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Abstract—This paper proposes an effective ensemble frame-

work for tackling multi-objective optimization problems, by 
combining the advantages of various evolutionary operators and 
selection criteria that are run on multiple populations. A simple 
ensemble algorithm is realized as a prototype to demonstrate our 
proposed framework. Two mechanisms, namely competition and 
cooperation, are employed to drive the running of the ensembles. 
Competition is designed by adaptively running different evolu-
tionary operators on multiple populations. The operator that 
better fits the problem’s characteristics will receive more com-
putational resources, being rewarded by a decomposition-based 
credit assignment strategy. Cooperation is achieved by a cooper-
ative selection of the offspring generated by different populations. 
In this way, the promising offspring from one population have 
chances to migrate into the other populations to enhance their 
convergence or diversity. Moreover, the population update in-
formation is further exploited to build an evolutionary potential-
ity model, which is used to guide the evolutionary process. Our 
experimental results show the superior performance of our pro-
posed ensemble algorithms in solving most cases of a set of thir-
ty-one test problems, which corroborates the advantages of our 
ensemble framework. 

 
Index Terms—ensemble framework, multi-objective optimiza-

tion, competitive evolution, cooperative selection. 
 

I. INTRODUCTION 
N the last decade, a number of multi-objective evolutionary 
algorithms (MOEAs) have shown remarkable performance 

in tackling various kinds of multi-objective optimization prob-
lems (MOPs) [1]-[3]. An unconstrained MOP can be defined as 

1 2Min ( ) ( ( ), ( ),..., ( )) ,T
mF f f f

∈Ω
=

x
x x x x              (1) 

where x= (x1, x2,…, xn) is an n-dimensional decision vector 
bounded in the search space Ω, and m is the number of objec-
tives [2]. Due to the inherent conflicts among the objectives, no 
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single solution is optimal for all the objectives in (1). Instead, a 
set of optimal solutions termed Pareto-optimal set (PS) exists. 
The mapping of PS in the objective space is termed Pare-
to-optimal front (PF). As some MOPs in real-world applica-
tions often exhibit complex characteristics (e.g., nonlinearity, 
discontinuity, multimodality, degeneration, and a high dimen-
sional decision space [4]), traditional deterministic methods are 
not so effective for these challenging MOPs [2]. For such 
problems, state-of-the-art MOEAs (e.g., SPEA2 [5], NSGA-II 
[6], MOEA/D [7], and IBEA [8]) are more advantageous and 
robust. Each of these state-of-the-art MOEAs shows certain 
effectiveness in tackling some kinds of MOPs. However, no 
MOEA with specific parameter setting, evolutionary operator, 
and selection criterion, can be the best performer for all types of 
MOPs. Thus, in order to achieve a better overall performance 
for a diverse range of MOPs, the use of ensemble approaches 
for MOEAs has been proposed. It is a natural and intuitive idea 
to combine the advantages of different parameter settings, 
evolutionary operators or selection criteria in MOEAs [3]. Such 
research efforts include the use of ensembles of heuristics 
[9]-[10], neighborhood sizes [11], niching methods [12], con-
straint handling techniques [13], and other related methods 
[14]-[19]. 

Ensemble of evolutionary operators. Different evolutionary 
operators show some advantages when tackling certain types of 
MOPs due to their different abilities on exploitation and ex-
ploration [3], [15]-[16]. For example, polynomial-based muta-
tion (PM) [2] is good at exploitation (searching in a local area), 
while simulated binary crossover (SBX) [17], differential evo-
lution (DE) [18], [41], and the estimation of distribution algo-
rithm (EDA) [20] provide different search patterns for explo-
ration. Thus, a number of research studies have been conducted 
to find a better ensemble of them, such as adaptive memetic 
computing (AMC) [21], ensembles of multiple DEs [10], [22], 
different mutation strategies [23]-[24], and various hyper- 
heuristic methods [9]. These approaches are designed by solv-
ing two basic issues: which operators should be included in the 
ensemble and how to run them. Regarding the first issue, evo-
lutionary operators with distinct search patterns are widely used 
to compose an ensemble [25]-[26]. Otherwise, all the poten-
tially optimal ensembles are tested in order and then the best of 
them is selected [9]. To tackle the second issue, many compe-
tition strategies [27]-[30] have been proposed to adaptively run 
evolutionary operators according to their performances. In this 
way, at different phases of the evolutionary process [31], var-
ious search mechanisms [32] can be flexibly used to tackle 
different types of MOPs. 
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                           (a) SBX                                      (b) DE/rand/1/bin 

Fig. 1 Different search patterns of SBX and DE/rand/1/bin 
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       (a) Local PF on WFG2                         (b) Local PF on UF2 

Fig. 2 Comparison between Pareto and decomposition-based selection criteria 

Ensemble of selection criteria. Selection criteria evaluate the 
solutions’ quality in terms of both convergence (i.e., distance to 
the true PF) and diversity (i.e., distribution along the approxi-
mate PF). Ensemble approaches of different selection criteria 
have been widely studied in [33]-[38]. Superior solutions will 
be reserved according to the employed selection criterion, 
aiming to balance convergence and diversity for the population. 
As shown in BCE [38], when solving certain MOPs requiring 
high convergence pressure, a non-Pareto-based selection crite-
rion should be preferred. Otherwise, a Pareto-based selection 
criterion with a diversity maintenance strategy is more appro-
priate. In [34], two archives with different selection criteria 
respectively focus on convergence and diversity. Similarly, in 
Two_Arch2 [35], the advantages of indicator and Pareto-based 
selection criteria are combined, with a new Lp-norm-based 
diversity maintenance scheme designed for many-objective 
optimization problems (i.e., MOPs with more than 3 objectives). 
In EAG [36], Pareto-based sorting and a decomposition-based 
strategy have been found to complement each other in envi-
ronmental selection. In D2MOPSO [37], Pareto-based ranking 
is employed to build an archive with the particle leaders, aiming 
to speed up convergence. Moreover, a decomposition-based 
method is exploited to update the particle’s movement in order 
to provide a good coverage to the approximate PF. 

Inspired by the above ensemble methods, a simple ensemble 
algorithm and its generalized ensemble framework (EF) are 
presented to tackle various MOPs with superior performance. 
The main contributions of this work are listed as follows: 

1) A simple and effective EF is designed to solve MOPs, by 
running different evolutionary operators and selection criteria 
within multiple populations. Our proposed EF shows high 
scalability for embedding more than two populations with 
different search patterns. Each population competes to produce 
offspring using its own evolutionary operator and cooperates to 
select offspring using its exclusive criterion. 

2) The competition among populations is realized by running 
different evolutionary operators, as awarded by the decompo-
sition-based credit assignment strategy. These assigned credits 
decide the ratio of individuals from each population to undergo 
the specific evolutionary operators. This way, the performance 
of the evolutionary operators in each population can be easily 
quantified to guide the resource allocation in next generation. 

The rest of this paper is organized as follows. Section II an-
alyzes the competition and cooperation mechanisms in existing 
ensemble approaches. A simple ensemble algorithm is given in 
Section III, and then it is extended to a generalized EF in Sec-
tion IV. Simulations are presented in Section V to study the 
effectiveness of our algorithm. Section VI gives more discus-
sions on the credit assignment approaches, the matching strat-
egies of populations and operators, and an extended instance 
with triple populations. Finally, our conclusions and some 
possible paths for future work are provided in Section VII. 

II. RELATED ENSEMBLE APPROACHES AND MOTIVATIONS 

A. Competition on Evolutionary Operators 
Competition mechanisms are usually designed to drive the 

running of evolutionary operators, as they may show different 
search patterns. An experiment was conducted in Fig. 1 to show 
the search behaviors of SBX and DE. Two parents x1 (0.4, 0.6) 
and x2 (0.6, 0.4) were used to run SBX [18] and a DE variant 
(DE/rand/1/bin) [41], where x3 for DE/rand/1/bin is randomly 
sampled in [0, 1]. In Fig. 1, 50 offspring solutions generated by 
each operator are plotted in decision space, with the parameters 
settings from [39]-[40]. As shown, the solutions from SBX are 
centralized around four corner points (two parents and two 
crossed points), while those from DE/rand/1/bin are distributed 
more evenly, as they are sampled by the joint probability dis-
tribution of x2 and x3 [41]. Therefore, some ensemble methods 
composed by SBX and DE, such as the hybrid recombination 
operator (DEI) [24], adaptive hybrid crossover (AHX) [24], 
and the hybridization of SBX and DE [26], often show a 
promising performance.  

B. Cooperation on Selection Criteria 
Any selection criterion may show its own weakness in tack-

ling various MOPs with complicated PFs. Thus, the coopera-
tion in the ensemble of selection criteria is another important 
mechanism, which aims to complement one’s potential weak-
ness by the strength of the others. Pareto-based selection crite-
ria may suffer from premature convergence [8], while de-
composition and indicator-based selection criteria may get a 
poor distribution of solutions especially in tackling highly 
irregular MOPs [38]. An experiment that we performed is 
shown in Fig. 2, where a decomposition-based selection crite-
rion in MOEA/D-SBX [7] and a Pareto-based one in NSGA-II 
[6] were used to solve the test problems (i.e., WFG2 [42] and 
UF2 [43]-[44]). In this experiment, SBX with the original 
parameters settings in [6], [40] was used. The approximate PFs 
of WFG2 and UF2 were plotted in Fig. 2 to show the weak-
nesses of diverse selection criteria. 

In Fig. 2(a), the optimal solutions of MOEA/D-SBX that are 
associated to some weight vectors failed to cover the entire PF, 
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Fig. 3 Main flowchart of EF-PD 

Algorithm 1: The complete EF-PD 
1 Initialization;// (Alg. 2) 
2 ev = 0, g = 0, FDE = 10-6, FSBX = 10-6, SDE = {}, SSBX = {};  
3 while ev < max-ev 
4     obtain DE

gN  and SBX
gN  respectively based on FDE and FSBX; 

5     evolve and evaluate DE
gN  solutions of DP by DE and the EP model to 

get SDE; 
6     evolve and evaluate SBX

gN  solutions of PP by SBX to get SSBX; 
7     [FDE, FSBX, DP, PP]=Co_Selection(SDE, SSBX, DP, PP);// (Alg. 3) 
8     ev = ev + DE

gN + SBX
gN ; g++; 

9     if mod(g, 10) == 0 
10         update the EP model;  
11     end if 
12 end while 
13 Output PP; 

 

as a number of solutions are assigned to optimize the discon-
tinuous components of WFG2. Thus, the decomposition-based 
selection criterion with uniform weight vectors is not so good at 
tackling the problems with discontinuous and irregular PFs. On 
the other hand, in Fig. 2(b), a number of final solutions found 
by NSGA-II are still far away from the PF, which indicates that 
the Pareto-based selection criterion is unable to provide strong 
convergence pressure on UF2. 

