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Abstract—Neighborhood information plays an important role
in improving the performance of evolutionary computation in
various optimization scenarios, particularly in the context of
multimodal optimization. Several neighborhood concepts, i.e.,
index-based neighborhood, nearest neighborhood, and fuzzy
neighborhood, have been studied and engaged in the design
of niching methods. However, the use of these neighborhood
concepts requires the specification of some problem-related
parameters, which is difficult to determine without a prior knowl-
edge. In this paper, we introduce a new neighborhood concept
based on a geometrical construction called Voronoi diagram. The
new concept offers two advantages at the expense of increas-
ing the computational complexity to a higher level. It eliminates
the need of additional parameters and it is more informative
than the existing ones. The information provided by the Voronoi
neighbors of an individual can be exploited to estimate the evolu-
tionary state. Based on the information, we divide the population
into three groups and assign each group a different reproduction
strategy to support the exploration and exploitation of the search
space. We show the use of the concept in the design of an effective
evolutionary algorithm for multimodal optimization. The exper-
iments have been conducted to investigate the performance of
the algorithm. The results reveal that the proposed algorithm
compare favorably with the state-of-the-art algorithms designed
based on other types of neighborhood concepts.

Index Terms—Evolutionary multimodal optimization, neigh-
borhood information, niching technique, Voronoi diagram.
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I. INTRODUCTION

EVOLUTIONARY computation (EC) contains a family
of computation paradigms inspired by the theory of

evolution or the collective behavior of social animals. Different
from traditional optimization methods, EC approaches main-
tain a population of individuals (candidate solutions) and iter-
atively refine them through genetic operators or social learning
operators. The global search capability of EC approaches is
mainly attributed to the interactions between individuals that
share information about the fitness landscape. An individual
can search the problem space more efficiently by cooperating
with other individuals.

The scope of interactions between the individuals is deter-
mined by a communication graph. In the canonical EC
approaches like genetic algorithm (GA) [1], differential evo-
lution (DE) [2], evolutionary strategy (ES) [3], and particle
swarm optimization (PSO) [4], a fully connected communi-
cation graph is commonly used, which suggests that all the
individuals in the population have equal chances to exchange
their genetic material. However, in nature, the interactions show
a bias toward the pairs of individuals that are close to each
other. Some groups of individuals might even be separated due
to the geographic isolation. These observations give rise to
the idea of localizing the evolution of individuals by imposing
restrictions on their interactions. The concept of neighborhood
comes naturally in this process. The neighbors of an individ-
ual are those connected directly with it in the communication
graph. The local evolution of individuals can be realized by
incorporating a neighborhood structure into the population.

In recent years, substantial research effort has been devoted
to the enhancement of EC approaches by utilizing the neigh-
borhood information and significant progress has been made
in the research field. The most straightforward way to define
neighborhoods for individuals is by constructing a communi-
cation topology. In PSO, the particles are organized according
to a predefined topology and the neighborhood of a par-
ticle is established by its adjacent particles. Kennedy [5]
has investigated a number of neighborhood topologies and
has studied their effects on the performance of PSO. It
is reported that large neighborhood topologies with dense
interconnections exhibit fast convergence speed, but the swarm
diversity may lose quickly. On the other hand, small neigh-
borhood topologies with few interconnections show strong
diversity maintenance capability. However, the convergence
speed is slow down. Notice that a fixed communication
topology is not appropriate for problems with different char-
acteristics, some researchers made a step forward to study
dynamic neighborhood structures [6]–[9].
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The neighborhood topology has been generalized to the
selection of parents in the mutation operators of DE.
Das et al. [10] utilized the neighborhood concept to improve
the DE/target-to-best/1/bin scheme and develop a DE variant
called DE with global and local neighborhoods (DEGLs). They
proposed two kinds of neighborhood models, a local model
and a global model. A weight factor is introduced to achieve
a tradeoff between the effects of the two models.

The neighbors of an individual can be defined by metric dis-
tance in the variable space. Epitropakis et al. [11] developed
a proximity-based framework for DE that incorporates the
information of neighboring solutions in the mutation opera-
tor to guide the evolution of the population. By favoring the
parents in the vicinity of the mutated individual, the strategy
promotes the efficiency of exploitation without substantially
impairing the exploration capability.

It is also possible to define neighbors according to metric
distance in the objective space [12]–[14]. Zhang and Li [12]
proposed a multiobjective evolutionary algorithm (MOEA/D)
that decomposes a multiobjective problem into a number of
single objective subproblems using a set of weight vectors.
The neighborhood relation is defined by the distances between
the weight vectors and the neighborhood size is controlled
by a parameter T. Each subproblem is optimized by utilizing
information from its T neighboring solutions so as to reduce
the computational complexity.

