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Abstract—The ultimate goal of the Internet of Things (IoT) is to 

provide ubiquitous services. To achieve this goal, many challenges 

remain to be addressed. Inspired from the cooperative 

mechanisms between multiple systems in the human being, this 

paper proposes a bio-inspired self-learning coevolutionary 

algorithm (BSCA) for dynamic multiobjective optimization of IoT 

services to reduce energy consumption and service time. BSCA 

consists of three layers. The first layer is composed of multiple 

subpopulations evolving cooperatively to obtain diverse Pareto 

fronts. Based on the solutions obtained by the first layer, the 

second layer aims to further increase the diversity of solutions. 

The third layer refines the solutions found in the second layer by 

adopting an adaptive gradient refinement search strategy and a 

dynamic optimization method to cope with changing concurrent 

multiple service requests, thereby effectively improving the 

accuracy of solutions. Experiments on agricultural IoT services in 

the presence of dynamic requests under different distributions are 

performed based on two service-providing strategies, i.e., single 

service and collaborative service. The simulation results 

demonstrate that BSCA performs better than four existing 

algorithms on IoT services, in particular for high-dimensional 

problems. 

Index Terms—coevolutionary optimization, dynamic 

multiobjective optimization, Internet of Things (IoT), 

self-learning, services provision 

I. INTRODUCTION 

nternet of Things (IoT) is a very complex heterogeneous 

network, which bridges the gap between physical and the 

virtual worlds. The ultimate goal of all IoT applications is to 

provide seamless services without human intervention. IoT is 

considered to be the next logical revolution [1], which is able to 

provide extensive services in smart cities [2], [3], smart 
 

This work was supported in part by the International Collaborative Project of 

the Shanghai Committee of Science and Technology under Grant 16510711100, 

the National Natural Science Foundation of China under Grants 61473078, 

61473077, 61503075 and 61603090, in part by Shanghai Science and 

Technology Promotion Project from Shanghai Municipal Agriculture 

Commission under Grant 2016-1-5-12, and in part by the Program for 

Changjiang Scholars from the Ministry of Education (2015-2019). 

(Corresponding authors: Yaochu Jin and Kuangrong Hao) 

All the authors are with the Engineering Research Center of Digitized Textile 

and Apparel Technology, Ministry of Education, and also with the College of 

Information Science and Technology, Donghua University, Shanghai 201620, 

China (E-mail: yaochu.jin@surrey.ac.uk; krhao@dhu.edu.cn).  

Yaochu Jin is also with the Department of Computer Science, University of 

Surrey, Guildford, GU27XH, United Kingdom, and the Department of 

Computer Science and Technology, Taiyuan University of Science and 

Technology, Taiyuan 030024, China. Zhen Yang is also with the College of 

Information Engineering, Huzhou University, Huzhou 313000, China. 

agriculture, manufacturing [4], [5], smart healthcare, and smart 

home. Autonomous IoT systems are of great importance but 

many challenges remain to be addressed [6]. 

In general, IoT services can be categorized into four classes 

[7], [8], i.e., identity-related services, information aggregation 

services, collaborative-aware services and ubiquitous services. 

This article focuses on optimization of ubiquitous services, 

which is very challenging, since there exist many 

heterogeneous and dynamic links and a large amount of 

uncertainties. Some efforts have been reported along this line of 

research. For example, the concept of opportunistic IoT 

services was proposed [9], while sensing as a service was 

suggested in [10], [11].  

A large-scale IoT environment is composed of thousands of 

distributed entities. Once service requests are detected, multiple 

optimal services selected from enormous candidate sets need to 

be provided immediately. IoT should not only be able to 

provide services for dynamic concurrent requests, but also to 

reduce energy consumption [12], [13], reduce service time, and 

improve information accuracy. In addition, availability of 

services, bandwidth allocation, and reliability should be taken 

into account, especially in resource constrained environments 

[14]. Consequently, service selection is a multiobjective 

optimization problem (MOP). In [15], services are assigned to 

interfaces with heterogeneous resources to achieve optimal 

solutions. However, the development of efficient algorithms for 

service selection remains challenging and has not been widely 

investigated. Hence, the purpose of this article is to implement 

global composition and multiobjective optimization of 

ubiquitous services in dynamic IoT environments.  

Dynamic multiobjective optimization problems (DMOPs) 

are challenging due to the fact that multiple conflicting 

objectives that change over time must be optimized 

simultaneously [16], [17]. Evolutionary computation and 

swarm intelligence have been shown to be powerful methods to 

solve optimization problems in dynamic environments [18]. 

Among many others, coevolutionary approaches are very 

attractive [16], [19], [24]-[29]. Through competitive- 

cooperative coevolution, different subpopulations separately 

optimize a subset of the decision variables, where the 

decomposition process of the optimization problem is adaptive 

rather than being manually designed and fixed at the beginning 

of the evolutionary optimization [19]. Liu et al. [16] proposed a 

decomposition method, where the subcomponents cooperate to 

evolve for better solutions. A linear regression prediction 
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strategy was used to produce rapid responses to new changes in 

the environment. Similarly, prediction strategies for dynamic 

multiobjective optimization have also been proposed [20]-[23]. 

Furthermore, Mestari et al. [24] developed a neural network 

architecture and a new processing method for solving nonlinear 

equality constrained MOPs. Shang et al. [25] adopted the 

immune clonal selection to solve DMOPs. To enhance the 

uniformity and the diversity of the solutions, they also 

employed coevolutionary competitive and cooperative 

operations. Ding et al. [26], [27] proposed an immune 

co-evolutionary algorithm for MOPs with specific application 

scenarios. In [28], diversified multiobjective cooperative 

evolution was adopted for scheduling problems, while an 

endocrine regulation mechanism was applied in [29]. Jiang and 

Yang [30] proposed a steady-state and generational 

evolutionary algorithm (SGEA) for handling MOPs with 

time-varying characteristics. If a change is detected, SGEA 

reuses a portion of previous solutions to quickly adapt to 

changing environments. The work reported in [31] integrated 

transfer learning approaches into an evolutionary algorithm. 

Finally, collaborative decomposition [32], neighborhood 

concept and local search were applied [33]-[35].  

