Kk(x) +

(
1− ITK−1k(x)

)2
ITK−1I

) (6)

where I is an n × 1 vector with each element being equal to
1. s=

√
s2(x) is the estimated standard deviation (ESD) for

measuring the uncertainty of the predicted fitness ŷ(x).

B. Social Learning Particle Swarm Optimization

The social learning particle swarm optimization (SL-PSO)
algorithm [53] was demonstrated to perform well in surrogate-
assisted optimization of high-dimensional problems [29].
Thus, we use SL-PSO as the base optimizer for developing the
multi-objective infill criterion driven Gaussian process assisted
SL-PSO, called MGP-SLPSO. The main difference between
SL-PSO and the canonical PSO is that during learning, SL-
PSO does not learn from the global and personal best individu-
als. Instead, the particles in the swarm will be sorted according
to their fitness in an ascending order and all particles, except
for the best one, will learn from a randomly chosen better
particle in the current swarm (termed demonstrators) starting
from the worst particle. Specifically, the position of the j-th
particle in SL-PSO at generation t + 1 is updated according
to the following equations:

xjd(t+ 1) =

{
xjd(t) + ∆xjd(t+ 1) if pj(t) ≤ PL

j

xjd(t) otherwise
(7)

∆xjd(t+ 1) = r1 ·∆xjd(t) + r2 · (xkd(t)− xjd(t))

+ r3 · ε · (x̄d(t)− xjd(t))
(8)

In the above equations, 1 < j < m, particle k is a randomly
chosen demonstrator for particle j, so j < k ≤ m, m is the
swarm size, and xkd(t) is the d-th element (1 ≤ d ≤ D, D
denotes the dimension of the search space) of particle k. Note
that the demonstrator should be re-chosen for each element of
particle j. PL

j is a learning probability inversely proportional
to the fitness of particle j, pj(t) is a randomly generated
probability for particle j, r1, r2 and r3 are random numbers in
the range of [0, 1], x̄d(t) denotes the mean position of the d-th
variable in generation t, and constant ε, which is also known
as the social influence factor, regulates the influence of x̄d(t).

III. A MULTI-OBJECTIVE INFILL CRITERION DRIVEN
GAUSSIAN PROCESS ASSISTED SL-PSO

A. Overall Framework of MGP-SLPSO

Fig. 1 shows the overall framework of MGP-SLPSO, which
uses SL-PSO as the base optimizer and the GP model as the
surrogate. The pseudo code for the main components of MGP-
SLPSO is presented in Algorithm 1. The swarm consists of
m particles (known as the swarm size), and the positions of
the particles (i.e., the decision variables) of the initial swarm
are generated using Latin hypercube sampling (LHS) [59].
All particles in the initial swarm are evaluated using the real
objective function and the positions and their corresponding
fitness values are stored in archive A. The position and velocity
of all particles are then updated according to Eqs. (7) and
(8) . Note that all new particles in the second iteration will
also be evaluated using the real objective function and the
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generated data are stored in archive A. Starting from the third
iteration, the data in archive A will be used to train the GP
model, which is used to estimate the fitness and the ESD of
all particles. Then, the MIC will be employed to select a few
particles to be re-evaluated using the real objective function.
These newly evaluated particles will be stored in archive A
until the archive is full. When the number of training data is
larger than the archive size, only the most recently evaluated
data are stored.

From the above descriptions, we see that the main difference
between MGP-SLPSO and SL-PSO is the model management
strategy, including the selection of the particles for fitness eval-
uation using the real objective function (i.e., infill criterion),
the update of the GP model, and the storage of the training
data. Note that the best-so-far solution found by the algorithm
is maintained and updated at the end of each iteration.

Although GP models have been successfully used as sur-
rogates to assist algorithms for optimizing computationally
expensive problems, they also suffer from serious limitations,
in particular for high-dimensional problems. First, constructing
a GP model may become computationally very intensive as
the number of training data increases [51] [60]. Second,
as indicated in [61] and also confirmed in this work, the
difference between the ESDs of different solutions will vanish
for high-dimensional problems, reducing the effectiveness of
existing infill criteria. These issues can be partly alleviated by
choosing the right covariance matrix and the right method for
optimizing the hyper parameters in GP models [62].

This work takes a solid step forward by proposing a multi-
objective infill criterion to address the issue of vanishing ESD
information in GP-assisted evolutionary optimization of high-
dimensional problems. In the following, we present in detail
the proposed MIC for GP-assisted particle swarm optimization
of high-dimensional systems.