C. Competitive and Cooperative Framework 
Based on the above observations and discussions, it is found 

that most ensemble approaches emphasize either the competi-
tion of multiple evolutionary operators (e.g., [28], ACOS [29], 
and AMC [21]), or the cooperation of multiple selection criteria 
(e.g., MOMAD [45], EAG [36], NSGA-III [46] and MOEA/DD 
[47]). However, few studies have been carried out to combine 
competition and cooperation during one evolutionary process. 
A competition-cooperation framework was designed in BCE 
[38], which updates the two employed populations respectively 
using Pareto-based and non-Pareto-based criteria. However, it 
cannot be further extended with multiple co-evolved popula-
tions. In NSGA-III-HVOA [48], a competition-cooperation 
mechanism was designed by using a random strategy to choose 
its evolutionary operators. In its enhanced version (NSGA-III- 
AP) [49], this random strategy incorporates a probability-based 
adaptive operator selection method to reward the operator with 
the best performance. However, the algorithms in [48]-[49] 
only perform competition and cooperation in a single popula-
tion. Therefore, these algorithms cannot be easily extended 
when more promising operators or selection criteria are avail-
able. Inspired and motivated by all the above studies, a more 
generalized EF consisting of multiple populations is proposed 
here to run diverse evolutionary operators and selection criteria. 
Our proposed EF is suitable for tackling various MOPs, using a 
competition of different evolutionary operators and cooperation 
of diverse selection criteria. 

III. A SIMPLE ENSEMBLE ALGORITHM 
In this section, a simple algorithm based on the idea of En-

semble Framework is introduced by employing Pareto and 
Decomposition-based populations, termed EF-PD. Existing 
studies have revealed that the search ability of DE is stronger 
than that of SBX under the decomposition framework when 
solving some complicated MOPs [50], while the search ability 
of SBX can be enhanced by selecting non-dominated solutions 
as elites [6], [52]. Thus, DE and SBX are respectively used to 
evolve the individuals in Pareto and decomposition-based 
populations. Fig. 3 shows the main flowchart of EF-PD, where 
PP indicates the population evolved by SBX and selected by a 
Pareto-based criterion, and DP denotes the population evolved 
by DE and selected by a decomposition-based criterion. The 
main mechanism of EF-PD is to run a competition on different 
evolutionary operators and a cooperation on diverse selection 
criteria. 

To give an overview of EF-PD, its complete pseudo-code is 
provided in Algorithm 1. In Line 1, the initialization of the 
population is executed as presented in Section III.A. In Line 2, 
some algorithmic parameters are set, such as ev and g (the 
counters of the function evaluations and the generations, re-
spectively), FDE and FSBX (the accumulated enhancements 
achieved by DE and SBX, respectively), SDE and SSBX (the 
offspring sets produced by DE and SBX, respectively). Please 
note that the initial values of FDE and FSBX are both set to 10-6 as 
there is no prior knowledge about their relative performance. 
After that, EF-PD runs the main evolutionary loop in Lines 
3-12, until the maximum number of function evaluations 
(max-ev) is reached. The competition of SBX and DE is real-
ized in Line 4, where DE

gN  and SBX
gN  indicate the number of 

executions of DE and SBX at generation g, respectively. Then, 
SBX and DE are run respectively in Lines 5-6 as introduced in 
Section III.B and the objectives of their offspring are evaluated. 
In Line 7, the cooperation between the Pareto and decomposi-
tion-based selection criteria is performed as presented in Sec-
tion III.C. The counters ev and g are updated in Line 8. To 
further facilitate the cooperation, the proposed evolutionary 
potentiality (EP) model is updated at every 10 generations in 
Lines 9-11, as presented in Section III.D. When EF-PD termi-
nates, the solutions in PP are reported as the final result. 
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Algorithm 2: Initialization 
1 DP={}, PP={}; 
2 for i =1 to N 
3     randomly generate an individual ix ; 
4     evaluate the objectives of ix ; 
5     add ix to DP; 
6 end for 
7 initialize N weight vectors 1,..., Nλ λ ; 
8 for i=1 to N 
9     1{ ,..., }i

TB i i= ;// 1,..., Nλ λ  are the T closest weight vectors to iλ  
10 end for 
11 initialize *z  by * min{ ( ) | }j jf DP= ∈z x x for all {1,..., }j m∈ ;  
12 keep the non-dominated solutions of DP in PP;  
 

Algorithm 3: Co_Selection (SDE, SSBX, DP, PP) 
1 SI=RandomPermutation(SDE∪SSBX), FSBX=0, FDE=0; 
2 for i = 1 to |SI| 
3     if DP_Selection(SIi, DP) == true 
4         if SIi is generated by SBX  
5                FSBX =FSBX+ if∆ ;  
6         else FDE =FDE+ if∆ ; 
7         end if 
8        subproblemof ( )SIiEP = 1.0; 
9     end if 

10     if PP_Selection(SIi, PP) == true 
11         if SIi is generated by DE 
12             subproblemof ( )SIiEP = 1.0; 
13         end if 
14     end if 
15 end for 
16 return FDE, FSBX, DP, PP; 

 

A. Population Initialization 
The pseudo-code of initialization is given in Algorithm 2. 

First, DP and PP are initialized as an empty set. In Lines 2-6, 
DP={x1, x2, ... , xN} is randomly sampled from Ω by using a 
uniform distribution, where N is the population size. In order to 
decompose a MOP into a set of subproblems, the weight  
vectors set 1 2{ , ,..., }NW λ λ λ=  is generated by a preset integer 
H and each dimensional value in iλ  (i=1, 2, … , N) is taken 
from {0/H, 1/H, ..., H/H} with the constraint 1 =1m i

jj λ=∑  (m is 
the number of objectives) [50]. This way, the weight vectors are 
uniformly distributed in objective space, and the number of 
weight vectors is 1

1
m
H mN C −
+ −= , requiring the population size to 

fit this equation. Then, the fitness value of solution x can be 
assigned by the Tchebycheff (TCH) approach, as follows: 

{ }* *
1

( | , ) max ( ) | ,tch
j j j

j m
g | fλ λ

≤ ≤
= × −x z x z               (2) 

where ( )jf x  stands for the j-th objective value. Each solution 
can be associated to a subproblem by 

* *
{1,..., }

= arg minimize ( | , ) ,tch i
i N

gλ λ
=

x z                    (3) 

where * * * *
1 2( , ,..., )T

mz z z=z  is the ideal vector for m objectives, 
which is approximated by the minimum value of each objective 
in the current population, i.e., for all {1,..., }j m∈  

* min{ ( ) | }j jz f DP= ∈x x .                           (4) 
Then, the neighbors of subproblem iλ  are determined in 

Lines 8-10. For each weight vector iλ , let 1 2{ , ,..., }i
TB i i i=  

denote the neighborhood set of iλ , where 1 ,..., Ti iλ λ  are the T 
(1≤ T≤ N) closest weight vectors to iλ  according to the Eu-
clidean distances between each pair of weight vectors. In Line 
12, PP is initialized with the non-dominated solutions in DP, 
which provides parents of a higher quality for applying SBX. 
Please note that the number of individuals in PP may reach the 
population size N after running for several generations, de-
pending on the number of non-dominated solutions. 

B. Competitive Evolution of SBX and DE 
Due to limited computational resources, the total number of 

executions of the operators in one generation is set to N in 
EF-PD. Both SBX and DE are adaptively run according to their 
credits ( SBXF  and DEF ) as awarded by the average fitness 
improvement (AFI) at generation g, as follows: 

1

2

SBX 1SBX SBX

DE 2DE DE

( ) /
,

( ) /

i g

i gg

gIF f N i

F f N i I

 = ∆ ∈


= ∆ ∈

∑
∑

                   (5) 

where SBX
gI  and DE

gI  denote the index sets of subproblems 
enhanced by SBX and DE, respectively. SBX

gN  and DE
gN  are 

the number of executions of SBX and DE, respectively at 
generation g. i1 and i2 stand for the indexes of subproblems in 

SBX
gI  and DE

gI , respectively. if∆  indicates the enhancement of 
the i-th subproblem under the TCH decomposition function, as 
follows: 

* * *( , | , ) ( | , ) ( | , ) ,i i tch i tch if g gλ λ λ∆ = −x y z x z y z        (6) 
where *( , | , )i if λ∆ x y z  is the enhancement brought by the new 
solution y associated to the i-th subproblem over the original 
associated solution x. After that, the normalized credits (FS and 
FD) can be obtained by 

S SBX SBX DE

D DE SBX DE

/ ( )
,

/ ( )
F F F F
F F F F

= +
 = +

                         (7) 

where 0≤FS, FD≤1. Thus, based on FS and FD, the number of 
executions of DE and SBX at generation g+1 ( 1

SBX
+gN  and 1

DE
+gN ) 

can be calculated by 
1

DDE

1 1
DESBX

 = ( ( , 1),1)
,

g

g g

N F N N

N N N

+

+ +

 × −   


= −

max min
            (8)

 
where the functions max() and min() respectively return the 
maximum and minimum values. Here, the values of 1

SBX
+gN  and 

1
DE

+gN  are manually set such that their minimal allowable value 
is 1, so as to keep each operator running at least once in each 
generation. Other minimal allowable numbers, such as 1% N⋅  
to 5% N⋅ , can be also specified by the user in (8). Due to page 
limitations, the pseudo-codes of SBX and DE are respectively 
presented in Algorithm S-1 and Algorithm S-2, in Section S-I 
of the supplementary file.  

C. Cooperative Selection by Pareto-based and Decomposi-
tion-based Criteria 

To clarify the procedure of cooperative selection, Algorithm 
3 is provided with the inputs SDE (the offspring set generated by 
DE), SSBX (the offspring set generated by SBX), DP and PP. 
SSBX and SDE are first combined as a union set SI that is per-
muted randomly in Line 1. Please note that the sequence of 
offspring in SI can be either ordered or randomized, since our 
experiments indicate that the sequence order of offspring didn’t 
significantly affect the final results. DP_Selection (SIi, DP) and 
PP_Selection (SIi, PP) respectively denote the selection 
mechanisms associated to the use of the decomposition-based 
and Pareto-based approaches introduced in [6] and [48], where 
SIi indicates the i-th offspring from SI. Due to page limitations, 
their pseudo-codes are given in Algorithm S-3 and Algorithm 
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Fig. 4 Complete ensemble framework 

S-4 of the supplementary file, respectively. In Lines 2-15 of 
Algorithm 3, each SIi will be checked to see whether it can 
update DP or PP. If SIi can update any subproblem of DP, the 
enhancement of this subproblem will be accumulated for SBX 
or DE in Lines 5-6. At the same time, the evolutionary poten-
tiality (which will be introduced in Section III.D) of the updated 
subproblem will be reset to 1.0 in Line 8. Otherwise, if SIi 
generated by DE can replace any solution of PP, the evolu-
tionary potentiality of its parent’s associated subproblem will 
also be reset to 1.0. At last, in Line 16, the updated FDE, FSBX, 
DP, and PP are returned. 