Ideally, algorithms for solving dynamic optimization 

problems (DOPs) should be able to self-learn like human 

beings to better deal with the changing environment. In [36], an 

artificial neural network was employed and the online learning 

capability of the neural network controller has been shown to 

be able to help the control system respond quickly to changes in 

system. In [37], a novel iterative adaptive dynamic 

programming based infinite horizon self-learning optimal 

control algorithm was developed for nonaffine discrete-time 

nonlinear systems, which uses a neural network. A new avenue 

was opened up in [38] by integrating adaptive neural dynamic 

programming into self-learning control for continuous-time 

uncertain nonlinear systems. A self-learning mechanism of 

immune systems was employed in [39] to design 

reconfigurable controllers. A hybrid learning clonal selection 

algorithm was proposed by incorporating Baldwinian learning 

and orthogonal learning to guide search [40]. In [41], [42], 

active learning was shown to be able to reduce the computation 

time in solving MOPs, while in [43], active learning and 

information theory were combined for dual control. Liu et al. 

[44] proposed a new swarm intelligence algorithm inspired 

from social learning to solve QoS-aware cloud service 

composition problems. Barkoczi and Galesic [45] investigated 

how different social learning strategies affect the balance of 

exploration and exploitation, and the resulting performance 

was very encouraging.  

All aforementioned research focuses on DMOPs with a fixed 

dimension of the decision space. This work, by contrast, aims to 

solve DMOPs with a changing number of decision variables, 

where the number of requests sent at any given moment is 

constantly changing. These situations are often seen in both 

single and collaborative IoT services. Note that in single 

services, one requested task is completed by one service 

provider. In collaborative services, on the contrary, one 

requested task can be collaboratively completed by a 

composition of service providers.  

To solve DMOPs of IoT services, we develop new 

cooperative mechanisms inspired from the nervous, endocrine, 

and immune (NEI) systems of human beings [46]-[50]. The 

main contributions of this paper are as follows. (1) Inspired by 

the NEI systems in human beings, a three-layer progressive 

architecture for DMOPs is suggested. In the proposed 

algorithm, layer 1 aims to quickly approximate the location of 

the Pareto optimal solutions by co-evolving a number of 

subpopulations. Then, layer 2 focuses on increasing the 

diversity of solutions. Finally, layer 3 refines the solutions to 

further enhance their accuracy. (2) A social learning 

mechanism inspired from the human brain [48], [49] is 

introduced into the second layer, which enables the algorithm 

to self-learn, thereby increasing the solution diversity. 

Meanwhile, individual hormones are used to adjust the step 

sizes in the learning. (3) By making full use of the information 

about the locations of the service requests and optimal solutions 

from previous environments, knowledge-based adaptive local 

search is designed to cope with dynamic requests and improve 

tracking accuracy. 

The rest of this paper is organized as follows. Section II 

briefly presents the preliminaries related to this work. Section 

III formulates the optimization of IoT services as a dynamic 

multiobjective optimization problem. Section IV presents the 

proposed bio-inspired self-learning coevolutionary algorithm 

(BSCA) and provides a detailed description of its search 

mechanisms and strategies. Section V compares the 

effectiveness of the proposed algorithm with four existent ones 

in a dynamic agricultural IoT environment. Finally, 

conclusions are drawn in Section VI. 

II. PRELIMINARIES 

A. Dynamic Multiobjective Optimization 

   Existing DMOPs can be classified into four types, as shown 

in Table I [51], where n is the number of decision variables, Ð x  
is the decision space, m is the number of objectives, and R m  
denotes the objective space. Existing research has been limited 

to addressing Type I DMOPs, where the numbers of decision 

variables and objectives remain constant and only the objective 

or constraint functions change over time.  

TABLE I. TYPES OF DMOPS 

Decision space 

(n, Ð x ) 

Objective space (m, R
m

) 

No change Change 

No change Type I Type III 

Change Type II Type IV 

 

B. Dynamic IoT Service 

Since the number of requests sent at any given moment is 

constantly changing, the number of optimal service providers 

also changes. In optimization of IoT services, the number of 

service providers determines the dimension of the decision 

space. Consequently, the optimization problem belongs to Type 

II. However, it can also happen that the positions of requests 

and services to be provided change even if the number of 
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requests remains the same. Thus, IoT optimization problems 

may also belong to Type I. Several typical distributions of the 

locations of the requests are considered to rigorously validate 

the proposed algorithm. The test instances are grouped into five 

categories, in which requests come from one congestion area, 

two adjacent areas, two opposite areas, three adjacent areas or 

the entire area, respectively. These five distribution categories 

are illustrated in Appendix A of the Supplementary material. 

III. DYNAMIC MULTIOBJECTIVE OPTIMIZATION MODEL OF IOT 

SERVICES 

A. IoT Service Model 

IoT service systems typically consist of three layers, a 

perception layer, a network layer and an application layer. The 

application layer is dedicated to providing services for people 

or things. An IoT system contains a large number of 

heterogeneous devices and networks, and the data streams from 

the perception layer are regarded as service requests. The 

ultimate goal of IoT systems is to autonomously provide 

services by these devices, resulting integrated cyber-physical 

systems [52]. 

A service request can be represented as a five-tuple 

(request_id, type, workload, priority, location), where 

request_id indicates the unique identification code of the 

service request. type indicates the type of the request, which can 

be very different due to the heterogeneity of the devices in the 

IoT system. workload and priority depend on the collected data 

from all kinds of sensors. location represents the geographical 

coordinates of the request. 

A service provider accepts the response of service requests, 

which is expressed as a six-tuple (service_id, type, u, e, 

location), where service_id indicates the unique 

identification code of the service provider. type denotes the 

type of service. u indicates the usage status of the service. e 

represents the unit energy consumption.  denotes the ability 

value, which is the amount of work done per unit time. location 

denotes the geographical coordinates of the service. 

In this work, priorities are divided into two levels, urgency 

and general. Ideally, if the amount of data collected by the 

sensors is larger than a predefined threshold, a request is 

considered to be urgent, otherwise it is general. We also assume 

that the data has been processed and prioritized, and all requests 

are within the scope of the service facilities. 

B. Dynamic Multiobjective Optimization Model  

There are many indicators and objectives that can be 

considered in IoT services [14]. This work focuses on the 

minimization of the energy consumption and service time. 