Fig. 1. A diagram of the proposed MGP-SLPSO

Algorithm 1: The pseudo code of MGP-SLPSO

1 begin
2 t = 0;
3 Use LHS to generate the initial swarm;
4 while the computational budget is not exhausted do
5 if the amount of data in archive A does not

exceed the pre-defined threshold then
6 Evaluate the solutions using the real

expensive objective function and update the
global best position;

7 Save all exact evaluations in A;
8 t = t+ 1;
9 Update the particles according to (7) and (8);

10 else
11 Train a GP model using the latest n data in

archive A;
12 Update all particles according to (7) and (8);
13 Estimate the fitness of all particles using GP

model;
14 Choose the particles according to the

multi-objective infill criterion (see
Algorithm 2) for fitness evaluation using
the real objective function and update the
global best position;

15 Update archive A;
16 t = t+ 1;
17 end if
18 end while
19 end

B. Multi-objective infill criterion

Various infill criteria have been proposed for GP-assisted
optimization algorithms [35], [36]. However, most infill cri-
teria have only been applied to low-dimensional optimization
problems, and little research has been reported on the effective-
ness of the existing infill criteria optimization problems with
more than 50 decision variables. Most existing infill criteria
make use of the ESD that indicates the amount of uncertainty
of the approximated fitness. These infill criteria have been
shown to work well on low-dimensional problems; however,
little research has been reported on the effectiveness of the
infill criteria as the dimension of the optimization problems
increases. One important phenomenon we have observed in
our empirical studies is that the ESDs of different particles
become extremely similar when the GP is used for approximat-
ing high-dimensional objective functions, in particular when
the number of training samples is small.

Figs. 2 and 3 give examples of the ESDs of 100 particles
in approximating the 10- and 50-dimesnional Rosenbrock
functions, respectively. In each figure, we present the ESD
of each particle at iterations 3, 10, 20, and 70 with different
sizes of training data (denoted by τ ). From Fig. 2, we can find
that at iteration 3, i.e.,t=3, all ESD values are large but nearly
the same, making it hardly possible to distinguish the degrees
of uncertainty of the predicted fitness of different particles.
As the amount of available training data increases over the
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Fig. 2. ESD for the 10-dimensional Rosenbrock function

Fig. 3. ESD for the 50-dimensional Rosenbrock function

iterations (e.g., iterations 10 and 20), the ESDs become clearly
distinguishable. But as the optimization converges (e.g. at
iteration 70), the ESD values of different particles become
indistinguishable again. The above issue becomes more serious
for 50-dimensional problems, as shown in Fig. 3, where we
can find that the ESD values of all particles are nearly the same
at iterations 3, 10 and 20, and they can become distinguishable
only around iteration 70. The above empirical results can be
explained by analyzing Eq.(6), from which we can see that the
ESD of a new individual x is determined by the correlation
between x and the training samples, which is eventually de-
termined by the covariance function and the distance between
x and the training samples. As a result, all candidate solutions
in a new population will have extremely similar ESDs, as all
solutions may be equally far from the small number of training
samples in a high-dimensional decision space.

From the above analysis, we recognize that for high-
dimensional problems, the ESD values of different solutions
will become hardly distinguishable, making those infill criteria
based on linear or nonlinear combinations of the approximated
fitness and the uncertainty of the approximated fitness (i.e.,
the ESD) less effective for selecting the right individuals for
evaluation using the expensive objective function.

To address the above issue, we propose a new infill criterion,
called multi-objective infill criterion (MIC) for managing the
GP model, which considers the approximated fitness and
the approximation uncertainty as two separate objectives.
Consequently, non-dominated sorting is utilized to determine
which individuals are to be evaluated using the real objective
functions, rather than a scalar value that linearly or nonlin-
early aggregates the approximated fitness and approximation
uncertainty.

For a minimization problem, we provide below a mathemat-
ical description of the proposed MIC, which can be formulated
by:

min
x

g(x) = (g1(x),g2(x))

s. t. x ∈ S ⊂ RD (9)

g1(x) = ŷ(x) (10)

g2(x) =
√
s2(x) (11)

where the search space S is defined as S := [xmin,xmax],
xmin and xmax are user-defined lower and upper bounds, ŷ(x)
is the approximated fitness according to (5) and

√
s2(x) is

ESD according to (6) for measuring the estimated uncertainty.

Fig. 4. An illustration of the non-dominated fronts sorted according to the
approximated fitness and the estimated uncertainty. The fitness value of the
articles on both the first and last non-dominated fronts will be evaluated using
the expensive objective function.

In MGP-SLPSO, once the fitness value of all particles in the
present generation is estimated using the trained GP model,
the fast non-dominated sorting algorithm presented in [63] is
employed to sort the particles into different non-dominated
fronts. In the proposed MIC, the particles on the first front
consisting of the non-dominated particles in the swarm will
be evaluated using the expensive objective function. Then
particles on the last front composed of those that do not
dominate any others will also be selected for fitness evaluation,
thereby emphasizing exploration. Fig.4 gives an illustration
of selected particles on the first and last fronts that will be
evaluated using the real objective function.

