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Abstract—Niching techniques have been widely incorporated
into evolutionary algorithms (EAs) for solving multimodal
optimization problems (MMOPs). However, most of the existing
niching techniques are either sensitive to the niching param-
eters or require extra fitness evaluations (FEs) to maintain
the niche detection accuracy. In this paper, we propose a new
automatic niching technique based on the affinity propagation
clustering (APC) and design a novel niching differential evolu-
tion (DE) algorithm, termed as automatic niching DE (ANDE),
for solving MMOPs. In the proposed ANDE algorithm, APC
acts as a parameter-free automatic niching method that does
not need to predefine the number of clusters or the clus-
ter size. Also, it can facilitate locating multiple peaks without
extra FEs. Furthermore, the ANDE algorithm is enhanced by
a contour prediction approach (CPA) and a two-level local
search (TLLS) strategy. First, the CPA is a predictive search
strategy. It exploits the individual distribution information in
each niche to estimate the contour landscape, and then predicts
the rough position of the potential peak to help accelerate the
convergence speed. Second, the TLLS is a solution refine strategy
to further increase the solution accuracy after the CPA roughly
predicting the peaks. Compared with the other state-of-the-art
DE and non-DE multimodal algorithms, even the winner of
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competition on multimodal optimization, the experimental results
on 20 widely used benchmark functions illustrate the superiority
of the proposed ANDE algorithm.

Index Terms—Affinity propagation clustering (APC),
contour prediction approach (CPA), differential evolution
(DE), multimodal optimization problems (MMOPs), niching
techniques.

I. INTRODUCTION

MANY real-world problems own multiple global optima,
such as protein structure prediction [1], electromag-

netic design [2], and pedestrian detection [3], which are
known as multimodal optimization problems (MMOPs).
For example, pedestrian detection often requires to extract
multiple pedestrian from a given image [3]. Locating all
the global optima of an MMOP has significant benefits. If
the optimizer is able to find multiple promising solutions
simultaneously, we will have several choices to keep the sat-
isfactory performance [4], [5]. Therefore, it is desirable to
locate multiple optima of practical MMOPs.

Evolutionary algorithms (EAs), such as genetic algo-
rithm (GA) [6]–[9], ant colony optimization (ACO) [10]–[13],
estimation of distribution algorithm (EDA) [14]–[16], par-
ticle swarm optimization (PSO) [17]–[23], and differential
evolution (DE) [24]–[33], have the potential advantages for
solving MMOPs since their population-based search man-
ner maintains multiple candidate solutions. However, most
of the traditional EAs only focus on locating a single
optimal solution. To tackle MMOPs, techniques known
as “niching” have been proposed to partition the whole
population into several niches [34]–[52]. Following this
idea, different niching methods have been proposed, such
as the crowding [34], speciation [35], clustering [36], hill-
valley [46], fitness sharing [46], recursive middling [47], and
topological species conservation [52]. Based on these nich-
ing techniques, various EAs have been extended for solv-
ing MMOPs, including GA [48]–[51], ACO [53], EDA [54],
PSO [55], [56], and DE [34]–[45]. Among these existing
multimodal algorithms, DE variants have shown their effec-
tiveness and superiority in the reported results [34]–[45].
Therefore, this paper focuses on DE for tackling MMOPs.

However, when applying DE or other EAs variants in
MMOPs, there is still much room for improvement. One of the
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most significant issues is that the current niching methods are
very sensitive to the niching parameters, such as the crowding
size C in crowding [34], the species radius r in speciation [35],
or the cluster size M in clustering [36]. If the niching param-
eters are not properly set, the performance of the algorithms
will deteriorate severely. There are also some parameter-free
niching methods using fitness evaluations (FEs) to discover hill
and valley for better niching [46]. However, how to design an
efficient method to disperse the search of population to locate
different peaks is still a challenging issue and a significant
research topic in the MMOP community.

To overcome the above drawbacks, this paper proposes
a novel automatic niching method based on the affinity propa-
gation clustering (APC). APC is a famous clustering approach
which was published in Science [57] and has also been
applied in EAs [58]. It does not require the number of clus-
ters and the initial selection of exemplars for clustering. By
using the APC, the niching method can not only form niches
automatically to locate multiple peaks but also can avoid pre-
defining the sensitive parameters, such as the cluster size
or the number of clusters compared with other clustering
niching methods [36], [37]. Meanwhile, compared with other
parameter-free niching methods [46], the use of APC niching
does not introduce any extra FEs.

As we focus on DE for tackling MMOPs in this paper,
we termed our proposed APC-based DE algorithm as auto-
matic niching DE (ANDE). After using APC to partition the
population into suitable clusters/niches automatically to locate
different peak regions, the DE evolutionary operators are per-
formed within each niche. Then, after the evolution of each
generation, a contour prediction approach (CPA) is further
developed to estimate the contour landscape of each niche.
Specifically, the CPA utilizes the distribution information of
some individuals in the niche to predict the rough position
of the potential optima, so as to accelerate the convergence
speed. However, as the potential optimum predicted by CPA is
a rough position, it may still not be accurate enough. In order
to enhance the exploitation ability and improve the solution
accuracy, a two-level local search (TLLS) strategy is further
performed after the CPA.

Therefore, the performance of ANDE is guaranteed by not
only the APC but also the CPA and TLLS. Noted that these
three components act different roles in ANDE and compensate
with each other. Specifically, the APC is used for automati-
cally forming niches and effectively locating different optimal
areas in solving MMOPs. Based on the results of APC nich-
ing, the CPA and TLLS are further performed within each
cluster/niche for approaching the peaks. When dealing with
the high-dimensional MMOPs, the principal component anal-
ysis (PCA) technique is incorporated into ANDE to achieve
dimensionality reduction for better niching. Note that the
PCA does not affect the functional landscape because it per-
forms on an additional population to reduce the dimension
so as to help the APC cluster individuals more easily and
thus to obtain better niching results. All the other operators
in ANDE (such as the evolutionary operators and FEs) are
still executed on the original space, which are not affected
by the PCA. Moreover, the locations of the optima and the

topology of the functional landscape are also not affected
by the PCA. The performance of ANDE is evaluated on
20 widely used benchmark multimodal functions from the
CEC2015 multimodal competition. The experimental results
fully show the superiority and feasibility of ANDE compared
with many state-of-the-art multimodal optimization algorithms
and the winner of the CEC2015 competition on multimodal
optimization.

The rest of this paper is organized as follows. Section II
reviews the DE algorithm and its current developments on
MMOPs. Section III describes the proposed ANDE algorithm
in detail. The experimental results and discussions are shown
in Section IV. Finally, the conclusions are given in Section V.

II. RELATED WORK

A. DE Algorithm

DE is a population-based stochastic search algorithm, which
evolves according to the difference between the individuals
and by a loop of operators, including mutation, crossover, and
selection. Recently, ensemble methods receive an increasing
attention in designing high-quality DE algorithms [59]–[61].
The operations of DE in each generation are described below.