These objectives can be achieved by optimizing the 

configuration of the limited resources and the selection of the 

service providers. Consequently, optimization of IoT services 

is formulated as a bi-objective optimization problem. 

Consider a set of service providers denoted by

S(t) = f1;:::;N g. The service requests are derived from a set 

R (t) = f1;:::;M g. Then the two objectives are expressed as 

follows. 

m in f1 =

N (t)X

i= 1

M (t)X

j= 1

xij(dist(s
t
i;r
t
j)+ ec(s

t
i;r
t
j)))    (1) 

m in f2 =
N (t)
m ax
i= 1
fS Tig                     (2)  

s.t.                                           

dist(sti;r
t
j)=

q
(X ti ¡ X

t
j)
2 + (Y ti ¡ Y

t
j )
2

       (3)
 

  ec(s
t
i;r
t
j) =

½
w orkloadj

t ¢pi ¢ei ;xij = 1
0 ;xij = 0

     (4)
 

 STi = w orkloadi=±i                      (5)

 C oSerN um j
t = d ´ ¢w orkloadj

t ¢priorityj
t e   (6) 

xij 2 f0;1g;8i2 S ;j 2 R                   (7)
 

 

M t0X

j= 1

xij = 1 ;i2 S                           (8)

 

M (t)X

j= 1

C oS erN um j
t·N t0               (9)

 

Assume that the layout of the initial IoT has N t0  service 

providers and a maximum of M t0  concurrent requests. N(t) and 

M(t) are two time-varying functions, which will be explained 

later on. In (1), objective f1 is to minimize the total service 

energy consumption. Specifically, dist(si
t,rj

t) indicates the 

transmission cost between service si
t and request rj

t. As the 

dimension and locations of the requests change, the dimension 

of the decision space changes as well, where each dimension si 

of the decision vector changes over t. Therefore, the 

coordinates (X, Y) of service si and request rj in (3) vary with t. 

In (4), ec(si
t,rj

t) represents the energy consumption between 

service si and request rj. Similarly, for the same si, ec(si
t,rj

t) may 

be different for different requests. workloadj is the workload of 

request j. pi represents the share of the workload assigned to be 

completed by si. ei is the unit energy consumption of si. 

In (2), objective f2 is to minimize the service time, which is 

the maximum completion time of all tasks performed by the 

service providers. The completion time STi is given in (5), 

where workloadi indicates the amount of work done by the 

service i, and δi is the ability value of service i. 

Considering the priority and the amount of the task, several 

service providers are required to serve a request collaboratively. 

The exact number of service providers depends on the product 

of three values, i.e., availability of services, workload and 

priority of rj, as shown in (6), where η represents the 

availability ratio of services at time t. We assume that the 

requested task at time (t-1) has been completed before a request 

at time (t) arrives in the system. No breakdown of service 

providers is considered in this work. 

Constraints are given in (7), (8) and (9). In (7), xij denotes 

whether service i is assigned to request j. If yes, the value is 1; 

otherwise, the value is 0. Constraint (8) describes that a service 

provider is only assigned to one request in a moment. 

Constraint (9) restricts the number of all the required 

cooperative services for multiple requests at time t, which 

should be less than the total number N t0  of available services. 

Besides, M(t) and N(t) are defined in (10) and (11). 

M (t)= drand ¢M t0 e                     (10) 
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where M(t) represents the number of concurrent requests at 

time t. 

N (t)= jfsijxij = 1;i2 S;j 2 R tg j      (11) 

where N(t) represents the current number of service providers 

serving the concurrent requests at time t. 

IV. BIO-INSPIRED SELF-LEARNING COEVOLUTIONARY 

ALGORITHM 

In this section, we introduce the proposed BSCA for 

dynamic multiobjective optimization of IoT services. To 

autonomously provide services in a changing environment, we 

treat IoT service system as a living system such as human 

beings. In a living organism, three major systems, namely, 

nervous, endocrine and immune (NEI) systems, cooperate with 

each other to achieve the overall goal of balancing and 

stabilizing the whole system. NEI systems can be seen as 

complex network control structures, which regulate the 

functions of various organs by means of cytokines, hormone, 

and chemical transmitter [53]. Inspired from the working 

mechanisms of human NEI systems, this work develops an 

integrated model of BSCA consisting of three layers, as shown 

in Fig. 1. The corresponding roles of cytokines and 

neurotransmitters in BSCA are also denoted in parentheses. In 

the following, we describe in detail the functions of each layer. 

Elite social 
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Fig. 1. The architecture of BSCA inspired by human NEI systems.  

NS: nervous system; IS: immune system; ES: endocrine system. 

In BSCA, layer 1 is meant to find as many candidate 

solutions as possible. Layer 1 acts as the executor, called 

foundation layer, which mainly responds to requests and finds 

optimal services. This is similar to the function of the immune 

system, which fights against foreign substances (equivalent to 

requests) and produces antibodies (equivalent to service 

providers) that can match and destroy the foreign substances. 

The Pareto optimal set (POS) 1, 2,…, h obtained by each 

subpopulation by a non-dominated immune algorithm (NNIA) 

[54] are transmitted as cytokines to NS and ES. At this time, ES 

secretes different hormones H1, H2,…, Hh according to the 

characteristics of each set of solutions, thereby affecting the 

interaction among subgroups and avoiding getting stuck in 

local optima. Then the elitist population in layer 2 performs a 

sequence of behaviors and makes decisions. After that, NS 

feeds back the POS of the elitist population (POStop) as 

neurotransmitters to IS. In this way, the stimulus of POStop on 

the immune cells can enhance the function of IS. In other words, 

POStop is helpful for subpopulations in exploring a larger 

solution space and accelerating the convergence.  

The function of layer 2 aims to increase the diversity of 

solutions. Layer 2 and layer 3 together constitute the top layer, 

which is equivalent to human NS and acts as the decision maker. 

These two layers perform the search starting from the solutions 

found by layer 1. Layer 2 chooses only good individuals (POS 1, 

2,…, h) as the initial solutions; layer 3 performs refining 

operations based on the results of layer 2. Thus, the three layers 

form a progressive hierarchy. 

Once POS 1, 2, …, h are passed to layer 2, they are cloned 

according to hormone concentration and individual differences. 