Algorithm 2 lists the pseudo code of MIC. All particles that
are evaluated using the real expensive objective function are
then stored in archive A.
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Algorithm 2: Multi-objective infill criterion (MIC)
Input : the approximated fitness value ŷ and the

approximation uncertainty s of all particles.
Output: the particles to be evaluated using the real

fitness function.
1 begin
2 Non-dominated sorting: using the fast non-dominated

sorting approach to sort the swarm into different
non-dominated fronts according to ŷ and s;

3 Evaluate the particles both on the first non-dominated
front and the last non-dominated front;

4 Store all exact evaluations in archive A;
5 end

Fig. 5. The approximated values and ESD for 10-dimensional Rosenbrock
function

Fig. 6. The approximated values and ESD for 50-dimensional Rosenbrock
function

To provide a first flavor about the difference between the
proposed MIC and existing infill criteria, we present the results
of the approximated fitness and ESD of each individual at
iterations 3, 10, 20 and 70 in Figs. 5 and 6, respectively, when
solving the 10- and 50-dimensional Rosenbrock function.
From Figs. 5 and 6, we can see that compared from the
existing scalar infill criteria, MIC is able to better distinguish
the solutions under different situations, thereby making it
easier to select individuals for fitness evaluation using the real
objective function. Even in special cases when the ESD of
different solutions is same, as shown in Figs. 6(a) and 6(b),
different solutions can be easily distinguished by using the
approximated fitness.

C. Empirical studies on the multi-objective infill criterion

To better understand why the proposed MIC is beneficial,
we first examine the influence of the solutions in the first
and last fronts on the population diversity. To this end, we
compare three infill criteria in terms of the resulting population
diversity in the decision space using a diversity metric called
pure diversity (PD) proposed in [64] in optimizing the 100-
D Rosenbrock and Ackley functions. PD is adopted here to
assess the population diversity is mainly because PD is able
to more accurately reflect diversity in high-dimensional spaces
[64]. In the PD metric, an Lp-norm-based ( p < 1) distance is
adopted to measure the dissimilarity of solutions. The higher
the PD value, the more diverse the population is. The results
averaged over 30 independent runs are provided in Fig. 7,
from which we can see that the diversity of the population
using the multi-objective infill criterion (denoted First front +
Last front) remains to be the largest compared to the EI and
the one selecting the individuals in the first front only. This
implies that MIC encourages stronger explorative search for
high-dimensional problems.

Fig. 7. Pure diversity metric on 100-D Rosenbrock and Ackley functions

In the following, we examine the number of solutions
selected by MIC and their contribution to the improvement of
the best fitness during the optimization. Fig. 8 plots number
of solutions in the first and last fronts, respectively. As we can
see, MIC often selects more individuals in the first front than
the last, and it selects more than one individual in most itera-
tions. Recall that existing single-objective infill criteria usually
select only one individual and selecting multiple solutions for
fitness re-evaluation with the real expensive objective function
may be beneficial, as can also be seen from Fig. 6.

To investigate the contributions made by the solutions
selected from the first and last fronts in MIC, we calculate the
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Fig. 8. Number of solutions in the first and last fronts over the generations
on 50- and 100-dimensional Rosenbrock and Ackley functions.

percentage of the solutions in the first and last fronts in MGP-
SLPSO that have contributed to the improvement of the global
best fitness. Table I lists the average total number of solutions
in the first and last fronts versus the number of solutions in the
first and last fronts that have successfully improved the fitness
in optimizing the 50-D and 100-D Rosenbrock and Ackley
functions. From Table I, we can find that the percentage of
the solutions that contribute to the successful improvement
of the global best fitness, either on the first or last front,
increases as the dimension of the problem becomes higher.
In particular, it can be clearly seen that the solutions on the
last front play an increasingly important role in improving the
fitness of higher dimensional problems, confirming that the
proposed MIC is effective for surrogate-assisted optimization
of high-dimensional problems.

The empirical studies and analyses help understand the
motivation and benefit of the proposed MIC compared against
existing ones that linearly or nonlinearly aggregate the pre-
dicted fitness and the ESD. In the following, we verify the
advantage of MIC when it is adopted in GP-assisted SLPSO.

IV. EXPERIMENTAL STUDIES

To examine the effectiveness of the proposed infill crite-
rion on high-dimensional expensive optimization problems,
we conduct a set of empirical studies on six 50- and 100-
dimensional benchmark problems and a synthetic real-world
problem by comparing it with some state-of-the-art surrogate-
assisted evolutionary algorithms [29]. A description of the
benchmark problems are listed in Table II.

As mentioned above, most GP-assisted optimization al-
gorithms have been shown promising mainly on the low-
dimension problems, typically less than 15 decision variables
[51] and not higher than 30 [15]. Most recently, Sun et al. [29]
proposed a surrogate-assisted cooperative swarm optimization
algorithm (called SA-COSO) for solving high-dimensional
optimization problems, in which a fitness estimation strategy

assisted particle swarm optimization algorithm cooperates with
an radial-basis-function network assisted SL-PSO algorithm.
It was shown that the SA-COSO algorithm can obtain better
results than GPEME (GP+DR) proposed in [15] on 50-
dimensional problems and that it is successful in locating
promising solutions on 100-dimensional problems given a
limited computational budget. In our comparative studies, the
performance of the proposed MGP-SLPSO algorithm is com-
pared with SL-PSO (without surrogates), and three variants of
GP-assisted SL-PSO driven by different infill criteria, namely,
GP-assisted SL-PSO based on the approximated fitness only
(GP-Fit for short), the lower confidence bound (GP-LCB),
and the expected improvement (GP-EI) in order to investigate
whether the proposed MIC has any advantage over the scalar
infill criteria. All settings of GP-Fit, GP-LCB and GP-EI
are the same as MGP-SLPSO, with the infill criterion being
the only difference. In GP-Fit, the particles in the current
population are sorted according to their approximated fitness.
The best individual is then chosen to be evaluated using the
real objective function. In addition, MGP-SLPSO is compared
with SA-COSO algorithm [29] on the six benchmark prob-
lems. All experiments are implemented on a computer with a
2.10GHz processor and 32GB in RAM. Experimental results
are obtained over 30 independent runs in Matlab rR2017A.