The above-mentioned developments of EC shed light on
the importance of the neighborhood information in improving
the search efficiency of the population-based algorithms. The
appropriate use of the neighborhood information is essential
for keeping a balance between exploitation and exploration.
Generally speaking, the existing neighborhood concepts can
be roughly divided into three categories, i.e., index-based
neighborhood, nearest neighborhood, and fuzzy neighborhood.
These concepts have been extensively used in the context of
multimodal optimization, where an optimizer is required to
find multiple optimal solutions for a given problem. When
solving multimodal optimization problems, the neighborhood
information plays an important role in inducing multiple con-
vergence behaviors in EC. By restricting the interactions of
individuals to a limited number of neighbors, the genetic drift
phenomenon can be mitigated and the population diversity
can be preserved. A number of methods known as niching
have been developed and incorporated into EC approaches to
facilitate the maintenance of population diversity and the for-
mation of subpopulations. The niching methods motivate the
individuals to evolve toward their nearby optimal solutions by
modifying the reproduction and environmental selection oper-
ators using neighborhood information. In this way, multiple
optimal solutions can be located by EC approaches within
a single run. In the literature, all the three neighborhood
concepts have been engaged in the development of niching
methods [28]–[40].

Although the neighborhood structures are capable of
enhancing the performance of EC in locating multiple optimal
solutions, they are not easy to use due to the existence of
problem-related parameters. The parameters are difficult to
determine without knowing the specifics of the problem at
hand. In this paper, instead of trying to devise an adap-
tive scheme for each of the concepts to dynamically tune
the parameters, a parameter-free neighborhood concept is

introduced. We then focus on the application of the new
neighborhood concept in the design of an effective multimodal
algorithm. The contribution of this paper lies in three aspects.

1) We systematically compare the existing neighborhood
concepts and discuss their advantages and disadvantages.
A taxonomy for evolutionary multimodal algorithms is
presented with respect to the underlying neighborhood
structures they are relying upon. Some recently proposed
multimodal algorithms are reviewed and put into three
different categories according to the taxonomy.

2) We introduce a new neighborhood concept called
Voronoi neighborhood based on a space partitioning
technique. The concept extends the current research by
offering a new way to define neighbors for individuals.
Compared with the existing concepts, the new concept
is parameter-free and is more informative. Moreover,
an approximation algorithm for finding Voronoi neigh-
bors in high dimensional space is developed so that the
concept can be put into practical use.

3) Motivated by the successful use of neighborhood
information in the design of evolutionary multimodal
algorithms, we propose a Voronoi neighborhood-
based crowding DE (VNCDE) to solve multimodal
optimization problems. An evolutionary state estima-
tor (ESE) is designed and incorporated into VNCDE
to extract useful information from the Voronoi neigh-
borhood. The estimator divides the individuals to three
different types according to their positions in the fitness
landscape and VNCDE assigns each type of individ-
uals a tailored search strategy to improve the search
efficiency.

The experiments have been conducted on a set of bench-
mark problems to evaluate the performance of the proposed
algorithm. The results suggest that the algorithm developed
based on Voronoi neighborhood displays high performance. It
is able to outperform state-of-the-art algorithms that build on
the other neighborhood structures. The results also reveal the
limitation of the Voronoi neighborhood. VNCDE suffers from
high computational time overheads. This limitation needs to be
taken into consideration before putting the proposed algorithm
into practical use.

The remainder of this paper is organized as follows.
Section II briefly reviews the evolutionary multimodal algo-
rithms, the existing neighborhood concepts, and their applica-
tions in the algorithm design. The formal definition of Voronoi
neighborhood is introduced in Section III. We highlight the
distinct properties of the Voronoi neighborhood by compar-
ing it with the existing ones. The means of finding Voronoi
neighbors is also presented in this section. In Section IV, we
demonstrate the use of the new concept in designing an effec-
tive multimodal algorithm. The experiments are conducted in
Section V to evaluate the performance of the designed algo-
rithm, with a detailed analysis of the numerical results. Finally,
Section VI concludes this paper and provides some promising
future research directions.

II. BACKGROUND

In this section, the background of evolutionary multimodal
optimization is first described. Then, we review the canon-
ical DE and some classical algorithms to lay groundwork
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for the algorithm presented in Section IV. Subsequently,
three neighborhood concepts, i.e., index-based neighborhood,
nearest neighborhood, and fuzzy neighborhood, as well as
their applications in the design of niching methods are dis-
cussed. The advantages and disadvantages of the neighborhood
concepts are also included in the discussion.