D. Usage of the Population Update Information  
Inspired by the utility function presented in MOEA/D-DRA 

[43], GRA [51] and EAG [36], the update information among 
the employed populations can be further used to select some 
potential subproblems of DP, hoping to ameliorate the sub-
problems of DP or to produce more promising offspring in PP. 
In this paper, the proposed evolutionary potentiality (EP) model 
for each subproblem in DP is defined as follows: 

      the solution linked to  is 
,

updated 
1

             or the offspring afrom can upd te  
0.95

 

i

ii

i

EP PP
EP

λ
λ


= 
 ×

if

otherwise
(9) 

where EPi (i = 1, 2,…, N) indicates the evolutionary potentiality 
of the i-th subproblem, and all the EP values are initialized to 
1.0. As shown in the proposed EP model, three cases are con-
sidered: 1) if the i-th subproblem is updated successfully, its EP 
value will be assigned to a high value, hoping that this sub-
problem can be further enhanced; 2) if an offspring produced 
by the i-th subproblem can successfully update PP, its EP value 
is also assigned to a high value, encouraging the production of 
more promising offspring for PP; 3) otherwise, the EP value 
will be shrunk by a certain ratio at each generation. The ad-
vantages of this model are clarified as: 1) the population update 
information is used to guide the evolution in DP; and 2) it 
doesn’t need to preset a threshold as required by the DRA 
strategy in [43]. 

IV. A GENERALIZED ENSEMBLE FRAMEWORK 
The proposed EF-PD can be further extended to be a more 

generalized EF. In detail, EF can use J≥2 populations, with J 
evolutionary operators and J selection criteria to run the com-
petitive evolution and cooperative selection. As shown in Fig. 4, 
Pj, Opj and SCj indicate the j-th population, evolutionary oper-
ator and selection criterion, respectively, where j=1, 2,…, J. At 
the initialization stage, all J populations are randomly gener-
ated, and the computational resources (i.e., the number of 
executions of Opj on Pj) are evenly assigned, subjected to the 
total number of execution (i.e., N) in one generation. After the 
evolutionary process, the credit assignment approach is used to 
evaluate the performance of each operator, such as the de-
composition-based method using (5)-(7). Then, according to 
the operators’ credits, the computational resources are reallo-
cated again like (8) for the next generation. After that, all the 
new offspring solutions are shared and selected by all the 
employed populations. Before the next generation for compet-

itive evolution and cooperative selection, the termination con-
dition will be checked. If it is satisfied, one population specified 
by the user will be reported as the final result. 

A. Scalability Analysis 
As shown in Fig. 4, the proposed EF has a strong ability for 

scalability. First of all, it can be easily scaled to use any number 
of populations to perform a competitive evolution and cooper-
ative selection. Second, in order to keep the population’s spe-
cific characteristics, each population will apply its own evolu-
tionary operator and selection criterion, which may present 
some advantages on certain kinds of MOPs. Finally, the credit 
assignment approach in this framework can be replaced by any 
performance indicator that can fairly and effectively reflect the 
offspring’s qualities, such as a Pareto-based method [16] or an 
indicator-based method [8]. It is worth noting that the decom-
position-based credit assignment method is recommended in 
EF-PD due to its simplicity and efficiency. 

B. Computational Complexity Analysis 
Since any number of populations can be easily adopted in our 

framework, an important issue is the computational complexity 
of our approach. Here, our proposed EF-PD algorithm is taken 
as an example to assess the computational complexity at gen-
eration g. 
 Mating selection 
DP: the 10-tournament selection is run to select the potential 

subproblem and two other parents are randomly selected for DE. 
This process is all repeated DE

gN  times. Thus, the complexity in 
DP is approximately O(10 DE

gN + 2 DE
gN ) = O(12 DE

gN ). 
PP: two parents for SBX are randomly selected in the sorted 

PP during SBX
gN  times, therefore the complexity is O(2 SBX

gN ). 
 Production 
The complexities are O( DE

gN ) and O( SBX
gN ) for DP and PP, 

respectively, thus the total complexity is O(N). 
 Selection and update 
DP: if the new solution is generated from PP, the search of 

the proper subproblem will take O(N) basic operations and then 
updating its T neighboring solutions (T<N) will include O(mT) 
basic operations. Also, the ideal point is updated by using O(m) 
basic operations. Thus, the total number of operations is ap-
proximately O(m SBX

gN ×(N+mT+m) +m DE
gN ×(mT+m)), and 

the worst computational complexity is approximately O(mN2). 
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TABLE I 
CHARACTERISTICS AND PARAMETER SETTINGS OF TEST PROBLEMS [37] 

MOPs m d Characteristics N max-ev 
ZDT1 2 30 Convex 100 2.5×104 
ZDT2 2 30 Concave 100 2.5×104 
ZDT3 2 30 Discontinuous 100 2.5×104 
ZDT4 2 10 Convex, Multimodal 100 2.5×104 
ZDT6 2 10 Concave, Multimodal, Biased 100 2.5×104 

DTLZ1 3 7 Linear, Multimodal 500 1.0×105 
DTLZ2 3 12 Concave, Sphere PF 500 1.0×105 
DTLZ3 3 12 Concave, Sphere PF, Multimodal 500 1.0×105 
DTLZ4 3 12 Concave, Biased 500 1.0×105 
DTLZ5 3 12 Concave, Degenerate 500 1.0×105 
DTLZ6 3 12 Concave, Degenerate, Biased 500 1.0×105 
DTLZ7 3 22 Mixed, Discontinuous, Multimodal 500 1.0×105 
WFG1 2 22 Mixed , Biased 200 1.0×105 
WFG2 2 22 Convex, Discontinuous, Nonseparable 200 1.0×105 
WFG3 2 22 Linear, Degenerate, Nonseparable 200 1.0×105 
WFG4 2 22 Concave, Multimodal 200 1.0×105 
WFG5 2 22 Concave, Deceptive 200 1.0×105 
WFG6 2 22 Concave, Nonseparable 200 1.0×105 
WFG7 2 22 Concave, Biased 200 1.0×105 
WFG8 2 22 Concave, Nonseparable, Biased 200 1.0×105 
WFG9 2 22 Concave, Nonsepar., Deceptive, Biased 200 1.0×105 
UF1 2 30 Convex, Complex PS 300 3.0×105 
UF2 2 30 Convex, Complex PS 300 3.0×105 
UF3 2 30 Convex, Complex PS 300 3.0×105 
UF4 2 30 Concave, Complex PS 300 3.0×105 
UF5 2 30 Linear, Discrete, Complex PS 300 3.0×105 
UF6 2 30 Linear, Discontinuous, Complex PS 300 3.0×105 
UF7 2 30 Linear, Complex PS 300 3.0×105 
UF8 3 30 Concave, Complex PS 600 3.0×105 
UF9 3 30 Linear, Discontinuous, Complex PS 600 3.0×105 

UF10 3 30 Concave, Complex PS 600 3.0×105 
 
 

PP: As the total number of solutions is 2N, the computational 
complexity for non-dominated sorting [6] is at most O(4mN2). 
 Other operations 
The total complexity of credit assignment and operator re-

source allocation is approximately O(2N). 
Therefore, the total computational complexity of EF-PD in 

generation g is approximately O(12 DE
gN +2 SBX

gN +N+mN2+ 
4mN2+2N) ~ O(mN2), while the computational complexities for 
DP and PP are also approximately O(mN2). Similarly, when 
more populations with computational complexity O(mN2) are 
to be used in the generalized EF, the total computational com-
plexity will be kept at the same level with O(mN2). For the 
generalized cases in Fig. 4, the total computational complexity 
depends on the maximum computational complexity among 
populations with their different evolutionary operators and 
selection criteria. 

V. EXPERIMENTAL RESULTS 

A. Test MOPs and Compared Algorithms 
In this paper, thirty-one MOPs were tested, including the 

ZDT [52], WFG [42], DTLZ [53] and UF [43]-[44] test suites. 
The characteristics and parameter settings of these problems are 
shown in Table I, where m and d denote the numbers of objec-
tives and decision variables, respectively. N and max-ev re-
spectively indicate the population size and maximum number 
of function evaluations, which are adjusted according to the 
difficulties and complexities of different types of MOPs. 

Five competitive algorithms are included for performance 
comparison. HEIA applies SBX and DE with a fixed ratio at 
each generation [26], while MOEA/D-DRA proposes a resource 
allocation strategy to optimize some potential subproblems [41]. 
FRRMAB [28] presents a credit-based selection method to 
choose the best operator among four DE variants. EAG [36] 
and BCE [38] employ two selection criteria for population 
update, namely the Pareto and decomposition-based selection 
criteria. As summarized in Table II, Pc is the crossover proba-
bility and Pm is the mutation probability; ηc and ηm are the 
distribution indexes of SBX and PM, respectively. For the DE 
operator, CR and F are the crossover rate and scaling factor, 
respectively, T denotes the size of the neighborhood for the 
weight vectors, δ is the probability to select the parents from T 
neighbors, and nr is the maximum number of parent solutions to 
be updated by each child solution. Please note that the param-
eters in the adopted test MOPs and the compared algorithms are 
set as recommended in their original references. 

B. Performance Indicators 
Inverted generational distance (IGD) [48] and hypervolume 

(HV) [8], [54]-[55] are the performance indicators that we 
adopted to assess both convergence and diversity of the final 
solution set. When computing IGD or HV, only one population 
or archive is produced as the final solution set from the com-
pared MOEAs with two populations (BCE, EAG and EF-PD), 
which ensures a fair comparison with respect to the approaches 
that only use one population (HEIA, MOEA/D-DRA, and 
FRRMAB). A small IGD value and a large HV value indicate 
better qualities of solution sets. Due to page limitations, the 

definitions of IGD and HV are provided in Section S-II of the 
supplementary file. 