A. Parameter Settings

The parameters of the SL-PSO algorithm in MGP-SLPSO,
GP-Fit, GP-LCB and GP-EI are set same as recommended
in [53]. The maximum number of fitness evaluations is set
to 1,000. The number of training data n in GP-Fit, GP-LCB
GP-EI and MGP-SLPSO is defined to be 2 ∗ m ≤ n ≤ 4 ∗
m, where m is the swarm size, which is determined by the
dimension of the search space as m = 100+

∣∣D
10

∣∣, 2∗m is the
minimum number of training data and 4 ∗m is the maximum
number of training data. If the number of data in archive is
larger than 4 ∗ m, only the most recent 4 ∗ m data will be
used to train the GP model. The number of training data is
set due to the following reasons. First, as the computational
complexity of GP model is O(n3) [51], where n is the number
of training data, the cost of training time will increase rapidly
with the number of training data. Thus, it is necessary to limit
the number of training data. Second, it was suggested that the
minimum number of training data should be the double of the
dimension [47], therefore, 2∗m is set to be the lower bound of
the training data size, which is slightly larger than 2∗D, D is
the dimension of the search space as defined in Section II (B).
Third, as discussed in Section III, The estimated uncertainty
will be less reliable for high-dimensional systems, especially
when the number of training data is limited.

B. Experimental results on high-dimensional problems

Tables III and IV present the statistical results of the
compared algorithms, including the t-test results calculated
at a significance level of α = 0.05. All algorithms perform
2 ∗ m real fitness evaluations (FEs) to train the GP model
before they start optimization and terminate once 1000 exact
FEs are exhausted. In the tables, + indicates that the proposed
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TABLE I
AVERAGE NUMBER OF SOLUTIONS IN FIRST FRONT AND LAST FRONT VERSUS THE AVERAGE NUMBER OF SUCCESSFUL SOLUTIONS IN FIRST FRONT

AND LAST FRONT ON ROSENBROCK AND ACKLEY FUNCTIONS

Dimention Function Front Average no. of
solutions

Average no. of suc-
cessful solutions

Percentage of the no. of
successful solutions

50

Rosenbrock
First Front 635 28 4.41%

Last Front 160 0 0.00%

Ackley
First Front 580 47 8.10%

Last Front 216 24 11.11%

100

Rosenbrock
First Front 630 40 6.35%

Last Front 150 16 10.67%

Ackley
First Front 449 45 10.02%

Last Front 331 58 17.52%

TABLE II
DESCRIPTION OF THE SIX BENCHMARK FUNCTIONS

Function
No.

Function name No. of variables Global optimum Property

F1 Ellipsoid 50/100 0 Unimodal
F2 Rosenbrock 50/100 0 Multimodal with narrow valley
F3 Ackley 50/100 0 Multimodal,Local optimas number is huge
F4 Griewank 50/100 0 Multimodal,Local optimas number is huge
F5 Shifted Rotated Rastrign 50/100 -330 Very complicated multimodal
F6 Rotated Hybrid Composition

Function(F19 in [41])
50/100 10 Very complicated multimodal

MGP-SLPSO algorithm, statistically significantly outperforms
a compared algorithm, while ≈ and − indicates that MGP-
SLPSO performs comparably or significantly worse than the
compared algorithm, respectively. In addition, the best results
obtained for each function are highlighted in bold. From Table
III and Table IV, we can find that all GP-assisted SL-PSO
algorithms obtained better results than the SL-PSO without
GP assistance, which confirms that the surrogate indeed helps
accelerate the convergence of the SL-PSO. Compared to GP-
Fit and GP-EI, MGP-SLPSO obtained better results on all 50-
and 100-dimensional benchmark problems except for F2 with
50 dimensions. Note, however, that the results of MGP-SLPSO
on F2 with 100 dimension are much better than those of
GP-LCB and GP-Fit. These results showed that the proposed
MIC is much more effective than the scalar infill criteria for
high-dimensional problems. We see that MGP-SLPSO also
outperforms SA-COSO on six benchmark functions.