A. Evolutionary Multimodal Optimization and Niching

Many problems encountered in scientific computing and
engineering design are multimodal in nature, which means that
there exist more than one setting of the decision variables that
can achieve the optimal objective function value. When deal-
ing with these problems, it is often desirable to find all the
optimal solutions since they can provide additional benefits to
decision makers. Some further insight into the problem can
be obtained by examining the common structures of the solu-
tions. Moreover, it is possible to combine the solutions to build
a more robust system.

To handle the multimodal problems, traditional optimization
methods have to run multiple times with different starting
points. There is no guarantee that the methods converge
to a different solution at each time. In comparison, EC
approaches are well-suited for multimodal optimization owing
to their population-based search mechanism. If the individu-
als in the population are committed to different sources of
attraction, then multiple solutions can be located simultane-
ously. However, EC approaches are originally designed for
global optimization. They generally converge to a single solu-
tion due to the genetic drift phenomena. To induce multiple
convergence behavior, new methods known as niching have
been developed. Niching methods modify the search behavior
of individuals in order to support the formation of subpop-
ulations. By incorporating niching methods, EC approaches
have shown great promise in multiple solutions search. It is
worth noting that nearly all the niching techniques encodes
the neighborhood information in some form.

B. Differential Evolution

DE, proposed by Storn and Price [15], is one of the most
popular EC paradigms. It is a promising candidate for
multimodal optimization. In the optimization process, DE
maintains a population of individuals. Let P = {x1, x2, . . . , xn}
denote the population. DE iteratively refines the individuals
through mutation, crossover, and selection operators. Take xi
as an example, at each iteration, a mutant vector vi is generated
for xi as follows:

vi = xr1 + F · (xr2 − xr3) (1)
where F is the scaling factor and xr1, xr2, and xr3 are different
individuals randomly sampled from the population. After the
mutation, a trial vector ui is produced by performing crossover
on the mutant vector vi and the target vector xi

ui,j =
{

vi,j, if randj < Cr or j = jrand
xi,j, otherwise (2)

Cr is the crossover probability and jrand is a random number
within the range [1, D]. Subsequently, competition takes place
between ui and xi. The one with better fitness will survive to
the next iteration

xi =
{

ui, if ui better than xi
xi, otherwise. (3)

Das et al. [16] have provided an update survey of DE recently.
Interested readers can refer to this paper for comprehensive
information about the recent developments of DE.

C. Classical Niching Methods

Niching refers to the technique of finding and preserving
multiple optimal solutions [17]–[25]. To avoid the individu-
als being confined to a single optimum, a substantial number
of niching methods have been proposed in the literature.
Most of the early niching methods focus on modifying the
replacement mechanism of EC to offset the genetic drift
caused by the greedy selection mechanism. Specifically, in
the selection process, these niching methods not only take
into account the fitness of the individuals but also their con-
tribution to the population diversity. By doing so, individuals
evolving toward different optimal solutions can both survive
until the end of the search. Some classical niching meth-
ods that adhere to the principle include crowding [18] and
speciation [20].

1) Crowding: Crowding [22] is a simple yet efficient nich-
ing method. It draws inspiration from the resource competition
among animals living in the natural environment. The idea is
that two close individuals must compete with each other for
limited resources. For an offspring solution, a number of
individuals are randomly sampled from the population. The
sample size is controlled by a parameter called crowding fac-
tor (CF). The nearest neighbor to the offspring is extracted
from the samples and is compared with the offspring. We
replace the nearest neighbor with the offspring if the off-
spring has better fitness. A major problem with the crowding
method is the replacement error. To address the problem,
Mahfoud [23] proposed a deterministic variant that eliminates
the sample size CF. An offspring is compared with its near-
est neighbor in the entire population. In a subsequent study,
Thomsen [18] integrated the crowding method with DE and
developed a crowding DE (CDE).

2) Speciation: The speciation method [20] explicitly
divides the population into multiple species according to the
spatial correlation between individuals. Each species is formed
around a dominant individual called species seed and is ded-
icated to the search of one optimum. Specifically, the species
seed of a niche is first extracted from the population. Then,
individuals whose distance to the species seed is less than
a threshold radius are identified as members of the species. In
later studies, Li embedded the speciation method into PSO and
DE and proposed speciation PSO (SPSO) [24] and speciation
DE (SDE) [25], respectively.

