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Abstract—Parameter tuning, that is, to find appropriate
parameter settings (or configurations) of algorithms so that
their performance is optimized, is an important task in the
development and application of metaheuristics. Automating this
task, i.e., developing algorithmic procedure to address parame-
ter tuning task, is highly desired and has attracted significant
attention from the researchers and practitioners. During last
two decades, many automatic parameter tuning approaches have
been proposed. This paper presents a comprehensive survey
of automatic parameter tuning methods for metaheuristics. A
new classification (or taxonomy) of automatic parameter tuning
methods is introduced according to the structure of tuning meth-
ods. The existing automatic parameter tuning approaches are
consequently classified into three categories: 1) simple generate-
evaluate methods; 2) iterative generate-evaluate methods; and
3) high-level generate-evaluate methods. Then, these three cate-
gories of tuning methods are reviewed in sequence. In addition
to the description of each tuning method, its main strengths and
weaknesses are discussed, which is helpful for new researchers
or practitioners to select appropriate tuning methods to use.
Furthermore, some challenges and directions of this field are
pointed out for further research.

Index Terms—Automatic parameter tuning, metaheuristics,
parameter setting, parameter tuning.

I. INTRODUCTION

OPTIMIZATION methods are extensively required and
applied to solve problems from almost all disciplines,
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whether economics, sciences, or engineering [1]. Generally
speaking, optimization approaches can be classified into exact,
heuristic, and metaheuristic methods [2]. Exact methods can
guarantee the optimality of their solutions. In other words, an
exact method can obtain the optimal solution if it is completely
executed. However, many computationally challenging prob-
lems have emerged in real-world applications. Solving these
problems with exact methods would require a huge or unaf-
fordable amount of computing resources since many of these
problems are NP-hard [3]. Traveling salesman problem (TSP),
vehicle routing problem, capacitated art routing problem, time-
tabling, and software verification are examples of such hard
problems. Unlike exact methods, heuristic and metaheuristic
algorithms do not guarantee their solutions’ optimality, but
they can obtain high-quality solutions in a reasonable time,
which is practical for application problems. Thus, heuristics
and metaheuristics are the main alternatives to solve hard
optimization problems.

Heuristics are problem specific algorithms that implement
some reasonable strategies or rules (heuristic mechanisms) to
solve problems. Although there is no theoretical guarantee of
optimality, heuristics have met some notable success on many
difficult problems and thus have been a popular choice for
solving NP-hard problems. However, the problem-dependent
nature of heuristics restricts the application of a heuristic to
one particular class of problems, i.e., heuristics are designed to
handle specific problems (or instances). Also, heuristics usu-
ally provide only suboptimal solutions because they do not
attempt to escape from local optimum. These drawbacks have
led to the introduction of metaheuristics.

Metaheuristics are high-level methodologies or general
algorithmic templates, which generally do not adapt deeply
to specific problem(s) [4]. Hence, they usually can solve a
wide range of problems [2]. In fact, the prefix “meta,” which
means “upper level methodology,” indicates that metaheuristic
algorithms can be viewed as “higher level” heuristics. Hybrid
approaches based on existing metaheuristic(s) are also consid-
ered metaheuristics [5]. In last decades, metaheuristics have
received widespread attention from researchers and are widely
recognized as efficient approaches for hard optimization
problems. A number of metaheuristic algorithms have been
developed and extensively applied, including simulated anneal-
ing (SA) [6], Tabu search (TS) [7], evolutionary algorithms
(EAs) [8], ant colony optimization (ACO) algorithm [9], par-
ticle swarm optimization (PSO) [10], and so forth. Most of
metaheuristics are nature-inspired (inspired from some princi-
ples in physics, biology, etc.), contain stochastic components,
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and often have several free parameters that can be set by users
according to problem(s) at hand [4].

The setting of parameters (or parameter setting) has strong
impact on the performance or efficacy of a metaheuristic,
because parameters control the behavior of heuristic mecha-
nisms in the algorithm [11]. Take SA algorithm as an example,
it yields good solutions only if its parameters, including ini-
tial temperature, cooling factor, number of iterations and so on,
are properly chosen [12]. Thus, to obtain high performance,
algorithm’s parameters should be properly set or fine-tuned.
Even though default parameter settings are provided, tuning
algorithm’s parameters for problems to be solved can result in
performance improvement since default parameter settings are
often determined with other problems (or application contexts)
which are different from the problems at hand.

According to the no free lunch (NFL) theorem of
optimization [13], there does not exist an universal algo-
rithm which works well for all optimization problems. This
indicates that one need to tailor the adopted algorithm for
problems at hand to improve algorithm’s performance and to
obtain good solutions. Moreover, this also implies that param-
eter setting is not a one-time task, that is, researchers or end
users need to address parameter setting problem again when
they face new problems. Consequently, the so-called parame-
ter setting problem (also known as algorithm configuration in
literature) [11], which is to properly set algorithm’s parameter
values for maximizing the empirical performance of the algo-
rithm, is routinely encountered by algorithms designers and
users.

Although it has been recognized that the performance of
a metaheuristic depends on its parameter values, parameter
setting problem has not been formally treated by the academic
community until the end of the last century [14]. During the
first decades of metaheuristics research, metaheuristics were
tuned “by hand,” i.e., performing experiments with different
parameter settings and selecting the best one, or “by analogy,”
i.e., adopting parameter setting that is successful on similar
problem(s) [15]. The demand of systematic approaches for
metaheuristics’ parameter setting has been increasingly outlined
in the literature since the end of the last century [16], [17].
Subsequently, the parameter setting problem has attracted more
attention of developers and end users of metaheuristics and
more efforts have been dedicated to developing systematic and
sophisticated approaches to address this problem.

Parameter setting problem, i.e., finding appropriate or
optimal parameter setting (i.e., configuration) in the param-
eter space of a metaheuristic, is a broad problem and research
topic. According to [18]–[21], it can be mainly divided into
two cases.

1) Parameter tuning (also termed as off-line tuning), where
good parameter values (parameter setting) are identified
before applying the algorithm to solve problems at hand.
In this case, the results of parameter tuning, i.e., the
optimal parameter setting founded by tuning process,
is used in solving problems and these parameter values
remain unchanged during the run [18].

2) Parameter control (also known as on-line tuning), where
the values of controlled parameters are changing directly

according to some strategies during the execution of
algorithm (i.e., during the run). In this situation, ini-
tial values and appropriate control strategies for con-
trolled parameters, which change or adapt relevant
parameter values during the run, are required. These
control strategies could be deterministic, adaptive, or
self-adaptive [21].

To avoid confusion, only terms “parameter tuning” (tun-
ing for short) and “parameter control” are used instead of
“offline tuning” and “online tuning” hereafter. Parameter tun-
ing processes usually requires a large number of runs of the
algorithm to analyze its performance on one instance or a set
of problem instances with different parameter settings. This
makes tuning process time-consuming, which is the main dis-
advantage of parameter tuning. The advantage of parameter
tuning is its universality, that is, a good tuning method is
applicable to handle parameter tuning of many different meta-
heuristics. While, the obvious drawback of parameter control
is its nonuniversality, that is, the proper control strategies
for one algorithm usually is not suitable for another algo-
rithm [19]. For example, the self-adaption strategy of mutation
strength in (μ/ρ, λ)-evolution strategy (ES) [22] is not proper
for controlling inertia weight of PSO. Additionally, in order
to correctly design parameter control strategies for an algo-
rithm, it is necessary to have a rough idea of how to change
parameter(s) during the run to achieve good performance. This
usually requires an understanding of the proper parameter val-
ues at different phases in the running of the algorithm and
involves the utilization of history information generated in
iterative process of the algorithm. Hence, in above senses,
parameter tuning is easier and more practical than parameter
control. In parameter control, self-adaptive parameter control,
such as step-size control and covariance matrix adaptation in
covariance matrix adaptation ES (CMA-ES) [23], is the state-
of-the-art method for numerical parameter control. Adaptive
operator selection (AOS) is a popular method to dynami-
cally determine which operator(s) should be applied during
the run of an optimization algorithm (i.e., categorical param-
eter control), based on its performance history of available
operators [24]–[26]. More description and achievements in
parameter control could be found in [27].

The focus of this paper is on parameter tuning, since many
interesting contributions have been published recently within
this field. A survey of automatic parameter tuning methods
for metaheuristic algorithms is provided. The remainder of
this paper is organized as follows. Section II first gives a
short overview of the parameter tuning problem including the
problem statement and types of parameters, then, a new clas-
sification method of automatic parameter tuning approaches
is introduced. Sections III–V review the classified three cate-
gories of tuning approaches successively. Finally, some future
research directions and a concluding summary are given in
Section VI.