Then they become independent elite individuals, which are 

transmitted as cytokines to NS. Inspired from social learning 

mechanisms observed in the human brain, BSCA enhances 

population diversity through promoting information exchange 

and avoiding collisions among individuals. Next, when 

antibodies 1, 2,…, k are transmitted as cytokines to ES, ES 

secretes different hormones Hs and Hn according to the 

characteristics of each antibody, which are used to dynamically 

regulate the learning step size. The details will be presented in 

Section IV (C). 

Finally, layer 3 intends to improve the accuracy of solutions. 

Layer 3 attempts to capture the structure information of the 

problem to refine the solutions of layer 2. Given time-varying 

concurrent multiple requests, the ability to track the dynamic 

optimum and improve the accuracy must rely on a robust and 

effective local search strategy. Based on knowledge, gradient 

zones of service providers are established to guide and enhance 

local search, which ensures the evolution towards better 

direction and assists with future searches for the global 

optimum.  

The implementation details of BSCA are described below. 

A. Synergistic Mechanisms of Endocrine Regulation 

Layer 1 and layer 2 use synergistic mechanisms of endocrine 

regulation to assist the evolution of the solutions. Here, the 

hormone of layer 1 aims to regulate the migration of 

non-dominated solutions between subpopulations, while the 

hormone of layer 2 is used to adjust the learning step size.  
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1) Hormonal regulation of layer 1 

The subpopulations 1, 2,…, h in layer 1 emulate the multiple 

antibody groups in the human immune system, which evolve 

separately. In NEI systems, the immune function is activated or 

inhibited by the hormone receptors on immune cells when the 

secreted hormone reaches a certain concentration level. In the 

model, we use the migration frequency to control the frequency 

of interaction among the three systems, which aims to prevent 

the subpopulations from getting stuck in local optima. For 

example, for the two subpopulations Abj and Abk with the 

largest and smallest hormone concentration, POSj migrates to 

Abk and POSk migrates to Abj. Migrating the non-dominated 

solutions helps the subpopulation escape from local optima and 

expand their search space. 

The hormone can be calculated as follows. 

H (A bj) = ®
lj

1
h

h
j= 1 lj

+ ¯
P m
b= 1

1
h

h
j= 1 f

m in
b (A bj )

f m inb (A bj )

+ °
N S (A bj )

1
L

L
i= 1 N S (a i)

;(j = 1;2;:::;h)
 (12)

 

where H(Abj) is a composite index that reflects the ratio of the 

number of non-dominated solutions (NDS), the values of 

objective functions and the diversity of NDS. ® , ¯ , ° are the 

corresponding weight coefficients. In the following, we 

elaborate the three terms in (12). 

lj in the first term denotes the size of NDS in subpopulation 

Abj, as notated in (13). h is the total number of subpopulations. 

This item shows the ratio of lj in the collection of entire NDSs. 

lj = jN D S(A bj)j                       (13)
 

The second item of (12) f
m in
b (A bj) denotes the minimum of 

the b-th objective function in subpopulation Abj. m is the total 

number of the objectives. The numerator of the second item is 

the average of fm inb (A bj) of all the subpopulations.  

In the third item of (12), diversity of NDS is evaluated by 

non-similarity. The definition in (14) is used to calculate the 

non-similarity rate between the two antibodies, i.e., ai and ak . 

aci and ack  represent c-th dimension of ai and ak , respectively. r 

is the dimension of the decision space. L is the size of the group 

consisting of NDSs from all the subpopulations. 

N S R ate(ai;ak) =
r
c= 1 B ool(a

c
i 6= a

c
k )

r ;(i6= k;i;k = 1;2;:::;L )

 (14)
 

   Then, let NS(ai) be the non-similarity of ai, which is the 

average of non-similarity rates to all other antibodies. 

N S(A bj) denotes the average non-similarity of NDS in Abj. 

This term measures the level of diversity of Abj in the whole 

group. 

2) Hormonal regulation of layer 2 

All POSs in layer 1 become independent elitist individuals in 

layer 2 after cloning. Like in NEI systems, they are transmitted 

as cytokines to ES. At this time ES secretes different hormones 

for each individual. The secreted hormones Hf are synthesized 

by two kinds of endocrine cells, i.e., Hs and Hn. The former 

describes the performance of individual itself and the latter 

reflects the level in the small groups formed by the 

neighborhood relationship.  

For individual i, the corresponding hormone Hf is expressed 

as follows, which is also called the hormone factor. 

H is = arctan
m axfdj jj2 Bg¡ di
m axfdj jj2 Bg¡ d

                (15) 

   B = f1;2;:::;L g                        
      (16)

  

H in = arctan
¯
¯
¯
di¡ 1 + di+ 1

2 ¡ di

¯
¯ ̄              (17)

 

H if = H
i
s ¢H

i
n                                   (18) 

where di represents the crowding distance of individual i in [54].  

A set B  is defined as the elitist population. d  stands for the 

average crowding distance of all these elite individuals. In (17), 

the individuals in front of and behind di are denoted as di-1 and 

di+1, respectively. di>d  means that the solution density in the 

neighborhood of individual i is lower than the average density. 

The adjustment of the original position of i should be minor, i.e., 

the value of H is should be slightly adjusted. On the contrary, di<

d , means the solution density of individual i is higher than the 

average, and therefore, H is  should be more dramatically 

adjusted. When di is close to the center of the crowding 

distances between the two individuals (i-1, i+1), the 

distribution is fairly uniform. In other words, the local 

characteristic of individual i is good, thus H in  should only be 

slightly adjusted. Otherwise, H in  should be more significantly 

adjusted and H if  
should increase. The full use of the crowding 

distance, which is incorporated into the hormone factor, can 

effectively help improve the optimization performance. 

B. Clone Operator  

The mothers of the clones are POSs of all the subpopulations. 

For subpopulation Abj, the number of solutions in its POSj is 

denoted by lj. The formula of the clone operator is as follows. 

qi =
l
H (A bj )
in dex(ai)

m
;i= 1;2;:::;lj

               (19) 

where H(Abj) is hormone concentration of subpopulation Abj, 

index(ai) indicates the index number of antibody ai in POSj. 

When index(ai) is equal to 1, the cloning multiple is the largest, 

whose value decreases as the index increases. This kind of 

method greatly increases the opportunity of antibodies at or 

near the extreme points to achieve affinity maturation. In the 

odd generations, index(ai) is obtained by sorting f1; but in the 

even generation, index(ai) is obtained by sorting f2. By doing so, 

we ensure that both objectives will be evolved with an equal 

probability. 