To further demonstrate the competitive performance of
MGP-SLPSO, the convergence profiles of the compared al-
gorithms are plotted in Figs. 9∼20. From these figures, we
can see that MGP-SLPSO is better than the compared al-
gorithms with several orders of magnitude on the Ellipsoid
and Griewank functions given 1000 FEs. When the allowed
computational budget is reduced to 400-600 FEs, the per-
formance of MGP-SLPSO remains to be clearly superior
to the compared infill criterion driven GP assisted SL-PSO
algorithms, and is comparable to that of the SA-COSO on
100-dimensional F6. Taking a closer look at the convergence
profiles of GP-Fit, GP-EI and GP-LCB, we can see that they
are similar on most benchmark problems, especially when the

TABLE III
COMPARATIVE RESULTS ON 50−D BENCHMARK FUNCTIONS

Approach Best Worst Mean Std.

F1

SL-PSO 1.10E+03 2.09E+03 1.78E+03 2.74E+02 +
SA-COSO 2.38E+01 8.38E+01 4.93E+01 1.60E+01 +
GP-Fit 8.50E-08 1.03E+01 7.71E-01 2.33E+00 +
GP-EI 1.76E-07 4.93E+00 4.01E-01 9.80E-01 +
GP-LCB 2.10E-07 4.89E+00 4.34E-01 1.00E+00 +
MGP-SLPSO 2.90E-16 4.94E-15 9.88E-16 1.02E-15

F2

SL-PSO 1.82E+03 3.20E+03 2.37E+03 4.02E+02 +
SA-COSO 1.54E+02 3.64E+02 2.49E+02 5.43E+01 +
GP-Fit 6.22E+01 2.28E+02 1.07E+02 3.40E+01 −
GP-EI 5.82E+01 2.19E+02 1.21E+02 3.66E+01 ≈
GP-LCB 6.48E+01 1.82E+02 1.05E+02 3.30E+01 −
MGP-SLPSO 8.84E+01 1.65E+02 1.20E+02 1.87E+01

F3

SL-PSO 1.68E+01 1.86E+01 1.78E+01 4.26E-01 +
SA-COSO 7.79E+00 1.26E+01 9.54E+00 1.21E+00 +
GP-Fit 6.09E+00 1.43E+01 1.10E+01 2.53E+00 +
GP-EI 6.66E+00 1.36E+01 9.95E+00 2.03E+00 +
GP-LCB 6.62E+00 1.66E+01 1.04E+01 2.74E+00 +
MGP-SLPSO 7.77E+00 1.21E+01 9.31E+00 1.13E+00

F4

SL-PSO 2.16E+02 3.87E+02 2.86E+02 4.04E+01 +
SA-COSO 3.69E+00 7.61E+00 5.54E+00 1.04E+00 +
GP-Fit 2.22E-01 1.38E+00 7.56E-01 3.03E-01 +
GP-EI 1.16E-01 1.68E+00 7.42E-01 3.36E-01 +
GP-LCB 2.16E-01 2.37E+00 6.48E-01 4.38E-01 +
MGP-SLPSO 3.74E-02 6.14E-01 1.54E-01 1.30E-01

F5

SL-PSO 2.86E+02 5.03E+02 4.09E+02 5.20E+01 +
SA-COSO 1.48E+02 2.95E+02 2.14E+02 3.33E+01 +
GP-Fit -1.11E+01 2.66E+02 1.03E+02 7.90E+01 +
GP-EI -6.37E+01 1.54E+02 5.62E+01 5.38E+01 +
GP-LCB -9.80E+01 1.91E+02 4.67E+01 5.52E+01 +
MGP-SLPSO -4.34E+01 8.84E+01 3.30E+01 3.61E+01

F6

SL-PSO 1.13E+03 1.26E+03 1.20E+03 2.79E+01 +
SA-COSO 1.00E+03 1.16E+03 1.08E+03 3.66E+01 +
GP-Fit 1.09E+03 1.28E+03 1.20E+03 5.12E+01 +
GP-EI 1.09E+03 1.21E+03 1.15E+03 3.48E+01 +
GP-LCB 1.08E+03 1.22E+03 1.13E+03 3.55E+01 +
MGP-SLPSO 1.03E+03 1.11E+03 1.06E+03 2.14E+01
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Fig. 9. The convergence profiles on 50-
dimensional F1

Fig. 10. The convergence profiles on 50-
dimensional F2

Fig. 11. The convergence profiles on 50-
dimensional F3

Fig. 12. The convergence profiles on 50-
dimensional F4

Fig. 13. The convergence profiles on 50-
dimensional F5

Fig. 14. The convergence profiles on 50-
dimensional F6

Fig. 15. The convergence profiles on 100-
dimensional F1

Fig. 16. The convergence profiles on 100-
dimensional F2

Fig. 17. The convergence profiles on 100-
dimensional F3

Fig. 18. The convergence profiles on 100-
dimensional F4

Fig. 19. The convergence profiles on 100-
dimensional F5

Fig. 20. The convergence profiles on 100-
dimensional F6
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TABLE IV
COMPARATIVE RESULTS ON 100−D BENCHMARK FUNCTIONS

Approach Best Worst Mean Std.