II. AUTOMATIC PARAMETER TUNING

It is widely recognized that the performance of an
optimization algorithm can be improved by parameter tuning.
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The task of parameter tuning, however, can be very time-
consuming and tedious. In early research, this task was carried
out manually in many cases. Thus, automating this tough task,
i.e., developing automated approaches to finding good parame-
ter settings (or configurations), is desired and of high practical
relevance in several contexts. Hutter et al. [28], [29] stated
the following main motivation and relevance for developing
automatic procedure for parameter tuning.

1) Development of Complex Algorithms: Parameter setting
is an indispensable but time-consuming step in algorithm
development. The use of automatic parameter tuning
methods can effectively reduce the time cost of this task,
and potentially result in better algorithm’s performance
than manual methods.

2) Empirical Studies, Evaluations, and Comparisons of
Algorithms: Comparing performance of different algo-
rithms is a common task in research. An essential
question in this task is whether one algorithm out-
performs another owing to its fundamental superiority
or the optimality of its parameters [17]. Automatic
parameter tuning methods can alleviate this problem
and thus make comparative studies more fair and
meaningful.

3) Practical Use of Algorithms: In the application of meta-
heuristics, to make the algorithm work well (have good
performance), users often need to appropriately set algo-
rithm’s parameters for the problems they are facing.
However, this usually requires users to know how param-
eters of the algorithm affect its performance. Fortunately,
automatic parameter tuning can find proper parameter
settings and eliminate the need of prior knowledge for
users.

Therefore, automatic parameter tuning, also referred as
automatic algorithm configuration, is a rapidly growing field
because of above motivation and eliminating the limitations
and difficulties of manual parameter tuning.

A. Statement of Parameter Tuning Problem

The parameter tuning problem can be briefly described as:
given a parameterized algorithm and one instance or a set
of instances, find an optimal parameter setting that results
in the best possible performance across the given problem
instance(s). In other words, the purpose of parameter tuning is
to find a configuration that maximizes the performance of an
algorithm over the given problem instance(s). A formal state-
ment of parameter tuning problem was concisely given in [11]
as follows.

Given:
1) A parameterized algorithm A with free parameters that

affect its behavior.
2) A configuration space (or parameter space) C, which

defines possible configurations (i.e., parameter settings).
3) A set of problem instances I.
4) A performance metric m that measures the performance

of A across I for a given configuration c (c ∈ C).
Find: A configuration c∗ ∈ C that optimizes the

performance of A on I according to metric m.

Fig. 1. Illustration of automatic parameter tuning procedure.

In parameter tuning problem, the algorithm A whose
performance will be optimized via tuning its parameters is
called the target algorithm, the automatic parameter tuning
method used for finding the optimal configuration is often
referred to as a tuning algorithm (tuner for short) [30]. A
parameter setting or configuration c refers to a setting of free
parameters (of A) that need to be tuned, and A(c) denotes tar-
get algorithm A under specific configuration c. The process of
automatic parameter tuning is illustrated in Fig. 1.

Performance evaluation of the target algorithm (with dif-
ferent configurations) is a vital part of the parameter tuning
process. Usually, the performance of a run of a metaheuris-
tic on one instance (a run for short) can be evaluated or
assessed by the quality of the solution obtained with a fixed
computation time, or by the computation time required to
find a solution of the desired quality. However, in parame-
ter tuning, target algorithm performance evaluation is not an
easy task. Because of the stochasticity of tuning problem,
the performance measure of target algorithm is stochastic
and computationally expensive. The stochasticity (or ran-
domness) of tuning problem comes from two main sources
of randomness: 1) the stochastic nature of target algorithm,
which results from the utilization of randomized decisions
during the execution of algorithm and 2) the randomness in
selecting problem instance(s) to estimate target algorithm’s
performance [31], [33]. Since the performance metric is a
stochastic quantity, usually, the expected performance of the
target algorithm is optimized during parameter tuning pro-
cess [34]. The estimation of expected performance measure
cannot be achieved directly through analytical computation,
so it is usually estimated by Monte Carlo method [31].

According to the above statements, parameter tuning
problem can be viewed as an optimizing problem, often
called meta-optimization [35]. Meta-optimization is a research
field of searching the right behavioral parameters for some
underlying optimizer [36]. This is not a new concept as it
was already used by Mercer and Sampson [37] in the late
1970s for optimizing EA. In consequence, a tuning algo-
rithm (tuner) is a meta-optimizer that searches for the optimal
(or at least somewhat well performing) set of parameters
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for the target algorithm. And this meta-optimization problem
is a black-box problem since the relationship between algo-
rithm’s parameter values and its performance metric on given
instances are unavailable. Considering its stochasticity at the
same time, parameter tuning problem can be treated as a
stochastic black-box (meta)-optimization problem.

Automatic parameter tuning can also be considered, from a
machine learning perspective, as a learning problem of find-
ing a good parameter setting for solving unseen problem
instances with high efficacy by learning from a set of training
instances [31]. Hence, there are two distinct phases or steps:
1) tuning phase and 2) testing (or production) phase. In tuning
phase, a parameter setting that optimizes the performance mea-
sure of the algorithm is to be determined, based on the training
instances that commonly are representatives of the problem
faced in the following reproduction phase. In the later testing
(or production) phase, the founded configuration is adopted
to solve previously unseen instances [38]. The goal of algo-
rithm configuration is to find a good parameter setting in
tuning phase so that it maximizes the performance of tar-
get algorithm across instances that will be seen during the test
phase [30].

1) Parameter Types: In parameter tuning, virous types of
parameters may occurs depending on the given target algo-
rithm. Based on the parameter types classification in existing
work [11], [38]–[40], parameters can be mainly classified
into categorial and numerical parameters, according to their
searchability [41], [42].

1) Numerical parameters can be real or integer values. The
population size and mutation rate in EAs are typical
example of numerical parameters.

2) Categorical parameters are related to mechanisms or
operators that can be implemented in different ways in
the algorithm. They have a finite, unordered set of dis-
crete values. Examples of categorical parameter include
the selection operator in an EA, which can be chosen
among tournament, roulette, and ranking-based selec-
tion [41], and the mutation operator in evolutionary
programming, which could be chosen from Gaussian and
Cauchy mutation [43].

Numerical parameters define a domain that has distance
measures between different parameter values, and thus one
can use optimization methods to search the optimal val-
ues. But for categorical parameters, this is not possible
because the categorical parameters’ domain is not exploitable
and only sampling methods can be used to search this
domain [41].

The number and type of algorithm parameters, as well
as the constraints on configurations, determine the nature of
configuration space C and have a profound impact on the
methods used for finding optimal parameter settings within
that space [11]. For instance, if there are only numeri-
cal parameters in a tuning problem, it can be solved by a
derivative-free optimization algorithm along with an approach
of handling the stochasticity.

2) Specialist or Generalist: Besides parameter types,
another aspect that has profound influence on solving param-
eter tuning problem is the goal that one wants to tailor the

target algorithm to be a specialist or generalist [44], which
are defined as follows.

1) Generalist: Denotes a parameter setting that has good
performance across a wide range (or a set) of problems
(or instances).

2) Specialist: Signifies a parameter setting that show excel-
lent performance on only one problem (or instance).

By no-free lunch theorem, the true generalist which per-
forms well on all problems (or instances) does not exist. So, in
practice, a generalist is restricted to a set of problem instances
not to all the possible instances. The choice of tuning a spe-
cialist or a generalist commonly depends on the practitioner
and the application context he is facing.

Generally speaking, tuning the target algorithm as a special-
ist is easier than tuning it as a generalist. The main difference
between tuning a specialist and a generalist exists in evaluating
the performance of target algorithm. In the case of tuning the
algorithm on only one problem instance, the performance met-
ric could be the mean of performance measures from multiple
runs on the instance. While, performance metric of the tar-
get algorithm on a set of instances means the performance
over a whole set of instances. This could be represented
by the expected value of the performance over the instance
set, roughly speaking, the average performance of the algo-
rithm across the given set of instances [27], [31]. However,
for some situations, the performance metrics of the algo-
rithm on different instances may be different tremendously,
such as different in orders of magnitude. In this case, the
expected value of performance measure over different instance
is unreasonable, and normalization of performance measures
on each instance or the building block design would be help-
ful [31]. Apparently, finding the optimal parameter setting
(or configuration) usually requires a large number of runs of
the target algorithm with different configurations on different
instances. Thus, parameter tuning problem is a computational
expensive and time-consuming task.

B. Classification of Tuning Methods

Since the end of last century, a number of automatic
parameter tuning approaches have been put forward, such as
F-Race, REVAC, ParamILS, SPO, SMAC, and so forth. In
the overview paper of development in automatic parameter
tuning [39], it distinguished the existing automatic parameter
tuning algorithms among two types of methods: 1) model-free
and 2) model-based methods. In [42], tuning methods were
classified as: hand-made tuning, tuning by analogy, experi-
mental design-based tuning, search-based tuning, and hybrid
tuning. Eiben and Smit [41] classified tuning methods accord-
ing to search effort of each method. This paper distinguishes
the existing tuning methods from the perspective of tuner’s
structure and composition.