C. Human Brain-based Social Learning Mechanism 

There are two motivations for using the brain-inspired social 

learning mechanism. Firstly, offspring of the individuals in the 

elitist population are generated by cloning parents, which is the 

process of generational inheritance of parents’ information. 

Thus, an offspring individual cannot receive information from 

other parents. Social learning provides a means for individuals 

to learn from each other, thereby increasing the population 

diversity. Secondly, there are structures in a society, such as 

elitists and neighbors, on which social learning is typically 

based. In the following, we provide the details of social 

learning implemented in the model.  

1) Elitist and neighborhood based learning 

We regard the entire elitist population as a certain social 
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group. Here we employ two self-learning models in the elite 

evolutionary learning strategy, namely, one based on the 

neighborhood relationship and the other on fitness. 

X1,G

X2,G

XN,G
Xi+2,G

Xi+1,G

Xi,G

Xi-1,G

Xbest,G

…

…
 

Fig. 2. The ring topology of neighborhood. 

The ring topology is one structure widely used to describe 

the neighborhood relationship of individuals in a population 

[33], as shown in Fig. 2, where N is the size of the population, 

Xi,G represents one individual. Here, we divide the population 

into groups consisting of three individuals, and one individual 

can be in different groups. In addition, an individual may learn 

from the best individual in a group. These two learning patterns 

can be described in (20), which are conducted in an alternate 

manner with a probability.  

S L i;G =

(
X i;G + N (0:7;¾

2)¢(X i¡ 1;G ¡ X i+ 1;G )+ H
i;G
f ;if randi(0;1) < 0:3

X best;G + N (0:7;¾
2)¢(X r1;G ¡ X r2;G )+ H

i;G
f ;otherw ise

(20) 

where Xi-1,G and Xi+1,G are neighbors of Xi,G in the 

neighborhood-based learning mode. N(0.7, ¾
2 ) denotes a 

Gaussian distribution with a mean of 0.7 and standard deviation 

, which is adaptively adjusted according to the distribution of 

the changing requests. In the elitist learning mode, the 

individual with the minimum f1 value at the G-th generation in 

the entire elite group is denoted as Xbest,G, since we consider f1 

as the main objective in this work. Xr1 and Xr2 are chosen 

randomly from the population. In (20), H i;Gf  
is the hormone 

factor for individual i at the G-th generation, as defined in (18).  

H i;Gf adaptively adjusts the learning step size. The elitist 

learning mode helps accelerate convergence while the 

neighborhood based learning aims to increase diversity. Details 

of the learning mechanism are also described in Algorithm 1. 

2) Critical learning 

Kumaran et al. [50] provided evidence that the medial 

prefrontal cortex selectively mediates the updating of 

knowledge. In other words, one critically and selectively learns 

based on one’s current knowledge level. This critical learning 

process can be described as follows in a high abstraction level. 

S A ij;G =

½
SL ij;G ;if randj(0;1)< A F G jjj = = randj(1;n)
X ij;G ;otherw ise (21)

 

A F G = 0:55 +
1
¼
¢arctan

³
2 ¡ 10 G

G m a x

´

        (22)
 

where G and Gmax are the current and maximum generations, 

Xij,G and SAij,G denote the j-th decision variable of individual Xi 

before and after critical learning at the G-th generation, 

respectively. AFG is a learning factor at the G-th generation, 

which gradually decreases over the generations from 0.8958 to 

0.0896. In the earlier search stage, the differences between 

individuals are relatively large, thus AFG is larger to encourage  

 

 

Algorithm 1: Self-learning based on NEI  

1 Input: Clones of POSs of all subpopulations  

2 Output: Offspring population  

3 for i =1 to N  

4 if randi< 0.3  

5       Implement the neighborhood-based learning 

mode according to (20) 

 

6 else  

7 
Implement the elitist-based learning mode 

according to (20)   

 

8       end if  

9 end for  

10 for i =1 to N  

11 for j =1 to n  

12 if randj<AFG|| j= = randj(1,n)  

13 SAij,G = SLij,G  

14 else  

15 SAij,G = Xij,G  

16 end if  

17 end for  

18 
Repair solutions to ensure that each decision 

variable is within the range 

 

19 end for  

more explorative search. At the later search stage, the 

individuals become more similar and thus AFG will be smaller, 

which promotes more exploitative search. In short, AFG 

determines the amount of information from other individuals 

being passed to an individual’s offspring, which has 

considerable impact on the convergence speed and population 

diversity. Critical learning is implemented from lines 11 to 13 

in Algorithm 1. N is the current size of the clones, while n is the 

current dimension of decision variables. For the repair 

operation (line 18), illegal and repetitive decision variables in 

one individual Xi,G are replaced by the randomly generated 

elements in the complementary set of all available service 

providers and Xi,G. 

D. Knowledge-based Local Search 

To track moving optima efficiently in a time-varying 

environment, layer 3 aims to search promising areas not found 

in layers 1 and 2. By making full use of the problem structure as 

well as optimal solutions found in the previous environments, 

BSCA is able to speed up convergence and improve the 

accuracy of the final solutions in changing environments.  

When new requests arrive, a portion of the optimal solutions 

found for previous requests will be adopted in layer 3 to 

increase the speed of response to environmental changes. 

Recall that the dimension of the decision space in the new 

environment may be different from that in the previous 

environments. To address this issue, only portion of the 

solutions in the old environment corresponding to those 

requests that are the same as in the new environment will be 

adopted. In the following, we provide an illustrative example to 

show how to reuse a portion of the solutions in the previous 

environment (t-1). 

Assume a fragment of requests at time (t-1) are: 

…19, 6, 37, 57, 50, 17, 58, 10… 

and a fragment of requests at time t are as follows:  
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…10, 19, 8, 60, 46, 9, 26, 57… 

At first, we identify the same requests between the previous 

environment (t-1) and the present environment t. These are 

requests 19, 57, and 10. Suppose that at time (t-1), providers 21, 

and 25 are assigned to request 19, providers 68, 41, 50, and 62 

are assigned to request 57, and providers 11, 15, 8 are assigned 

to request 10. These providers are included in the current 

solution if they are not already in the solution.   