Mutation: In each generation g, the mutation operation is
performed on each individual xi,g to create its corresponding
mutant vector vi,g. Three mutation strategies frequently used
in the literatures are listed below.

1) The DE/rand/1 mutation strategy is as

vi,g = xr1,g + F × (
xr2,g − xr3,g

)
. (1)

2) The DE/best/1 mutation strategy is as

vi,g = xbest,g + F × (
xr1,g − xr2,g

)
. (2)

3) The DE/current-to-best/1 mutation strategy is as

vi,g = xi,g + F × (
xbest,g − xi,g

)

+ F × (
xr1,g − xr2,g

)
(3)

where r1, r2, and r3 are different random integers selected
from {1, 2, . . . , N}, which are all different from i. The amplifi-
cation factor F is a positive control parameter, which amplifies
the differential vectors. xbest,g is the individual with the best
fitness value in generation g.

Crossover: Generally, after the mutation, DE performs
a binomial crossover operation on xi,g and vi,g to generate
a trial vector ui,g by

ui,j,g =
{

vi,j,g if rand(0, 1) ≤ CR or j = jrand
xi,j,g otherwise

(4)

where jrand is an integer randomly selected from {1, 2, . . . , D}
to ensure that the trial vector has at least one dimension dif-
ferent from xi,g. The crossover rate CR is another parameter,
which determines the fraction of vector components inherited
from the mutant vector.

Selection: To determine whether the trial vector ui,g will sur-
vive into the next generation, the ui,g is compared with the xi,g.
The one with the better fitness value enters the next genera-
tion. For instance, for a maximization problem, the individual
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with a larger fitness value survives into the next generation, as

xi,g+1 =
{

ui,g, if f
(
ui,g

) ≥ f
(
xi,g

)

xi,g, otherwise
(5)

where f (x) is the FE function.

B. DE for MMOPs

Various algorithms have been proposed to solve MMOPs
in recent years. Among these existing multimodal algorithms,
DE variants have shown promising performance [34]–[45]. To
have a better view of these multimodal algorithms based on
DE, which is also the focus of this paper, we briefly describe
them as follows.

1) Niching Methods for DE: Niching techniques have
been widely used to help EAs solve MMOPs [34]–[52].
The two most representative niching methods are
crowding [34] and speciation [35]. When applied into
DE, the algorithms are called crowding DE (CDE) and speci-
ation DE (SDE). In CDE, each newly generated offspring is
compared with its most similar parent X from a crowd, which
is formed by randomly selecting C individuals. The offspring
will replace X if it is better. In SDE, the population is parti-
tioned into several species according to the individuals’ fitness
and a species radius r, and the DE operators are executed
within each species. However, these two niching methods are
very sensitive to their parameters, such as the crowding size
C in crowding and the species radius r in speciation.

To improve population partition, the self-adaptive
clustering-based DE (Self-CCDE and Self-CSDE) proposed
by Gao et al. [36] and the neighborhood mutation-based DE
(NCDE and NSDE) proposed by Qu et al. [37] applied the
clustering techniques into crowding and speciation methods.
These clustering methods introduced a parameter, cluster size
M, which is less sensitive compared with the crowding size
C and the species radius r. However, the M also influences
the algorithm performance directly [36], [37].

2) Improved Mutation Strategies for DE: Many efforts
have been paid to improve the mutation strategy in DE-
based multimodal algorithms. Biswas et al. [38] improved
the niching DE by developing an information sharing
mechanism, and the proposed algorithms were termed as
LoINDE (LoICDE and LoISDE). Meanwhile, they presented
a parent-centric normalized mutation with proximity-based
CDE (PNPCDE) which can fully utilize the neighbor-
hood information [39]. Dual-strategy DE with APC (DSDE),
proposed by Wang et al. [40], which used two mutation
strategies and adaptively chooses one of them for each
individual, so as to balance the convergence and diversity.
Furthermore, they also proposed a new selection opera-
tor based on APC to select the more suitable individuals.
Hui and Suganthan [41] proposed ensemble and arithmetic
recombination-based SDE, termed as EARSDE, which applied
arithmetic recombination in the speciation method and used
ensemble strategies in the neighborhood mutation to balance
the exploration and exploitation.

3) Multiobjective Techniques for DE: Different from
the methods mentioned above, some researchers use
multiobjective techniques to transfer an MMOP into

a multiobjective optimization problem (MOP), more specif-
ically, a bi-objective optimization problem. Generally, the first
objective is the multimodal function itself for fast convergence,
whereas the second objective is self-designed for improv-
ing diversity. For example, the MOBiDE [44] used the mean
Euclidean distance of one individual to all the other individ-
uals as the second objective, which should be maximized to
prevent from converging to only one peak. Apart from this,
Wang et al. [45] designed the MOMMOP algorithm using
a quite different transformation, which designed two conflict
objectives for each dimension.

Although these techniques mentioned above have shown
their effectiveness in solving MMOPs, their performance is
still not satisfactory especially in the problems with high
dimensions or complexities.

III. ANDE

This section describes the proposed ANDE algorithm. First,
the APC for efficiently partitioning the population to automat-
ically form niches and to locate different peaks is described.
Second, the CPA for predicting the rough position of the
potential optimum in each niche is designed. Moreover, the
TLLS strategy to improve the solution accuracy and enhance
the exploitation ability is introduced later. At last, ANDE is
extended for solving high-dimensional MMOPs and the whole
ANDE algorithm is given.

A. APC to Locate Different Peaks

Different from other clustering methods, APC does not
require the number of clusters or cluster size and initial selec-
tion of exemplars or clustering centers, which can avoid the
sensitive parameters. The motivation and rationality of APC
are that all the individuals are regarded as potential exem-
plars for any other individual, and then the clusters/niches
are automatically formed according to the message-passing
process [57], [58]. The message-passing process is a loop pro-
cess to calculate how suitable for an individual being the
exemplar for another individual, and how appropriate for an
individual to choose another individual as its exemplar. In
order to calculate such information, two kinds of messages
are defined in APC for exchanging information among indi-
viduals: “responsibility” and “availability.” The responsibility
between individual xi and its candidate exemplar individual xk

is denoted as r(i, k), which is sent from xi to xk, as illustrated
in Fig. 1(a). The availability between individual xi and its can-
didate exemplar individual xk is denoted as a(i, k), which is
sent from xk to xi, as shown in Fig. 1(b).

Particularly, the responsibility r(i, k) shows how suitable
for the individual xk being the exemplar for individual xi.
It is set to the similarity between individual xi and individ-
ual xk, minus the largest of the availabilities and similarities
between individual xi and other competing candidate exem-
plars. Inversely, the availability a(i, k) reflects how appropriate
for individual xi to choose individual xk as its exemplar. It
is set to the self-responsibility r(k, k) plus the sum of the
positive responsibilities the individual xk receives from other
supporting individuals. To limit the influence of strong incom-
ing positive responsibilities, the availability a(i, k) is no larger
than zero.
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(a) (b)

Fig. 1. Message passing in APC. (a) Responsibility. (b) Availability.