Essentially, all the existing tuning methods work by the
generate and evaluate (or test) principle, that is, by gen-
erating different parameter settings (or configurations) and
evaluating them by establishing their performance met-
rics [33], [34], [41]. Based on this principle, this paper clas-
sifies the existing tuning methods into three main categories.
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(a) (c)

(b)

Fig. 2. Illustrations of the general structures of three categories of tuning methods. (a) Simple generate-evaluate methods, (b) iterative generate-evaluate
methods, and (c) high-level generate-evaluate methods.

1) Simple Generate-Evaluate Methods: Are straightforward
approaches that consist of a generate and an evaluate
phase. In generate step, a set of candidate configurations
are generated. Then, in evaluate phase, each of those
configurations is evaluated in order to find the best one
from them.

2) Iterative Generate-Evaluate Methods: Mainly involve a
repeated process of generate and evaluate steps. This
kind of methods do not generate all the candidate con-
figurations in one step as like in simple generate-evaluate
methods. On the contrary, it starts with a small set of
initial configurations and creates new configurations iter-
atively during execution. After new configurations are
generated, they are evaluated to find the incumbent, that
is, the best configuration found so far, and at the same
time to guide the generating of new configurations for
next iteration. This category can be further subcatego-
rized into: experimental design-based tuning, numerical
optimization-based tuning, heuristic search-based meth-
ods, and model-based optimization approaches. These
subcategories will be described in Section IV.

3) High-Level Generate-Evaluate Methods: Consist of a
high-level generate mechanism and an evaluation step.
In generate phase, a number of elite (high-quality) con-
figurations are generated by existing tuners or search
methods rather than by random sampling or design
of experiments (DOE) methods. In evaluate step, the
best of these configurations is selected through careful
evaluating.

The general structures or frameworks of above three cat-
egories are illustrated in Fig. 2. Different generating tech-
niques (also referred to as sampling methods) and evaluation
approaches form different tuning algorithms. Generating tech-
niques produce candidate parameter settings (configurations)
and evaluation approaches estimate candidate configurations’
performance, where the stochasticity of the tuning problem
need to be handled. In parameter tuning approaches, the com-
monly used techniques for creating candidate configurations
includes DOE, such as full factorial design (FFD), central
composite design, Latin hypercube design (LHD), and random

sampling design (RSD). Yuan et al. [34] broadly considered
black-box optimization algorithms as sampling methods for
parameter tuning. Actually, any methods that can effectively
generate candidate configurations could be taken as generating
techniques.

Evaluation methods in tuning problem distinguish from
these methods used in black-box optimization problem due
to the stochasticity of tuning problem. Thus, it is worth here
to briefly summarize the evaluation methods that are used
in the existing tuning algorithms. Evaluation techniques for
parameter tuning mainly include the following.

1) Repeated Evaluation: For stochastic or random objective
function optimization problem, like parameter tuning
problem, the most straightforward method for evaluating
the objective function is to evaluate the function multiple
times and return the average value [34]. In param-
eter tuning, the repeated evaluation method assesses
each candidate configuration by running a number of
times of the target algorithm and returning its average
performance measure.

2) F-Racing: The F-Race method proposed by
Birattari et al. [31], [45] evaluates candidate con-
figurations gradually, i.e., instance by instance, and
immediately eliminates inferior configurations as soon
as statistical evidence is gathered against them. The
early elimination of poor quality configurations can
concentrate computing resources on more promising
candidates and hence allow them to obtain more reliable
performance estimation [42]. Thus, racing method uses
computational power more efficiently than repeated
evaluation.

3) Intensification: Intensification is a method used in com-
paring a new configuration to the incumbent. In this
method, the new candidate is gradually evaluated on the
sequence of instances (sequence for short in following
of this paragraph) that the incumbent has already evalu-
ated on. During the evaluation, once the new candidate
is worse than the incumbent, it is eliminated; other-
wise, it is evaluated on next instance from the sequence
and compares with the incumbent again. This process
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Fig. 3. Classification of automatic parameter tuning approaches.

continues until the candidate has been evaluated on all
the instances in the sequence, then a new incumbent
is determined. Intensification mechanism has been used
in several tuning methods, including ParamILS [28],
SPO+ [46], and SMAC [47].

4) Sharpening: Sharpening [48] is another intensification
technique that makes the promising parameter configu-
rations are tested more thoroughly than the ones that are
not as prospective. In the beginning, each configuration
is evaluated with a small number of tests, but when cer-
tain threshold is met, the number of tests increases, i.e.,
doubles. In this way, the tuning algorithm can explore
the configuration space quickly.

5) Adaptive Capping: Adaptive capping proposed in [28]
is a method used to cut off the run of unpromising con-
figurations and thus lead to computational savings. The
authors present two of its variants, namely, trajectory-
preserving capping and aggressive capping.

The parameter tuning algorithms that as far as we are aware
from literature are allocated to above three main categories and
its subcategories. This classification is presented in Fig. 3. In
subsequent sections, each category of tuning algorithms will
be reviewed successively.

III. SIMPLE GENERATE-EVALUATE METHODS

Since parameter tuning problem is a black-box problem, the
most straightforward way to find a good parameter setting is
through the generate-evaluate principle. The simple generate-
evaluate methods, as illustrated in Fig. 2(a), are noniterative
tuners that directly adopt this principle by first creating a
number of parameter settings (candidate configurations), then,
evaluating each of them to finding the best configuration. The
brute-force approach and F-Race method fall in this category.
The main difference between them is the evaluation method.

Specifically, brute-force adopts the repeated evaluation, while
F-Race employs racing method.

A. Brute-Force Approach

In brute-force approach, at first, a set of parameter con-
figurations are generated usually by FFD or other DOE
techniques, then the performance of each candidate config-
uration is estimated by running the same number of runs on
training instances. The configuration with the best estimated
performance is considered the optimal parameter setting. In
this method, the computing resources are evenly distributed
to each candidate configurations [31]. To achieve good results
by brute-force method, a sufficiently large number of runs is
required for each candidate configurations.

Brute-force approach is the easiest method for parameter
tuning, but it presents some serious weakness. First, because
of the even allocation of computational resources to each con-
figuration, poor quality configurations are thoroughly tested
to the same extent as the good ones are, thus, the computa-
tional power is not used efficiently. Additionally, there is no
criterion that decides how many runs of each configuration on
each instance should be performed to handle the stochasticity
of the target algorithm [45].

B. F-Race

F-Race, which is inspired from the algorithm Hoeffding
race [49], [50] in machine learning for model selection, was
proposed in [45] and comprehensively studied in [31]. The
essential idea of racing method is to evaluate candidate con-
figurations incrementally on a stream of instances. As soon
as sufficient (statistical) evidence is gathered against some
candidates, these configurations are discarded, and the race
continues on the surviving candidates. In F-Race, after each
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evaluation round of the candidate configurations, the nonpara-
metric Friedman test (Friedman two-way analysis of variance
by ranks) is used as a family wise test to check whether there
is evidence that at least one of the candidate configurations
is significantly different from others in terms of performance
measures. If the null hypothesis of no differences is rejected,
pair-wise comparisons between the best ranked and each other
configuration are executed and all candidates that result in
significantly worse performance than the incumbent are elim-
inated and will not appear in next evaluation round [51]. The
process is repeated until there are only two candidates remain,
and the better one of the two is taken as the result for tuning
problem.

The test statistic used in F-Race is based on the ranking
of candidates’ performance metrics. It is worth mentioning
that ranking plays a twofold role here. The first role is con-
nected with the nonparametric nature of the statistical test
based on the ranking. A second role is to implement a blocking
design [52], where only the ranking of different configurations
within each instance is considered. The blocking design is an
effective way of normalizing or standardizing the performance
metrics observed on different instances [38].

A set of candidate configurations should be created before
the execution of racing procedure. When F-Race was first
proposed by Birattari et al. [45], this candidates set was
generated by an FFD, and this version of F-Race using
FFD is denoted as FFD/F-Race. However, FFD is restricted
due to its drawbacks. First, it requires practitioners to deter-
mine the levels of each parameters. More importantly, the
number of candidates grows exponentially with the number
of parameters. Therefore, when the number of parameters
is large, this is impractical and computationally prohibitive.
Consequently, FFD is usually limited to the case with small
number of parameters and reasonable number of levels for
each parameter.