 Finally, local search is performed for requests that are 

different from those in the previous environment. In the 

following, we describe in detail the refinement search 

conducted in layer 3. 

Different service requests rj have different sensing ranges, 

meaning that the intensity of requests on service providers si is 

also different. Thus, according to the distance between service 

requests and service providers, and unit energy consumption of 

providers, a connection weight sequence of (si, rj) pair is 

designed. Assume there are N service providers and M requests, 

so the following connection weight matrix Wm can be built. 

W m =

2

6
6
6
6
6
6
4

w 11 w 12 ::: w 1i ::: w 1N
w 21 w 22 ::: w 2i ::: w 2N
::: ::: ::: ::: ::: :::
w j1 w j2 ::: w ji ::: w jN
::: ::: ::: ::: ::: :::
w M 1 w M 2 ::: w M i ::: w M N

3

7
7
7
7
7
7
5

 

where each row corresponds to a request and each column 

corresponds to a service provider. The connection weight wji 

between request rj and service si is defined as follows. 

w ji = k si;rj k + ec(si)¢uw       (23) 

where || si, rj || is the transmission cost determined by the 

distance measure between the two elements. ec(si) denotes the 

energy consumption of si and uw is the unit workload defined to 

be 1. 

An affinity matrix Am is constructed according to Wm. The 

service providers for rj on the j-th row in matrix Wm are sorted 

in an ascending order. The sorted elements for rj will become 

the j-th row of Am. The corresponding indexes for the service 

providers are thus obtained. The service provider in the first 

place of j-th row indicates the highest affinity with request rj. 

However, selecting an appropriate subset of providers to 

perform local search is challenging, since local search should 

be adequate yet computationally efficient. Therefore, the 

service providers are divided into three zones according to Am 

before local search is carried out. The providers in the first zone 

are used to determine whether local search should be performed. 

The second is to extend the local search, hoping to explore a 

better feasible solution. Only when the number of service 

providers available for substitution in the first and second zones 

is less than required, providers in the third zone will be 

considered in local search. Since the numbers of substitutions 

required by single service and collaborative service are 

different, the zone size for the two service policies should vary. 

Based on our pilot studies, the zone size for single service is set 

to 3 and that for collaborative service is set to 5.  

Due to simultaneous processing of multiple concurrent 

requests, an individual solution contains multidimensional 

service providers. A schematic diagram is shown in Fig. 3, 

where CurSoli denotes the current solution, reqNum is the 

number of concurrent requests and each bit corresponds to a 

service provider. For example in Fig. 3, service providers 69 

and 46 are for request r1. For collaborative service, the solution 

to one request has more than one bit. 
rreqNum

69 46 37 26 27 49 72 102 81...

r1

...CurSoli

rj

 
Fig. 3. Corresponding relation between concurrent requests and bits of CurSoli . 

 

Algorithm 2: Knowledge-based Local Search 

1 
Input: Offspring population,  requests at time instances t 

and (t-1), POStop at time (t-1), affinity matrix Am 

2 Output: Updated offspring population 

3 for i=1 to N 

4 
Reuse a portion of outdated solutions for the same 

requests at time (t-1). 

5 
Calculate SamePro for the remainder of requests 

according to (24). 

6 Then calculate AveProi. 

7 for j=1 to restReqNum 

8 if SameProj<= AveProi 

9 DSet= []; Flag=zeros(1,CoSerNumj); 

10 
In turn, determine whether each service s in the 

first and second zones exists in CurSoli. 

11 

If exists, determine whether s is in the services 

composition responding to rj. If yes, write down 

the position pos and assign Flag(pos) to 1. 

12 If not, s→DSet. 
13 if  |DSet| <CoSerNumj 

14 
Add the services in the third zone but not in 

CurSoli to DSet. 

15 end if 
16 if ~isempty(DSet) 

17 for k=1 to CoSerNumj 

18 if Flag(k)==0&&~isempty(DSet) 

19 DSet(1)→rj
k of CurSoli 

20 DSet(1) = []; 

21 if isempty(DSet)      break; 

22 end if 

23 end if 
24 end for 
25 end if 
26 end if 
27 end for 
28 end for 

The local search is carried out as follows. Firstly, we 

determine for the request rj whether a combination of services 

exists in its first zone. If not, SameProj defined in (24) is equal 

to 0. If yes, the number of intersection of the combination set Cj 

and the zone Zj is calculated. In (24), CoSerNumj is defined in 

(6). The greater the SameProj, the better the local solution of rj. 

S am eP roj =
j fC j \ Z j g j
C oS erN u m j

;j 2 R      (24)
 

Secondly, SameProj of the j-th request is calculated 

according to (24). Then the probabilities are averaged over the 

number of requests and the result is denoted as AvePro. AvePro 

conveys the overall level of matching between the combination 

set for each request and its first zone. The search intensity for 
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each request depends on itself and AvePro of the current 

individual.  

Details of the local search are described in Algorithm 2, 

where restReqNum represents the number of remaining 

requests except the same requests. DSet denotes the set of 

providers in three zones that are not used by the current solution. 

|DSet| is the size of DSet. 

E. Overall Algorithm of BSCA 

The pseudo code of overall algorithm is given in Algorithm 3. 

The algorithm is executed from Layer 1 to Layer 3, as shown in 

Fig. 1. Hormonal regulation (lines 4 and 6) is performed as 

described in (12) and (18), respectively. Refer to Section 

IV(A).  

Algorithm 3: The Overall Algorithm of BSCA 

1 Input: Initial parent subpopulations 

2 Output: POStop 

3 for G =1 to Gmax 

4 

Layer 1: Evolve subpopulations to obtain the POS of 

each subpopulation; migrate POS according hormonal 

regulation 

5       Clone the POS of each subpopulation 

6 
Layer 2: Adjust the learning step size with hormonal 

regulation. Self-learning (Algorithm 1) 

7 Layer 3: Knowledge-based local search (Algorithm 2) 

8 Evaluate solutions 

9 end for 

V. PERFORMANCE EVALUATION WITH APPLICATION TO 

AGRICULTURAL IOT SERVICES 

In order to validate the effectiveness of BSCA, we apply it to 

the field of dynamic optimization of agricultural IoT services. 