To begin with, the availabilities a(i, k) are initialized as 0.
Then, in each iteration, the responsibilities and availabilities
are computed using the rules

r(i, k) = s(i, k) − max
{
a
(
i, k′) + s

(
i, k′)}

k′ = 1, 2, 3, . . . , N, k′ �= k (6)

a(i, k) = min

⎧
⎨

⎩
0, r(k, k) +

N∑

i′=1,i′ �=i,k

max
{
0, r

(
i′, k

)}
⎫
⎬

⎭
(7)

where s(i, k) is the similarity between individuals xi and xk,
which is set as the negative squared error (Euclidean distance):
s(i, k) = −||xi – xk ||2.

During the message-passing process, each message is set as
λ times its value from the last iteration plus 1−λ times its
current value, shown as

r(i, k) = λ × r(i, k)last + (1 − λ) × r(i, k) (8)

a(i, k) = λ × a(i, k)last + (1 − λ) × a(i, k). (9)

For each individual xi, the individual xk that maximizes
a(i, k) + r(i, k) is identified as the exemplar for individual
xi. The message-passing process will terminate after the max-
imum number of iterations Mits, or the estimated exemplars
stay stagnation for a certain number of iterations Cits. In that
way, the clusters are automatically formed. We have investi-
gated the influences of the parameters λ, Mits, and Cits and
presented the results in the Tables S.I–S.III in the supplemen-
tary material. Considering the aspects of promising results and
light computational burden, we use parameters of λ = 0.9,
Mits = 100, and Cits = 30. Herein, the relatively larger λ

will maintain more message from the last iteration, which will
avoid numerical oscillations effectively and make clustering
results more stable. Besides, the Mits and Cits with relatively
smaller values can relieve the computational burden of APC.

The complete procedure of APC can be shown as the
following five steps.

Step 1: Initialize a(i, k) = 0.
Step 2: Calculate the temporary values of r(i, k) and a(i, k)

by using (6) and (7).
Step 3: Keep the message from the last iteration and cal-

culate the final values of r(i, k) and a(i, k) by using (8)
and (9).

Step 4: For each individual xi, the individual xk that max-
imizes a(i, k) + r(i, k) is identified as the exemplar for
individual xi.

Step 5: Repeat steps 2 to 4 until the clustering termination
criterion is satisfied.

After the clustering procedure, the clusters, so-called niches
are automatically formed. As we can see, the niching
strategy based on APC avoids using the sensitive param-
eters, such as the number of clusters or the cluster size
M. Besides, comparing with other parameter-free niching
strategies [46], [47], [52], the whole message-passing process
does not cost any extra FEs.

B. CPA to Predict Optimal Region

After forming niches automatically by APC, the basic DE
operators are executed within the niche to generate new indi-
viduals. However, for the individuals in each niche, many
current multimodal algorithms do not make use of the dis-
tribution information of the individuals to help the search.
In fact, if we can narrow the search space or speculate the
distribution of the potential optima by using the distribution
information of individuals, the search process will be quicker
and more effective. To this aim, a novel CPA is proposed for
predicting the peak by using the distribution information of
some individuals in each niche.

The contour method is first used by Lin et al. [62] in GA to
solve unimodal optimization problems. Here, we modified and
applied this method into DE to tackle the MMOPs.

A contour in topography is a smooth line which connects
the points with the same elevation. Fig. 2 displays an example
of contours. Obviously, the potential summit is also enclosed
in the contour.

Inspired by the contours in topography, the CPA is proposed
for effectively solving MMOPs by estimating the contour land-
scape of the problem and predicting the rough position of the
potential optima. In CPA, the solutions can be regarded as
the positions, whereas the fitness values of the solutions can
be perceived as the elevations of the positions. Taking a 2-D
problem for instance, each solution xi can be represented by
(xi,1, xi,2). When several niches are formed, each niche Sj will
have a niche seed which is with the best fitness value. For
each niche Sj, we found some individuals nearest to the niche
seed in Sj to form a network, as shown in Fig. 3(a). In this fig-
ure, the solid cycles denote the niche seeds, while the hollow
cycles denote the individuals nearest to the niche seed. Each
position (solution/individual) is denoted by (a, b) c in the fig-
ure, where (a, b) is the coordinate of the current individual
and c is the elevation (fitness value) of the current individual.

Then, we calculate each dimension of each interpolated
point x′

i as
{

x′
i,1 = xlbest,1 + f −flbest

fi−flbest

(
xi,1 − xlbest,1

)

x′
i,2 = xlbest,2 + f −flbest

fi−flbest

(
xi,2 − xlbest,2

) (10)

where the xlbest and xi are the niche seed and its ith adjacency
individual in the niche, flbest and fi are the fitness values of
xlbest and xi, respectively, whereas f is the contour value. In
order to accelerate the approaching speed to the summit or
the best solution, f is set larger than flbest for a maximization
problem or smaller than flbest for a minimization problem,
shown as

f − flbest =
{

0.2 × |flbest| + 0.1, maximization problem
−0.2 × |flbest| − 0.1, minimization problem

(11)
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Fig. 2. Example of contours.

(a) (b)

Fig. 3. CPA in a 2-D example. (a) Form the networks. (b) Draw contours
and predict peaks.

where 0.2 is the coefficient of |flbest| to control the approaching
speed to the summit and 0.1 is the disturbance to deal with
the condition that the function is with zero fitness value. We
have investigated these two values in Tables S.IV and S.V
in the supplementary material. The results show that setting
the coefficient as 0.2 (−0.2 for minimization problems) can
achieve the balance between fast convergence and avoiding
distortion. Moreover, the disturbance is not sensitive and is
simply set as 0.1 herein.

In Fig. 3(b), the contour value is set to 18, and the symbol
x denotes the interpolated points. After obtaining the inter-
polated points, we draw the contours by connecting all these
interpolated points.

As we mentioned before, the potential summits are enclosed
in a contour. Therefore, after getting several interpolated points
and drawing the contours, the potential summits within the
contours will be determined. In this paper, we use the centroid
x′ of the contour to approximately estimate the optima, which
can be expressed as

x′ =
∑K

i=1 x′
i

K
(12)

where the K is the number of interpolated points and no more
than 5, x′

i is the ith interpolated point. Note that if the legal
interpolated points are fewer than 3, the contour cannot be
drawn. In other words, if the niche Sj has fewer than four indi-
viduals, CPA is not used. In Fig. 3(b), the stars represent the
potential optima we estimated using (12). For each niche, if the

Fig. 4. Flowchart of CPA.

fitness of the estimated optimum is better than the niche seed,
the estimated optimum will replace the niche seed, otherwise
the estimated optimum is ignored.