Birattari et al. [53] showed that F-Race with candidates
generated by an RSD is significantly better than FFD/F-Race
in many applications. In RSD, the values of parameters are
sampled according to some probability model defined over
the parameter space. Usually, priori information is unavailable,
and in this case the probability model is set to an uniform
distribution. The F-Race using RSD is denoted as RSD/F-
Race. Using RSD in F-Race has two main advantages: 1) no
priori definition of levels for numerical parameters is required
and 2) an arbitrary number of candidates can be generated
while also uniformly covering the configuration space [51].

In [31], F-Race was compared with other racing algorithms
and brute-force approach on two tuning problems. In the first
tuning problem, the iterated local search (ILS) [54] is tuned
on quadratic assignment problem [55]. And in the second one,
the ACO [9] is tuned on TSP [56]. The results showed that F-
Race is an effective and convenient method to solve parameter
tuning problems of metaheuristics. Besides above two applica-
tions, the F-Race algorithm has been adopted in a number of
other studies, as briefly mentioned in [31]. The race package1

1https://cran.r-project.org/src/contrib/Archive/race/

implemented in programming language R by Birattari [32] and
a simple documentation2 can be found from the websites.

F-Race uses the computational power more efficiently than
repeated evaluation in brute-force approach. It also can stop
the search process by itself, i.e., stop when only one configura-
tion left. However, if the target algorithm has a large number of
parameters and/or each parameter has a wide range of possible
values, a very large number of candidate configurations should
be evaluated to obtain high-quality results. In such cases, the
adoption of F-Race could become impractical or computa-
tionally prohibitive. This is a common drawback of simple
generate-evaluate methods due to generating candidate con-
figurations in one-stage and without using priori information
about the importance and interaction of algorithm parameters
in generating step.

C. Remarks on Simple Generate-Evaluate Methods

Simple generate-evaluate methods, as its name implies, are
easy to understand and implement. Brute-force and F-Race
methods are able to tune both numerical and categorical
parameters. As the most basic approach, the brute-force
approach usually serves as a baseline in experimental eval-
uation of other parameter tuning algorithms [31], even though
it is computationally expensive. F-Race method provides a
promising approach for evaluating candidate configurations
and results in significant computational resource savings. In
simple generate-evaluate methods, all candidate configurations
are initially generated at once by FFD, RSD, or other sam-
pling strategies, and usually no priori information about the
importance and interaction of algorithm parameters is used
in candidate configurations generating step, that is, the set
of candidates are generated uniformly, i.e., without bias. In
order to obtain acceptable optimal configurations, the number
of candidates should be large enough. When parameter space
is large, this number will increase tremendously. This leads
to a huge number of runs in evaluating phase and, thus, is
computationally expensive even prohibitive. Therefore, sim-
ple generate-evaluate methods are not suitable for parameter
tuning problems with large configuration space.

IV. ITERATIVE GENERATE-EVALUATE METHODS

Iterative generate-evaluate methods are iterative tuners, that
is, unlike simple generate-evaluate methods, they repeatedly
execute the generate and evaluate steps, as illustrated in
Fig. 2(b). More importantly, the information gathered from
previous iteration(s) is used to guide the generating (or sam-
pling) of new candidate configurations for next iteration. It is
desirable to generate candidates around the promising region
of the configuration space in this way. In other words, by
taking advantage of history information, iterative generate-
evaluate methods could explore parameter space more effec-
tively than simple generate-evaluate methods which usually
evenly sampling candidates within the space. Thus, iterative
tuners mitigate the main drawback, that is, inefficiency in case
of large parameter space, of noniterative tuners presented in
the last section.

2http://ftp.uni-bayreuth.de/math/statlib/R/CRAN/doc/packages/race.pdf
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According to the strategies of generating candidate configu-
rations, i.e., the sampling strategies, iterative generate-evaluate
methods can be further divided into the following.

1) Experimental design-based tuning approaches, where
experimental design techniques are used to set parameter
values, i.e., to generate candidate configurations.

2) Numerical optimization-based methods, where
derivative-free numerical optimization algorithms
are taken as sampling strategies to create candidate
configurations.

3) Heuristic search-based methods, where new candidate
configurations are generated by some heuristic rules,
such as the crossover and mutation in EAs.

4) Model-based optimization approaches, where a model
that describes the relation between parameter configu-
rations and algorithm performance is used to assist the
evaluation of candidates and to guide the sampling of
new candidates.

Apparently, iterative generate-evaluate methods include the
largest class of current parameter tuning algorithms. This sec-
tion devotes to this category of tuners. Specifically, above
four subcategories of tuning approaches are reviewed from
Sections IV-A–IV-D, respectively.

A. Experimental Design-Based Tuning

The DOE is a well-established method to plan experiments
so that desired data are collected and can be analyzed by
statistical methods to draw valid conclusions [57]. In simple
generate-evaluate methods, DOE has been used to gener-
ate candidate configurations. Nevertheless, DOE can be used
beyond the candidates generating. Based on experimental anal-
ysis, for instance, one can locate the promising region of
search space, analyze the effects of parameter values chang-
ing, screen and rank the importance of parameters. This section
reviews some tuning approaches that are based on experimen-
tal designs and use analysis of experiments to guide the search
process.

1) CALIBRA: Adenso-Díaz and Laguna [5] developed an
iterative tuning algorithm called CALIBRA which employs
DOE coupled with a local search procedure. In CALIBRA,
the experimental designs helps the local search to focus on
promising region of the parameter space (search space). Before
the local search starting, a DOE, that is, a two-level FFD, is
used to identify a start point for the search. Apart from keeping
the local search starting on promising region, CALIBRA uses
experimental analysis to narrows the search space and initiates
the next round of experiments. In the local search, optimal
configuration is found by incrementally narrowing the range
of each parameter through experimental analysis. Specifically,
for each iteration of the local search, a Taguchi’s fractional
experimental design [58] is carried out using the bounds and
midpoint of the narrowed range. This is repeated until local
optimum criteria are satisfied. If computational budget is avail-
able, new local search could be executed to provide more local
optimal solutions. The best parameter setting found is the out-
put best solution. For stochastic algorithms, CALIBRA uses

repeated evaluation to establish the performance measures of
each experiment point (candidate configuration).

CALIBRA is a representative DOE-based tuning method
and can focuses on promising region quickly owing to the
combining of experimental designs and local search. However,
due to the Taguchi’s fractional experimental design [the
L9(34)] is used, CALIBRA can only handle up to five parame-
ters. Additionally, this approach focuses on the main effects of
parameters without exploiting the interaction effects between
parameters [5], [59]. These two drawbacks limit the appli-
cation of CALIBRA to situations, where the number of
parameters is small (up to five) and the interactions among
parameters are negligible.

2) Other DOE-Based Tuning Approaches: Based on exper-
imental designs, Gunawan et al. [59] proposed a parameter
tuning framework consists of three phases, i.e., screening,
exploration, and exploitation. Given a number of parameters
of the target algorithm, the screening phase uses a factorial
experiment design to rank these parameters so that unimpor-
tant parameters, whose values have insignificant impact on
the performance of target algorithm, are determined. Values of
unimportant parameters can be set as constants and thus reduce
the configuration space to be explored. Then, in the exploration
phase, a first-order polynomial model is constructed to iden-
tify the promising ranges for important parameters. Finally,
in the exploitation phase, the promising ranges of important
parameters are sent to an automated tuning configurator, such
as ParamILS [28] to find the optimal parameter configuration.

Moreover, Gunawan et al. [60] improved the efficiency of
above tuning framework by adding a parameter space decom-
position step at the beginning. The decomposition step aims
at reducing the parameter space such that the number of can-
didates in experimental designs would decreases. In [60], the
so-called Resolution IV Design [57] was used to separate the
main effects and interactions of parameters.

B. Numerical Optimization-Based Tuning

When all the parameters of target algorithm are numerical,
i.e., real or integer valued, the tuning problem could be solved
by numerical optimization techniques along with an evaluation
method. Integer parameters can be handled by the continu-
ous optimizer through rounding. Yuan et al. [34] presented
research on derivative-free numerical optimization algo-
rithms for tuning numerical parameters. In that work, bound
optimization by quadratic approximation (BOBYQA) [61] was
combined with repeated evaluation, and mesh adaptive direct
search (MADS) [62] was combined with both repeated eval-
uation and F-Race to solve parameter tuning problems. We
call these methods that combine numerical optimizer and eval-
uation methods as numerical optimization-based tuning or
tuners.

In general, a numerical optimizer can be combined with
the repeated evaluation or F-Race to form a tuner. However,
for those numerical optimizers that, in each iteration, only one
candidate is generated and selection is not required, the F-Race
evaluation method is not feasible, only the repeated evalu-
ation is available [34]. The repeated evaluation and F-Race
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both can be coupled with numerical optimizers that generate
multiple candidates and select the best out of them in each
iteration. For computational cost savings, F-Race is preferred
in this case. From the generate-evaluate principle perspective,
numerical optimization-based tuners are apparently iterative
generate-evaluate methods, where candidate configurations are
generated according to numerical optimizer’s search strategies.

