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Abstract—In this work, we propose a framework to accelerate
the computational efficiency of evolutionary algorithms on large-
scale multi-objective optimization. The main idea is to track the
Pareto optimal set directly via problem reformulation. To begin
with, the algorithm obtains a set of reference directions in the
decision space and associates them with a set of weight variables
for locating the Pareto optimal set. Afterwards, the original
large-scale multi-objective optimization problem is reformulated
into a low-dimensional single-objective optimization problem. In
the reformulated problem, the decision space is reconstructed
by the weight variables and the objective space is reduced by
an indicator function. Thanks to the low dimensionality of the
weight variables and reduced objective space, a set of quasi-
optimal solutions can be obtained efficiently. Finally, a multi-
objective evolutionary algorithm is used to spread the quasi-
optimal solutions over the approximate Pareto optimal front
evenly. Experiments have been conducted on a variety of large-
scale multi-objective problems with up to 5000 decision variables.
Four different types of representative algorithms are embedded
into the proposed framework and compared with their original
versions respectively. Furthermore, the proposed framework has
been compared with two state-of-the-art algorithms for large-
scale multi-objective optimization. Experimental results have
demonstrated the significant improvement benefited from the
framework in terms of its performance and computational
efficiency in large-scale multi-objective optimization.

Index Terms—Large-scale optimization, multi-objective opti-
mization, evolutionary algorithms, problem reformulation
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I. INTRODUCTION

Many real-world optimization problems involve multiple
conflicting objectives [1], [2], known as multi-objective op-
timization problems (MOPs), which can be mathematically
formulated as follows:

Minimize F (x) =(f1(x), f2(x), . . . , fM (x)) (1)
subject to x ∈ X,

where X is the search space of decision variables with
x=(x1, . . . , xD) denoting the decision vector [3]. Due to the
conflicting nature of the objectives, there does not typically
exist a single solution that can minimize all the objectives
simultaneously. Instead, a set of non-dominated solutions can
be obtained as the trade-offs between different objectives [4].
Suppose xA,xB are two solutions of an MOP illustrated
by (1), solution xA is known to Pareto dominate solution
xB (denoted as xA≺xB), if and only if fi(xA)≤fi(xB)
(∀i∈{1, 2, . . . ,M}) and there exists at least one objective fj
(j∈{1, 2, . . . ,M}) satisfying fj(xA)<fj(xB). The collection
of all the Pareto optimal solutions in the decision space is
called the Pareto optimal set (PS), and the projection of PS in
the objective space is called the Pareto optimal front (PF).

To solve MOPs, a variety of multi-objective evolutionary
algorithms (MOEAs) have been proposed during the past two
decades [5], including the Pareto-based MOEAs [6], [7], [8],
the decomposition based MOEAs [9], [10], and the indicator-
based MOEAs [11], [12], etc. Despite that most existing
MOEAs have been well assessed on the MOPs with a small
number of decision variables, their performance degenerates
dramatically on MOPs with hundreds or even thousands of
decision variables, i.e., the large-scale multi-objective opti-
mization problems (LSMOPs) [13]. As the number of decision
variables increases linearly, the volume (as well as complexity)
of the search space will increase exponentially, and thus
leading to the curse of dimensionality [14], [15]. In recent
years, there has been an increasing interest in large-scale
multi-objective optimization [16], [17]. Existing approaches
for large-scale multi-objective optimization can be roughly
classified into three different categories as follows.

The first category is known as the decision variable anal-
ysis based approaches. A representative algorithm of this
category is the MOEA based on decision variable analysis
(MOEA/DVA) [18], where the original LSMOP is decomposed
into a number of simpler sub-MOPs. Then, the decision vari-
ables in each sub-MOP is optimized as an independent sub-
component. Similarly, the decision variable clustering based
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large-scale evolutionary algorithm (LMEA) [19] also divides
the decision variables into two types using a clustering method.
Then, the convergence-related and diversity-related variables
are optimized using two different strategies by focusing on
convergence and diversity, respectively.

The second category applies the cooperative coevolution
(CC) framework [20]. For example, the third-generation co-
operative coevolutionary differential evolution algorithm (C-
CGDE3) [21] maintains several independent subpopulations.
Each subpopulation is a subset of the equal-length deci-
sion variables obtained by variable grouping (e.g., random
grouping [22], linear grouping [23], ordered grouping [24],
or differential grouping (DG) [25]). All the subpopulations
work cooperatively to optimize the LSMOPs in a divide-and-
conquer manner.

The third category is based on the problem transformation,
where the original LSMOP is transformed into a simpler MOP
with a relatively small number of decision variables. The
weighted optimization framework (WOF) is representative in
this category [26]. In WOF, the decision variables are divided
into a number of groups, each of which is assigned with a
weight variable. As a consequence, the optimization of the
weight variables in the same group can be regarded as the
optimization of a subproblem in a subspace of the original
decision space.

There are also some other approaches that do not fall
into the above three categories, e.g., the recently proposed
competition mechanism based multi-objective particle swarm
algorithm (CMOPSO) [27]. Instead of adopting explicit deci-
sion variable analysis or grouping, the algorithm is motivated
to implicitly enhance the swarm diversity of PSO for solving
LSMOPs using a pairwise competition strategy [28]. Despite
that these existing approaches as introduced above can im-
prove the performance of MOEAs on LSMOPs to some extent,
the development of large-scale multi-objective optimization is
still in its infancy. Particularly, most of the existing algorithms
suffer from a low computational efficiency, in terms of both
computation time and function evaluations. To accelerate the
computational efficiency of existing MOEAs on large-scale
multi-objective optimization, we propose a generic framework,
termed large-scale multi-objective optimization framework
(LSMOF). The main new contributions are summarized as
follows:

1) A novel problem reformulation method is proposed.
It reformulates the original LSMOP into a low-
dimensional single-objective optimization problem with
some direction vectors and weight variables, aimed
at guiding the population towards the PS. Different
from existing dimension reduction techniques, there is
no decision variable analysis or grouping process in
our proposed method. Since the reformulated problem
characterized by the weight variables has a lower dimen-
sionality than the original problem, the computational
efficiency can be significantly improved.

2) A bi-directional weight variable association strategy is
proposed to enhance the performance of the proposed
framework for tracking the PS in the decision space
effectively. This strategy not only increases the popula-

tion diversity of the reformulated problem to avoid local
optima, but also eliminates the potential nonuniform
search caused by the divergence of the unidirectional
vectors.

3) A two-stage strategy is adopted in our proposed LSMOF.
At the first stage, the decision space reconstruction based
single-objective optimization is used to push the popu-
lation towards the PS efficiently. Then, the second stage
spreads the candidate solutions over the approximate PS
evenly.

The rest of this paper is organized as follows. In Section
II, we briefly recall some related work on large-scale multi-
objective optimization, and the motivation of this work is also
elaborated. The details of the proposed LSMOF for large-
scale multi-objective optimization are presented in Section
III. Experimental settings and comparisons of LSMOF with
the state-of-the-art heuristic algorithms on the benchmark
problems are presented in Section IV. Finally, conclusions are
drawn in Section V.

II. RELATED WORK AND MOTIVATION

In this section, we first recall some concepts and definitions
in large-scale multi-objective optimization. Then some related
work about the decision variable analysis, decision variable
grouping, and problem transformation are illustrated. Finally,
the motivation of this work is elaborated.

A. Decision Variable Analysis

Definition 1. f(x) is called a partially separable with k
components iff [25], [29]:

arg
x

min f(x) = (arg
x1

min f(x1, ...), ..., arg
xk

min f(...,xk)),

where x = (x1, ..., xD) is a decision vector and x1, ...,xk

(k ∈ [2, D]) are disjoint sub-vectors of x.
Definition 2. Two decision variables xi and xj are interact-

ing if there exit x, a1, a2, b1, b2 satisfying

f(x)|xi=a2,xj=b1 < f(x)|xi=a1,xj=b1 ∧ (2)
f(x)|xi=a2,xj=b2 > f(x)|xi=a1,xj=b2 ,

where

f(x)|xi=a2,xj=b1 , f(x1, ..., xi−1, a2, ..., xj−1, b1, ..., xD).

According to Definition 1, a single-objective optimization
problem is known as partially separable if the decision vari-
ables can be divided into a number of subcomponents and
optimized independently. The main idea of decision variable
analysis is intuitive. First, the interdependence between the
pairwise decision variables is detected based on Definition
2 by different techniques, e.g., perturbation [30], interaction
adaption [31], [32], modeling [33], or randomization [34].
Then, the relationship between a specific decision variable
and the optimization problem is analyzed. To be specific, a
decision variable can be related to convergence, diversity, or
both of them. Finally, the decision variables of different types
can be optimized using different strategies.
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In MOEA/DVA [18], the decision variables are divided into
three types according to their control properties of convergence
or/and spread. The three types of decision variables are defined
as follows.