Now, we extend CPA into any dimensional problems. In a
D-dimensional problem, each individual xi can be expressed
as (xi,1, xi,2, . . . , xi,D). Similarly, we use the formula like (10)
to determine each dimension of the interpolated point x′

i as
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x′
i,1 = xlbest,1 + f −flbest

fi−flbest

(
xi,1 − xlbest,1

)

x′
i.2 = xlbest,2 + f −flbest

fi−flbest

(
xi,2 − xlbest,2

)

· · ·
x′

i,D = xlbest,D + f −flbest
fi−flbest

(
xi,D − xlbest,D

)
.

(13)

After that we also use (12) to predict the potential optima.
The whole procedure of CPA can be seen in Fig. 4 as
a flowchart, where n is the number of niches identified in APC.

Based on CPA, ANDE can locate the ranges of the poten-
tial summits effectively, which will give a proper guidance
of evolution. Meanwhile, forecasting the optima directly will
simplify the search process and accelerate the convergence
speed. The effectiveness and feasibility of CPA will be fully
investigated in Section IV-D2.

C. TLLS to Refine Solution Accuracy

Although CPA can predict the potential optima and accel-
erate convergence to some degree, it may still not be accurate
enough. Motivated by this, a TLLS is proposed in this paper to
enhance the exploitation ability of algorithm and increase the
accuracy of solutions. Gaussian distribution is utilized here
due to its promising local search performance by sampling
small areas, shown in

xnew = Gaussian(x, σ ) (14a)
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Fig. 5. Illustration of TLLS.

where xnew is the new generated individual by the Gaussian
distribution with the individual x as the mean and a standard
deviation σ .

During the evolutionary process, the standard deviation σ in
Gaussian distribution is decreased using an exponential model,
shown in (14b), to sample relatively wide areas in the early
stage and sample narrow areas at late. Besides, to keep popula-
tion diversity and avoid getting trapped in the local optima, σ

is set larger for the problems with higher dimensions to sample
wide areas while smaller for problems with lower dimensions.
Herein, the exponent 3 is used to control the lower bound of
the σ . We have investigated the exponent used in (14b) in
Table S.VI in the supplementary material. The results show
that setting the exponent as 3 can achieve the balance between
exploration and exploitation

σ = 10−1− (10/D+3)×FEs
MaxFEs . (14b)

As indicated by its name, the TLLS has two-level
local search, including a niching-level local search and an
individual-level local search. As locating more optima is the
main objective of MMOPs, we first execute the local search
operator on niching-level because different niches focus on
different peaks. On niching-level, the local search is executed
on the niche seed for finding more promising solutions. As
there are many niche seeds (each niche has one), it is intuitive
that the better niche seed is, the greater chance it is close to
the global optima and should do local search. This indicates
the opportunity of executing local search should be related to
the fitness values of niche seeds. Therefore, we first sort the
niche seeds in ascending order according to their fitness val-
ues (from worse to better). Then, set the probability of the ith
niche to do local search as

Pi = ri/n (15)

where ri is the rank of the ith niche seed in the sort of fitness,
and n is the number of niches.

However, without any heuristic information or prior knowl-
edge about the distribution of peaks in MMOPs, several peaks
may be covered by the same niche if the peaks are close to
each other or the number of peaks is too large. Suppose the
current population distribution is shown in Fig. 5. The niche
1 covers two peaks because they are very close to each other.
Niches 2 and 3 cover one peak, respectively. While the niches
4 and 5 cover the local optima. Our proposed niching-level
local search based on Pi can avoid wasting the local search
FEs on local optima to some degree. For example, the chance
of performing local search in the niche 4 and niche 5 is small

Algorithm 1 TLLS
Begin

1. Generate the sample standard deviation σ using (14b).
2. Calculate the niche-level local search probability Pi using (15).
3. For each niche Si
4. If rand<Pi
5. For each individual xik in Si;
6. Calculate the individual-level local search probability

Pik using (16);
7. If rand<Pik
8. Sample 2 points around individual xik based on

Gaussian distribution in (14a);
9. Evaluate these 2 points and denote the better one as x′

ik;
10. If x′

ik is better than xik
11. Replace xik by x′

ik;
12. End If
13. End If
14. End For
15. End If
16. End For

End

because their Pi values are small. However, if we only do local
search on niching-level, the accuracy of some optima may
not be improved, e.g., only one peak in the niche 1 can be
refined. Consequently, after executing local search operator at
niching-level, an individual-level local search is also executed.
Specifically, if the current niche i satisfies the probability Pi to
do local search, some individuals with better fitness value in
this niche should also do local search. The method is similar
to that in niching-level, which is first sorting the individuals in
ascending order according to their fitness values in the current
niche (from worse to better). Then set the probability of the
kth individual to do local search in the ith niche as

Pik = rk/ni (16)

where rk is the rank of the kth individual in the sort of fitness,
and ni is size of ith niche.

The number of points sampled by local search is set as 2.
The whole framework of the TLLS is shown in Algorithm 1.

Using this TLLS scheme, we can enhance the exploitation
ability of algorithm and increase the accuracy of all the global
optima. Moreover, the fitness rank-based probabilistic scheme
[i.e., (15) and (16)] can avoid wasting FEs on local optima
and inferior individuals.

D. ANDE for High Dimensional Problems

However, when dealing with the high-dimensional prob-
lems, the niching strategy based on APC may also face the
difficulty of “curse of dimensionality” like other clustering
methods. In order to relieve this difficulty, we do not apply
the APC directly on the original population whose individu-
als (solutions) are in high dimension, but first construct an
additional population that is with dimensionality reduction
from the original population. This way, the APC can be per-
formed on the individuals of the additional population that
are with low dimension, so as to cluster the individuals more
easily and more efficiently.

PCA is an effective method to achieve dimensionality
reduction using mathematical projection. Therefore, we apply
PCA into our ANDE algorithm to construct the additional
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Algorithm 2 ANDE
Begin

1. Randomly generate N individuals as the population P.
2. While FEs≤MaxFEs
3. (For problems with dimensions higher than 3, using PCA

method to achieve dimensionality reduction.)
4. Using APC for niching.
5. For each niche Si
6. If ni≤4 // ni is the size of Si.
7. Generate offspring using standard DE;
8. For each offspring in Si
9. Compare its fitness with the fitness of its most similar

parent X in Si and replace X if the offspring is better;
10. End For
11. End If
12. Predict the potential optima using CPA in Fig. 4.
13. End For
14. Execute the TLLS using Algorithm 1.
15. End While

End

population by reducing the D dimensions to k dimensions. The
specific implementation is shown as the following six steps.

1) Construct a D × N matrix X using the current popula-
tion, where D is the dimension of problem and N is the
population size.