Numerical optimization-based tuning methods are eas-
ily acquired by combining the existing powerful black-
box optimizer and evaluation methods, such as racing or
repeated evaluation methods. Practitioners can choose a famil-
iar optimization algorithm to form a tuner and then adopt it
to solve their tuning problems. The common limitation is that
most of this kind of tuners are only applicable to numerical
parameters (cannot deal with categorical parameters) since the
majority of derivative-free optimizers only deal with numerical
optimization problems.

C. Heuristic Search-Based Methods

Iterative tuning algorithms that use some heuristic rules to
generate new candidate configurations are referred to as heuris-
tic search-based methods. The goal of using heuristic rules is
to effectively create candidates so that the promising region
could be quickly identified and then be focused on. In this way,
the tuning algorithm could find good configuration fast. Many
of the existing tuning algorithms, including iterated F-Race,
ParamILS, Meta-EAs and HORA, fall in this category.

1) Iterated F-Race: The main challenge and drawback of
F-Race is that, when the tuning problem has a large num-
ber of parameters and/or each parameter has a wide range of
possible values, the number of candidate configurations to be
evaluated should be quite large, in order to obtain high-quality
solutions. In such cases, F-Race method becomes impracti-
cal and computationally prohibitive. To alleviate this problem,
Balaprakash et al. [63] proposed the iterative application of
F-Race, which is abbreviated to iterated F-Race or I/F-Race
and showed its effectiveness through examples on MAX–MIN
ant system (MMAS) [64], estimation-based local search [65],
and SA algorithm.

The iterated F-Race, as its name suggests, use an iterative
procedure to find optimal parameter settings. Specifically, in
each iteration, first, a set of candidate configurations are gener-
ated according to a probabilistic model, then a standard F-Race
is performed on the candidate set and the survived candidates
are used to update the probabilistic model which will be used
in next iteration. This cycle is repeated until the stop condi-
tion, such as maximum computational budget, is satisfied. It is
hopeful to focus candidate configurations around the promis-
ing region by using survived candidates to bias the sampling
of new candidates [38]. The efficiency of the search proce-
dure is, thus, improved by this way. Details about how to
update the probabilistic model in iterated F-Race could be
found in [51] and [63].

Recently, López-Ibáñez et al. [30] provided a software
package implemented in programming language R, called
irace, that includes the iterated F-Race algorithm as well
as several of its extended and improved variants. This irace

package could be found along with user guide document
and usage examples from its website.3 In [66], iterated
F-Race method was applied to improve the performance
of the CMA-ES algorithm with increasing population size
(iCMA-ES) [67] on CEC’05 benchmark set [68]. The results
showed that the performance of iCMA-ES was significantly
improved by automatic parameter tuning procedure. Later,
Liao et al. [69] employed iterated F-Race method to tune
seven high-performing continuous optimizers on two different
benchmark sets (CEC’05 [68] and SOCO [70]) and also con-
cluded that the performance of tested continuous optimizers
were improved by parameter tuning.

Iterated F-Race has become one of the competitive auto-
matic parameter tuning approach. It can handle both numerical
and categorical parameters. However, it has a few limitations.
First, iterated F-Race was not primarily designed for reducing
computation time [30]. So that, the time-saving techniques,
such as sharpening and adaptive capping, is not involved in
current iterated F-Race method. Moreover, to obtain accept-
able results, an adequate number of iterations should be
implemented, in other words, a sufficient number of candi-
date configurations need to be sampled and evaluated. Thus,
if the tuning budget is too small, the resulting configuration
of iterated F-Race might be poor.

2) Meta-EAs: Since parameter tuning problem is a meta-
optimization problem, apparently, EAs can be used as meta-
EA (meta-EAs) to solve tuning problems. In a meta-EA, its
individuals, i.e., numeric vectors, represent parameter config-
urations and the performance measures established by eval-
uation method (such as repeated evaluation or F-Race) of
each configuration are related to the corresponding (meta-)
fitness [48]. Meta-EA was first introduced by Mercer and
Sampson [37]. Greffenstette [15] conducted experiments
with meta genetic algorithm (meta-GA) and showed its
effectiveness.

In [48] the CMA-ES [23], which is the state-of-
the-art improvement of evolution strategies for numerical
optimization, was adopted as a meta-EA and the repeated eval-
uation was used to establish performance measures (fitness of
meta-EA) of each candidate configuration. The CMA-ES was
also used as meta-EA by Yuan et al. [34] where both repeated
evaluation and F-Race were taken as evaluation methods.

The so-called gender-based genetic algorithm (GGA)
for automatic parameter tuning was introduced by
Ansótegui et al. [71]. The GGA uses the concept of
competitive and noncompetitive genders [72], [73] in gener-
ating candidates configurations. In each generation of GGA,
the whole population is divided into two subpopulation with
different genders, i.e., competitive and noncompetitive. The
individuals (i.e., candidate configurations) in competitive
population are evaluated on the set of training instances
and compete for the right of mating. The fittest individuals
(candidates), that is, candidates that yield better performance,
are then mated with the noncompetitive population to generate
new candidate configurations [71], [74].

3http://iridia.ulb.ac.be/irace/
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The parameter relevance estimation and value
calibration (REVAC) method was introduced by
Nannen and Eiben [75], [76] based on the idea of solv-
ing parameter tuning problem by estimating parameter
relevance with normalized Shannon entropy [78]. The
REVAC is considered a meta estimation of distribution
algorithm (meta-EDA) [77] since it use the same general idea
as EDA [79], that is, estimating the distribution of promising
parameter values [80]. REVAC algorithm is an iterative pro-
cess that consists of estimating the distributions of promising
parameter values for each parameter within the configuration
space, and generating parameter configurations by drawing
values from these distributions. These parameter distributions
are updated after evaluating newly drawn candidates [48].
The tuning process terminates until the maximum number of
tested (or evaluated) candidate configurations is reached.

Meta-EAs are automated search methods to identify good
parameter settings for metaheuristics. They have the potential
to reach the global optimum within parameter space since they
are based on EAs, which are well-known global optimizers.
It is also important to remark that meta-EAs can stop at any
point of the search process and return the current best configu-
ration (incumbent) as a solution. However, the similar as EAs,
meta-EAs usually require a large number of evaluations of can-
didate configurations to obtain desirable solutions. This is not
practical when parameter space is large. Additionally, many
meta-EAs, such as REVAC and meta-CMA-ES, cannot han-
dle categorical parameters. They are the two main weaknesses
of meta-EAs for parameter tuning.

3) ParamILS: ParamILS, which was proposed by
Hutter et al. [28], [81], is an automatic parameter tuning
framework. It combines stochastic local search method
with specific mechanisms which exploit some properties of
parameter tuning problem [11]. The core of ParamILS is
the ILS [54], which is a versatile and well-known stochastic
local search method [82]. ILS involves a main loop consist of
three components: 1) the perturbation of current best solution
to scape from the local optima; 2) the local search procedure
to find optima from given start point; and 3) the acceptance
criterion to determine whether the currently obtained solution
is kept or rejected [54].

ParamILS employs the ILS method to search the optimal
parameter setting for target algorithm within its configuration
space. It starts the search from the best parameter configu-
ration out of the combination of default configuration and
a number of randomly generated configurations. This fol-
lows a subsidiary local search procedure, that is, iterative first
improvement process that searches a one-exchange neighbor-
hood, where configurations differ in the value given to exactly
one parameter, i.e., only one parameter value is changed at
a time. Once a local optimal configuration is identified, the
main loop of the ILS is entered, which involves three steps:
1) a perturbation step that changes randomly the parameters
values; 2) an execution of the iterative improvement process;
and 3) an acceptance criterion that decides from which con-
figuration to continue the search process [28]. In local search
procedure of the ILS, one needs to test the two candidate
configurations and determine which one is preferred, i.e., the

evaluation of parameter configurations with consideration of
handling the stochasticity of tuning problem.

In ParamILS framework, Hutter et al. [28] proposed differ-
ent ways to evaluate parameter configurations for determining
which configuration should be preferred. The most simple and
intuitive approach, which is called BasicILS, is to evaluate
every candidate configuration by running it on same problem
instances (training instances) with the same random num-
ber seeds. FocusedILS, which is a variant of BasicILS, uses
the intensification mechanism (described in Section II-B) that
adaptively changes the number of training instances during
evaluating candidates. For situations, where the performance
metric is the computation time, i.e., the goal of parameter
tuning is to find the optimal parameter setting that minimizes
the computation time, ParamILS can use the so-called adap-
tive capping mechanism, which bounds the execution time
of configurations according to the observed performance of
the current best configuration and early prune or stop the
poor configurations, to reduce the computational cost. The
software of ParamILS implemented in programming language
Ruby, which is free for academic use, can be found from the
website,4 where a quick start guide could also be downloaded.