• Position Variable: Decision variable xj in x is called a
position variable iff changing xj in x will generate a new
solution x′ satisfying that x′ ⊀ x and x ⊀ x′.

• Distance Variable: Decision variable xj in x is called
a distance variable iff changing xj in x will generate a
new solution x′ satisfying that x′ ≺ x or x ≺ x′.

• Mixed Variable: Decision variables do not fall into any
of above two types.

Similarly, the decision variables in LMEA are also clus-
tered into convergence-related variables and diversity-related
variables [19]. By dividing the decision variables into different
types, the algorithms are able to adopt different optimization
strategies to focus on convergence and diversity, respectively.
Nevertheless, a crucial disadvantage of the decision variable
analysis is the high computational cost, especially when there
is a large number of decision variables. For example, it takes
up to 7577615 function evaluations for LMEA to perform
decision variable analysis on an LSMOP with 1000 decision
variables (i.e., the 1000D DTLZ1 problem), which is pro-
hibitively expensive in practice.

B. Grouping Techniques in CC

In the CC based algorithms, the decision variables are
divided into a number of groups and optimized in a cooperative
coevolutionary manner. Assuming that the grouping technique
aims to divide D decision variables into k groups, some
representative grouping strategies are summarized as follows.

• Random Grouping [22]: The decision variables are
randomly divided into k even groups.

• Linear Grouping [23]: The decision variables are as-
signed to k groups in order, i.e., x1, . . . , xD/k are as-
signed to the first group, xD/k+1, . . . , x2D/k are assigned
to the second group, and so forth.

• Ordered Grouping [24]: For a selected solution, the
decision variables are sorted by their absolute values in
ascending order. The D/k decision variables with the
smallest absolute decision variables are assigned to the
first group, and the rest may be deduced by analogy.

• Differential Grouping [35]: In contrast to the above
three grouping techniques which are based on some
heuristic strategies, differential grouping techniques take
the variable interactions into consideration when per-
forming grouping [25], where the interacting decision
variables are divided into the same group.

Without prior knowledge about the interactions among the
decision variables or the number of groups, the performance
of CC based algorithms can be influenced by the selection of
different grouping techniques.

C. Problem Transformation

Inspired by the grouping mechanism in the CC framework,
the problem transformation strategy is proposed to improve

the efficiency of CC based algorithms on large-scale multi-
objective optimization [26]. Instead of optimizing different
subpopulations with fixed decision variables, the problem
transformation strategy assigns a weight variable to the orig-
inal decision variables in each group. Then the optimization
of the decision variables is transformed to the optimization
of the weight variables, which has significantly improved the
efficiency of the algorithm.

Given a candidate solution x=x1, . . . ,xk (refer to Def-
inition 1), the original optimization problem f(x) can be
reformulated into a new optimization problem f(ψ(ω,x)) by
a linear function ψ(ω,x):

ψ(ω,x) = (w1x1, . . . , w1xD/k︸ ︷︷ ︸
w1

, . . . , wkxD−k+1, . . . , w1xD︸ ︷︷ ︸
wk

),

(3)
where wi (i∈[1, k]) is a weight variable and k is the number
of groups. In this way, the optimization of the D decision
variables is transformed to the optimization of a problem with
k decision variables [26].

Despite that the transformation strategy is able to reduce
the dimensionality of the decision space to a certain extent,
it suffers from two main drawbacks. First, since the trans-
formed subproblems are optimized separately, the correlations
between different weight variables are not considered. Second,
since the performance of the transformation strategy heavily
depends on the grouping technique adopted therein, its com-
putational efficiency and stability remain to be improved.

D. Motivation

While most existing approaches in the literature mainly
focused on the optimization performance, little work has been
dedicated to improving the computational efficiency. As a
result, the computational budgets for solving LSMOPs could
be expensive in terms of computation time as well as the
number of FEs.

For example, an experimental comparison is conducted on
the bi-objective LSMOP8 problem with 200 decision variables
using LMEA, MOEA/DVA, and NSGA-II, where the decision
variables of the test problem are mixed/interacting. The plot
of the convergence profiles of the mean IGD values achieved
by NSGA-II, MOEA/DVA, and LMEA on the problem is
displayed in Fig. 1. It can be observed that NSGA-II performs
much better in the early stage of the evolution. Meanwhile,
NSGA-II performs overall better than MOEA/DVA and sim-
ilarly to LMEA, which implies that the decision variable
analysis adopted by MOEA/DVA and LMEA do not work
effectively. However, in order to perform the variable analy-
sis, it will cost much more additional FEs and computation
time [19]. Moreover, since the grouping based approaches
are highly dependent on the grouping results, an unsuitable
grouping may lead to complete failure of an algorithm [20].

To address the above issues, this paper proposes a prob-
lem reformulation based framework, termed LSMOF, for
large-scale multi-objective optimization. Without using any
grouping technique or decision variable analysis method, our
LSMOF shows competitive optimization performance and
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Fig. 1. Convergence profiles of the mean IGD values achieved by NSGA-
II, MOEA/DVA, and LMEA on bi-objective LSMOP8 with 200 decision
variables.

computational efficiency compared to the existing approaches
in the literature.

III. THE PROPOSED FRAMEWORK

The main scheme of the proposed large-scale multi-
objective optimization framework (LSMOF) is presented in
Algorithm 1. To begin with, the population of the em-
bedded MOEA is initialized. Then a two-stage strategy is
adopted, where the first stage aims to find several quasi-
optimal solutions near the PS and the second stage spreads
them over the approximate PS evenly. At the first stage,
the decision space is reconstructed with the assistance of
population P , and the original LSMOP is reformulated into a
low-dimensional single-objective optimization problem (SOP)
Z ′; then, a single-objective optimizer (e.g. the differential
evolution (DE) algorithm [36]) is used to optimize Z ′. The
above problem reformulation and single-objective optimization
repeat until the maximum number of FEs is reached. For
simplicity, we allocate 50% of the whole FEs to each stage,
i.e. tr is set to 0.5. At the second stage, the original LSMOP
is optimized by the embedded MOEA with the population P
obtained at the first stage. Note that the LSMOF framework
shares the same environmental selection operator with the
embedded MOEA, and thus we will not enter the details of it.
In the following subsections, we will introduce the other two
main components in Algorithm 1, i.e., problem reformulation
and single-objective optimization.

A. Problem Reformulation

Problem reformulation is a crucial component of the pro-
posed LSMOF (Step 4 in Algorithm 1), which reformulates the
original LSMOP into a single-objective optimization problem
with relatively small-scale weight variables. To be specific, the
proposed problem reformulation consists of three steps: the bi-
direction weight variable association, the weight variable based
subproblem construction, and the objective space reduction,
where the first two steps aim to reconstruct the decision space.

Algorithm 1 The main framework of the proposed LSMOF.
Input: Z (original LSMOP), FEmax (total FEs), Alg (em-

bedded MOEA), N (population size for Alg), r (number
of reference solutions) , tr (threshold).

Output: P (final population).
1: P ← Initialization(N,Z)
2: /***********First Stage***********/
3: while t ≤ tr × FEmax do
4: Z ′ ← Problem Reformulation(P, r, Z)
5: A,∆t← Single Objective Optimization(Z ′)
6: P ← Environmental Selection(A

∪
P,N)

7: t← t+∆t
8: end
9: /*********Second Stage*********/

10: P ← Embedded MOEA (P,N,Alg, Z)

1) Weight Variable Association: To guide the search of
the algorithm towards the PS, a set of well converged and
evenly distributed candidate solutions is used during the de-
cision space reconstruction. For simplicity, we directly use
the environmental selection in the embedded MOEA to select
r solutions from the current population P as the reference
solution set. Afterwards, each reference solution is associated
with two direction vectors and two weight variables. This
operation aims to specify the search directions in the decision
space and guide the population towards the PS.

l

l

u

u

l

u
x

x

Fig. 2. An example of the bi-directional weight variable association. In this
example, s1 is a selected solution, o and t are the lower and upper boundary
points, and p1 and p2 are intersections between the direction vectors and the
PS. Besides, two weight variables λ11, λ12 and two direction vectors vl,vu

are associated with this solution.