2) Transform the average value of each row in X to zero.
3) Generate the covariance matrix C = (1/D)XXT .
4) Calculate the eigenvalues and eigenvectors of C.
5) Sorting the eigenvectors according to their eigenvalues,

and we choose the first k eigenvectors as a new matrix
P, where k is the dimension we wish to obtain.

6) Obtain X′ = PX, where X′ is the matrix after dimen-
sionality reduction.

In our algorithm, for problems with higher than three dimen-
sions (D > 3), we set k = 3. In other words, we additionally
construct a 3 × N matrix X′ using PCA. Accordingly, we
can obtain the additional population with N individuals and
three dimensions. This way, the additional population is
a dimension reduced version of the original population. The
APC can be carried out on this additional population to help
cluster the individuals more easily and thus obtain better nich-
ing results. However, all the other operators in ANDE (such as
the evolutionary operators and FEs) are still executed on the
original space and using the original population. Therefore,
the topology of the functional landscape of the solving prob-
lems, the locations of the optima, and the search information
of the evolutionary population are not affected by PCA.

Based on PCA technique, we can achieve better nich-
ing using APC when dealing with the problems with high
dimensions.

E. Complete Algorithm ANDE

Overall, based on all the components mentioned above, the
complete algorithm ANDE is shown in Algorithm 2 as the
pseudocode, together with the following advantages.

1) Niching strategy based on APC forms the niches auto-
matically without sensitive parameters or any extra FEs,
which is efficient to locate different peaks of MMOPs.

2) After the population partition and evolutionary opera-
tions, CPA can effectively speculate the rough position

of the potential optimum in each niche, which can
give a proper guidance of evolution and accelerate
convergence.

3) The TLLS refines the solutions and enhances the
exploitation ability of algorithm, which attempts to
increase the accuracy of all the global optima. Moreover,
the two-level fitness rank-based probabilistic scheme
can avoid wasting FEs on local optima and inferior
individuals.

IV. EXPERIMENTAL RESULTS

A. Benchmark Functions and Performance Measures

All the 20 frequently used multimodal benchmark functions
from CEC2015 competition are used to test the performance of
ANDE and compared state-of-the-art multimodal optimization
algorithms (CEC2015 competition contains the same prob-
lems as the CEC2013 test suite) [63]. The main characteristics
of these functions are summarized in Table S.VII in the
supplementary material due to the page limitation.

Besides, three performance measures, including peak
ratio (PR), success rate (SR), and convergence speed (AveFEs)
are utilized to evaluate the performance of all the multimodal
algorithms. Given a fixed maximum FEs (MaxFEs) and a fixed
accuracy level ε, the PR reflects the mean percentage of all
global optima found over multiple runs. SR is the percentage
of successful runs, where a successful run means all global
optima are found in a single run. The AveFEs is the average
FEs required to find all the global optima. The mathematical
formulas can be expressed

PR =
∑R

i=1 NFPi

NP × R
, SR = NSR

R
, AveFEs =

∑R
i=1 FEsi

R
(17)

where NFPi is the number of optima found in ith run, NP is
the number of peaks, NSR is the number of successful runs,
FEsi is the number of FEs required in ith run, and R is the
number of runs. Note that if an algorithm cannot find all global
optima in the ith run, the FEsi is set as MaxFEs.

Five accuracy levels, ε = 1.0E-01, ε = 1.0E-02,
ε = 1.0E-03, ε = 1.0E-04, and ε = 1.0E-05, are fre-
quently used in the literatures. However, in this paper, only
the last three accuracy levels ε = 1.0E-03, ε = 1.0E-04,
and ε = 1.0E-05 are adopted because the accuracy levels
ε = 1.0E-01 and ε = 1.0E-02 are not accurate enough.
Moreover, unless otherwise stated, we mainly discuss the
results with accuracy level ε = 1.0E-04, which is common
in [34]–[45] and [52]–[56]. Readers can refer to [63] for more
details about the performance measures and the approach for
calculating the number of global optima found.

Moreover, the population size is set as in Table I, where the
MaxFEs is adopted directly from CEC2015 competition [63].
DE/rand/1 mutation strategy is used in ANDE, and the ampli-
fication factor F and crossover rate CR in ANDE are set as 0.9
and 0.1, respectively. The experiments are conducted on a PC
with 4 Intel Core i5-7400 3.00-GHz CPUs, 8-GB memory, the
Windows 10 64-bit system and MATLAB 2015b edition. All
algorithms run 51 times on each function independently and
the mean results are reported.
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TABLE I
PARAMETER SETTINGS

B. Comparisons With State-of-the-Art Multimodal Algorithms

To examine the performance of ANDE, we compare
ANDE with the following state-of-the-art 9 DE multimodal
algorithms, including CDE [34], SDE [35], Self-CCDE,
Self-CSDE [36], NCDE, NSDE [37], LoICDE, LoISDE [38],
and PNPCDE [39]. Moreover, we also compare ANDE
with other 5 EA multimodal algorithms, including PSO
with ring topology (R2PSO and R3PSO) [55], locally
informed PSO (LIPS) [56], multimodal EDA (LMCEDA
and LMSEDA) [54] and a multiobjective technique
MOMMOP [45]. All these competing multimodal algo-
rithms use the same population size N and MaxFEs in
Table I, the same as ANDE, to solve CEC2015 problems
well and to make the comparisons fair.

Table II summarizes the comparison results between ANDE
and other multimodal algorithms in PR and SR at all the
three accuracy levels, while the detailed comparison results are
shown in Tables S.VIII–S.XIII in the supplementary material
for saving space. The best PRs are highlighted by bold-
face for clarity. Besides, Wilcoxon’s rank sum test [64] at
α = 0.05 in PR is used to evaluate the statistical significance
between ANDE and the compared multimodal algorithms. The
symbols “+,” “−,” or “≈” indicate that ANDE is signifi-
cantly better than, worse than, or similar to the compared
multimodal algorithms. According to the results in Table II
and Tables S.VIII–S.XIII in the supplementary material, we
find that with the accuracy level increases, the performance
of many multimodal algorithms deteriorates rapidly, except
ANDE.

1) For the First 15 Functions F1–F15 With No More Than
Three Dimensions (D = 3): ANDE performs signifi-
cantly better than other algorithms on most functions,
no matter on which accuracy level. Take accuracy level
ε = 1.0E-04 as an instance. As we can see from
Table S.X in the supplementary material, ANDE dom-
inates SDE, R2PSO, R3PSO, NSDE, Self-CSDE, and
LoISDE on at least ten functions; dominates CDE, LIPS,
NCDE, PNPCDE, Self-CCDE, LoICDE, LMCEDA, and
LMSEDA on at least seven functions. Significantly, the
results show that all the competitors cannot outperform
ANDE more than one function, except MOMMOP. Note
that ANDE performs similarly to MOMMOP on these
15 functions. However, ANDE shows an obvious advan-
tage on the last five functions, which will be dis-
cussed next.