Recently, Cáceres and Stützle [83] employed the variable
neighborhood search (VNS) [84] mechanism as an alterna-
tive for the one-exchange neighborhood in the local search
procedure of ParamILS. In this paper, the authors adopted
the reduced VNS (RVNS), where various neighborhoods
are explored randomly by changing the neighborhood to be
explored in a systematic way as it is common in VNS, rather
than the one-exchange neighborhood local search in original
ParamILS. It has been shown that the search of good algorithm
configurations can profit from RVNS’ ability of exploring dif-
ferent and also larger neighborhoods but also enabling the
intensification of the search when is required.

ParamILS is one of the state-of-the-art automatic parameter
tuning methods. It is able to tune both numerical and cate-
gorical parameters. ParamILS, like meta-EAs, can be stopped
at almost any point in the search process and provide a
good quality parameter configuration. Since the neighborhood
search is applied, ParamILS requires the discretization for each
parameters to define the neighborhood of candidate config-
urations. This is not so easy-to-handle as meta-EAs, SPO,
and SMAC (will be described in the next section) which just
require the definition of ranges of values for each parameter.

4) HORA: The so-called heuristic oriented racing algo-
rithm (HORA) introduced by Barbosa and Senne [85], [86]
is a relatively new heuristic search method for parameter
tuning. HORA is an iterative algorithm which dynamically
creates candidate configurations and uses the racing method
to evaluate them. Thus, HORA is apparently an iterative
generate-evaluate method.

At the start of the HORA tuning process, a number of
instances (n instances) are selected arbitrarily from the given
set of problem instances. The experimental studies are then
performed on each of the selected instances (also called train-
ing instances) using the response surface methodology (RSM)

4http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/
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to identify the best (or promising) parameter settings for each
training instance. The experimental studies, thus, result in n
different settings, each one being related to a training instance.
These identified parameter settings ensure diversity of the
parameters and they are used to define the upper and lower
bounds of each parameter. After that, HORA enters an iterative
procedure consisting of: 1) dynamically creating new can-
didates in the neighborhood of some best known candidate
configurations, i.e., configurations that are preferred in evalu-
ation and 2) evaluating the set of candidate configurations with
racing method to discard poor ones according to the statisti-
cal evidences [85], [86]. By this repeated procedure, HORA
algorithm consistently finds better candidate configurations.

In [85] and [86] a case study about HORA, in which a brute-
force and racing methods were also considered for comparison,
was performed on GA and SA with instances selected from
the OR-Library [87]. The results of the case study showed that
HORA achieve similar (or even better) results but with much
lower computational cost compared to other approaches. This
verified the effectiveness of HORA and indicated it is a fast
tuner.

It seems like that HORA and iterated F-Race are similar
since they are both iterative tuners that involve iteratively gen-
erating new candidates and evaluating candidates with racing
method. However, the main difference between them is the
way of generating candidate configurations, that is, HORA
creating new candidates in the neighborhoods of some good
configurations, while iterated F-Race generating candidates
according to a probabilistic model. Additionally, HORA uses
DOE to establish a set of initial configurations and narrow the
original search space of the parameters.

HORA is a relatively new method that combines exper-
imental study, neighborhood search and racing techniques.
Current studies in [85] and [86] show that HORA is a promis-
ing method for parameter tuning, but comprehensive study on
more problems is still required. Since the experimental study
based on RSM is used in HORA to initially identify the best
parameter settings and to narrow the search space, the search
speed could be improved. On the other side, if the landscape
of algorithms performance respect to its parameter settings
is complex or multimodal, using the simple RSM to identify
promising region may lead to the search of HORA focusing
on wrong region.

D. Model-Based Optimization Approaches

The use of response surface model, also called surro-
gate model, is promising and popular in dealing with com-
plex real-world optimization problems, especially expensive
optimization problems. This is commonly known as model-
based optimization methods [88]. Model-based parameter
tuning approaches adopt model-based optimization methods
to address tuning problem. They build response surface or
surrogate models to describe (or model) the dependence of
target algorithm’s performance on its parameter settings and
then use these models to find good parameter settings for the
target algorithm. The existing model-based tuning approaches
can be described in a unified framework that involves an

iterative procedure consisting of constructing models and using
them to determine candidate configurations to be investigated
or tested [89]. Apparently, model-based tuners are iterative
procedures to tackle parameter tuning problems. The dis-
tinctive difference distinguishing model-based tuners from
previously presented iterative tuning methods is that, in model-
based tuning methods, the candidate configurations to be tested
or investigated are determined-based response models which
provides desirable information to address the tradeoff between
exploration and exploitation.

Model-based parameter tuning approaches could be viewed
as extensions of the influential model-based optimization
method, that is, the efficient global optimization (EGO) [90]
which combines the predictive model (Kriging or Gaussian
process model), i.e., design and analysis of computer exper-
iments (DACE) [91], with sequential sampling strategies
[commonly based on the expected improvement (EI) crite-
rion], which is used to identify the most promising next design
point. The commonly known model-based tuning approaches,
including the sequential parameter optimization (SPO) [92]
and the more sophisticated sequential model-based algorithm
configuration (SMAC) [47].

1) SPO: The SPO procedure was introduced by
Bartz-Beielstein et al. [92], [93] to optimize algorithm
performance. SPO extended EGO to tackle parameter tun-
ing problem by coupling with special techniques to handle
stochasticity of tuning problem. SPO starts with a set of initial
design points (parameter settings or configurations) which
are generated by an LHD [94]. Due to the stochastic nature
of the target algorithm, performance for each design point
(configuration) is evaluated by means of repeated evaluation.
The best configuration from the initial set is chosen as the
initial incumbent. Based on the set of parameter settings and
their corresponding performance measures, SPO constructs a
response surface model called Kriging model [89]. Then, a
new set of design points (configurations) are generated and
tested using the constructed model. The most promising points
(configurations), which have the highest EI, are chosen as
new candidate configurations for next iteration. The selected
new candidates will be evaluated and compared with the
current incumbent to determine the new incumbent through
the intensification mechanism [88]. With newly evaluated
points, the model can be updated and then used in next
iteration. This process is repeated until termination criterion,
such as the maximum number of iterations or number of
repetitions for the best configuration, has fulfilled.

Sequential Kriging optimization (SKO) [95] is another
extension of EGO to noisy function optimization and can be
used to parameter tuning problem. Unlike in SPO, SKO uses
Gaussian process regression to fit noisy response data, i.e., the
algorithm performance metric values, directly. Besides model
fitting, SKO and SPO are different in selection of incumbent,
generating new parameter settings, and intensification mecha-
nisms. Bartz-Beielstein and Zaefferer [88] have demonstrated
the superiority of SPO over SKO, and thus SKO appears
rarely in parameter tuning domain. Hutter et al. [46], [89]
later presented a new version of SPO named SPO+, where
log-transformed response data, new EI criterion, and new
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intensification procedure were used. This new version per-
formed more robustly and given better results. In addition,
in order to avoid the up-front cost of initial design, the
time-bounded SPO (TB-SPO) [96] was introduced as another
extension of SPO. SPO and its variants are sophisticated
model-based parameter tuning approaches for target algo-
rithms with only numerical parameters on single problem
instance. The SPO Toolbox (SPOT) package of SPO method
implemented in programming language R and its reference
manual are available in the SPOT website.5 Further descrip-
tion of this SPOT package and its usage can also be found
in [97] and [98].

2) SMAC: With the aim of removing the two main limita-
tions of SPO and its variants, these are, only support numerical
parameters and only optimizes algorithm performance for sin-
gle instance, the more sophisticated SMAC method [47] was
introduced to address general parameter tuning problems.

First, to handle categorical parameters of target algorithm,
SMAC uses random forest [99], which is a machine learning
method for regression and classification, instead of Kriging in
SPO. Random forests are collections of regression trees, which
are known to perform well for categorical input data. Thus,
random forests share the benefit of regression trees and typi-
cally yield more accurate predictions [100]. Furthermore, they
also provide quantification of uncertainty in a given prediction.

Another aspect is to extend the model to handle multiple
instances so that the tuning approach can optimize the
performance of target algorithm on a set of problem instances
instead of only on a single instance. In SMAC, information
about the instances is explicitly integrated into the response
surface model, i.e., the random forests model. Therefore,
SMAC learns a joint model that can predicts performance of
target algorithm for combinations of parameter settings and
instances features. And these predictions are then aggregated
across instances to give a statistic performance metric on each
parameter configuration.

SMAC also uses the EI criterion as used in [46] to select
promising candidate configurations in parameter space. Unlike
in SPO, it performs a simple multistart local search to find
configurations with maximal EI and considers all resulting
configurations as promising candidates for next iteration. With
above main modifications and extensions, SMAC can tackle
general algorithm parameter tuning problems and yields very
good results.