Fig. 2 illustrates the relationship between the reference
solutions, the direction vectors, and the weight variables. In
this example, a reference solution s1 = (x1, . . . , xd) is located
in a two-dimensional decision space; o and t are the lower and
upper boundary points of X; vl and vu are vectors starting
from o and t and pointing to s1 respectively:

vl = s1 − o (4)
vu = t− s1,
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where lmax=||t− o|| is the maximum diagram length in X .
Assume that points p1,p2 are intersections between vectors
vl,vu and the PS, and the distances from o to p1 and t to p2

are λ11 vl

||vl|| lmax and λ12 vu

||vu|| lmax respectively, the values of
p1 and p2 can be calculated as

p1 = o+ λ11
vl

||vl||
lmax (5)

p2 = t− λ12
vu

||vu||
lmax,

where λ11 and λ11 are two weight variables. Note that since
the weight variables are between 0 and 0.5, each weight
variable will only range in half of the original search space.
Hence, the bi-directional weight variables will cover the entire
search space without overlapping, which also enables the
parallelization of the search for enhancing the efficiency of
the proposed algorithm.

To be specific, each reference solution is associated with
bi-directional vectors instead of a unidirectional vector, which
is out of two main considerations. First, the bi-directional
vectors can enhance the population diversity, thus reducing the
possibility that there is no intersection between a given direc-
tional vector and the PS. For instance, if the reference solution
locates around the boundary of the PS or the PS locates around
a corner of the decision space, the unidirectional vector may
disjoint with the PS, but the bi-directional vectors are more
likely to have at least one intersection with the PS. Second,
the bi-directional vectors can eliminate the nonuniform search
caused by the divergence of the unidirectional vectors. To
further illustrate the advantage of the proposed bi-directional
weight variable association strategy, an example is given in
Fig. 3. Generally, it has a better chance to locate the Pareto
optimal solutions on the PS by adopting the bi-directional
vectors than the unidirectional vectors. Furthermore, the ex-
perimental comparisons between our proposed algorithm with
bi-directional vectors (LSMOF) and that with unidirectional
vector (LSMOFU) are given in the Supplementary Materials.
The results indicate that LSMOF has an overall superiority
over LSMOFU, thus verifying the effectiveness of adopting
bi-directional vectors.

2) Subproblem Construction: Given a reference solution set
of size r, once each reference solution is associated with two
direction vectors and two weight variables, a total number of
2r subproblems can be constructed. Taking the first reference
solution s1 for example, two subproblems can be constructed
as follows:

z11(λ11) = F (o+ λ11
vl

||vl||
lmax) (6)

z12(λ12) = F (t− λ12
vu

||vu||
lmax),

where λ11, λ12 are two one-dimensional weight variables,
vl, vu are the reference directions calculated by (4), and
o, t, lmax are elements in (5). The constructed subprob-
lems are Z ′(Λ)={z11(λ11), z12(λ12),. . . ,zr1(λr1),zr2(λr2)},
where the weight vector Λ={λ11, λ12, . . . , λr1, λr2} is in the
reconstructed decision space.

It is worth noting that there are two main differences be-
tween our proposed subproblem construction and the problem

��
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����

�
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����������	
������

(a) Illustration of the proposed bi-directional weight variable association strategy
in a 2D decision space.

��

��

�

�����������	
������
�� ��

(b) Illustration of the unidirectional weight variable association strategy in a
2D decision space.

Fig. 3. An example illustrating the advantage of the proposed bi-directional
weight variable association strategy in a 2D decision space. s2, s3 are the
reference solutions, p3, p4 are the intersections, and o, t are the lower and
upper boundary points respectively.

transformation in WOF. First, while the decision variables
in WOF are divided using grouping techniques, the decision
variables in the proposed LSMOF are controlled by the weight
variables and optimized as a whole. On one hand, it can
explicitly save the computational cost of variable analysis; on
the other hand, it can implicitly take the variable interactions
into consideration during the evolution. Second, while the
direction vectors in WOF are unidirectional, those in the
proposed LSMOF are bi-directional. In general, the coverage
of the bi-directional search in LSMOF is larger than that of
WOF, which enhances the exploration ability of the algorithm
and maintains better population diversity.

3) Objective Space Reduction: Once the subproblems are
reconstructed, the optimization of the decision vector x in
the original decision space is transformed to the optimization
of the weight vector Λ in the reconstructed decision space.
Correspondingly, the objective space can be reduced and the
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new optimization problem can be reformulated as:

Maximize G(Λ) =H(Z ′(Λ)) (7)
subject to Λ ∈ ℜ2r,

where H is a function to assess the quality of the 2r multi-
objective solutions, and H can be any performance indicator,
e.g., the hypervolume (HV) indicator [37] as adopted in this
work. By using such a reformulation scheme, the scale of the
original problem can be substantially reduced. For example, an
LSMOP with 1000 decision variables can be reformulated into
an SOP with only 10 decision variables as in our experiments.

To assess the quality of the reconstructed decision vectors,
we propose a fitness assignment strategy for the evaluation
of (7) in a reduced objective space. As given by the pseudo
code of the fitness assignment procedure in Algorithm 2, the
fitness of a weight vector (i.e. a sequence formed by the weight
variables) in the reconstructed decision space can be calculated
by two main stages. At the first stage, the objective vectors
in accordance with the weight vector Λ are calculated (Step 1
to Step 6). Then, at the second stage, the fitness value of the
objective vector is calculated using the hypervolume indicator.
In this way, the algorithm is able to return a scalar value as
the fitness of the reconstructed decision vector Λ.

Algorithm 2 The fitness assignment strategy in LSMOF.
Input: Λ (weight vector), R (reference solution set), P

(current population).
Output: fit(Λ) (fitness value of Λ).
1: Nad← Calculate the nadir point of P in objective space
2: for i← 1 : r do
3: vl,vu ← Calculate direction vectors using (4)
4: p1,p2 ← Calculate the weight variable associated

solutions using (5)
5: zi1(λi1), zi2(λi2) ← Calculate the objective vectors

using (6)
6: end
7: Z ′(Λ)← {z11(λ11), z12(λ12), . . . , zr1(λr1), zr2(λr2)}
8: fit(Λ)← Hypervolume(Z ′(Λ), Nad)

B. Single-Objective Optimization

Once the original LSMOP is reformulated, the proposed
LSMOF is expected to perform single-objective optimization
of the weight variables in the reconstructed decision space
and the reduced objective space. For simplicity, we adopt the
widely used differential evolution (DE) [38] as the single-
objective optimizers in this work. Note that we use DE in
this framework due to its efficiency and simplicity, and any
other single-objective optimization algorithm (e.g. the particle
swarm optimizer (PSO) [39]) is also compatible with the
proposed framework.

The details of the DE based single-objective optimization
are presented in Algorithm 3. In this algorithm, a set of weight
vectors PΛ are first initialized in range [0, 0.5] as defined in
(5), and their fitness values are calculated using Algorithm
2. For each weight vector Λi in PΛ, three different weight
vectors are randomly selected from PΛ to form a trail vector

Algorithm 3 Single-objective optimization in LSMOF
Input: NI (population size of DE), g (maximum number of

iterations), CR (cross constant), Fm (scaling factor).
Output: A (population), ∆t (number of FEs).
1: ∆t← 0
2: PΛ ← {Λ1, . . . ,ΛNI} /*Initialization*/
3: fit(Λ1),. . . ,fit(ΛNI) ← Calculate the fitnesses of ele-

ments in PΛ using Algorithm 2
4: A ← Collet the generated candidate solutions during the

fitness assignment
5: ∆t← ∆t+ |A| /*|A| denotes the element size of A*/
6: for r ← 1 : g do
7: for i← 1 : NI do
8: c1, c2, c3 ← Randomly select three indices in [1, NI]
9: a← Λc1 + Fm(Λc2 −Λc3)

10: for j ← 1 : |Λ1| do
11: if randj [0, 1) ≤ CR or j = jrand then
12: bi ← Choose the jth element of Λi

13: else
14: bi ← Choose the jth element of a
15: end
16: end
17: fit(b)← Calculate b’s fitness using Algorithm 2
18: A′ ← Collet the generated candidate solutions during

the fitness assignment
19: ∆t← ∆t+ |A′|
20: if fit(b) ≥ fit(Λi) then
21: Λi ← b
22: end
23: A← A ∪A′

24: end
25: end

a for crossover, where a is associated with the weight vector
to generate an offspring b according to a probability rate
CR. If the fitness of offspring a is better than that of Λi,
the weight vector Λi is replaced by b. The reproduction and
replacement procedures repeat for a number of g iterations.
All the candidate solutions generated during the evolution of
the weight vectors are merged into the archive A, which will
be used as the initial population of the embedded MOEA at
Step 10 of Algorithm 1.