2) For the Last Five Functions F16–F20 With More
Than Three Dimensions (D > 3): ANDE outper-
forms all the competitors on almost all the five func-
tions. Take accuracy level ε = 1.0E-04 in Table S.XI

in the supplementary material for example again,
ANDE dominates CDE, SDE, LIPS, R2PSO, R3PSO,
NSDE, PNPCDE, Self-CCDE, Self-CSDE, LoICDE,
and LoISDE on all the five functions. It is notewor-
thy that ANDE dominates MOMMOP and NCDE on
four and three out of the five functions, respectively,
while is dominated by MOMMOP on only one function.
Such observation fully illustrates that ANDE can tackle
MMOPs effectively when the dimensions and complexi-
ties increase. Even though ANDE performs a little worse
than LMCEDA and LMSEDA on these five functions,
ANDE still outperforms and shows a great dominance
than these two algorithms on F1–F15, especially on F6–
F9, where exist numerous peaks as shown in Table S.X
in the supplementary material and discussed above.

Therefore, ANDE is much more promising and suitable
than these state-of-the-art multimodal algorithms. The supe-
riority and dominance of ANDE are increasingly obvious
with the required accuracy level increases. Besides, ANDE
can maintain its dominance when dealing with the MMOPs
with a larger number of peaks and with higher dimensions or
complexities.

For the comparison in AveFEs, since it is no sense to
evaluate this performance metric on functions that no algo-
rithm has a successful run, therefore, we only select the first
five functions F1–F5 for investigations. Meanwhile, we only
compare ANDE with CDE, NCDE, Self-CCDE, LoICDE,
PNPCDE, MOMMOP, LMCEDA, and LMSEDA because
they can achieve the comparable performance. Table S.XIV
in the supplementary material shows the comparison results
in AveFEs at all these three accuracy levels, and the best
results are emphasized by boldface. As we can see, ANDE
generally achieves a faster convergence speed than other
multimodal algorithms at accuracy level ε = 1.0E-03, except
NCDE. That may be due to the CPA in ANDE can speculate
the approximate position of the potential optima and accel-
erate convergence speed. However, when the accuracy level
increases from ε = 1.0E-03 to ε = 1.0E-05, ANDE performs
a little worse than both NCDE and LMSEDA. That may be
explained by the TLLS in ANDE, which will consume more
FEs to get more accurate results. However, the more FEs
brought by TLLS can be compensated by the high solution
accuracy and better PR and SR results, shown above. Even
so, ANDE still maintains a faster convergence speed in locat-
ing all the global optima at all the three accuracy levels than
other algorithms.

From all the above comparison results (including PR, SR,
and AveFEs), we can observe that ANDE can locate more
global optima within fewer FEs, especially when solving the
problems with high complexities and numerous global optima,
which fully proves the superiority of ANDE. The advantages
of ANDE may be due to its novel techniques in ANDE:
1) APC; 2) CPA; 3) TLLS; and 4) PCA. The first APC niching
technique can generate suitable niches automatically to match
the landscape of the problem, without sensitive parameter and
extra FEs. The second CPA technique can effectively predict
the rough position of the potential optimum in each niche,
which can provide a proper guidance of evolution and lead to
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TABLE II
SUMMARIZED RESULTS IN PR AND SR ON PROBLEMS AT ALL THE THREE ACCURACY LEVELS

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. Final population distribution on eight selected functions. (a) F1. (b) F2. (c) F4. (d) F6. (e) F7. (f) F10. (g) F11. (h) F12.

fast convergence. The third TLLS strategy aims to refine the
solution, which enhances the exploitation ability of ANDE
and increases the accuracy of all the global optima. In addi-
tion, the dimensionality reduction technique using PCA can
achieve better niching, which is more suitable for dealing with
the complicated and high dimensional MMOPs. The effects of
these techniques will be further discussed in Section IV-D.
Therefore, equipped with the novel techniques mentioned
above, ANDE outperforms other state-of-the-art algorithms.

To have a more intuitive view of the ANDE, we display
the final population distribution on eight selected functions in
Fig. 6.

As we can see from Fig. 6, ANDE can locate all the global
optima, even there exist many global optima, such as the F6
and F7 in Fig. 6(d) and (e). For the more complex functions
which contain massive local optima, such as the F11 and F12
in Fig. 6(g) and (h), ANDE maintains the exploration ability
and population diversity, also avoids local optima and locates
all the global optima.

C. Comparison With Winner of CEC2015 Competition

To further demonstrate the superiority of ANDE, in
this section, we compare ANDE with the winner of
the CEC2015 competition on multimodal optimization,
NMMSO [64]. For fair comparison, we directly cite
the mean results of NMMSO from the CEC2015
competition (https://github.com/mikeagn/CEC2013/tree/
master/NichingCompetition2015FinalData).

The detailed comparison results with respect to PR and
SR between ANDE and NMMSO on all the three accuracy
levels are listed in Table III. The best PR results are high-
lighted in boldface. Due to the lack of the detailed results of
NMMSO in each run, we cannot conduct the Wilcoxon’s rank
sum test to evaluate the statistical significance between ANDE
and NMMSO. Therefore, whether ANDE is better than (+),
worse than (−), or similar to (≈) NMMSO is just measured
by the values of PR.

From Table III, we find that ANDE still keeps its promising
performance compared with NMMSO. First, at the accuracy
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TABLE III
EXPERIMENTAL RESULTS IN PR AND SR BETWEEN ANDE AND NMMSO ON PROBLEMS f 1–f 20 AT ALL THE THREE ACCURACY LEVELS

level ε = 1.0E-03 and ε = 1.0E-04, ANDE dominates
NMMSO on eight and seven functions, respectively, while
only dominated by NMMSO on six functions. Second, at the
last accuracy level ε = 1.0E-05, ANDE achieves the equiva-
lent performance compared to NMMSO, where the number
of functions that ANDE dominates NMMSO is the same
to the number of functions that ANDE is dominated by
NMMSO. However, we can see that ANDE performs much
better than NMMSO on F6 and F8 at the accuracy level
ε = 1.0E-05. In particularly, on F6, ANDE can locate all the
global optima in all the runs with 1.000 for PR and 1.000 for
SR, while NMMSO cannot locate any global optima in each
run with 0.000 for PR and 0.000 for SR. Even on the functions
where ANDE is dominated by NMMSO, ANDE still achieves
the comparable performance to NMMSO. For example, at the
accuracy level ε = 1.0E-05, on F14, F17, and F19, ANDE
achieves the PR with 0.667, 0.397, and 0.363, respectively,
which is very close to the PR in NMMSO with 0.720, 0.460,
and 0.437, respectively. Third, when dealing with the com-
plicated problems with higher dimensions F16–F20, especially
with 20D in F20, ANDE performs better than NMMSO, no
matter on which accuracy level, further showing the superior-
ity of ANDE for dealing with the high complexities or high
dimensional problems.