C. General Comparisons on All the Test MOPs 
All the compared algorithms were run 30 independent times 

for each test MOP. The median value (i.e., the arithmetic mean 
of the 15th and 16th results in ascending order according to IGD) 
and the corresponding interquartile range (IQR) of IGD are 
listed in Table III, where the rank of each algorithm at each test 
MOP is included in the brackets and the average rank with 
respect to each series of test MOPs is provided. Moreover, in 
order to ensure statistical significance, the two-sided Wilcox-
on’s rank sum test [56]-[57] was performed between the results 
of each compared algorithm and EF-PD, by using the function 
“ranksum” in Matlab 2015, at a significance level of 5%. 
1) Analysis on the ZDT Problems 

As observed from Table III, EF-PD achieves the best results 
on ZDT1-ZDT4, while MOEA/D-DRA and FRRMAB obtain 
the 1st and 2nd best results on ZDT6. As the PF of ZDT6 is 
non-uniformly distributed [52], the diversity maintenance 
strategy in the Pareto-based selection criterion may have dif-
ficulties to cover a biased PF. The decomposition-based selec-
tion criterion in MOEA/D-DRA and FRRMAB performs much 
better, but they show poor performance on the rest of the ZDT 
problems, especially on ZDT3 with a discontinuous PF. 

Moreover, as HEIA maintains an operator hybridization strat-
egy of mixing SBX and DE, it has a promising performance on 
all the ZDT problems. EF-PD further employs an adaptive 
ensemble approach, which governs the use of SBX and DE, 
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TABLE II 
EVOLUTIONARY OPERATOR, SELECTION CRITERIA AND PARAMETERS SETTINGS OF ALL THE COMPARED ALGORITHMS 

Algorithms Evolutionary Operators Selection Criteria Parameter Settings 
HEIA SBX+PM, DE+PM PC 100, 20, 1, 1 , 20, 1, 0.5, 20, 0.9c m c mN NA P P n CR F Tη η δ= = = = = = = = = =  
DRA DE+PM DC 100, 1, 0.5, 1 , 20, 0.1 , 0.9, 0.01m m rN CR F P n T N n Nη δ= = = = = = = =  

FRRMAB DE variants +PM DC 100, 1, 0.5, 1 , 20, 0.9, 2, 5, 0.5 , 1m m rN CR F P n T n C W N Dη δ= = = = = = = = = = =  
EAG SBX+PM PC, DC 100, 0.5, 0.5, 1 , 20, 20m mN CR F P n Tη= = = = = =  
BCE Variation, Individual Exploration PC, NPC 100, 1, 0.5, 1, 1 , 20, 20,c m c mN CR F P P n Tη η= = = = = = = =  

EF-PD SBX+PM, DE+PM PC, DC 100, 1, 1 , 20, 1, 0.5, 20, =0.9, 2c m c m rN P P n CR F T nη η δ= = = = = = = = =  
DRA, FRRMAB, EAG and BCE are short for MOEA/D-DRA, MOEA/D-FRRMAB, EAG-MOEA/D and BCE-MOEA/D+TCH, respectively. The DE 
variants include DE-rand-1/-2 and DE-current-to-rand-1/-2. PC and DC stand for the Pareto and decomposition-based selection criteria, respectively. 

TABLE III 
 IGD RESULTS OF THE COMPARED ALGORITHMS ON ALL THE TEST PROBLEMS 

MOPs HEIA MOEA/D-DRA FRRMAB EAG BCE EF-PD 

ZDT1 (3.9±0.084)·10-3(2－) (7.4±3.0)·10-3(5－) (3.7±1.0)·10-2(6－) (5.5±0.59)·10-3(4－) (4.3±0.12)·10-3(3－) (3.8±0.056)·10-3(1) 
ZDT2 (4.0±0.07)·10-3(2－) (1.3±0.32)·10-2(5－) (3.1±0.91)·10-2(6－) (4.9±0.24)·10-3(4－) (4.2±0.24)·10-3(3－) (3.8±0.053)·10-3(1) 
ZDT3 (4.4±0.068)·10-3(2－) (1.6±0.46)·10-2(5－) (7.7±3.7)·10-2(6－) (5.2±0.26)·10-3(4－) (4.7±0.074)·10-3(3－) (4.4±0.054)·10-3(1) 
ZDT4 (3.9±0.19)·10-3(2≈) (4.9±11)·10-2(5－) (3.1±4.0)·10-1(6－) (5.3±0.87)·10-3(3－) (7.5±3.0)·10-3(4－) (3.8±0.39)·10-3(1) 
ZDT6 (2.9±0.19)·10-3(3≈) (2.4±0.029)·10-3(1+) (2.4±0.034)·10-3(2+) (3.9±0.78)·10-3(5－) (1.2±0.2)·10-2(6－) (2.9±0.15)·10-3(4) 
B/S/W 

Average Rank 
0/2/3 
2.2 

1/0/4 
4.2 

1/0/4 
5.2 

0/0/5 
4.0 

0/0/5 
3.8 

—— 
1.6 

WFG1 (8.9±3.0)·10-2(2－) (9.3±0.67)·10-1(5－) (1.1±0.055)·100(6－) (5.4±1.2)·10-1(3－) (6.0±0.52)·10-1(4－) (4.9±1.7)·10-2(1) 
WFG2 (5.4±0.49)·10-3(1+) (2.4±0.13)·10-2(4－) (2.4±0.26)·10-2(3－) (5.2±5.6)·10-2(5－) (6.3±0.19)·10-2(6－) (5.5±0.55)·10-3(2) 
WFG3 (8.2±0.71)·10-3(2－) (9.5±1.2)·10-3(5－) (8.6±0.35)·10-3(4－) (1.0±0.083)·10-2(6－) (8.2±1.2)·10-3(3－) (6.4±0.67)·10-3(1) 
WFG4 (7.6±0.78)·10-3(3－) (4.5±1.1)·10-2(5－) (7.7±0.57)·10-2(6－) (2.5±0.45)·10-2(4－) (7.1±0.44)·10-3(2－) (6.3±0.51)·10-3(1) 
WFG5 (6.6±0.028)·10-2(6－) (6.6±0.015)·10-2(4－) (6.6±0.0093)·10-2(3－) (6.6±0.0025)·10-2(5－) (6.6±0.0082)·10-2(2－) (6.5±0.0057)·10-2(1) 
WFG6 (3.4±2.7)·10-2(1≈) (1.2±0.0039)·10-1(6－) (3.5±9.3)·10-2(2≈) (4.9±6.3)·10-2(4≈) (5.4±1.2)·10-2(5－) (4.4±2.0)·10-2(3) 
WFG7 (7.4±0.34)·10-3(3－) (9.4±0.28)·10-3(6－) (9.2±0.16)·10-3(5－) (8.8±0.53)·10-3(4－) (6.9±0.28)·10-3(2－) (6.1±0.083)·10-3(1) 
WFG8 (1.1±0.041)·10-1(3≈) (1.2±0.063)·10-4(4－) (1.1±0.055)·10-1(1≈) (1.3±0.067)·10-1(6－) (1.2±0.09)·10-1(5－) (1.1±0.059)·10-1(2) 
WFG9 (1.2±0.0022)·10-1(6－) (1.2±0.0013)·10-1(4－) (1.2±0.99)·10-1(5－) (7.6±11)·10-2(2≈) (1.4±0.99)·10-2(1+) (1.2±0.00079)·10-1(3) 
B/S/W 

Average Rank 
1/2/6 
3.0 

0/0/9 
4.8 

0/2/7 
3.9 

0/2/7 
4.3 

1/0/8 
3.3 

—— 
1.7 

DTLZ1 (1.2±0.049)·10-2(4－) (1.2±0.06)·10-2(6－) (1.2±0.062)·10-2(5－) (1.1±0.035)·10-2(3－) (8.9±0.62)·10-3(1+) (1.1±0.02)·10-2(2) 
DTLZ2 (3.1±0.085)·10-2(6－) (2.8±0.031)·10-2(2≈) (2.9±0.017)·10-2(5≈) (2.8±0.074)·10-2(4≈) (2.3±0.032)·10-2(1+) (2.8±0.074)·10-2(2) 
DTLZ3 (3.0±0.073)·10-2(5－) (3.0±0.13)·10-2(4－) (3.1±4.7)·10-2(6－) (2.9±0.09)·10-2(3－) (2.7±0.51)·10-2(1+) (2.9±0.068)·10-2(2) 
DTLZ4 (3.2±0.31)·10-2(6－) (2.2±0.24)·10-2(3+) (2.1±0.063)·10-2(2+) (3.1±0.37)·10-2(5≈) (2.0±0.19)·10-2(1+) (3.0±0.24)·10-2(4) 
DTLZ5 (8.5±0.47)·10-4(2－) (2.9±0.22)·10-3(5－) (3.1±0.037)·10-3(6－) (1.1±0.05)·10-3(4－) (8.8±0.54)·10-4(3－) (8.0±0.48)·10-4(1) 
DTLZ6 (8.1±0.6)·10-4(2≈) (2.8±0.09)·10-3(4－) (2.8±0.015)·10-3(5－) (1.0±0.082)·10-3(3－) (3.1±2.4)·10-2(6－) (7.9±0.53)·10-4(1) 
DTLZ7 (3.2±0.18)·10-2(3≈) (8.9±0.19)·10-2(6－) (8.6±0.016)·10-2(5－) (3.3±0.19)·10-2(4≈) (2.4±0.083)·10-2(1+) (3.2±0.26)·10-2(2) 
B/S/W 