The experimental study that compares the efficacy of
SMAC, TB-SPO, GGA, and ParamILS for a range of parame-
ter tuning problems that involve minimizing the runtime of the
SAT (propositional satisfiability problem) solver SAOS and
SPEAR and MIP (mixed integer programming) solver IBM
ILOG CPLEX, was performed in [47]. The empirical results
demonstrated that, overall, SMAC yielded statistically signifi-
cant improvements over the compared approaches. The source
code of SMAC in Java6 and in Python7 are available for free

5https://cran.r-project.org/web/packages/SPOT/index.html
6http://www.cs.ubc.ca/labs/beta/Projects/SMAC/
7https://github.com/automl/SMAC3

download. Documentations for both versions are provided and
can be found from the websites.

Model-based optimization approaches are efficient methods
to solve parameter tuning problems. SPO has shown the poten-
tial and efficiency of model-based tuning approach, but SPO
and its variants have two main limitations, these are, only
support numerical parameters and only optimizes algorithm
performance for single instance. The sophisticated SMAC
method can tackle both numerical and categorical parame-
ters, and it is especially good at solving tuning problems with
many categorical parameters. To the best of our knowledge,
SMAC is the currently most powerful automatic parameter
tuning method.

E. Remarks on Iterative Generate-Evaluate Methods

Iterative generate-evaluate methods, generally, alleviate the
computational burden by iteratively generating a small number
of candidate configurations rather than initially generating a
large number of candidates in simple generate-evaluate meth-
ods. This category is the most fruitful class of approaches
for tuning problems. Iterative tuners, like iterated F-Race,
ParamILS, and SMAC are the state-of-the-art automatic
parameter tuning approaches. The numerical optimization
methods and heuristic search methods could be modified to
solve parameter tuning problem by combining proper eval-
uation methods. Effective sampling methods, which balance
the exploration and exploitation and thus quickly focus on the
promising region, are still needed. Prescreening and narrow-
ing the parameter space with small amount of computational
resource is advisable for improving the efficiency of tuning
process. The use of response model or surrogate model is
helpful to reduce the evaluation cost and guide the sampling
of new candidate configurations.

V. HIGH-LEVEL GENERATE-EVALUATE METHODS

The high-level generate-evaluate methods refer to a recently
new category of tuning methods that uses more advanced
(high-level) approaches to generate candidate configurations
and then carefully evaluates these candidates for selecting the
best parameter configuration, as illustrated in Fig. 2(c). In
parameter tuning problem, a large number of parameter con-
figuration evaluations, which involve performing a number of
runs for each configuration on a set of problem instances, is
usually required. This is computationally expensive, in par-
ticular when repeated evaluation method is used in tuning
algorithm or the size of problem instances is very large.
High-level generate-evaluate methods attempt to solve tuning
problem in an advanced generate-evaluate framework and to
cut down the computational cost.

The essential idea of high-level generate-evaluate methods is
to quickly generate a set of elite or high-quality parameter con-
figurations (through coarse evaluations) with small amount of
computational resources, and then to carefully select the best
one from this set instead of evaluating each candidate con-
figuration thoroughly from the very beginning. By this way,
computational resources are saved in exploring the parameter
space and identifying promising parameter configurations, and
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thus more resources are available for carefully evaluating of
elite configurations. The post-selection mechanism [33], [34]
was designed under this direction to solving tuning
problems.

A. Post-Selection Mechanism

The post-selection mechanism divides the parameter tun-
ing process into two phases, namely, elite qualification phase
and elite selection phase [33]. In elite qualification phase,
a number of high-quality or elite candidate configurations
are identified by running some tuning algorithms. Then, in
elite selection phase, these elite configurations are evaluated
thoroughly and the best one is carefully selected. The initial
results in [34] showed that, owing to a careful elite selec-
tion phase, the post-selection mechanism allows a more rough
assessment of candidate configurations during elite qualifi-
cation phase, i.e., the evaluation of most candidates can be
performed with fewer training instances. Therefore, more can-
didate configurations can be generated (as the total budget of
tuning process is limited), and potentially better configura-
tions may be found. Consequently, elite configurations can
be collected by running a quick tuner with restart or exe-
cuting different tuners simultaneously. And in elite selection
phase, a racing method or intensification mechanism could be
used to select the best configuration. Yuan et al. [33] carried
out analysis of post-selection mechanism and suggested that
this mechanism was helpful to improve automatic parameter
tuning methods.

Post-selection method provides a new idea to find good
parameter settings by using the existing tuners as generators
to create or identify elite candidate configurations and then
selecting the best one from them after careful evaluation. This
method can easily provide a number of elite configurations
rather than only providing the best one. The key problem
in post-selection method, however, is to keep diversity of
elite candidates in elite qualification phase, so that the global
optimum or adequate high-quality parameter setting could be
selected finally.

B. Remarks on High-Level Generate-Evaluate Methods

The idea of high-level generate-evaluate methods for param-
eter tuning is relatively new and there are few researches
in this direction. It could be found that the existing tuning
approaches can be taken as high-level strategies to system-
atically generate elite configurations by running them with
low computational budget and with restart mechanism. New
methods for quickly generate high-quality candidate config-
urations are of course highly desirable. Racing methods and
other intensification mechanisms can be used to carefully eval-
uate the set of elite configurations. Besides the effectiveness
of high-level generate-evaluate methods, another advantage is
that they can easily provide a number of high-quality alter-
native configurations except giving the best one. The positive
results already obtained indicate that the idea of this category
methods is promising and worth pursuing.

VI. FUTURE RESEARCH PROSPECTS AND

CONCLUDING SUMMARY

A. Future Research Prospects

Based on the development history of automatic parameter
tuning methods and the current research status of this field,
the following possible research directions are pointed out.

1) Enhance the Efficiency of Solving Parameter Tuning
Problems: Since tuning process is usually computational
expensive, especially for real-world application problems, it is
very important to improve its efficiency, i.e., to reduce compu-
tational cost. Generally speaking, there are two possible ways
to achieve this goal: 1) to reduce the total number of candidate
configurations that are tested and 2) to cut down the average
cost of evaluating a configuration. The first way implies to
use advanced sampling strategies to generate candidate con-
figurations such that the configuration space could be explored
effectively and quickly focuses on promising region of the
space. While, the second calls for efficient evaluation meth-
ods to test candidate configurations and to identify the elite
ones rapidly.

2) Establish Benchmark Test Suite and Easy-to-Use
Algorithm Tuning Toolbox: With the development and matu-
rity of algorithm parameter tuning field, a benchmark set of
standardized tuning problems and an open algorithm parame-
ter tuning toolbox that allows for simple usage and integration
of new tuning methods are highly desirable. Such bench-
mark set and tuning toolbox would facilitate the empirical
studies of tuning algorithms, and reduce barriers faced by
new researchers and practitioners in the community. Until
now, only the AClib,8 a library of algorithm parameter tun-
ing (or configuration) benchmarks, has been introduced by
Hutter et al. [101]. There is still need for more standardized
benchmarks that includes more tuning problem from different
domain. As mentioned in the previous sections, open source
code of F-Race, Iterated F-Race, ParamILS, SPO, and SMAC
are available separately. Those packages do not offer GUI
(graphical user interface) visual front-ends for users. They
are used through the command lines or scripts in supported
programming language (such as Java, Python, or R), which
requires users to have adequate programming skills. Therefore,
an open and easy-to-use parameter tuning toolbox that allows
for simple usage and integration of new tuning methods is
in demand. Although developing an algorithm tuning toolbox
that includes all the existing tuning approaches is a challeng-
ing task, this has very important academic and practical value.
Such a toolbox is expected by researchers and end users.

3) Research on Multiobjective Tuning Approaches: Until
very recently, almost all the existing tuning approaches are
designed to optimize a single performance measure or metric
of the target algorithm, such as the solution quality or run time.
However, in some case, one may expect to optimize more than
one performance metrics simultaneously. This is a new chal-
lenging and direction that has not deeply discussed in param-
eter tuning. Recently, multiobjective racing algorithm has
already been newly presented by Zhang et al. [102]–[104] for
model selection in machine learning, and also has been applied

8http://www.aclib.net/
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to identify the Pareto optimal parameter settings of ACO
algorithm on TSP [103] and artificial bee colony algorithms
on numerical optimization problems [104]. Blot et al. [105]
recently introduced MO-ParamILS, a multiobjective extension
of ParamILS, for multiobjective parameter tuning problems.
To the best of our knowledge, parameter tuning for multiple
performance objectives has been studied only recently and
there are few research achievement. Thus, this new subtopic
of parameter tuning need to further study and development in
the future.