F1

SL-PSO 9.00E+03 1.32E+04 1.17E+04 9.60E+02 +
SA-COSO 5.94E+02 1.39E+03 9.29E+02 2.36E+02 +
GP-Fit 5.46E+01 4.77E+02 2.72E+02 1.21E+02 +
GP-EI 1.48E+02 1.02E+03 3.91E+02 2.15E+02 +
GP-LCB 5.55E+01 1.46E+03 4.03E+02 3.06E+02 +
MGP-SLPSO 1.37E-16 1.03E-03 4.93E-05 1.95E-04

F2

SL-PSO 6.61E+03 1.10E+04 9.16E+03 1.12E+03 +
SA-COSO 1.46E+03 4.63E+03 2.41E+03 7.99E+02 +
GP-Fit 6.77E+02 2.42E+03 1.28E+03 3.81E+02 +
GP-EI 1.17E+03 4.12E+03 1.96E+03 6.48E+02 +
GP-LCB 1.20E+03 3.08E+03 1.92E+03 4.66E+02 +
MGP-SLPSO 4.55E+02 7.33E+02 6.12E+02 6.79E+01

F3

SL-PSO 1.85E+01 1.95E+01 1.90E+01 2.43E-01 +
SA-COSO 1.42E+01 1.72E+01 1.59E+01 7.44E-01 +
GP-Fit 1.44E+01 1.72E+01 1.60E+01 7.74E-01 +
GP-EI 1.56E+01 1.84E+01 1.70E+01 7.62E-01 +
GP-LCB 1.59E+01 1.88E+01 1.72E+01 6.25E-01 +
MGP-SLPSO 1.34E+01 1.57E+01 1.43E+01 6.21E-01

F4

SL-PSO 7.10E+02 1.05E+03 8.74E+02 8.76E+01 +
SA-COSO 4.14E+01 1.06E+02 6.90E+01 1.50E+01 +
GP-Fit 1.93E+00 5.01E+01 1.70E+01 1.26E+01 +
GP-EI 3.43E+00 6.53E+01 3.34E+01 1.51E+01 +
GP-LCB 5.05E+00 6.74E+01 2.97E+01 1.47E+01 +
MGP-SLPSO 4.78E-01 8.47E-01 7.15E-01 7.24E-01

F5

SL-PSO 1.37E+03 1.65E+03 1.52E+03 8.53E+01 +
SA-COSO 1.10E+03 1.60E+03 1.34E+03 1.13E+02 +
GP-Fit 1.44E+03 2.09E+03 1.70E+03 1.44E+02 +
GP-EI 1.44E+03 2.08E+03 1.78E+03 1.66E+02 +
GP-LCB 1.63E+03 2.38E+03 1.93E+03 1.96E+02 +
MGP-SLPSO 8.77E+02 1.16E+03 8.85E+02 1.17E+03

F6

SL-PSO 1.39E+03 1.49E+03 1.44E+03 2.52E+01 +
SA-COSO 1.35E+03 1.52E+03 1.41E+03 3.80E+01 +
GP-Fit 1.40E+03 1.56E+03 1.47E+03 4.14E+01 +
GP-EI 1.39E+03 1.50E+03 1.44E+03 2.98E+01 +
GP-LCB 1.39E+03 1.50E+03 1.45E+03 2.63E+01 +
MGP-SLPSO 1.33E+03 1.49E+03 1.39E+03 4.77E+01

dimension is high. This agrees with our observations in Section
III that the ESD values of different particles in the swarm
are too similar to distinguish for selecting the most uncertain
particles to be evaluated using the real objective function.

To demonstrate the influence of the variance functions,
we performed additional experiments comparing the perfor-
mance of MGP-SLPSO using different covariance functions.
The results are presented in Fig. S2 and Table S-II in the
Supplementary material. We found that Matérn32 shows better
performance on F2, F3 and F6, and similar performance on
F4 and F5.

To further demonstrate the benefit of using a multi-objective
infill criterion, we also show the results when the two objec-
tives in Eq. (9), the estimated fitness and ESD, are replaced
with two scalar infill criteria, such as fitness and LCB (denoted
by Fit+LCB), or fitness and EI (denoted by Fit+LCB). The
results on 100-dimensional functions are provided in Table
S-III and Fig. S3 in the Supplementary materials. We can
see that the combination of Fit+ESD (the proposed algorithm)
converges faster than other combinations in the whole opti-
mization process on F1, F2, F3 and F6.

C. Experimental results on 30-dimensional problems

To examine the performance of MGP-SLPSO on lower
dimensional problems with limited computational budget, we
also compare MGP-SLPSO with GPEME [15] and CAL-
SAPSO [52] on 30-dimensional test problems. Table V
presents the statistical results with 1000 FEs and Table VI

TABLE V
COMPARATIVE RESULTS OBTAINED BY GPEME AND MGP-SLPSO ON

30D PROBLEMS WITH 1000 FES

Approach Mean Std.