Average Rank 
0/2/5 
4.0 

1/1/5 
4.3 

1/1/5 
4.9 

0/3/4 
3.7 

5/0/2 
2.0 

—— 
2.0 

UF1 (2.6±0.17)·10-3(6－) (2.5±0.63)·10-3(4－) (1.8±0.18)·10-3(2－) (3.1±2.0)·10-1(5－) (2.3±0.12)·10-3(3－) (1.7±0.098)·10-3(1) 
UF2 (5.5±0.54)·10-3(3≈) (8.0±4.6)·10-3(5≈) (3.5±0.54)·10-3(1+) (1.4±21.6)·10-2(6－) (7.2±1.3)·10-3(4－) (5.4±2.5)·10-3(2) 
UF3 (1.5±0.89)·10-2(5－) (9.6±12)·10-3(4≈) (2.1±1.4)·10-3(1+) (2.7±2.1)·10-2(6－) (4.8±6.2)·10-3(2≈) (5.7±8.3)·10-3(3) 
UF4 (3.8±0.059)·10-2(2－) (6.0±0.43)·10-2(4－) (5.8±0.72)·10-2(3－) (7.2±0.54)·10-2(5－) (9.4±0.87)·10-2(6－) (3.7±0.052)·10-2(1) 
UF5 (2.0±1.1)·10-1(2≈) (3.1±2.0)·10-1(5－) (2.5±0.67)·10-1(3≈) (3.9±1.8)·10-1(6－) (2.6±0.97)·10-1(4－) (1.8±1.0)·10-1(1) 
UF6 (1.8±0.58)·10-1(2≈) (1.9±0.97)·10-1(3≈) (1.1±1.6)·10-1(1+) (4.0±2.1)·10-1(6－) (1.9±0.62)·10-1(4≈) (2.0±2.2)·10-1(5) 
UF7 (2.8±0.31)·10-3(5－) (2.3±0.45)·10-3(3≈) (2.1±0.17)·10-3(1+) (9.0±10)·10-3(6－) (2.7±0.41)·10-3(4－) (2.2±4.3)·10-3(2) 
UF8 (1.9±0.25)·10-1(6－) (5.2±2.5)·10-2(1+) (5.6±0.95)·10-2(2+) (7.0±2.3)·10-2(4+) (6.7±1.3)·10-2(3+) (8.0±0.59)·10-2(5) 
UF9 (4.6±1.3)·10-1(6－) (3.9±11)·10-2(1+) (3.9±11)·10-2(2+) (1.7±1.0)·10-1(5≈) (1.5±0.11)·10-1(3≈) (1.6±1.3)·10-1(4) 
UF10 (6.5±1.6)·10-1(6－) (4.1±1.5)·10-1(2－) (4.8±0.91)·10-1(4－) (4.6±0.65)·10-1(3－) (5.2±0.95)·10-1(5－) (2.6±0.42)·10-1(1) 
B/S/W 

Average Rank 
0/3/7 
4.3 

2/4/4 
3.2 

6/1/3 
2.0 

1/1/8 
5.2 

1/3/6 
3.8 

—— 
2.5 

Total Rank 3.5 4.1 3.7 4.4 3.3 2.0 
Total B/S/W 1/9/21 4/5/22 8/4/19 1/6/24 7/3/21 —— 

The results are formatted as Median±IQR (Rank + or ≈ or －). “+, ≈, －” respectively denote the performance of the compared algorithm is better than, similar with 
or worse than that of EF-PD, according to the Wilcoxon rank sum test at a 0.05 significance level. “B/S/W ” stand for the accumulated numbers of  “+, ≈ ,－
”, respectively. We show the best results in boldface. 

 
leading to a superior performance over HEIA on these ZDT 
problems. 
2) Analysis on the WFG Problems 

As shown in Table III, EF-PD performs best on WFG1, 
WFG3-WFG5, and WFG7. For the rest of the WFG problems 
(WFG2, WFG6 and WFG9), EF-PD also shows an acceptable 
performance. It is observed that the single-population based 
MOEAs (MOEA/D-DRA and FRRMAB) perform worse than 
the bi-population based MOEAs with two evolutionary strate-

gies (BCE, HEIA, and EF-PD). This indicates that a single 
evolutionary operator or a single selection criterion is not 
sufficient to properly solve these more difficult WFG problems. 

To graphically assess the performance of EF-PD, the final 
solution sets corresponding to the 15th best IGD values of all the 
algorithms are plotted in Fig. 5 for WFG1. MOEA/D-DRA, 
FRRMAB, BCE, and EAG show a poor convergence, while 
EF-PD and HEIA perform much better by combining the search 
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Fig. 5 Optimal approximate PFs found by all the algorithms on WFG1 
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Fig. 6 The approximate local PFs found by BCE and EF-PD on DTLZ6 

patterns of SBX and DE, which confirms the effectiveness of 
hybridizing SBX and DE. 
3) Analysis on the DTLZ Problems 

From Table III, BCE achieves a better overall performance 
on all the DTLZ test problems, as the individual exploration 
strategy adopted in BCE is very effective to produce a good 
distribution of solutions in three-dimensional objective space. 
EF-PD performs a little worse than BCE but outperforms other 
algorithms. EF-PD obtains the best results on DTLZ5 and 
DTLZ6, and the second best results on DTLZ1-DTLZ3 and 
DTLZ7. This indicates that the algorithms with multiple selec-
tion criteria perform well in tackling the three-objective in-
stances of the DTLZ problems. In detail, BCE and EF-PD can 
obtain both good convergence and diversity by using different 
selection criteria and by propagating the superior offspring 
among the populations. However, this propagation of solutions 
in EAG is unidirectional from the external archive to the 
evolved population, thus the cooperation between different 
populations in EAG is weaker than that of BCE and EF-PD. 

When compared to EF-PD, BCE uses a niching strategy to 
measure the individuals’ density, thus it performs very well on 
the three-objective test problems with generic spherical PFs 
[38], like DTLZ1-DTLZ4. However, EF-PD only uses the 
crowding-distance metric to reflect the individuals’ density, 
which is more suitable for bi-objective problems [58]-[59]. 
When tackling DTLZ6 which has a degenerated PF, the optimal 
solution set found by BCE is expanded as a narrow belt cov-
ering the PF, whereas the results obtained by EF-PD better 
approximate the PFs, as shown in Fig. 6 with a local PF for 
DTLZ6. Moreover, the results on DTLZ5 (also with a degen-
erated PF) obtained by EF-PD and BCE are provided in Fig. 
S-6 of the supplementary file. Since DTLZ5 is easier to solve, 
EF-PD performs very well, while BCE still has some solutions 
diverging from the true PF. With respect to other competitors, 
which also use the crowding distance metric as their diversity 
maintenance strategy, the final solution set of EF-PD seems 
more promising on all the DTLZ problems. 

4) Analysis on the UF Test Problems 
Since the UF test problems are characterized for having very 

complicated PS, the neighborhood structure employed by the 
decomposition-based approaches, such as MOEA/D-DRA and 
FRRMAB, is useful to strengthen the evolutionary search [7]. 
Thus, FRRMAB achieves the best average rank on all the UF 
problems, confirming that the DE operators (including four DE 
variants) can benefit from the neighborhood structure in a 
decomposition framework. Similarly, the performance of 
EF-PD also benefits from the decomposition-based population. 
As shown in Table III, EF-PD performs best on UF1, UF4-UF5 
and UF10, and the total average rank shows that EF-PD also 
has a promising performance on all the UF test problems. 

Based on all the IGD results reported in Table III, it is rea-
sonable to conclude that EF-PD performs better than the 
compared algorithms in most cases, being able to tackle various 
kinds of complicated MOPs. Similar conclusions can be de-
duced from the HV comparison summary for all the test MOPs, 
as provided in Table S-I of the supplementary file due to page 
limitations. 

D. Effectiveness of the Operator Competition Strategy 
In order to study the effectiveness of the operator competi-

tion strategy, several EF-PD variants with fixed ratios of SBX 
and DE are realized to remove the operator competition in 
EF-PD. It should be noted that the cooperative selection of each 
EF-PD variant remained the same as that of EF-PD. For the 
sake of simplicity, these EF-PD variants are defined by the 
fixed ratio of DE, i.e., NDE/N= 0%, 25%, 50%, 75%, and 100%, 
where NDE is the number of executions  of DE at one generation 
and N is the population size. All the other parameters are set the 
same as introduced in Section V.B. The comparison of results 
of EF-PD and its variants are collected in Table IV for all the 
test MOPs, while the summary of HV results is given in Table 
S-II of the supplementary file due to page limitations. 

In detail, the EF-PD variant with 25% of DE achieves the 1st 
average rank on the ZDT problems, but performs worse than 
EF-PD on most of the UF problems. On the WFG problems, 
EF-PD obtains the best average rank, while the EF-PD variants 
with 25% and 50% of DE perform a little worse than EF-PD. 
Regarding the DTLZ problems, the EF-PD variant with 50% of 
DE and SBX outperforms the others, while a larger ratio of DE 
(such as 75% or 100% of DE) helps EF-PD to obtain more 
promising performance on the UF problems. According to 
these results, it is reasonable to conclude that a large number of 
execution times of SBX in PP is suitable for the ZDT test 
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TABLE IV 
COMPARISON OF IGD RESULTS WITH TYPICAL FIXED RATIOS OF NDE ON ALL THE TEST PROBLEMS 

MOPs NDE/N=0% NDE/N=25% NDE/N=50% NDE/N=75% NDE/N=100% EF-PD 

ZDT1 (3.7±0.041)·10-3(1+) (3.7±0.041)·10-3(2+) (3.7±0.06)·10-3(3≈) (4.0±0.14)·10-3(5－) (1.5±0.42)·10-2(6－) (3.8±0.056)·10-3(4) 
ZDT2 (3.8±0.045)·10-3(2≈) (3.8±0.053)·10-3(1≈) (3.8±0.05)·10-3(4≈) (3.9±0.11)·10-3(5－) (1.2±0.75)·10-2(6－) (3.8±0.053)·10-3(3) 
ZDT3 (4.4±0.049)·10-3(4－) (4.4±0.051)·10-3(2≈) (4.4±0.035)·10-3(3≈) (4.4±0.093)·10-3(5－) (5.3±2.9)·10-2(6－) (4.4±0.054)·10-3(1) 
ZDT4 (4.1±1.1)·10-3(5－) (3.8±0.087)·10-3(2+) (3.8±0.16)·10-3(1+) (3.8±0.14)·10-3(4≈) (1.3±1.6)·10-1(6－) (3.8±0.39)·10-3(3) 
ZDT6 (3.0±0.087)·10-3(5－) (3.0±0.093)·10-3(3－) (3.0±0.12)·10-3(2≈) (3.0±0.099)·10-3(4－) (3.0±0.19)·10-3(6－) (2.9±0.15)·10-3(1) 