It is worth noting that during the optimization of the weight
variables, a number of candidate solutions of the original MOP
are generated by Algorithm 2 (e.g., p1 and p2). In other
words, the optimization of the weight variables naturally leads
to the optimization of the original problem.

IV. EMPIRICAL STUDIES

To empirically investigate the performance of the pro-
posed LSMOF framework, four representative MOEAs, name-
ly, NSGA-II [6], MOEA/D-DE [10], SMS-EMOA [12], and
CMOPSO [27], are embedded into LSMOF and compared
with their original versions on nine test problems from the
LSMOP test suite [13]. Here we adopt these four algorithms
as they represent different types of MOEAs as discussed
in Section I, and the embedding of these algorithms could
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reveal the potential advantages of our proposed LSMOF. Then,
two state-of-the-art large-scale MOEAs, namely, WOF [26]1

and MOEA/DVA [18], are also compared with our proposed
LSMOF2.

In the remainder of this section, we first present a brief
introduction to the adopted performance indicator, and then
we give the parameter settings of the compared algorithms
and our proposed LSMOF. Afterwards, each algorithm is
run for 20 times on each test problem independently, and
the Wilcoxon rank sum test [42] is used to compare the
results obtained by the proposed LSMOF and the compared
algorithms at a significance level of 0.05. Symbols ‘+’, ‘−’,
and ‘≈’ indicate the compared algorithm is significantly better
than, significantly worse than, and statistically tied by LSMOF.

A. Performance Indicator

In the experiments, a widely used performance indicator,
the inverted generational distance (IGD) [43], is adopted for
evaluating the performance of the compared algorithms.

Suppose that P ∗ is a set of evenly distributed reference
points on the PF and Ω is the set of obtained non-dominated
solutions, IGD is defined as follows:

IGD(P ∗,Ω) =

∑
x∈P∗ dis(x,Ω)
|P ∗|

, (8)

where dis(x,Ω) is the minimum Euclidean distance between
x and points in Ω and |P ∗| the number of elements in P ∗. A
smaller value of IGD will indicate a better performance of the
algorithm. In this work, the size of P ∗ is set to 10000 (or a
close number) for the IGD calculations.

Note that the hypervolume (HV) [37] values of the obtained
non-dominated solutions are presented in the Supplementary
Materials. In this work, we use the IGD indicator instead
of the HV indicator since the PFs of LSMOP test problems
are relatively simple and regular. Meanwhile, the reference
solution sets in PlatEMO [44], [45] are evenly sampled, which
enables the IGD indicator to well assess the qualities of the
obtained solution sets.

B. Experimental Settings

For fair comparisons, we adopt the recommended parameter
settings for the compared algorithms that have achieved the
best performance as reported in the literature. All the com-
pared algorithms are implemented in PlatEMO [44].

1) Reproduction Operators. In this work, the simulated bina-
ry crossover (SBX) [4] and the polynomial mutation (PM) [46]
are adopted in the compared algorithms for offspring genera-
tion in NSGA-II and SMS-EMOA. The distribution index of
crossover is set to nc=20 and the distribution index of muta-
tion is set to nm=20, as recommended in [4]. The crossover
probability pc is set to 1.0 and the mutation probability pm
is set to 1/D, where D is the number of decision variables.
In MOEA/D-DE and MOEA/DVA, differential evolution (DE)

1The implementation of WOF is adapted from the codes available at http:
//www.is.ovgu.de/Team/Heiner+Zille.html.

2More experimental results on test problems selected from DTLZ [40] and
WFG [41] are displayed in the Supplementary Materials.

operator [36] and PM are used for offspring generation, where
the control parameters are set to CR=1, F=0.5, pm=1/d, and
η=20 as recommended in [10]. As for CMOPSO, the particle
swarm operator [47] and PM are used, where parameters R1

and R2 are randomly selected from [0, 1] with γ set to 10 as
recommended in [27].

2) Population Size. The population size is set to 100 for test
instances with two objectives and 105 for test instances with
three objectives.

(3) Specific Parameter Settings in Each Algorithm. In
MOEA/D-DE, the neighborhood size T is set to 20, the
probability of choosing parents locally δ is set to 0.9, and the
maximum number of solutions replaced by each offspring nr
is set to 2. In WOF, the number of FEs for the optimization of
each original problem t1 is set to 500, and for the transferred
problem, t2 is set to 250, parameter q is set to 3, the number
of groups γ is set to 4, and the ordered grouping is adopted as
the grouping method [26]. Meanwhile, NSGA-II is embedded
in both WOF and LSMOF to be compared on LSMOP
problems3. In MOEA/DVA, the number of sampling solutions
to recognize the control properties of the decision variables
is set to 20, and the maximum number of trails required to
judge the interaction between two variables is set to 6. In the
proposed LSMOF, the number of reference solutions r is set
to 10, the population size for the single-objective optimization
is set to 30, and the mutation factor Fm in DE is set to 0.8.

(4) Termination Condition. A total number of 50000 FEs is
adopted as the termination condition for all the test instances.
The number of FEs is relatively small for existing MOEAs,
but it is practical for real-world applications. It is attributed
to the fact that the number of FEs is always limited by the
economic and/or computational cost, especially for the large-
scale optimization problems.

C. General Performance

To investigate the effect of LSMOF on different MOEAs,
four representative algorithms, i.e., NSGA-II, MOEA/D-DE,
SMS-EMOA, and CMOPSO, are embedded into the proposed
framework. Pairwise comparisons are conducted between the
heuristic algorithm and its LSMOF version in terms of both
solution quality and algorithm runtime. The experimental
results obtained by these compared algorithms are displayed
in Table I, where LS-Alg denotes the LSMOF with algorithm
Alg embedded.

In Table I, the four original algorithms are outperformed by
the LSMOF-based versions over 48 out of 56 test instances.
On one hand, NSGA-II performs better than LS-NSGA-II on
tri-objective LSMOP2 and LSMOP4, MOEA/D-DE mainly
outperforms LS-MOEA/D-DE on 4 test instances with 200
and 500 decision variables, SMS-EMOA outperforms LS-
SMS-EMOA on tri-objective LSMOP2 and two test instances
with 200 decision variables, and CMOPSO has achieved two
better results on LSMOP2 and other two test instances with
200 decision variables compared with LS-CMOPSO. Besides,
most of the best results are achieved by LS-MOEA/D-DE,

3Experiments on DTLZ and LSMOP problems using WOF-SMPSO [26]
are conducted in Section II of the Supplementary Materials.
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TABLE I
THE STATICS OF IGD RESULTS OBTAINED BY EIGHT COMPARED ALGORITHMS ON 54 TEST INSTANCES FROM LSMOP TEST SUITE. THE BEST

RESULTS IN EACH TWO COLUMNS ARE HIGHLIGHTED.

Problem M D NSGA-II LS-NSGA-II MOEA/D-DE LS-MOEA/D-DE SMS-EMOA LS-SMS-EMOA CMOPSO LS-CMOPSO

LSMOP1

2
200 9.17E-1(2.54E-1)− 5.78E-1(5.32E-2) 3.59E-1(1.85E-2)− 2.13E-1(3.44E-2) 6.24E-1(6.25E-2)− 5.30E-1(6.69E-2) 4.38E-1(2.32E-1)+ 5.75E-1(4.58E-2)
500 2.73E+0(2.77E-1)− 6.14E-1(2.54E-2) 1.07E+0(9.70E-2)− 3.10E-1(3.44E-2) 2.09E+0(5.51E-1)− 5.98E-1(3.35E-2) 1.50E+0(1.61E-1)− 6.18E-1(2.35E-2)

1000 4.21E+0(2.70E-1)− 6.37E-1(1.97E-2) 1.64E+0(1.17E-1)− 4.26E-1(5.07E-2) 3.72E+0(2.83E-1)− 6.22E-1(2.66E-2) 2.50E+0(1.31E-1)− 6.37E-1(1.99E-2)

3
200 2.08E+0(2.12E-1)− 5.24E-1(1.35E-2) 1.57E+0(1.56E-1)− 5.26E-1(3.84E-2) 4.58E-1(3.02E-2)+ 5.04E-1(1.13E-2) 2.12E+0(3.42E-1)− 5.20E-1(2.66E-2)
500 5.05E+0(5.73E-1)− 5.96E-1(1.08E-2) 1.80E+0(1.59E-1)− 6.54E-1(4.31E-2) 2.94E+0(3.50E-1)− 5.84E-1(4.14E-2) 4.23E+0(5.58E-1)− 6.16E-1(1.55E-2)

1000 6.93E+0(6.64E-1)− 6.33E-1(1.34E-2) 1.86E+0(1.97E-1)− 6.68E-1(6.41E-2) 6.29E+0(3.95E-1)− 7.09E-1(1.12E-1) 6.80E+0(5.29E-1)− 6.94E-1(2.13E-2)