Overall, we can see that ANDE is competitive or even better
than the winner of the CEC2015 competition.

D. Influence of Each Component in ANDE

The main components in ANDE are: 1) APC; 2) CPA;
3) TLLS; and 4) PCA. Herein, we will discuss the influence
of each component in ANDE.

1) APC: Clustering techniques have been applied in crowd-
ing and speciation niching in [36] and [37]. However, these
two clustering niching methods both have a parameter, clus-
ter size M, which will directly affect the performance of

algorithm. Herein, to investigate the effectiveness of the new
proposed niching method, the ANDE variants, where the
APC-based niching is replaced by the crowding or specia-
tion clustering niching is compared with ANDE on F1–F20.
The cluster size M is set as 5 or 10, which are also frequently
used in [36] and [37]. The ANDE with clustering niching of
crowding or speciation and with a fixed cluster size M = a is
termed as ANDE-C(a) or ANDE-S(a), respectively. For exam-
ple, ANDE with crowding clustering and with cluster size
M = 10 is denoted as ANDE-C(10). The comparison results
between ANDE and its variants in PR and SR at accuracy level
ε = 1.0E-04 are shown in Table S.XV in the supplementary
material.

As we can see, on functions F1–F6 and F10, all the
five competitors can locate all the global optima. The
ANDE-C(10) performs the best on the functions F7–F9.
However, on F11–F15, with a huge number of local optima,
ANDE gradually shows its tremendous advantage. ANDE
obtains the best results on both PR and SR performance met-
rics on all these complex functions, while the other algorithms
can only obtain similar results on F12 and F14. ANDE-C(10)
also obtains equivalent performance on F11, but is significantly
worse than ANDE on F13 and F15. Particularly, when the
dimensions and complexities increase, especially on F18–F20
with 10 and 20 dimensions, the superiority of ANDE is more
obvious.

Besides, different niching strategy and different cluster
size M are suitable for different problems. For instance, the
crowding cluster niching strategy may be suitable for the prob-
lems with numerous global optima, such as on F7–F9. While
the speciation cluster niching strategy is probably suitable for
the problems with high complexities, such as on F17–F19.
In addition, the large cluster size contains a wide range of
information, which may be appropriate for diversity maintain-
ing, performs well on F7–F9. While the small cluster size
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(a) (b) (c) (d) (e)

Fig. 7. Population distribution on F6 using different niching strategies after a certain number of FEs. (a) FEs = 0. (b) FEs = 20 000. (c) FEs = 40 000.
(d) FEs = 60 000. (e) FEs = 80 000.

covers narrow areas, which may be suitable for exploitation,
performs well on F13.

Overall, neither a small nor a large cluster size and neither
crowding clustering nor speciation clustering is attractive, and
these two clustering niching methods are both sensitive to the
cluster size and lose their feasibilities on some sophisticated
functions. However, without any heuristic information and
any sensitive parameters, ANDE still generally outperforms
ANDE-S(5), ANDE-S(10), ANDE-C(5), and ANDE-C(10)
on 8, 7, 7, and 5 functions, while is dominated by these
four variants on only 1, 2, 3, and 3 functions, respectively.

Moreover, to further present the cluster behaviors of ANDE
and ANDE variants, we draw the population distribution dur-
ing the evolutionary process on the contour landscape of F6,
shown in Fig. 7. The line connected between two individuals
means they belong to the same cluster/niche. As we can see,
only ANDE can produce the stable niches to match the land-
scape of the problem, while the niching results in other variants
are in a mess, which may mislead the evolution.

From Table S.XV in the supplementary material and Fig. 7,
we find that the APC-based niching strategy is almost not
affected by the random initialized solutions in the search space
in different runs and is more suitable for solving MMOPs
than crowding clustering and speciation clustering. On the one
hand, it can form stable niches automatically for better evolu-
tion, on the other hand, it does not use the sensitive parameter
such as the number of clusters or the cluster size M and does
not take up any extra FEs.

As for the computational time shown in Table S.XV in
the supplementary material, we can see that ANDE gen-
erally consumes more computational time than its variants
with other clustering niching techniques. That is due to the
APC-based niching actually involves the iterative process.
Although the APC induces some extra computational time
to ANDE, it also helps ANDE form stable niches automati-
cally for better evolution and locate all the global optima more
accurately. As a result, the improvements in performance are
much worth since the increased computational time can be
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compensated by the stable niching result and high solution
accuracy.

2) CPA: In this part, to investigate the influence of CPA,
the ANDE variant without CPA, termed as ANDE-noCPA is
compared with ANDE. Since CPA is used to estimate the
rough position of the potential peak to accelerate convergence
and save FEs, we only use the performance metric AveFEs
herein to show the effectiveness of CPA. Similarly, since it
is no sense to evaluate this performance metric on compli-
cated functions where ANDE cannot achieve a successful run,
only the first five functions F1–F5 are used for investigations.
The comparison results at all the three accuracy levels are
listed in Table S.XVI in the supplementary material. From
Table S.XVI, in the supplementary material, we find that
ANDE can achieve faster convergence speed and save FEs
effectively than ANDE-noCPA on three functions on accuracy
levels ε = 1.0E-03 and ε = 1.0E-04, which fully illustrates
the advantage of the peak prediction. When accuracy level
increases to ε = 1.0E-05, the superiority of ANDE is not sig-
nificantly obvious. That may be due to the fact that both ANDE
and ANDE-noCPA use the TLLS method to refine the solution
accuracy, which will also consume some FEs. Even so, ANDE
still achieves the fast search process than ANDE-noCPA on
F4 and F5, while ANDE-noCPA cannot surpass ANDE on
any functions. As a result, we may reasonably come to the
conclusion that CPA can effectively speculate the appropriate
position of potential optima and save FEs.

Table S.XVI, in the supplementary material, also shows the
time required to find all the global optima to test the time
influence of CPA. As we can see, ANDE generally consumes
less computational time than its variant without CPA com-
ponent. That is due to the CPA in ANDE can speculate the
approximate position of the potential optima and accelerate
convergence speed. With the help of CPA, we can locate all
the global optima more quickly by using fewer FEs, which
will save the computational time.