Average Rank 3.7 2.0 2.6 4.6 6.0 2.4 
WFG1 (2.6±1.7)·10-1(4－) (6.8±1.8)·10-2(2－) (1.4±0.4)·10-1(3－) (2.9±0.5)·10-1(5－) (9.9±1)·10-1(6－) (4.9±1.7)·10-2(1) 
WFG2 (4.6±5.5)·10-2(6－) (5.6±56)·10-3(3≈) (5.5±56)·10-3(2≈) (6.3±56)·10-3(4－) (1.3±0.48)·10-2(5－) (5.5±0.55)·10-3(1) 
WFG3 (8.7±1.7)·10-3(5－) (6.4±0.76)·10-3(1≈) (6.5±0.82)·10-3(3－) (6.6±0.55)·10-3(4－) (8.9±0.88)·10-3(6－) (6.4±0.67)·10-3(2) 
WFG4 (6.4±0.51)·10-3(2≈) (6.7±0.51)·10-3(3－) (7.9±0.93)·10-3(4－) (1.1±0.23)·10-2(5－) (4.8±0.43)·10-2(6－) (6.3±0.51)·10-3(1) 
WFG5 (6.5±0.006)·10-2(4≈) (6.5±0.006)·10-2(1≈) (6.5±0.004)·10-2(3≈) (6.5±0.005)·10-2(5－) (6.5±0.007)·10-2(6－) (6.5±0.005)·10-2(2) 
WFG6 (5.7±1.3)·10-2(4－) (5.6±1.9)·10-2(3≈) (4.5±1.5)·10-2(2≈) (5.8±9.0)·10-2(5－) (1.2±0.0032)·10-1(6－) (4.4±2.0)·10-2(1) 
WFG7 (6.0±0.13)·10-3(3≈) (6.0±0.13)·10-3(1≈) (6.1±0.1)·10-3(4－) (6.2±0.1)·10-3(5－) (7.5±0.45)·10-3(6－) (6.0±0.083)·10-3(2) 
WFG8 (1.4±0.056)·10-1(6－) (1.1±0.025)·10-1(4－) (1.1±0.022)·10-1(2≈) (1.1±0.036)·10-1(1≈) (1.2±0.065)·10-1(5－) (1.1±0.059)·10-1(3) 
WFG9 (1.2±0.0021)·10-1(6－) (1.2±0.0007)·10-1(5≈) (1.2±0.0008)·10-1(1≈) (1.2±0.001)·10-1(2≈) (1.2±0.0007)·10-1(3≈) (1.2±0.0007)·10-1(4) 

Average Rank 4.4 2.6 2.7 4 5.4 1.9 
DTLZ1 (1.1±0.064)·10-2(5－) (1.1±0.029)·10-2(3≈) (1.1±0.03)·10-2(2≈) (1.1±0.029)·10-2(4－) (1.3±1.4)·10-2(6－) (1.1±0.02)·10-2(1) 
DTLZ2 (2.9±0.068)·10-2(6－) (2.8±0.068)·10-2(5－) (2.8±0.07)·10-2(1≈) (2.8±0.035)·10-2(2+) (2.8±0.054)·10-2(3+) (2.8±0.074)·10-2(4) 
DTLZ3 (3.0±0.096)·10-2(5－) (2.9±0.058)·10-2(3≈) (2.9±0.05)·10-2(2≈) (2.8±0.044)·10-2(4－) (5.7±13)·10-2(6－) (2.9±0.068)·10-2(1) 
DTLZ4 (3.1±0.29)·10-2(3≈) (3.1±0.36)·10-2(4－) (3.1±0.21)·10-2(2≈) (3.1±0.21)·10-2(5－) (3.6±0.39)·10-2(6－) (3.0±0.24)·10-2(1) 
DTLZ5 (8.1±0.46)·10-4(4－) (8.0±0.45)·10-4(2≈) (8.0±0.55)·10-4(3－) (8.4±0.38)·10-4(5－) (9.1±0.4)·10-4(6－) (8.0±0.48)·10-4(1) 
DTLZ6 (8.0±0.64)·10-4(6－) (8.0±0.36)·10-4(5－) (7.8±0.41)·10-4(2≈) (7.8±0.6)·10-4(1≈) (7.8±0.45)·10-4(3≈) (7.9±0.53)·10-4(4) 
DTLZ7 (3.2±0.12)·10-2(2≈) (3.2±0.23)·10-2(4≈) (3.2±0.22)·10-2(1≈) (3.2±0.092)·10-2(5≈) (3.3±0.19)·10-2(6≈) (3.2±0.26)·10-2(3) 

Average Rank 4.4 3.7 1.9 3.7 5.4 2.1 
UF1 (7.4±2.4)·10-2(6－) (2.4±0.14)·10-3(5－) (2.0±0.097)·10-3(4－) (1.8±0.095)·10-3(3≈) (1.8±0.13)·10-3(2≈) (1.7±0.098)·10-3(1) 
UF2 (2.7±0.66)·10-2(6－) (1.0±0.26)·10-2(5－) (7.8±3.3)·10-3(4－) (7.3±1.9)·10-3(3－) (5.4±2.3)·10-3(2≈) (5.4±2.5)·10-3(1) 
UF3 (1.6±0.59)·10-1(6－) (4.9±3.3)·10-2(5－) (1.7±2.6)·10-2(4－) (0.9±1.3)·10-2(3－) (7.2±8.8)·10-3(2≈) (5.7±8.3)·10-3(1) 
UF4 (4.2±0.058)·10-2(5－) (3.6±0.051)·10-2(2+) (3.6±0.065)·10-2(1+) (3.7±0.06)·10-2(4－) (6.1±0.65)·10-2(6－) (3.7±0.052)·10-2(3) 
UF5 (2.6±1.7)·10-1(5－) (2.5±1.2)·10-1(4－) (2.2±2.4)·10-1(2－) (2.3±1.8)·10-1(3－) (4.4±2.8)·10-1(6－) (1.8±1.0)·10-1(1) 
UF6 (3.0±2.1)·10-1(6－) (2.7±2.5)·10-1(5－) (2.5±1.6)·10-1(4－) (2.0±1.6)·10-1(2≈) (2.2±3.9)·10-1(3≈) (2.0±2.2)·10-1(1) 
UF7 (7.6±28)·10-2(6－) (4.1±1.0)·10-3(5－) (3.1±2.4)·10-3(4－) (2.5±0.61)·10-3(3≈) (2.3±0.91)·10-3(2≈) (2.2±4.3)·10-3(1) 
UF8 (8.5±8.0)·10-2(6－) (8.2±0.52)·10-2(5－) (8.0±0.59)·10-2(3≈) (8.1±0.66)·10-2(4≈) (7.2±1.5)·10-2(1≈) (8.0±0.59)·10-2(2) 
UF9 (1.9±1.0)·10-1(6－) (1.7±1.2)·10-1(5≈) (7.2±13)·10-2(3+) (6.7±13)·10-2(2+) (6.3±10)·10-2(1+) (1.6±1.3)·10-1(4) 

UF10 (2.7±1.1)·10-1(2≈) (3.0±1.3)·10-1(4－) (3.0±1.3)·10-1(5－) (2.8±21)·10-2(3+) (5.0±1.0)·10-1(6－) (2.6±0.42)·10-1(1) 
Average Rank 5.4 4.5 3.4 3 3.1 1.6 

Total Rank 4.6 3.4 2.7 3.7 4.7 1.9 
B/S/W 1/6/24 3/13/15 3/16/12 3/9/19 2/9/20 / 

The results are formatted as Median±IQR (Rank + or ≈ or －). “+,≈,－” respectively denote the performance of the compared algorithm is better than, similar with 
or worse than that of EF-PD, according to the Wilcoxon rank sum test at a 0.05 significance level. “B/S/W ” stand for the accumulated numbers of  “+, ≈ ,－”, 
respectively. We show the best results in boldface. 

 
problems, while a higher probability for executing DE in DP is 
recommended to solve the UF test problems. 

In Fig. 7, the detailed IGD results on some representative test 
MOPs (i.e., ZDT2, DTLZ1, WFG8 and UF3) are plotted. In this 
figure, the horizontal axis represents EF-PD and its typical 
variants with diverse ratios of DE, while the vertical axis shows 
the IGD values and their variations. It is found that different 
ratios of hybridizations of SBX and DE have some advantages 
on different MOPs, e.g., the variants with 20% and 50% of DE 
respectively perform best on ZDT2 and DTLZ1, while the 
variants with 75% and 100% of DE respectively give the best 
results on WFG8 and UF3. As a result, any EF-PD variant with 
a fixed ratio of operators can’t always perform well on various 
types of MOPs. Thus, our proposed resource allocation strategy 
at different populations is necessary and effective. 

The sequences of the average ratios NDE/N (obtained from 30 
runs of EF-PD) with respect to the generations are also plotted 
for all the test MOPs. Due to page limitations, they are shown in 
Section S-V of the supplementary file to illustrate the trade-off 
of SBX and DE during the execution. Particularly, the results 
typically obtained on ZDT2, DTLZ1, WFG8 and UF3 are 
plotted in Fig. 8, where NSBX is the number of executions of 

SBX and the horizontal axis indicates the generations. The 
average ratios of NDE/N on ZDT2 fluctuate below 0.5 in Fig. 
8(a), which fits the results in Table IV that the best ratio of 
NDE/N on ZDT2 may be some value in the range [0, 0.5]. On 
DTLZ1, the average ratio sequence of EF-PD has a large 
fluctuation and no evolutionary operator (SBX or DE) performs 
always well. As confirmed by Fig. 8(b), the adopted operator 
competition strategy is very effective and achieves the best 
performance. Moreover, taking WFG8 and UF3 respectively in 
Figs. 8(c) and 8(d) as examples, the optimal ratios of NDE/N 
quickly climb and then stay at a high level of more than 0.8, 
which confirms that a high ratio of application of DE in DP 
with a small ratio of execution of SBX in PP are better to tackle 
these test MOPs. It should be noted that the tendency of ratios 
of NDE/N on most of the UF test problems is very similar to that 
in Fig. 8(d), i.e., they all quickly go up and then gradually fall 
down, such as in UF1-UF3 and UF7-UF9 in Fig. S-5 of the 
supplementary file. This indicates that a large ratio of NDE/N 
(i.e., more applications of DE) is required at the beginning for 
solving these test MOPs, and gradually SBX becomes im-
portant, as the ratio of NSBX/N is enlarged. 
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TABLE V 
COMPARISON OF IGD RESULTS AMONG EF-PD, EF-PD-N AND EF-PD-DRA 

MOPs EF-PD-N EF-PD-DRA EF-PD MOPs EF-PD-N EF-PD-DRA EF-PD 

ZDT1 (3.8±0.042)·10-3(-) (3.79±0.056)·10-3(-) (3.75±0.056)·10-3 WFG5 (6.53±0.0058)·10-2(-) (6.53±0.0066)·10-2(-) (6.52±0.0057)·10-2 
ZDT2 (3.83±0.06)·10-3(≈) (3.85±0.051)·10-3(≈) (3.84±0.053)·10-3 WFG6 (4.5±1.9)·10-2(≈) (4.58±2.8)·10-2(≈) (4.45±2.0)·10-2 
ZDT3 (4.38±0.072)·10-3(-) (4.38±0.044)·10-3(-) (4.36±0.054)·10-3 WFG7 (6.09±0.088)·10-3(≈) (6.04±0.16)·10-3(≈) (6.07±0.083)·10-3 
ZDT4 (4.0±0.36)·10-3(-) (3.94±0.31)·10-3(≈) (3.82±0.39)·10-3 WFG8 (1.11±0.033)·10-1(≈) (1.11±0.041)·10-1(≈) (1.11±0.059)·10-1 
ZDT6 (2.92±0.17)·10-3(≈) (2.92±0.09)·10-3(≈) (2.94±0.15)·10-3 WFG9 (1.24±0.0016)·10-1(-) (1.24±0.0011)·10-1(-) (1.24±0.0008)·10-1 