LSMOP2

2
200 1.02E-1(2.93E-3)− 3.85E-2(1.08E-3) 9.64E-2(2.38E-3)− 2.71E-2(1.54E-3) 9.19E-2(2.90E-3)− 3.55E-2(2.01E-3) 9.82E-2(2.50E-3)− 3.70E-2(1.14E-3)
500 6.20E-2(1.16E-3)− 2.32E-2(6.90E-4) 4.89E-2(1.68E-3)− 1.38E-2(1.17E-3) 5.41E-2(1.21E-3)− 1.65E-2(4.67E-4) 5.54E-2(1.42E-3)− 2.14E-2(6.83E-4)

1000 3.70E-2(3.16E-4)− 1.81E-2(5.41E-4) 2.75E-2(9.26E-4)− 9.15E-3(1.27E-3) 3.30E-2(3.87E-4)− 9.73E-3(2.00E-4) 3.72E-2(7.32E-4)− 1.54E-2(8.72E-4)

3
200 1.27E-1(4.79E-3)+ 1.38E-1(2.76E-3) 1.05E-1(2.83E-3)− 8.51E-2(2.95E-3) 1.23E-1(1.97E-3)+ 1.25E-1(5.01E-3) 1.21E-1(9.02E-4)− 1.17E-1(2.27E-3)
500 8.25E-2(5.49E-3)+ 8.71E-2(3.29E-3) 7.41E-2(8.49E-4)− 6.55E-2(9.76E-4) 7.98E-2(2.11E-3)+ 8.14E-2(2.98E-3) 6.83E-2(2.81E-4)+ 7.20E-2(9.77E-3)

1000 6.72E-2(3.63E-3)+ 7.05E-2(3.08E-3) 6.35E-2(2.54E-4)− 5.97E-2(4.12E-4) 6.55E-2(2.63E-3)+ 6.64E-2(1.65E-3) 5.18E-2(3.66E-4)+ 5.22E-2(5.09E-4)

LSMOP3

2
200 1.42E+1(2.56E+0)− 1.54E+0(1.43E-3) 5.82E+0(1.03E+0)− 1.53E+0(5.83E-3) 1.73E+1(2.63E+0)− 1.54E+0(1.12E-3) 3.85E+0(6.91E-1)− 1.52E+0(3.30E-3)
500 1.92E+1(1.62E+0)− 1.57E+0(1.05E-3) 1.33E+1(1.29E+0)− 1.56E+0(1.41E-3) 2.21E+1(1.26E+0)− 1.57E+0(9.70E-4) 2.86E+1(1.24E+0)− 1.56E+0(2.01E-3)

1000 2.22E+1(1.12E+0)− 1.57E+0(2.28E-4) 1.83E+1(1.22E+0)− 1.57E+0(3.30E-4) 2.35E+1(1.04E+0)− 1.57E+0(2.31E-4) 3.06E+1(1.06E+0)− 1.57E+0(8.81E-4)

3
200 7.30E+0(1.37E+0)− 8.40E-1(2.51E-2) 7.77E+0(9.45E-1)− 8.27E-1(4.68E-2) 2.65E+0(7.63E-1)− 8.24E-1(3.15E-2) 9.46E+0(8.41E-1)− 8.60E-1(2.45E-3)
500 1.53E+1(2.62E+0)− 8.59E-1(3.26E-3) 1.00E+1(7.92E-1)− 8.19E-1(4.79E-2) 7.81E+0(1.30E+0)− 1.60E+0(3.09E+0) 1.31E+1(8.51E-1)− 8.61E-1(1.14E-6)

1000 1.95E+1(3.27E+0)− 8.61E-1(7.03E-5) 1.08E+1(5.73E-1)− 8.41E-1(3.55E-2) 1.63E+1(5.24E+0)− 5.97E+0(1.63E+1) 1.49E+1(7.86E-1)− 8.61E-1(1.14E-6)

LSMOP4

2
200 1.51E-1(3.96E-3)− 9.87E-2(1.69E-3) 1.59E-1(1.01E-2)− 6.99E-2(6.41E-3) 1.41E-1(2.25E-3)− 9.65E-2(1.56E-3) 1.31E-1(2.43E-3)− 9.41E-2(2.27E-3)
500 9.71E-2(2.47E-3)− 5.05E-2(1.14E-3) 9.18E-2(1.28E-3)− 4.18E-2(2.52E-3) 7.84E-2(1.17E-3)− 4.66E-2(7.59E-4) 9.00E-2(2.21E-3)− 5.06E-2(9.20E-4)

1000 6.26E-2(9.58E-4)− 3.20E-2(9.49E-4) 5.42E-2(9.08E-4)− 2.42E-2(1.43E-3) 4.83E-2(5.52E-4)− 2.50E-2(4.18E-4) 6.50E-2(1.08E-3)− 3.12E-2(9.27E-4)

3
200 3.20E-1(6.48E-3)− 2.92E-1(8.37E-3) 2.87E-1(6.01E-3)− 2.31E-1(8.50E-3) 2.97E-1(1.09E-2)− 2.73E-1(1.30E-2) 3.27E-1(1.05E-2)− 2.72E-1(7.12E-3)
500 1.93E-1(4.24E-3)+ 2.13E-1(4.72E-3) 1.65E-1(1.76E-3)− 1.29E-1(3.44E-3) 1.90E-1(4.21E-3)− 1.83E-1(9.10E-3) 1.94E-1(2.27E-3)− 1.68E-1(4.74E-3)

1000 1.29E-1(4.51E-3)+ 1.41E-1(3.63E-3) 1.09E-1(1.50E-3)− 8.83E-2(2.32E-3) 1.26E-1(2.24E-3)+ 1.32E-1(2.59E-3) 1.18E-1(1.42E-3)− 1.10E-1(1.88E-3)

LSMOP5

2
200 2.18E+0(4.38E-1)− 7.42E-1(1.14E-6) 6.40E-1(4.20E-2)+ 7.42E-1(1.14E-6) 1.59E+0(4.72E-1)− 7.42E-1(1.14E-6) 6.33E-1(1.53E-1)+ 7.42E-1(1.14E-6)
500 8.21E+0(4.68E-1)− 7.42E-1(1.14E-6) 2.30E+0(2.69E-1)− 7.42E-1(1.14E-6) 7.33E+0(9.18E-1)− 7.42E-1(1.14E-6) 5.02E+0(3.62E-1)− 7.42E-1(1.14E-6)

1000 1.12E+1(8.52E-1)− 7.42E-1(1.14E-6) 3.16E+0(1.86E-1)− 7.42E-1(1.14E-6) 1.10E+1(8.88E-1)− 7.42E-1(1.14E-6) 7.31E+0(5.20E-1)− 7.42E-1(1.14E-6)

3
200 5.19E+0(5.61E-1)− 4.88E-1(5.13E-2) 2.79E+0(4.11E-1)− 4.99E-1(4.33E-2) 1.00E+0(3.95E-1)− 6.14E-1(9.91E-2) 3.35E+0(1.80E+0)− 6.30E-1(1.69E-1)
500 1.17E+1(9.56E-1)− 5.35E-1(1.23E-2) 3.59E+0(3.91E-1)− 5.41E-1(2.47E-3) 9.42E+0(1.15E+0)− 9.51E-1(2.57E-1) 1.16E+1(1.21E+0)− 7.37E-1(2.02E-1)

1000 1.62E+1(8.65E-1)− 5.49E-1(2.83E-2) 3.78E+0(2.09E-1)− 5.42E-1(1.60E-4) 1.75E+1(2.25E+0)− 9.02E-1(2.06E-2) 1.47E+1(1.77E+0)− 8.04E-1(1.98E-1)

LSMOP6

2
200 8.97E-1(8.91E-3)− 3.59E-1(2.37E-3) 7.59E-1(5.31E-2)− 3.32E-1(1.64E-2) 9.00E-1(8.66E-3)− 3.58E-1(4.24E-3) 9.60E-1(6.99E-1)− 3.58E-1(1.68E-3)
500 8.09E-1(1.76E-3)− 3.22E-1(4.69E-4) 7.34E-1(8.50E-2)− 2.87E-1(3.04E-2) 8.08E-1(7.01E-4)− 3.22E-1(1.28E-3) 7.80E-1(6.42E-2)− 3.22E-1(2.63E-4)

1000 7.75E-1(4.05E-4)− 3.14E-1(6.41E-4) 6.98E-1(1.23E-1)− 2.87E-1(2.74E-2) 7.71E-1(1.61E-2)− 3.14E-1(7.02E-4) 7.35E-1(8.16E-2)− 3.14E-1(1.70E-4)