For an agriculture greenhouse control system based on IoT, 

sensors are set for monitoring the growth of various vegetables 

and fruits. Sensors include humidity sensors, soil moisture 

sensors, temperature sensors, nutrient elements sensors, and 

carbon dioxide sensors. The data collected by these sensors are 

sent to the service platform and processed there. When the 

processed data meet certain predefined conditions, they are 

regarded as service requests. In the agricultural IoT scenarios 

considered in this work, devices, such as irrigation machine, 

fertilizer applicator and pesticide spraying machine are 

regarded as service providers. Selecting the best matching 

services to deal with dynamic concurrent multiple requests to 

minimize the total cost and service time is the main goal to 

achieve. Note that the proposed algorithm will be triggered 

once requests are received. 

A. Experimental Settings  

An agricultural IoT region (80×80) is designed for 

experimental studies. 120 sensors (service requests) are evenly 

distributed in the region. In addition, the agricultural IoT 

devices (service providers) distribute evenly in the considered 

region in the form of 11 by 11, resulting 121 devices in total. In 

this work, the number of random requests is fixed to 30, which 

can be divided into five typical distributions under two service 

providing strategies, as shown in Fig. S1 in the Supplementary 

material. In case of single service, the number of decision 

variables equals to the number of requests, while in case of 

collaborative service, the dimension of decision space varies 

according to (6). The solution dimensions in the five cases for 

two service strategies are described in TABLE II. These 

experiments are based on the assumption that the previous 

batch of requests has been completed before the next batch of 

requests arrives. The dynamic multiobjective algorithm SGEA 

[30], two popular immune algorithms HEIA [55], NNIA [54], 

and a popular multiobjective optimization algorithm, NSGA-II 

[56] are compared with the proposed BSCA. SGEA, like other 

dynamic multiobjective algorithms, assumes that the dimension 

of the search space does not change during the optimization. 

Thus, a minor modification must be made to SGEA. 

Specifically, the dimension of the old solutions at the previous 

time instance (t-1) is adjusted to the current dimension at time t 

when there is a change in the search dimension. Similar to 

BSCA, a portion of old solutions for the same requests are 

utilized as a portion of the current solutions. Then the 

remaining decision variables of the current solutions are 

randomly generated. Other settings of SGEA are exactly the 

same as in [30]. 

In the experiments, it is assumed that the five request 

categories arrive sequentially in every 100 generations, 

meaning that the environment changes in 100 generations and 

500 generations in total will be run for each compared 

algorithm. The setting of the parameter is given in TABLE III, 

which are specified through empirical studies. Note that BSCA 

uses three subpopulations for different exploration regions and 

the size of the elite population varies. Based on our empirical 

results, the average number of fitness evaluations used by 

BSCA in 100 generations is 9868, which is less than the 

compared algorithms.  

TABLE II. THE DIMENSIONS OF DECISION SPACE  

Strategy Case 1 Case 2 Case 3 Case 4 Case 5 

Single service 30 30 30 30 30 
Collaborative service 63 72 57 67 61 

TABLE III. PARAMETERS SETTING 

Parameter NSGA-II NNIA  HEIA SGEA 
BSCA 

Sub 

pop 

Elitist 

pop 

Population 

size 
100 100 100 100 25 

adap- 

tive 
Crossover 

rate 
0.9 1 1 1 1 / 

Mutation 

rate 
0.8 1/N(t) 1/N(t) 1/N(t) 

1/N(t), 

1.5/N(t), 

1/N(t)/1.5 

/ 

B. Distribution Density of Service Requests 

In the following, we calculate the distribution density of 

requests for tuning the variance of the Gaussian distribution 

N(0.7, ¾ 2) in (20). Assume a collection of requests (30 in this 

work) sent out at time t, denoted as R t , which can be 

categorized into five situations as shown in Fig. S1.  
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1) Distribution density of requests 

First, we determine whether the nearest neighbors of request 

rj are in R t. Then, the distribution density of rj is calculated as 

follows. 

½j =
jfr 2 N eiF ieldj9r 2 R tg j+ 1

5              (25) 

where r indicates one of neighboring fields. Note that the 

maximum number of neighbors is 4 and consequently, ½j
ranges between 0.2 and 1. 

 
2) Overall distribution density of R t 

Next, the overall distribution density is calculated as follows. 

½d =
1
jR tj

¢
P jR tj
j= 1 ½j                            (26) 

where ½j is calculated according to (25).  

For the five categories of request distributions, the overall 

distribution density ½d  averaged over multiple randomly 

generated scenarios listed in Table IV. Finally, we can tune the 

standard deviation in N(0.7, ¾
2) based on the overall request 

density. In principle, the variance should be tuned according to

½d , and the larger ½d  is, the larger ¾2 should be. This is because 

the fewer idle service resources there are in the neighborhood, 

the more explorative search must be performed. The best values 

of ¾2 are then obtained according to the above discussions. 

TABLE IV. THE RELATIONSHIP BETWEEN ½d  AND ¾ 2 

Strategy Parameter Case 1 Case 2 Case 3 Case 4 Case 5 

Single 
service 

½d  0.8533 0.5333 0.4933 0.4133 0.3467 

¾ 2 0.3 0.2 0.15 0.1 0.1 

Collaborative 

service 

½d  0.8533 0.4933 0.4667 0.3867 0.3200 

¾ 2 0.3 0.15 0.15 0.1 0.1 

 

C. Performance Metric 

Several performance indicators [57], [58] accounting for 

convergence and diversity of non-dominated solution sets have 

been proposed. In this work, hypervolume (HV), set coverage 

(C-metric) and D-metric are adopted for evaluation of the 

solution sets obtained by the compared algorithms. In addition, 

diversity measure [59] is employed to assess the population 

diversity.  

30 independent runs are performed for each instance. The 

aforementioned performance metrics are described in 

Appendix B of Supplementary material. 

In the following, the performance of BSCA is compared with 

SGEA, HEIA, NNIA and NSGA-II for both single and 

collaborative service strategies.  