3) TLLS: The local search method is mainly to increase
the accuracy of solution and enhance the exploitation ability
of algorithm. Herein, we take a close observation at the influ-
ence of the local search and the two-level scheme. We denote
the ANDE without local search and with only niche-level
local search as ANDE-noLS and ANDE-onlyN, respectively.
The ANDE with only niche-level local search is to sam-
ple the individuals only around the niche seed xsi of the ith
niche Si. The complete niche-level local search is shown in
Algorithm S1 in the supplementary material. Table S.XVII, in
the supplementary material, presents the comparison results
with respect to PR and SR at accuracy level ε = 1.0E-04. We
first illustrate the effectiveness of local search. According to
the comparison results, we find both ANDE and ANDE-onlyN
can surpass than ANDE-noLS on many functions, such as
F6–F9, F11–F13, and F17–F20. As a whole, the local search is
extremely useful for ANDE, which can increase the accuracy
of solutions. Next we illustrate the advantage of the two-
level scheme. From the comparison results between ANDE
and ANDE-onlyN, ANDE still outperforms ANDE-onlyN on
many functions, such as F6–F9 and F11–F12. That may be due
to the fact that some peaks are covered by the same niche, so

that some peaks cannot improve their accuracy if performing
local search only on niche-level. However, as we all known,
to get more accurate results, the local search scheme will take
up some extra FEs. On F17 and F19, ANDE-onlyN performs
slightly better than ANDE, which may be due to the TLLS
has to consume more extra FEs on both the niche and indi-
vidual levels than the local search on only niche level. Even
so, ANDE still shows its superiority on other functions.

Besides, ANDE generally consumes less computational time
than its variants without local search and with only niche-level
local search, shown in Table S.XVII in the supplementary
material. That is due to the TLLS has to be allocated FEs
to further enhance the exploitation ability and improve the
solution accuracy. As a result, the number of generations
in evolutionary process will decrease due to some FEs are
allocated for TLLS. Therefore, fewer APC-based niching
and evolutionary operators are needed, which can save the
computational time.

In short, we can conclude that the TLLS is beneficial
for ANDE in locating more global optima and increasing
accuracy.

4) PCA: ANDE shows its prominent advantages
when dealing with MMOPs, which can be seen from
Sections IV-B and IV-C. However, when dealing with the
high dimensional MMOPs, the niching method based on
APC is somehow affected by the dimensions of problems.
Therefore, PCA is used here to achieve dimensionality
reduction for better niching. In that way, in order to study the
usefulness of PCA, ANDE is compared with the ANDE vari-
ant without PCA, termed as ANDE-noPCA. We only choose
the last five functions F16–F20 to compare because PCA is
only used for problems with more than three dimensions
(D > 3). The detailed experimental results in PR and SR at
accuracy level ε = 1.0E-04 are shown in Table S.XVIII in the
supplementary material. Obviously, on F16 and F17, there is
no significant difference between ANDE and ANDE-noPCA,
which illustrates the property of APC is not severely affected
when the dimension is less than or equal to 5. However,
ANDE-noPCA deteriorates rapidly on F18–F20, where the
dimension increases to 10 or 20. While ANDE maintains
a stable performance and dominates ANDE-noPCA on these
three functions. Such an observation directly shows the
effectiveness of PCA, which can achieve the dimensionality
reduction for better niching.

Moreover, ANDE generally consumes less computational
time than its variant without PCA component. That is due
to the PCA in ANDE can achieve the dimensional reduction,
which helps clustering faster and save computational time.

E. FEs Consumed of Each Component in ANDE

We further discuss the FEs consumed of each component
in ANDE. The detailed experimental results are listed in
Table S.XIX and Fig. S1 in the supplementary material.

The first component of ANDE is APC for population parti-
tion. The APC is an automatic niching technique, which can
form clusters/niches automatically without any extra FEs. So
the APC does not consume any extra FEs.
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After using APC to partition the population into suit-
able clusters/niches automatically to locate different peak
regions, the DE evolutionary operators are performed within
each niche. Each individual will evolve and consume
1 FE. However, for the niches with fewer than four individu-
als, the DE operators are not executed because DE must have
at least four individuals. Therefore, the FEs consumed in DE
is about N or a little fewer than N in each generation.

Then, CPA is further developed to estimate the contour land-
scape of each niche. Each niche will consume 1 FE to estimate
the optimum. However, if the legal interpolated points are
fewer than three, the contour cannot be drawn. In other words,
if the current niche has fewer than four individuals, CPA is
not used. Therefore, the FEs consumed in CPA is about n
or a little fewer than n (n is the number of niches) in each
generation.

At last, in order to enhance the exploitation ability and
improve the solution accuracy, TLLS strategy is further per-
formed after the CPA. About 50% niches will execute the
niche-level local search according to the probability Pi. If the
current niche i satisfies the probability Pi to do local search,
about 50% individuals will execute the individual-level local
search in the current niche according to the probability Pik.
As a result, there are about 25% (50% × 50%) individuals
will execute TLLS and each individual will consume 2 FEs to
sample 2 individuals. Therefore, the FEs consumed in TLLS
is about N/2 (25% × 2) in each generation.

Additionally, we also use a PCA component for dimension
reduction to assistant the APC-based niching in high dimen-
sional problems. However, this component does not consume
any extra FEs.

To sum, the number of FEs consumed in each generation of
ANDE is approximately 1.5N + n. However, when comparing
ANDE with other algorithms, their termination criteria are set
the same by the same MaxFEs. The comparison results show
that ANDE can achieve better performance using the same
computational budget, suggesting that the extra components
(i.e., APC, CPA, and TLLS) can promote the efficiency of
ANDE despite of certain computational load.

V. CONCLUSION

In this paper, the DE with APC, CPA, and TLLS, termed as
ANDE is proposed for solving MMOPs. First, we proposed
a new automatic niching strategy using APC for population
partition, which can relieve the algorithm from sensitivity of
parameter such as the cluster size or the number of clusters
and form stable niches automatically to match the landscape of
the problems without any extra FEs. Second, CPA can predict
the rough position of the potential peak in each niche, and
then provide a proper guidance for evolution, which can accel-
erate the convergence speed. Third, the TLLS is embed for
enhancing the exploitation ability of algorithm and improving
the accuracy of solutions. In addition, for MMOPs with high
dimensions, PCA is utilized to achieve dimension reduction
for better niching.

Based on these techniques, ANDE can find a balance
between diversity and convergence, leading to a competitive

feasibility and effectiveness when tackling with MMOPs. The
experimental results fully show the superiority of ANDE when
compared with other 15 state-of-the-art multimodal algorithms
and the winner of CEC2015 competition, which can find
more global optima using fewer FEs, and the dominance
of ANDE becomes increasingly obvious with the increasing
accuracy level.

However, APC-based niching technique in ANDE will gen-
erally consume more computational time compared with other
clustering niching techniques. Even so, APC also helps ANDE
form stable niches automatically for better evolution and locate
all the global optima more accurately. Therefore, the improve-
ments in performance are much worth since the increased
computational time can be compensated by the stable niching
result and high solution accuracy.

Even though the performance of ANDE shows its apparent
advantage when dealing with MMOPs, with the complexity
and dimension increases, ANDE still cannot locate all the
global optima. For future work, we wish to further improve
the performance of ANDE on more complex MMOPs with
higher dimensions and large number of global or local peaks.
Moreover, we wish to apply ANDE in dynamic multimodal
environments [66]–[68], and to explore the information shar-
ing mechanism in algorithm design [69]–[71].
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