DTLZ1 (1.06±0.021)·10-2(≈) (1.06±0.015)·10-2(≈) (1.05±0.02)·10-2 UF1 (1.8±0.091)·10-3(-) (1.76±0.078)·10-3(≈) (1.72±0.099)·10-3 
DTLZ2 (2.88±0.061)·10-2(-) (2.88±0.075)·10-2(-) (2.85±0.074)·10-2 UF2 (5.82±1.7)·10-3(≈) (5.52±1.2)·10-3(≈) (5.39±2.5)·10-3 
DTLZ3 (2.91±0.053)·10-2(-) (2.91±0.042)·10-2(-) (2.86±0.068)·10-2 UF3 (8.42±14)·10-3(-) (6.86±9.5)·10-3(-) (5.73±8.3)·10-3 
DTLZ4 (2.97±0.19)·10-2(≈) (3.04±0.21)·10-2(≈) (2.99±0.24)·10-2 UF4 (3.66±0.067)·10-2(≈) (3.65±0.077)·10-2(≈) (3.65±0.052)·10-2 
DTLZ5 (8.54±0.57)·10-4(-) (8.36±0.45)·10-4(≈) (8.0±0.48)·10-4 UF5 (2.47±2.5)·10-1(-) (3.15±1.9)·10-1(-) (1.78±1.0)·10-1 
DTLZ6 (7.92±0.34)·10-4(≈) (7.83±0.63)·10-4(≈) (7.88±0.53)·10-4 UF6 (3.0±3.7)·10-1(-) (2.14±2.4)·10-1(≈) (2.0±2.2)·10-1 
DTLZ7 (3.11±0.15)·10-2(+) (3.13±0.17)·10-2(≈) (3.19±0.26)·10-2 UF7 (2.17±0.29)·10-3(≈) (2.08±0.38)·10-3(≈) (2.18±4.3)·10-3 
WFG1 (6.34±3.0)·10-2(-) (6.3±1.8)·10-2(-) (4.88±1.7)·10-2 UF8 (8.59±0.6)·10-2(-) (8.49±0.85)·10-2(≈) (8.0±0.59)·10-2 
WFG2 (6.6±0.56)·10-3(-) (5.93±0.56)·10-3(-) (5.53±0.55)·10-3 UF9 (5.54±10)·10-2(+) (1.5±0.9)·10-1(≈) (1.55±1.3)·10-1 
WFG3 (6.8±0.11)·10-3(-) (6.78±0.84)·10-3(-) (6.4±0.67)·10-3 UF10 (2.68±0.79)·10-1(≈) (2.92±1.8)·10-1(-) (2.56±0.42)·10-1 
WFG4 (6.21±0.51)·10-3(≈) (6.17±0.42)·10-3(≈) (6.3±0.51)·10-3 B/S/W 2/13/16 0/19/12 ———— 

The results are formatted as Median±IQR(+ or ≈ or －). “+,≈,－” respectively denote the performance of the compared algorithm is better than, similar with or 
worse than that of EF-PD, according to the Wilcoxon rank sum test at a 0.05 significance level. “B/S/W ” stand for the accumulated numbers of  “+, ≈ ,－”, 
respectively. We show the best results in boldface. 
 

Overall, it is verified that no variant with fixed NDE/N can be 
always good at tackling various MOPs. However, when taking 
an overview of all the used MOPs, EF-PD with the proposed 
resource allocation strategy is effective on adjusting the num-
ber of operator executions, to achieve a more promising per-
formance in most cases.  

E. Effectiveness of the Evolutionary Potentiality Model 
In Section III.D, the population update information in EF-PD 

is embedded into the utility function used in MOEA/D-DRA 
[43], in order to enhance its scalability on multiple populations, 
as shown in the EP model. Comparisons between EF-PD and its 
two variants, namely EF-PD-N (EF-PD without any resource 
allocation) and EF-PD-DRA (EF-PD with the utility function 
used in MOEA/D-DRA [43]) are carried out to show the ef-
fectiveness of the EP model. Their IGD results are provided in 
Table V, which shows that EF-PD, EF-PD-N, and EF-PD-DRA 
obtain the best results on 20, 6, and 5 test problems, respec-

tively. In detail, the Wilcoxon’s rank sum test results reveal that 
EF-PD performs better than or similarly to EF-PD-N on 29 out 
of 31 test problems, which confirms the effectiveness of the 
proposed EP model. Also, EF-PD is significantly better than 
and statistically similar to EF-PD-DRA, respectively on 12 and 
19 out of 31 test problems. Similar conclusions can be deduced 
from the HV results, which are collected in Table S-III of the 
supplementary file due to page limitations. 

As we know, only the update information of a subproblem is 
used to model the utility function in MOEA/D-DRA [43]. 
However, due to the availability of multiple populations in 
EF-PD, a subproblem could generate superior solutions to 
update another population, and it should therefore be allocated 
more computational resources. Thus, this update information 
among different populations is recommended to be embedded 
into the DRA model (the utility function used in MOEA/D- 
DRA), forming our proposed EP model. Our experimental 
results show the superiority of our EP model over the DRA 
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Fig. 7 The box plots of IGD of EF-PD and its typical variants on some representative test problems 
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Fig. 8 The average ratio sequences of NDE/N and NSBX/N during the executions on some typical test problems 
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TABLE VI 
COMPARISON OF IGD RESULTS AMONG EF-PD-FIR, EF-PD-EFI AND EF-PD ON ALL THE TEST PROBLEMS 

MOPs EF-PD-FIR EF-PD-EFI EF-PD MOPs EF-PD-FIR EF-PD-EFI EF-PD 
ZDT1 (3.7±0.039)·10-3(+) (3.8±0.079)·10-3(≈) (3.8±0.056)·10-3 WFG5 (6.5±0.0038)·10-2(≈) (6.5±0.0052)·10-2(≈) (6.5±0.0057)·10-2 
ZDT2 (3.8±0.035)·10-3(≈) (3.8±0.079)·10-3(≈) (3.8±0.053)·10-3 WFG6 (5.3±2.2)·10-2(≈) (4.6±2.7)·10-2(≈) (4.4±2.0)·10-2 
ZDT3 (4.4±0.036)·10-3(≈) (4.4±0.059)·10-3(≈) (4.4±0.054)·10-3 WFG7 (6.1±0.16)·10-3(≈) (6.0±0.09)·10-3(≈) (6.1±0.083)·10-3 
ZDT4 (3.9±0.28)·10-3(≈) (3.9±0.27)·10-3(≈) (3.8±0.39)·10-3 WFG8 (1.1±0.032)·10-1(≈) (1.1±0.072)·10-1(≈) (1.1±0.059)·10-1 
ZDT6 (3.0±0.06)·10-3(≈) (2.9±0.12)·10-3(≈) (2.9±0.15)·10-3 WFG9 (1.2±0.0018)·10-1(≈) (1.2±0.0014)·10-1(≈) (1.2±0.0008)·10-1 

DTLZ1 (1.1±0.029)·10-2(≈) (1.1±0.017)·10-2(-) (1.1±0.02)·10-2 UF1 (1.8±0.14)·10-3(-) (1.7±0.082)·10-3(≈) (1.7±0.098)·10-3 
DTLZ2 (2.8±0.051)·10-2(≈) (2.9±0.071)·10-2(-) (2.8±0.074)·10-2 UF2 (7.8±2.0)·10-3(-) (5.3±1.5)·10-3(≈) (5.4±2.5)·10-3 
DTLZ3 (2.9±0.061)·10-2(≈) (2.9±0.11)·10-2(≈) (2.9±0.068)·10-2 UF3 (1.3±2.5)·10-2(-) (7.9±11)·10-3(≈) (5.7±8.3)·10-3 
DTLZ4 (2.9±0.21)·10-2(≈) (3.0±0.18)·10-2(≈) (3.0±0.24)·10-2 UF4 (3.6±0.054)·10-2(+) (3.7±0.067)·10-2(-) (3.7±0.052)·10-2 
DTLZ5 (8.1±0.59)·10-4(≈) (8.6±0.47)·10-4(-) (8.0±0.48)·10-4 UF5 (2.4±1.1)·10-1(-) (2.4±2.0)·10-1(-) (1.8±1.0)·10-1 
DTLZ6 (8.0±0.57)·10-4(≈) (7.8±0.64)·10-4(≈) (7.9±0.53)·10-4 UF6 (3.0±4.0)·10-1(≈) (2.6±1.7)·10-1(≈) (2.0±2.2)·10-1 
DTLZ7 (3.2±0.25)·10-2(≈) (3.2±0.18)·10-2(≈) (3.2±0.26)·10-2 UF7 (2.6±0.91)·10-3(-) (2.2±0.52)·10-3(≈) (2.2±4.3)·10-3 
WFG1 (5.9±1.7)·10-2(-) (5.1±1.9)·10-2(≈) (4.9±1.7)·10-2 UF8 (8.0±1.1)·10-2(≈) (8.2±1.2)·10-2(≈) (8.0±0.59)·10-2 
WFG2 (3.4±5.6)·10-2(-) (5.9±0.95)·10-3(≈) (5.5±0.55)·10-3 UF9 (7.5±12)·10-2(≈) (1.6±1.1)·10-1(≈) (1.6±1.3)·10-1 
WFG3 (6.9±0.87)·10-3(≈) (6.3±0.93)·10-3(≈) (6.4±0.67)·10-3 UF10 (2.8±1.5)·10-1(≈) (2.9±0.99)·10-1(-) (2.6±0.42)·10-1 
WFG4 (6.3±0.46)·10-3(≈) (6.2±0.7)·10-3(≈) (6.3±0.51)·10-3 B/S/W 2/22/7 0/25/6  

The results are formatted as Median±IQR(+ or ≈ or －). “+,≈,－” respectively denote the performance of the compared algorithm is better than, similar with 
or worse than that of EF-PD, according to the Wilcoxon rank sum test at a 0.05 significance level. “B/S/W ” stand for the accumulated numbers of  “+, ≈ ,－
”, respectively. We show the best results in boldface. 

 
 
 

TABLE VII 
FINAL IGD COMPARISONS OF EF-PD-R, EF-PD-H, EF-PD-E WITH EF-PD 

Algorithms 
Problems EF-PD-R EF-PD-H EF-PD-E 

ZDTs B/S/W 1/4/0 2/2/1 0/1/4 
WFGs B/S/W 2/4/3 2/4/3 3/1/5 
DTLZs B/S/W 0/5/2 1/5/1 1/2/4 

UFs B/S/W 0/5/5 0/3/7 0/1/9 
Total         B/S/W 3/18/10 5/14/12 4/5/22 

B/S/W respectively denote the number of MOPs on that the performance 
of the compared algorithm is better than, similar with or worse than that of 
EF-PD, according to Wilcoxon rank sum test at a 0.05 significance level. 

model, and also confirm the usefulness of this update infor-
mation among different populations. 