D. Performance Comparisons for Single Service 

Fig. 4 shows the HV results of five algorithms for the single 

service strategy. Fig. 4 plots the convergence profiles of the 

average HV metric values over 30 independent runs. From 

these results, we can observe that BSCA shows the best HV 

among the compared algorithms on all five request categories 

(Case 1 to Case 5 in Fig. S1). Note that NNIA is also very 

competitive, as it is catching up with BSCA at the end in Case 4 

and Case 5. It is also observed that HEIA overtakes NSGA-II in 

the latter generations in each environment in four of the five 

cases. This might be attributed to the cooperation of multiple 

evolutionary strategies in HEIA. In addition, the starting point 

of HV value of SGEA is the highest in Case 1, Case 3 and Case 

4, indicating that SGEA is able to respond to environmental 

changes very quickly in these cases. This can mainly be 

attributed to the generational selection and the effectiveness of 

the guided population reinitialization. However, the 

performance of SGEA does not improve significantly in the 

later search stage for low-dimensional and discrete problems. 

Overall, BSCA performs the best, which benefits not only from 

hierarchical structures, but also from the reuse of the previous 

solutions throughout the search process. 

To further compare the performance of each algorithm in 30 

independent runs, Fig. 5 presents the box plots of the HV 

results obtained by five algorithms in generations 50 and 100 in 

five distribution cases. As a whole, BSCA performs remarkably 

 
Fig. 4. Convergence profiles in terms of the average HV in five distributions cases for the single service strategy. 
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better than the other compared algorithms. The only exception 

is Case 2 in generation 100, where NNIA performs the best. 

These boxplots also indicate that BSCA performs more 

consistently compared to other four algorithms. 

E. Performance Comparisons for Collaborative Service 

Fig. 6 shows the HV results of the five algorithms for the 

collaborative service strategy. From these results, it is observed 

that BSCA clearly outperforms other four algorithms in all 

cases except for Case 1, where NNIA performs the best, 

although BSCA is going to catch up with NNIA at the end of 

generation. This may be due to the fact that the requests in Case 

1 distribute in a very concentrated area, which reduces the 

benefit of explorative search. We also note that the average HV 

of NSGA-II, NNIA and HEIA are similar to the results for the 

single service strategy. NSGA-II is outperformed by HEIA 

during the later stage of evolution. Nevertheless, overall, SGEA 

performs better in collaborative service than in single service. 

This confirms that SGEA outperforms NSGA-II, NNIA and 

HEIA when handling high-dimensional problems. As to 

collaborative service strategy, the starting point of the HV 

value of BSCA is always the highest except in Case 2, 

indicating that BSCA has superior performance on higher 

dimensional optimization problems since it is able to quickly 

respond to environmental changes in most cases. By comparing 

the results in Figs. 4 and 6, it is noted that BSCA outperforms 

the compared algorithms more significantly in Cases 2-5 in 

collaborative service, implying that BSCA is more competitive 

for dealing with high-dimensional problems.  

Fig. 7 presents the box plots of the HV results obtained by 

the five algorithms in generations 50 and 100 for the five 

distribution cases, from which we can see that BSCA performs 

clearly better in four of the five cases. Another dynamic 

multiobjective optimization algorithm, SGEA, ranks the second 

 
Fig. 6. Convergence profiles in terms of the average HV values in five distributions cases for the collaborative service strategy. 

 
(a) Case 1: One congestion area                     (b) Case 2: Two adjacent areas                      (c) Case 3: Two opposite areas 

 
(d) Case 4: Three adjacent areas                      (e) Case 5: Entire area 

Fig. 5. Box plots of the HV results in representative generations (50 and 100) on five distributions cases under the strategy of single service. 
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on median value in generation 50, yet in generation 100, its 

performance has declined and is not so prominent compared 

with its earlier search stage. Comparing the results in Fig. 5 and 

Fig. 7, we find that the performance superiority of BSCA over 

the compared algorithms is more significant in terms of the 

maximum value, median, and minimum value. This further 

confirms the superiority of BSCA in dealing with 

high-dimensional problems. 

F. Comparison of Computation Time 

To compare the complexity of the five compared algorithms, 

we list the average computation time in Table V, where ‘Ss’ 

means single service and ‘Cs’ denotes collaborative service. It 

is noted that computation time fluctuates with the number of 

requests received. As the dimension of decision space increases, 

the computation time will increase correspondingly. From the 

results, it is clear that NNIA is the most efficient, 

computationally, and NSGA-II the least. On average, BSCA 

takes more time than NNIA, HEIA and SGEA since it employs 

the multi-layered method and spends time on back and forth 

communication among layers.  

TABLE V. AVERAGE COMPUTATION TIME (S) 

Case  NSGA-II NNIA HEIA SGEA BSCA 

Case 1 
Ss 77.1371 2.0969 7.7961 13.2580 18.1971 

Cs 76.9155 2.5591 23.2601 15.1368 46.9831 

Case 2 
Ss 67.6911 1.9032 7.4899 13.9466 8.0299 

Cs 77.6679 2.7740 30.6288 15.3266 30.5047 

Case 3 
Ss 68.2179 2.0832 7.6818 14.0726 9.6710 

Cs 75.7962 2.5811 18.6727 15.2799 34.4382 

Case 4 
Ss 68.2100 2.1993 7.7973 14.2318 13.2992 

Cs 76.9695 2.5226 25.1278 15.3558 40.4372 

Case 5 
Ss 68.2252 2.1292 7.5390 14.0765 11.4517 

Cs 71.2038 2.6201 20.6591 15.3561 32.7730 

Mean / 72.8034 2.3469 15.6653 14.6041 24.5785 

VI. CONCLUSION 

In this paper, a bio-inspired self-learning coevolutionary 

algorithm (BSCA) having a three-layer progressive structure is 

presented for dynamic multiobjective optimization of IoT 

services to minimize service costs and service time. BSCA is 

inspired by the mechanisms found in human nervous, endocrine 

and immune systems to quickly track the moving Pareto 

optimal solutions in the presence of changing requests. The 

simulation results demonstrate that the proposed algorithm is 

competitive in dynamic optimization of agricultural IoT 

services. In practice, IoT service system may select one of the 

extreme solutions or other Pareto optimal solutions on the front 

according to the service strategy specified by the 

decision-maker.  

One important topic yet to study is to handle abnormal 

situations in dynamic IoT environments, such as services 

failure. Meanwhile, it is essential to consider more practical 

situations where new requests may arrive before all the 

previous requests have been handled. Finally, it is also of 

interest to verify the performance of BSCA on the standard 

DOP benchmark problems to further identify its strengths and 

weaknesses for general optimization problems.
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