F1 GPEME 2.21E+02 8.16E+01
MGP-SLPSO 1.65E-22 4.19E-23

F2 GPEME 2.58E+02 8.02E+02
MGP-SLPSO 1.00E+02 2.23E+01

F3 GPEME 1.32E+01 1.58E+00
MGP-SLPSO 6.58E+00 2.60E+00

F4 GPEME 3.66E+01 1.32E+01
MGP-SLPSO 1.30E-02 5.00E-03

F5 GPEME -2.19E+01 3.64E+01
MGP-SLPSO -2.22E+02 1.96E+01

F6 GPEME 9.59E+02 2.57E+01
MGP-SLPSO 9.52E+02 1.90E+01

shows the results compared to CAL-SAPSO with 330 FEs.
From Table V, we can see that MGP-SLPSO obtains better
results on all six problems, which indicates that MGP-SLPSO
has better performance than GPEME on the lower-dimensional
problems. We can also find from Table VI that when the num-

TABLE VI
COMPARATIVE RESULTS OBTAINED BY CAL-SAPSO AND MGP-SLPSO

ON 30D PROBLEMS WITH 330 FES

Approach Mean Std.

F1 CAL-SAPSO 4.02E+00 1.08E+00
MGP-SLPSO 4.17E-05 1.79E-05

F2 CAL-SAPSO 1.76E+00 3.96E-01
MGP-SLPSO 1.60E+02 2.40E+01

F3 CAL-SAPSO 1.62E+01 4.13E-01
MGP-SLPSO 9.55E+00 2.92E+00

F4 CAL-SAPSO 9.95E-01 3.99E-02
MGP-SLPSO 1.50E-02 5.07E-03

F5 CAL-SAPSO 2.49E +02 2.44E+01
MGP-SLPSO -7.02E+01 1.65E+01

F6 CAL-SAPSO 1.03E+03 4.27E+01
MGP-SLPSO 1.02E+03 3.01E+01

ber of FEs is reduced to 330, MGP-SLPSO remains to perform
better on all benchmark problems except for F2 (Rosenbrock
function), which has a very narrow valley from local optimum
to the global optimum, which may pose challenges for MGP-
SLPSO that uses a global GP model only. Note that a local
search strategy is utilized in the CAL-SAPSO, which could
have helped achieve better results on the Rosenbrock function.

D. Experimental results on a synthetic real-world problem

To further evaluate the effectiveness of MGP-SLPOS, we
apply it to a complex 31-dimensional optimization problem
[65], which was created by summing up the scaling outputs
of four real-world functions, namely, Borehole, Wing Weight,
OTL Circuit and Piston Simulation functions:

f(x) = y∗1 (x1, . . . , x8) + y∗2 (x9, . . . , x18)

+y∗3 (x19, . . . , x24) + y∗4 (x25, . . . , x31)
(12)

where, y∗i = yi−min(yi)
max(yi)−min(yi)

, i = 1, 2, 3, 4, are the outputs
from the Borehole, Wing Weight, OTL Circuit and Piston Sim-
ulation functions, respectively. The Borehole function models
water flow rate (y1) through a borehole in m3 per year. The
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function of wing weight (y2) is a mathematical model of light
aircraft wings, which was used by Forrester et al. [66] to
estimate the weight of a light aircraft wing. The OTL Circuit
function [67] models the output of a transformerless push-
pull circuit, which is the midpoint voltage (y3). Finally, the
Piston Simulation Function [67] models the circular motion
of a piston within a cylinder (y4), which is the cycle time
(the time it takes to complete one cycle) in seconds. More
details of the four real-world problems are Section II(C) of
the Supplementary material. MGP-SLPSO, as well as other

Fig. 21. The convergence profiles on the synthetic real-world problem

three different infill criteria, including GP-fit, GP-LCB and
GP-EI are employed to optimize the synthetic real-world
problem. Like the setting in [52] and several other references
on surrogate-assisted evolutionary optimization, the compu-
tational budget is set to 11D FEs, where D is the search
dimension. This means that the allowed maximum number
of fitness evaluations is 11 times the search dimension. Each
algorithm is run independently for 30 times. The convergence
curves of the algorithms under comparison are given in Fig.
21. From the figure, we can see that MGP-SLPSO exhibits
a clear advantage over the compared algorithms. Table VII
lists the comparative results of the five GP-assisted SLPSO
variants together with three traditional algorithms, including
Interior Point Method (IP), Active Set Method (AS) and SQP.
Again, MGP-SLPSO outperforms all compared algorithms,
confirming its competitive performance on the synthetic real-
world problem.

E. Empirical Studies of the Computational Complexity
The computational complexity of MGP-SLPSO is deter-

mined by the computation time for fitness evaluations, for
training the GP model, as well as for performing the non-
dominated sorting in MIC. The computational complexity of
training GP modeling is O(n3) [22], and the computational
complexity of non-dominated sorting is O(2m2). In the fol-
lowing, we empirically examine the computation time required
by the compared algorithms for solving 50-D and 100-D test
problems.

Table VIII lists the average computation time that each
algorithm has consumed. From Table VIII, we can see that SL-
PSO needs the least computation time, which is understandable

TABLE VII
RESULTS ON THE SYNTHETIC REAL-WORLD PROBLEM

Approach Best Mean Std.