3
200 9.64E+1(1.55E+2)− 6.97E-1(1.63E-2) 3.05E+0(1.30E+0)− 6.76E-1(2.25E-2) 3.07E+0(1.03E+0)− 1.62E+0(9.13E-2) 5.13E+1(8.58E+1)− 8.37E-1(3.69E-1)
500 3.76E+3(1.38E+3)− 7.42E-1(1.70E-2) 2.21E+1(1.72E+1)− 6.78E-1(4.09E-2) 8.44E+1(5.20E+1)− 2.31E+0(1.27E+0) 2.60E+3(1.05E+3)− 7.37E-1(2.11E-2)

1000 1.24E+4(2.36E+3)− 7.45E-1(2.06E-2) 1.80E+2(8.33E+1)− 7.00E-1(1.47E-2) 1.61E+3(4.90E+2)− 2.05E+0(4.84E-1) 4.95E+3(2.10E+3)− 8.87E-1(6.58E-1)

LSMOP7

2
200 6.15E+1(8.08E+1)− 1.48E+0(2.65E-3) 4.04E+0(7.20E-1)− 1.48E+0(1.82E-3) 2.02E+1(5.37E+1)− 1.48E+0(1.71E-3) 2.52E+0(6.97E-1)− 1.47E+0(3.99E-3)
500 1.45E+3(1.98E+3)− 1.50E+0(8.71E-4) 2.88E+1(4.97E+0)− 1.50E+0(6.11E-4) 4.74E+2(4.38E+2)− 1.50E+0(1.26E-3) 8.29E+1(1.36E+2)− 1.50E+0(1.35E-3)

1000 8.24E+3(3.61E+3)− 1.51E+0(4.22E-4) 2.20E+2(4.85E+1)− 1.51E+0(3.19E-4) 4.15E+3(1.90E+3)− 1.51E+0(7.46E-4) 2.05E+3(5.98E+2)− 1.51E+0(7.37E-4)

3
200 1.78E+0(8.52E-2)− 9.67E-1(2.51E-2) 1.17E+0(6.62E-2)− 8.97E-1(3.29E-2) 3.93E+1(1.85E+1)− 1.05E+0(1.71E-1) 1.89E+0(8.59E-2)− 1.04E+0(7.82E-2)
500 1.29E+0(1.30E-2)− 8.96E-1(6.81E-3) 1.15E+0(9.17E-3)− 8.51E-1(3.19E-2) 3.98E+3(1.30E+3)− 1.03E+0(9.99E-2) 5.11E+1(2.23E+2)− 9.47E-1(7.64E-2)

1000 1.10E+0(2.50E-3)− 8.68E-1(1.13E-2) 1.05E+0(2.96E-3)− 8.23E-1(6.78E-2) 3.17E+4(9.76E+3)− 9.75E-1(8.31E-2) 9.32E+2(3.64E+3)− 9.24E-1(8.98E-2)

LSMOP8

2
200 8.88E-1(5.54E-2)− 7.42E-1(1.14E-6) 3.79E-1(1.14E-1)+ 7.40E-1(7.96E-3) 8.49E-1(6.41E-2)− 7.42E-1(1.14E-6) 6.66E-1(1.93E-1)≈ 7.42E-1(1.14E-6)
500 3.40E+0(2.81E-1)− 7.42E-1(1.14E-6) 6.34E-1(3.22E-2)+ 7.42E-1(1.14E-6) 2.98E+0(3.05E-1)− 7.42E-1(1.14E-6) 2.84E+0(2.05E-1)− 7.42E-1(1.14E-6)

1000 6.83E+0(4.47E-1)− 7.42E-1(1.14E-6) 1.26E+0(8.71E-2)− 7.42E-1(1.14E-6) 6.23E+0(3.12E-1)− 7.42E-1(1.14E-6) 4.89E+0(2.28E-1)− 7.42E-1(1.14E-6)

3
200 5.70E-1(7.28E-2)− 3.63E-1(1.38E-2) 7.56E-1(1.02E-1)− 3.37E-1(2.79E-2) 4.42E-1(5.72E-2)+ 5.34E-1(4.84E-2) 3.39E-1(4.42E-2)≈ 3.56E-1(1.07E-2)
500 9.64E-1(1.12E-2)− 3.53E-1(4.70E-2) 5.51E-1(6.05E-3)− 3.27E-1(3.14E-2) 1.74E+0(1.41E+0)− 5.40E-1(1.13E-2) 8.36E-1(9.70E-2)− 3.16E-1(3.95E-2)

1000 9.52E-1(1.82E-2)− 3.60E-1(4.27E-2) 5.35E-1(5.24E-3)− 3.02E-1(4.71E-2) 2.43E+0(3.19E+0)− 5.35E-1(2.17E-2) 9.59E-1(2.61E-4)− 3.01E-1(2.93E-2)

LSMOP9

2
200 1.78E+0(4.84E-2)− 8.10E-1(1.14E-6) 4.44E-1(1.06E-2)+ 8.10E-1(1.14E-6) 1.76E+0(2.74E-2)− 8.10E-1(2.25E-3) 1.54E+0(1.91E-1)− 8.10E-1(1.14E-6)
500 1.38E+0(4.94E-2)− 8.10E-1(6.01E-4) 4.93E-1(2.47E-2)+ 8.09E-1(8.96E-4) 1.32E+0(3.73E-2)− 8.09E-1(4.53E-4) 1.23E+0(7.34E-3)− 8.09E-1(8.64E-4)

1000 4.80E+0(6.96E-1)− 8.08E-1(1.49E-3) 9.43E-1(1.22E-1)− 8.09E-1(1.88E-3) 4.02E+0(6.33E-1)− 8.08E-1(1.08E-3) 1.22E+0(8.51E-2)− 8.07E-1(1.29E-3)

3
200 3.66E+0(4.05E-1)− 1.54E+0(4.56E-6) 1.29E+0(3.37E-1)≈ 1.15E+0(1.46E-3) 3.60E+0(7.43E-2)− 1.37E+0(5.29E-2) 2.54E+0(1.78E-1)− 1.15E+0(4.00E-4)
500 9.17E+0(1.32E+0)− 1.54E+0(4.56E-6) 5.25E+0(6.43E-1)− 1.16E+0(7.52E-3) 7.20E+0(8.65E-1)− 1.43E+0(1.42E-1) 3.23E+0(7.16E-1)− 1.15E+0(2.89E-4)

1000 2.04E+1(1.53E+0)− 1.38E+0(1.97E-1) 1.33E+1(1.27E+0)− 1.16E+0(1.14E-2) 2.34E+1(2.39E+0)− 1.17E+0(6.76E-2) 2.59E+1(2.44E+0)− 1.15E+0(7.36E-4)

+/− / ≈ 5/49/0 —- 5/48/1 —- 6/48/0 —- 4/48/2 —-

totaling 31 out of 56 test instances. It is mainly attributed to
the fact that the LSMOP problems are designed with decision
variables linked on the PSs, and the MOEA/D-DE is exactly
tailored for such problems. All in all, the pairwise comparisons
have demonstrated the capability of our proposed LSMOF in
enhancing the performance of existing MOEAs on LSMOPs.

D. Computational Efficiency

Since one important motivation of this work is to accel-
erate large-scale multi-objective optimization, we will further
investigate the convergence speed and computation time of the
compared algorithms.

1) Convergence Speed: The convergence profiles of the
eight compared algorithms on LSMOP3 and LSMOP5 with
1000 decision variables are displayed in Fig. 4. As can be
observed, the original algorithms converge slowly and thus
have failed to achieve an acceptable accuracy level by the end
of the evolution. By contrast, the LSMOF-based algorithms
have already converged to a promising accuracy level at a
very early stage of the evolution (i.e., before 10000 FEs).

2) Computation Time: In order to investigate the compu-
tation time of the proposed LSMOF, we display the aver-
age computation time of the eight compared algorithms on
LSMOP3, LSMOP6, and LSMOP9.

As shown in Fig. 5 and Fig. 6, our proposed LSMOF
has accelerated the computation time of MOEA/D-DE and
SMS-EMOA on all the test instances. As for NSGA-II and
CMOPSO, LSMOF has saved almost 1/3 computation time
on problems with 500 and 1000 decision variables.