VII. CONCLUSION

This paper provided a survey of the existing automatic
parameter tuning methods for metaheuristics. A common intro-
duction was first given and followed by the general statement
of parameter tuning problem. A new classification of tun-
ing approaches was introduced according to tuners’ structure
or framework. The existing tuning methods were classified
into three main categories: 1) simple generate-evaluate meth-
ods; 2) iterative generate-evaluate methods; and 3) high-level
generate-evaluate methods. Parameter tuning approaches as far
as we are aware from literature were, then, reviewed category
by category. After the description of each tuning approach, its
main strengths and weaknesses were briefly stated, which is
helpful for new researcher or practitioners to select appropri-
ate tuner to solve problem at hand. Last but not least, some
directions were pointed out for future research. In the conclu-
sion, a comprehensive survey of automatic parameter tuning
methods was given for researcher or practitioner of this field.

In the end, it is necessary to highlight the significance of
applying automated tuning methods to properly set algorithm
parameters. Many works have proved the significant improve-
ment in algorithm’s performance with the aid of automatic
parameter tuning. In addition to developing new approaches,
it is highly desirable to apply frequently the existing tuning
methods in industry and research applications, so that the ben-
efits of automatic parameter tuning can be taken adequately,
and new challenges may appear and could be figured out.
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[84] P. Hansen and N. Mladenović, “Variable neighborhood search:
Principles and applications,” Eur. J. Oper. Res., vol. 130, no. 3,
pp. 449–467, 2001.

[85] E. B. M. Barbosa and E. L. F. Senne, “A heuristic for optimization of
metaheuristics by means of statistical methods,” in Proc. 6th Int. Conf.
Oper. Res. Enterprise Syst., Porto, Portugal, 2017, pp. 203–210.

[86] E. B. M. Barbosa and E. L. F. Senne, “Improving the fine-tuning of
metaheuristics: An approach combining design of experiments and rac-
ing algorithms,” J. Optim., vol. 2017, pp. 1–7, Jun. 2017. [Online].
Available: https://www.hindawi.com/journals/jopti/2017/8042436/cta/

[87] J. E. Beasley, “OR-Library: Distributing test problems by electronic
mail,” J. Oper. Res. Soc., vol. 41, no. 11, pp. 1069–1072, Nov. 1990.

[88] T. Bartz-Beielstein and M. Zaefferer, “Model-based methods for con-
tinuous and discrete global optimization,” Appl. Soft. Comput., vol. 55,
pp. 154–167, Jun. 2017.

[89] F. Hutter, T. Bartz-Beielstein, H. H. Hoos, K. Leyton-Brown, and
K. P. Murphy, “Sequential model-based parameter optimization: An
experimental investigation of automated and interactive approaches,”
in Experimental Methods for the Analysis of Optimization Algorithms,
T. Bartz-Beielstein, M. Chiarandini, L. Paquete, and M. Preuss, Eds.
Heidelberg, Germany: Springer, 2010, pp. 363–414.

[90] D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient global
optimization of expensive black-box functions,” J. Glob. Optim.,
vol. 13, no. 4, pp. 455–492, Dec. 1998.

[91] J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn, “Design and anal-
ysis of computer experiments,” Stat. Sci., vol. 4, no. 4, pp. 409–423,
1989.

[92] T. Bartz-Beielstein, C. W. G. Lasarczyk, and M. Preuss, “Sequential
parameter optimization,” in Proc. CEC, Edinburgh, U.K., 2005,
pp. 773–780.

[93] T. Bartz-Beielstein, K. E. Parsopoulos, and M. N. Vrahatis, “Design
and analysis of optimization algorithms using computational statis-
tics,” Appl. Numer. Anal. Comput. Math., vol. 1, no. 2, pp. 413–433,
Dec. 2004.

[94] T. J. Santner, B. J. Williams, and W. I. Notz, “Space-filling
designs for computer experiments,” in The Design and Analysis of
Computer Experiments (Springer Series in Statistics), T. J. Santner,
B. J. Williams, and W. I. Notz, Eds. New York, NY, USA: Springer,
2003, pp. 121–161.

[95] D. Huang, T. T. Allen, W. I. Notz, and N. Zeng, “Global optimization
of stochastic black-box systems via sequential kriging meta-models,”
J. Glob. Optim., vol. 34, no. 3, pp. 441–466, Mar. 2006.

[96] F. Hutter, H. H. Hoos, K. Leyton-Brown, and K. Murphy, “Time-
bounded sequential parameter optimization,” in Proc. 4th Int. Conf.
Learn. Intell. Optim., 2010, pp. 281–298.

[97] T. Bartz-Beielstein, “SPOT: An R package for automatic and
interactive tuning of optimization algorithms by sequential parame-
ter optimization,” CoRR, vol. abs/1006.4645, pp. 1–42, 2010. [Online].
Available: http://arxiv.org/abs/1006.4645

[98] T. Bartz-Beielstein, L. Gentile, and M. Zaefferer, “In a nut-
shell: Sequential parameter optimization,” CoRR, vol. abs/1712.04076,
pp. 1–40, 2017. [Online]. Available: http://arxiv.org/abs/1712.04076

[99] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning. New York, NY, USA: Springer, 2009.

[100] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32,
Oct. 2001.

[101] F. Hutter et al., “AClib: A benchmark library for algorithm config-
uration,” in Learning and Intelligent Optimization, P. M. Pardalos,
M. G. Resende, C. Vogiatzis, and J. L. Walteros, Eds. Cham,
Switzerland: Springer Int., 2014, pp. 36–40.

[102] T. Zhang, M. Georgiopoulos, and G. C. Anagnostopoulos, “S-Race:
A multi-objective racing algorithm,” in Proc. GECCO, Amsterdam,
The Netherlands, 2013, pp. 1565–1572.

[103] T. Zhang, M. Georgiopoulos, and G. C. Anagnostopoulos, “SPRINT
multi-objective model racing,” in Proc. GECCO, Madrid, Spain, 2015,
pp. 1383–1390.

[104] T. Zhang, M. Georgiopoulos, and G. C. Anagnostopoulos, “Multi-
objective model selection via racing,” IEEE Trans. Cybern., vol. 46,
no. 8, pp. 1863–1876, Aug. 2016.

[105] A. Blot, H. H. Hoos, L. Jourdan, M.-É. Kessaci-Marmion, and
H. Trautmann, “MO-ParamILS: A multi-objective automatic algorithm
configuration framework,” in Learning and Intelligent Optimization,
P. Festa, M. Sellmann, and J. Vanschoren, Eds. Cham, Switzerland:
Springer Int., 2016, pp. 32–47.

Changwu Huang (M’19) received the Ph.D. degree
from the Institut National des Sciences Appliquées
de Rouen Normandie (INSA Rouen Normandie),
Saint-Étienne-du-Rouvray, France, in 2018.

He is currently a Post-Doctoral Researcher
with the Department of Computer Science and
Engineering, Southern University of Science and
Technology, Shenzhen, China. His current research
interests include evolutionary computation and auto-
mated algorithm configuration, and their applications
to routing problems.

Yuanxiang Li received the Ph.D. degree from
the Department of Computer Science, Wuhan
University (WHU), Wuhan, China, in 1993.

He is a Professor of computer science with
WHU. His current research interests include parallel
computing, evolutionary computation, and cellular
automata modeling for complex systems.

Dr. Li was a recipient of the National
Natural Science Prize of China for the Project
“Asynchronous Parallel Algorithms and Domain
Decompositions” and the Advanced Prize of

Science and Technology of the National Educational Ministry for the Project
“Parallel Computational Models and Algorithms for Simulating Complex
Systems.”

Xin Yao (M’91–SM’96–F’03) received the B.Sc.
degree from the University of Science and
Technology of China (USTC), Hefei, China, in 1982,
the M.Sc. degree from the North China Institute of
Computing Technologies, Langfang, China, in 1985,
and the Ph.D. degree from USTC in 1990.

He is a Chair Professor of computer science with
the Southern University of Science and Technology,
Shenzhen, China, and a part-time Professor of com-
puter science with the University of Birmingham,
Birmingham, U.K. His current research interests

include evolutionary computation and ensemble learning, and their applica-
tions to software engineering.

Dr. Yao was a recipient of the 2001 IEEE Donald G. Fink Prize Paper
Award for his paper on evolving artificial neural networks, the 2010,
2016, and 2017 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

Outstanding Paper Awards, the 2011 IEEE TRANSACTIONS ON NEURAL

NETWORKS Outstanding Paper Award, the prestigious Royal Society Wolfson
Research Merit Award in 2012, the IEEE CIS Evolutionary Computation
Pioneer Award in 2013, and many other best paper awards. He was the
President of IEEE Computational Intelligence Society (CIS) from 2014 to
2015 and the Editor-in-Chief from 2003 to 2008 of the IEEE TRANSACTIONS

ON EVOLUTIONARY COMPUTATION. He was a Distinguished Lecturer of
IEEE CIS.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