IP 1.0603E+00 1.0603E+00 2.2584E-16

SQP 1.0533E+00 1.0533E+00 4.5168E-16

AS 1.0500E+00 1.0500E+00 9.0336E-16

SL-PSO 1.0435E+00 1.0505E+00 4.5120E-03

GP-Fit 1.0313E+00 1.0455E+00 7.8564E-03

GP-EI 1.0317E+00 1.0452E+00 7.2391E-03

GP-LCB 1.0368E+00 1.0436E+00 5.3707E-03

MGP-SLPSO 1.0166E+00 1.0185E+00 9.5653E-04

as its computation time is mainly consumed for fitness eval-
uations. For convenience, we use the time that the SL-PSO
algorithm used on a fixed budget of 1000 FEs as the baseline
for comparison. From Table VIII, we can see that the proposed
MGP-SLPSO requires less time than the compared surrogate-
assisted optimization algorithms, which indicates that the fast
non-dominated sorting takes less time than training the sur-
rogate model. Compared with most computationally intensive
fitness evaluations in many real-world applications, where each
fitness evaluation may take minutes to hours or even days,
it is reasonable to consider that this amount of increase in
computation time for training surrogates and sorting solutions
is acceptable.

V. CONCLUSION AND FUTURE WORK

This paper proposes a multi-objective infill criterion for
model management in Gaussian process assisted particle
swarm optimization of high-dimensional problems. The main
idea is to consider the approximated fitness and the approxima-
tion uncertainty of a GP surrogate as two separate objectives
so that non-dominated sorting is employed to sort the swarm
into a number of non-dominated fronts. The solutions in the
first and the last non-dominated fronts are evaluated using
the real objective function, thereby striking a good balance
between the exploitation and exploration. Our analyses of the
proposed multi-objective infill criterion indicate that it works
more effectively than existing scalar infill criteria in selecting
solutions to be evaluated using the expensive objective func-
tion, especially for high-dimensional problems. The benefit
of the multi-objective infill criterion is further confirmed by
comparing MGP-SLPSO with the state-of-the-art surrogate-
assisted evolutionary algorithms on 30D to 100D benchmark
problems and a synthetic real-world problem given a limited
number of expensive fitness evaluations.

There is much room for improvement although MGP-
SLPSO has shown promising performance on the six bench-
mark problems up to a dimension of 100. For example, further
research is desirable to improve the performance of MGP-
SLPSO on optimization problems whose fitness landscape has
a narrow basin or a plateau around the global optimum. It
is also essential to develop new algorithms that is able to
train a GP model more efficiently given a limited amount of
training data for high-dimensional problems. Therefore, in the
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TABLE VIII
THE AVERAGE COMPUTATION TIME (IN SECONDS) USED BY THE
ALGORITHMS UNDER COMPARISON FOR 50-D AND 100-D TEST

INSTANCES USING 1000 FITNESS EVALUATIONS

Function Approach 50D 100D

F1 SL-PSO 1.41E-02 2.19E-02
SA-COSO 1.18E+03 1.66E+03
GP-Fit 1.51E+02 2.48E+02
GP-EI 2.36E+02 4.72E+02
GP-LCB 1.53E+02 5.26E+02
MGP-SLPSO 1.32E+02 2.22E+02

F2 SL-PSO 2.29E-02 4.53E-02
SA-COSO 1.15E+03 1.72E+03
GP-Fit 2.73E+03 2.86E+03
GP-EI 3.92E+03 2.75E+03
GP-LCB 5.85E+03 4.53E+03
MGP-SLPSO 3.42E+02 3.68E+02

F3 SL-PSO 2.29E-02 3.49E-02
SA-COSO 1.41E+03 1.92E+03
GP-Fit 2.24E+03 2.63E+03
GP-EI 2.24E+03 2.63E+03
GP-LCB 2.24E+03 2.63E+03
MGP-SLPSO 2.55E+02 2.33E+02

F4 SL-PSO 1.77E-02 3.85E-02
SA-COSO 1.36E+03 1.51E+03
GP-Fit 2.23E+02 2.49E+02
GP-EI 2.38E+02 4.92E+02
GP-LCB 2.42E+02 4.85E+02
MGP-SLPSO 1.08E+02 1.60E+02

F5 SL-PSO 1.86E+01 1.77E+01
SA-COSO 1.10E+03 1.55E+03
GP-Fit 3.66E+03 5.04E+03
GP-EI 4.72E+03 3.82E+03
GP-LCB 5.03E+03 3.13E+03
MGP-SLPSO 1.03E+03 8.12E+02

F6 SL-PSO 2.14E+01 2.49E+01
SA-COSO 1.34E+03 2.13E+03
GP-Fit 2.69E+03 2.97E+03
GP-EI 5.19E+03 4.19E+03
GP-LCB 2.92E+03 2.88E+03
MGP-SLPSO 4.51E+02 2.65E+03

future, we will resort to more advanced techniques in machine
learning, such as active learning and semi-supervise learning
for dealing with high-dimensional problems. Finally, it is of
great interest to extend the multi-criterion infill criterion to
Gaussian process assisted multi-objective optimization.
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