In conclusion, our proposed LSMOF is capable of reduc-
ing the computation time of MOEAs in large-scale multi-
objective optimization, and the acceleration improvement is
more significant on LSMOPs with a larger number of decision
variables, e.g, LSMOPs with more than 500 decision vari-
ables. There are two main reasons that our proposed LSMOF
performs efficiently in terms of both convergence rate and
computation time. First of all, since the original large-scale
MOP is reformulated into a low-dimensional single-objective
optimization problem, the search complexity is significantly
reduced. Second, since the proposed framework guides the
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Fig. 5. The average computation time of NSGA-II, MOEA/D-DE, CMOPSO, and their LSMOF-based versions on LSMOP3, LSMOP6, and LSMOP9, where
M denotes the number of objectives and D denotes the number of decision variables.

early search towards the PS by the reference directions, the
population exhibits more stable and efficient convergence
behaviors.

E. Comparisons with State-of-the-Arts

In this section, we compare our proposed LSMOF with
another two state-of-the-art large-scale MOEAs, namely,
MOEA/DVA and WOF, in terms of both optimization per-
formance and computational efficiency. In both WOF and
LSMOF, NSGA-II is embedded for fair comparisons. The
statistics of IGD results achieved by MOEA/DVA, WOF-
NSGA-II, and LS-NSGA-II are displayed in Table II.

As can be observed, LS-NSGA-II has achieved 32 out
of 54 best results, WOF-NSGA-II has achieved 6 best re-
sults, and MOEA/DVA has achieved 5 best results. To be
specific, LS-NSGA-II has achieved the best results main-
ly on LSMOP1, LSMOP3, LSMOP5, LSMOP6, LSMOP7,
LSMOP8, and bi-objective LSMOP2 and LSMOP9; WOF-
NSGA-II has achieved the best results mainly on LSMOP5 and
tri-objective LSMOP9; meanwhile, MOEA/DVA has achieved
the best results on tri-objective LSMOP2 and tri-objective
LSMOP4.

It should be noted that MOEA/DVA has achieved some
results far from the Pareto optimal fronts on LSMOP6 and
bi-objective LSMOP7. This may be attributed to the failure
of decision variables analysis which has caused the significant
performance degeneration. After comparing the performance
of these three algorithms on LSMOPs, their convergence rates
on bi-objective LSMOP1 and tri-objective LSMOP6 with 1000
decision variables are presented in Fig. 7, and the average

computation time on LSMOP1 is displayed in Fig. 8. It
can be observed from these two figures that LS-NSGA-II
has the fastest convergence rate on those two test instances,
while its computation time is similar to that of MOEA/DVA
and WOF-NSGA-II. Besides, it can be observed that LS-
NSGA-II shows fast convergence at the early stage of the
evolution (within 10000 FEs) and stops converging before
the second stage starts. This is attributed to the fact that
LSMOF obtains the quasi-optimal solutions at the first stage,
and then the embedded MOEA spreads the obtained solutions
over the entire PS. This can be confirmed by the continuous
improvement of the IGD values after the first stage.

In conclusion, the proposed LSMOF shows a competitive
performance and similar computational efficiencies in compar-
ison with MOEA/DVA and WOF on these large-scale MOPs.
The competitiveness of LSMOF in comparison with the state-
of-the-arts is verified.

F. Parameter Sensitivity Analysis

In our proposed LSMOF, a threshold tr is used to con-
trol the number of evaluations used by the first stage. To
analyze the effect of the threshold value on the performance
of LSMOF, we conduct experiments on a set of LSMOP
problems with 1000 decision variables. The threshold is set to
0.2, 0.4, 0.6, and 0.8, respectively. The experimental results are
shown in Table III. It can be observed that different settings of
tr do not significantly affect the performance of the proposed
algorithm. This can be attributed to the fact that the algorithm
converges so fast during the first stage that it does not need
too many FEs. Therefore, the performance of the proposed
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Fig. 4. The convergence profiles of eight compared algorithms on bi-objective
LSMOP3 and tri-objective LSMOP5 with 1000 decision variables.

LSMOP3

D200M2 D500M2 D1000M2 D200M3 D500M3 D1000M3
0

500

1000

1500

T
im

e(
s)

SMS-EMOA
LS-SMS-EMOA

LSMOP6

D200M2 D500M2 D1000M2 D200M3 D500M3 D1000M3
0

200

400

600

800

T
im

e(
s)

LSMOP9

D200M2 D500M2 D1000M2 D200M3 D500M3 D1000M3
0

200

400

600

800

T
im

e(
s)

Fig. 6. The average computation time of SMS-EMOA and LS-SMS-EMOA
on LSMOP3, LSMOP6, and LSMOP9, where M denotes the number of
objectives and D denotes the number of decision variables.
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Fig. 7. The convergence rates of three compared algorithms on bi-objective
LSMOP1 and tri-objective LSMOP6 with 1000 decision variables.
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TABLE II
THE STATICS OF IGD RESULTS ACHIEVED BY THREE COMPARED

ALGORITHMS ON 54 TEST INSTANCES FROM LSMOP TEST SUITE. THE
BEST RESULT IN EACH ROW IS HIGHLIGHTED.

Problem M D MOEA/DVA WOF-NSGA-II LS-NSGA-II

LSMOP1 2
200 8.66E+0(8.04E-1)− 6.30E-1(9.36E-2)− 5.78E-1(5.32E-2)
500 1.91E+1(1.00E+0)− 6.58E-1(6.11E-2)− 6.14E-1(2.54E-2)

1000 2.39E+1(7.84E-1)− 6.79E-1(4.22E-2)− 6.37E-1(1.97E-2)

3
200 6.26E+0(4.62E-1)− 6.95E-1(1.32E-1)− 5.24E-1(1.35E-2)
500 9.42E+0(2.89E-1)− 7.09E-1(8.36E-2)− 5.96E-1(1.08E-2)

1000 1.08E+1(3.22E-1)− 8.01E-1(7.05E-2)− 6.33E-1(1.34E-2)

LSMOP2 2
200 1.51E-1(6.75E-4)− 7.46E-2(4.63E-4)− 3.85E-2(1.08E-3)
500 7.27E-2(2.30E-4)− 3.30E-2(3.91E-4)− 2.32E-2(6.90E-4)

1000 4.04E-2(3.87E-4)− 1.92E-2(3.40E-4)− 1.81E-2(5.41E-4)

3
200 1.23E-1(2.61E-3)+ 1.36E-1(3.84E-3)≈ 1.38E-1(2.76E-3)
500 7.89E-2(2.63E-3)+ 8.54E-2(3.82E-3)≈ 8.71E-2(3.29E-3)

1000 6.48E-2(2.46E-3)+ 7.00E-2(4.28E-3)≈ 7.05E-2(3.08E-3)

LSMOP3 2
200 1.71E+1(1.30E+0)− 1.50E+0(6.88E-2)≈ 1.54E+0(1.43E-3)
500 2.87E+1(8.26E-1)− 1.57E+0(1.47E-3)− 1.57E+0(1.05E-3)

1000 3.36E+1(6.07E-1)− 1.58E+0(1.61E-3)− 1.57E+0(2.28E-4)

3
200 2.30E+1(3.53E+0)− 8.61E-1(3.38E-4)− 8.40E-1(2.51E-2)
500 3.60E+1(2.95E+0)− 8.61E-1(1.30E-4)− 8.59E-1(3.26E-3)

1000 4.02E+1(2.09E+0)− 8.61E-1(7.28E-4)≈ 8.61E-1(7.03E-5)

LSMOP4 2
200 6.56E-1(9.76E-3)− 1.33E-1(1.51E-2)− 9.87E-2(1.69E-3)
500 5.44E-1(1.90E-3)− 8.74E-2(6.83E-3)− 5.05E-2(1.14E-3)

1000 4.61E-1(6.97E-4)− 5.99E-2(5.57E-3)− 3.20E-2(9.49E-4)

3
200 3.26E-1(2.31E-3)− 3.15E-1(9.10E-3)− 2.92E-1(8.37E-3)
500 1.94E-1(5.71E-4)+ 2.14E-1(6.87E-3)≈ 2.13E-1(4.72E-3)

1000 1.20E-1(1.96E-4)+ 1.39E-1(5.80E-3)≈ 1.41E-1(3.63E-3)

LSMOP5 2
200 1.42E+1(6.21E-1)− 7.42E-1(1.14E-6)≈ 7.42E-1(1.14E-6)
500 2.09E+1(5.02E-1)− 7.42E-1(1.14E-6)≈ 7.42E-1(1.14E-6)

1000 2.41E+1(3.40E-1)− 7.42E-1(1.14E-6)≈ 7.42E-1(1.14E-6)

3
200 1.17E+1(9.27E-1)− 5.41E-1(1.02E-3)− 4.88E-1(5.13E-2)
500 1.70E+1(6.15E-1)− 5.41E-1(4.66E-5)− 5.35E-1(1.23E-2)