VI. FURTHER DISCUSSIONS 

A. Credit Assignment Strategies 
One open issue in this work is the credit assignment ap-

proach [31]. According to the inputs, there are several kinds of 
credit assignment approaches [32], such as offspring versus 
parent (OP), set improvement (SI), and contribution to the set 
(CS). The extreme dynamic multi-armed bandit (Ex-DMAB) 
[19] belongs to the type of OP, which assigns the credit using 
the extreme value of the fitness improvement (EFI) of one 
operator. In the most relevant approaches, OP, SI and CS are 
hybridized to reward the operators, e.g., FRRMAB [28] uses 
the fitness improvement rate (FIR) combined by OP and SI, 
while MOEA/D-HH [60] employs three measure functions 
including OP and CS. In contrast, the average fitness im-
provement (AFI) employed by EF-PD only contains SI, thus it 
is very simple and efficient. Here, two other well-known credit 
assignment strategies (FIR [28] and EFI [19]) were also studied 
under the proposed EF. FIR and EFI are respectively embedded 
into EF-PD to substitute AFI, and their variants are respectively 
named EF-PD-FRI and EF-PD-EFI. To clarify their behavior, 
FIR and EFI are respectively defined by (10) and (11), as 
follows:  

* *
, *

*

( | , ) ( | , )( | , , ) ,
( | , )

tch i tch i
i FIR i

tch i

g gf
g
λ λλ

λ
−

∆ =
x z y zy x z

x z
    (10) 

Op

* *
Op max { ( | , ) ( | , )} ,

j j

EFI tch i tch i

SI
F g gλ λ

∈
= −

y
x z y z         (11) 

where x and y stand for the original and new associated solu-
tions, respectively. , *( | , , )i FIR if λ∆ y x z  denotes the improvement 
rate achieved by the new solution y over x, and then an average 
value will be calculated by (5) with respect to each operator as 
its credit. In (11), SIOpj is the set of new associated solutions 
generated by the operator Opj, and Op j

EFIF  denotes the extreme 
(maximum) fitness improvement achieved by the operator Opj, 
as its credit. 

All the IGD results are collected in Table VI. EF-PD-FIR 
and EF-PD-EFI perform very similarly to EF-PD, as they have 
22 and 25 statistically similar results out of 31 test problems. 
This is reasonable as they are very similar to show the opera-
tor’s performance. Especially, the only difference between 
equations (10) in EF-PD-FIR and (6) in EF-PD is the additional 
denominator in equation (10). It leads to the slight difference on 
the IGD results as the denominators are often different for all 
the subproblems. According to the overall performance com-
parison, EF-PD shows slight advantages over EF-PD-FIR and 
EF-PD-EFI. The above experiments confirm that EF is scalable 
to embed various credit assignment approaches. That is to say, 
any performance indicator can be used in EF, if it is effective to 
reflect the operator’s performance. 

B. Matching Strategies of Operators and Populations 
In EF, each evolutionary operator has a one-to-one matching 

with the population, i.e., SBX is only executed on PP, while DE 
is only run on DP. As introduced in Section IV.A, each popu-
lation in Fig. 4 uses its exclusive evolutionary operator and 
selection criterion in order to present the advantages on certain 
kinds of MOPs. To study the rationality of the one-to-one 
matching strategy, EF-PD is further compared to its two vari-
ants with a random matching strategy (termed EF-PD-R) and a 
uniform matching strategy (termed EF-PD-H). In EF-PD-R, PP 
and DP will randomly select their evolutionary operators (SBX 
or DE) with a probability of 0.5 for all the individuals at each 
generation; whereas, in EF-PD-H, PP and DP will randomly 
select the evolutionary operator (SBX or DE) for each of its 
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TABLE VIII 
COMPARISON OF IGD RESULTS BETWEEN EF-PDI AND EF-PD ON ALL THE TEST PROBLEMS 

MOPs EF-PDI EF-PD MOPs EF-PDI EF-PD MOPs EF-PDI EF-PD 

ZDT1 (3.7±0.048)·10-3(+) (3.8±0.056)·10-3 WFG1 (4.2±0.21)·10-2(+) (4.9±1.7)·10-2 UF1 (1.6±0.056)·10-3(+) (1.7±0.098)·10-3 
ZDT2 (3.8±0.058)·10-3(+) (3.8±0.053)·10-3 WFG2 (5.5±25)·10-3(≈) (5.5±0.55)·10-3 UF2 (6.6±1.4)·10-3(-) (5.4±2.5)·10-3 
ZDT3 (4.3±0.088)·10-3(≈) (4.4±0.054)·10-3 WFG3 (5.3±0.8)·10-3(+) (6.4±0.67)·10-3 UF3 (6.3±12)·10-3(≈) (5.7±8.3)·10-3 
ZDT4 (3.8±0.15)·10-3(≈) (3.8±0.39)·10-3 WFG4 (5.4±0.14)·10-3(+) (6.3±0.51)·10-3 UF4 (3.5±0.074)·10-2(+) (3.7±0.052)·10-2 
ZDT6 (3.0±0.17)·10-3(≈) (2.9±0.15)·10-3 WFG5 (6.5±0.004)·10-2(+) (6.5±0.0057)·10-2 UF5 (2.1±2.1)·10-1(-) (1.8±1.0)·10-1 

DTLZ1 (1.1±0.021)·10-2(≈) (1.1±0.02)·10-2 WFG6 (4.9±1.4)·10-2(≈) (4.4±2.0)·10-2 UF6 (2.6±1.7)·10-1(≈) (2.0±2.2)·10-1 
DTLZ2 (2.8±0.053)·10-2(≈) (2.8±0.074)·10-2 WFG7 (5.9±0.17)·10-3(+) (6.1±0.083)·10-3 UF7 (2.5±0.61)·10-3(≈) (2.2±4.3)·10-3 
DTLZ3 (2.9±0.068)·10-2(≈) (2.9±0.068)·10-2 WFG8 (1.1±0.03)·10-1(+) (1.1±0.059)·10-1 UF8 (8.4±0.94)·10-2(≈) (8.0±0.59)·10-2 
DTLZ4 (3.0±0.19)·10-2(≈) (3.0±0.24)·10-2 WFG9 (1.2±0.0003)·10-1(+) (1.2±0.0008)·10-1 UF9 (1.1±1.2)·10-1(+) (1.6±1.3)·10-1 
DTLZ5 (8.2±0.57)·10-4(≈) (8.0±0.48)·10-4 DTLZ7 (3.2±0.23)·10-2(≈) (3.2±0.26)·10-2 UF10 (3.2±1.5)·10-1(≈) (2.6±0.42)·10-1 
DTLZ6 (7.7±0.45)·10-4(≈) (7.9±0.53)·10-4 Total B/S/W:    12/17/2 

The results are formatted as Median±IQR(+ or ≈ or －). “+,≈,－” respectively denote the performance of the compared algorithm is better than, similar with or 
worse than that of EF-PD, according to the Wilcoxon rank sum test at a 0.05 significance level. “B/S/W ” stand for the accumulated numbers of  “+, ≈ ,－”, 
respectively. We show the best results in boldface. 
 individuals according to a probability of 0.5. Moreover, an 

exchanged matching strategy is performed by applying SBX 
only on DP and DE only on PP, termed EF-PD-E. In the three 
variants of EF-PD, the mating selection strategies are not 
coupled with the evolutionary operators (SBX or DE), but 
associated to the populations (PP or DP), aiming to allow a fair 
comparison. Due to page limitations, the details of the mating 
selection strategies adopted in EF-PD-R, EF-PD-H and 
EF-PD-E are clarified in Table S-IV of the supplementary file. 

The summarized IGD results are listed in Table VII, while 
the detailed IGD comparisons are provided in Table S-V of the 
supplementary file. It is confirmed that EF-PD with a 
one-to-one matching strategy of operators and populations 
performs better than EF-PD-R, EF-PD-H and EF-PD-E. Since 
DE can benefit from the neighborhood structure of subprob-
lems under a decomposition-based framework, it is actually not 
so effective to execute DE on PP. Thus, the three EF-PD var-
iants with different matching strategies of operators and popu-
lations are not recommended. EF-PD-E has the worst perfor-
mance, validating the above statement and showing the ra-
tionale for employing SBX and DE respectively on PP and DP 
in EF-PD. In summary, to obtain a more promising perfor-
mance under EF, it is suggested that each population should 
have its specific characteristic by choosing its preferred evolu-
tionary operator and selection criterion.  

C. Another EF Paradigm with Triple Populations 
In order to show the high scalability of EF, an extended 

paradigm with three independent populations was designed, 
termed EF-PDI, where “I” indicates an Indicator-based popu-
lation embedded in EF. This additional population employs an 
HV-indicator-based selection criterion and SBX as in IBEA 
[8]. Table VIII shows the IGD results obtained by EF-PDI and 
EF-PD. As shown, EF-PDI performs better than or similarly to 
EF-PD on 29 out of 31 test problems, which indicates that the 
additional indicator-based population is able to further enhance 
EF-PD. Moreover, the adopted resource allocation strategy is 
effective to assign the computational resources to the popula-
tion that best fits to solve the target MOP. 

VII. CONCLUSIONS AND FUTURE WORK 
In this paper, an effective ensemble algorithm, EF-PD, and 

its generalized framework EF were proposed to perform a 
competition on various evolutionary operators and a coopera-
tion of different selection criteria. In the proposed EF, a de-
composition-based credit assignment approach and an operator 
resource allocation strategy are employed to drive the compet-
itive running of multiple evolutionary operators, while the 
migration of superior offspring is carried out by using a coop-
erative selection mechanism. Thirty-one test MOPs were used 
to evaluate the performance of EF-PD, and the experimental 
results indicate the superiority of EF-PD over other compared 
algorithms in most cases. Also, the advantages of the operator 
resource allocation strategy and the proposed EP model were 
experimentally confirmed. Moreover, further discussions on EF 
were brought forward to study the rationale of the proposed 
EF-PD, and a new EF instance extended with triple populations 
was introduced to show its scalability. 

As part of our future work, we are interested in embedding 
more evolutionary operators, selection criteria, and other re-
source allocation strategies into the proposed EF. Moreover, 
the parallel implementation of EF in hardware is another re-
search path that we would like to explore in the future. 
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