1000 1.91E+1(5.97E-1)− 5.41E-1(7.27E-5)≈ 5.49E-1(2.83E-2)

LSMOP6 2
200 7.36E+2(6.12E+2)− 6.42E-1(7.36E-2)− 3.59E-1(2.37E-3)
500 2.24E+3(2.14E+3)− 7.33E-1(1.76E-1)− 3.22E-1(4.69E-4)

1000 2.99E+3(2.33E+3)− 6.82E-1(9.03E-4)− 3.14E-1(6.41E-4)

3
200 1.77E+4(3.58E+3)− 1.22E+0(3.15E-3)− 6.97E-1(1.63E-2)
500 3.05E+4(6.34E+3)− 1.29E+0(2.01E-3)− 7.42E-1(1.70E-2)

1000 3.68E+4(7.07E+3)− 1.31E+0(1.31E-3)− 7.45E-1(2.06E-2)

LSMOP7 2
200 5.58E+4(6.03E+3)− 1.48E+0(2.34E-3)− 1.48E+0(2.65E-3)
500 1.06E+5(5.12E+3)− 1.51E+0(1.18E-3)− 1.50E+0(8.71E-4)

1000 1.33E+5(4.14E+3)− 1.51E+0(1.19E-3)− 1.51E+0(4.22E-4)

3
200 1.80E+0(3.92E-2)− 9.78E-1(4.70E-2)≈ 9.67E-1(2.51E-2)
500 1.27E+0(9.73E-3)− 9.48E-1(1.26E-1)− 8.96E-1(6.81E-3)

1000 1.10E+0(2.56E-3)− 9.23E-1(1.38E-1)− 8.68E-1(1.13E-2)

LSMOP8 2
200 1.40E+1(8.86E-1)− 7.42E-1(1.14E-6)≈ 7.42E-1(1.14E-6)
500 2.11E+1(4.21E-1)− 7.42E-1(1.14E-6)≈ 7.42E-1(1.14E-6)

1000 2.39E+1(4.73E-1)− 7.42E-1(1.14E-6)≈ 7.42E-1(1.14E-6)

3
200 6.69E-1(1.07E-2)− 3.65E-1(4.56E-3)− 3.63E-1(1.38E-2)
500 6.51E-1(6.13E-3)− 3.55E-1(1.59E-2)− 3.53E-1(4.70E-2)

1000 6.49E-1(4.56E-3)− 3.56E-1(9.05E-3)+ 3.60E-1(4.27E-2)

LSMOP9 2
200 2.26E+1(1.92E+0)− 8.10E-1(1.14E-6)≈ 8.10E-1(1.14E-6)
500 4.32E+1(1.36E+0)− 8.10E-1(3.21E-4)≈ 8.10E-1(6.01E-4)

1000 5.24E+1(1.03E+0)− 8.09E-1(4.10E-4)− 8.08E-1(1.49E-3)

3
200 6.70E+1(5.47E+0)− 7.74E-1(3.80E-1)+ 1.54E+0(4.56E-6)
500 1.15E+2(5.42E+0)− 8.21E-1(4.13E-1)+ 1.54E+0(4.56E-6)

1000 1.37E+2(3.51E+0)− 1.08E+0(4.00E-1)+ 1.38E+0(1.97E-1)

+/− / ≈ 5/49/0 4/32/18

LSMOF is not sensitive to the setting of the threshold. For
simplicity, we set the threshold value to 0.5 in all the other
experiments in this work.

V. CONCLUSION

In this work, we have proposed a general framework for
large-scale multi-objective optimization, termed LSMOF. The
proposed LSMOF adopts a two-stage strategy, where the first
stage conducts the problem reformulation for obtaining a set
of quash-optimal solutions near the PS, and the second stage
spreads these solutions over the approximate PS uniformly by
an embedded MOEA.

At the first stage of the proposed LSMOF, the decision space
is first reconstructed by associating a set of reference solutions

TABLE III
THE STATICS OF IGD RESULTS ACHIEVED BY LSMOF WITH DIFFERENT

SETTINGS OF THRESHOLD VALUES.

Problem Obj. tr =0.2 tr =0.4 tr =0.6 tr =0.8

LSMOP1 2 6.39E-1(2.07E-2) 6.31E-1(1.90E-2) 6.31E-1(2.24E-2) 6.36E-1(2.14E-2)
3 6.05E-1(7.61E-3) 6.21E-1(7.88E-3) 6.42E-1(1.54E-2) 6.76E-1(1.36E-2)

LSMOP2 2 2.00E-2(3.56E-8) 2.00E-2(3.56E-8) 2.00E-2(3.56E-8) 1.85E-2(3.66E-3)
3 7.00E-2(4.59E-3) 6.90E-2(3.08E-3) 7.05E-2(3.94E-3) 7.00E-2(4.59E-3)

LSMOP3 2 1.57E+0(0.00E+0) 1.57E+0(3.08E-3) 1.57E+0(2.24E-3) 1.57E+0(0.00E+0)
3 8.60E-1(2.28E-6) 8.60E-1(2.28E-6) 8.60E-1(2.28E-6) 8.60E-1(2.28E-6)

LSMOP4 2 3.00E-2(1.78E-7) 3.00E-2(1.78E-7) 3.00E-2(1.78E-7) 3.00E-2(1.78E-7)
3 1.42E-1(3.66E-3) 1.42E-1(3.66E-3) 1.40E-1(5.62E-3) 1.32E-1(4.10E-3)

LSMOP5 2 7.40E-1(1.14E-6) 7.40E-1(1.14E-6) 7.40E-1(1.14E-6) 7.40E-1(1.14E-6)
3 5.43E-1(1.59E-2) 5.51E-1(3.45E-2) 5.62E-1(4.06E-2) 7.31E-1(1.46E-1)

LSMOP6 2 3.10E-1(1.14E-6) 3.11E-1(2.24E-3) 3.11E-1(2.24E-3) 3.10E-1(1.14E-6)
3 7.59E-1(3.20E-2) 7.51E-1(2.96E-2) 7.59E-1(1.57E-2) 7.87E-1(1.42E-2)

LSMOP7 2 1.51E+0(6.83E-6) 1.51E+0(6.83E-6) 1.51E+0(6.83E-6) 1.51E+0(6.83E-6)
3 8.62E-1(3.66E-3) 8.53E-1(3.23E-2) 8.67E-1(1.08E-2) 9.13E-1(4.51E-2)

LSMOP8 2 7.40E-1(1.14E-6) 7.40E-1(1.14E-6) 7.40E-1(1.14E-6) 7.40E-1(1.14E-6)
3 3.47E-1(3.89E-2) 3.55E-1(2.72E-2) 3.90E-1(6.22E-2) 4.98E-1(6.76E-2)

LSMOP8 2 8.10E-1(2.28E-6) 8.10E-1(2.28E-6) 8.10E-1(2.28E-6) 8.10E-1(2.28E-6)
3 1.44E+0(1.74E-1) 1.38E+0(1.99E-1) 1.41E+0(1.88E-1) 1.48E+0(1.17E-1)

with a set of weight variables in the decision space. Then, a
series of subproblems are constructed by taking the weight
variables as the input, where each weight variable is aimed at
tracking a specific point on the PS. Meanwhile, a performance
indicator is adopted to assess the quality of the reconstructed
decision vector for objective space reduction, and the original
LSMOP is thus reformulated into a low-dimensional SOP. The
differential evolution algorithm is adopted to optimize the SOP
by using an indicator based fitness assignment strategy, and
the candidate solutions obtained therein are used as the initial
population of the embedded MOEA at the second stage.

To assess the performance of the proposed LSMOF, a
variety of empirical comparisons have been conducted on a
set of LSMOPs. The general performance of our proposed
LSMOF is tested by embedding four MOEAs, namely, NSGA-
II, MOEA/D-DE, SMS-EMOA, and CMOPSO into it. The
statistical results indicate that LSMOF has accelerated the con-
vergence speed and saved computation time of the embedded
algorithms on most of the test instances. More importantly,
the performance of the MOEAs has also been significantly
improved. The second experiment assesses the performance
of the proposed LSMOF in comparison with two state-of-
the-art large-scale MOEAs, namely, MOEA/DVA and WOF.
The superiority of the proposed LSMOF over the other two
algorithms is also verified by the experimental results.

The proposed LSMOF has shown good potential in large-
scale multi-objective optimization. Future work on developing
more efficient problem reformulation method is highly desir-
able. It is also interesting to adapt our proposed LSMOF to
real-world LSMOPs with more decision variables by parallel
(e.g. GPU-based) computing.
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