The above-mentioned niching methods are effective in
preserving population diversity. However, they have difficulty
in obtaining high accuracy solutions due to the random mat-
ing selection. When generating new solutions, the parents
involved in reproduction may come from different subpopula-
tions and may be far apart from each other. This is detrimental
for the convergence of subpopulations, especially in the final
stage of the search. Considering the balance between explo-
ration and exploitation, Lynn and Suganthan [26] developed
a heterogeneous comprehensive learning PSO (HCLPSO).
HCLPSO divides the swarm population into two subpopula-
tions. The two subpopulations are responsible for the explo-
ration and exploitation tasks, respectively. In the optimization
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process, the comprehensive learning strategy is adopted to con-
struct exemplars for the particles. Hui and Suganthan [27]
proposed a novel ensemble and arithmetic recombination-
based SDE (EARSDE) to solve multimodal optimization
problems. The exploration capability is enhanced by a new
speciation variant that incorporates the arithmetic recom-
bination technique. Meanwhile, the exploitation of peaks
is facilitated by neighborhood-based ensemble mutation
strategies.

Another research avenue is to enhance the local exploita-
tion ability through the use of neighborhood information. By
integrating with neighborhood-based reproduction operators,
the niching methods can be further enhanced. Many advanced
multimodal algorithms, being characterized by different neigh-
borhood structures, can be viewed as extensions of the early
methods. In the following sections, we review some recently
proposed algorithms according to the type of neighborhood
concept they rely upon.

D. Niching Methods With Index-Based Neighborhood

The index-based neighborhood is the simplest neighbor-
hood concept originally initiated with PSO. It is later extended
to be used in DE, with the purpose of achieving a balance
between exploration and exploitation for global optimization.
The individuals in the population are arranged in a certain
topology according to their indexes and the neighborhood rela-
tions are represented by the connections. Some recent studies
have shown that the index-based neighborhood information
is also useful in inducing niching behavior. To avoid the
need of setting niching parameters, Li [28] proposed a ring
topology PSO (rpso). Using the ring topology, the swarm
is naturally divided into subswarms in the search process.
Li [28] investigated four variants of rpso with overlapping
and nonoverlapping neighborhoods and pointed out that local
memory and small communication topology are two key fac-
tors for the success of PSO in multimodal optimization.
Epitropakis et al. [29] incorporated the index-based neighbor-
hood information into DE and put forward a family of new
mutation strategies named DE/inrand. In the new strategies, the
index-based neighbors of parents are involved in the generation
of the offspring solutions.

The main advantages of the index-based neighborhood
include its simplicity and computational efficiency. The neigh-
bors of any given individual can be determined in a constant
time. Consequently, incorporating this type of neighborhood
information does not increase the time complexity of the algo-
rithms. The drawback is that a suitable topology must be
specified beforehand. Moreover, the index-based neighborhood
ignores the spatial correlation between individuals. Two indi-
viduals adjacent in the topology are not intended to be close to
each other in the search space. This might incur the problem
of oscillation in the multimodal fitness landscape.

E. Niching Methods With K-Nearest Neighborhood

Another straightforward way to define neighbors is to con-
sider the distances between individuals in the search space.
More formally, the neighbors of an individual are defined as
those whose distances to the individual are among the k small-
est, where k is a parameter used to determine the neighborhood

size. The nearest neighborhood is arguably the most widely
adopted concept in multimodal optimization.

Li [30] developed a fitness Euclidean ratio-based
PSO (FERPSO). Instead of heading toward the historical best
position, each particle is attracted by its neighborhood point
with the highest FER value. Qu et al. [31] proposed neigh-
borhood mutation strategy to facilitate multiple convergences
of DE. When generating a donor vector for individual xi, the
parents are selected from the k closest individuals to xi. The
mutation strategy is integrated with three DE variants, i.e.,
CDE, SDE, and ShDE. The resulting algorithms are termed
NCDE, NSDE, and NShDE, respectively. To enhance the
performance of niching PSO, Qu et al. [32] proposed a locally
informed particle swarm optimizer (LIPS) that makes efficient
use of the neighborhood information. In the velocity update
process of a particle xi, several local bests in the vicinity
of xi are combined to guide its search. Gao et al. [33] put
forward a clustering technique and a self-adaptive param-
eter control technique for multimodal optimization. The
clustering technique divides the population into a number
of subpopulations. In the clustering process, a reference
point is randomly produced and the k nearest individuals to
the reference point are combined to form a subpopulation.
Gao et al. [33] integrated the two techniques with CDE and
SDE and developed a self-adaptive cluster-based CDE (self-
CCDE) and a self-adaptive cluster-based SDE (self-CSDE).
Epitropakis et al. [34] devised two new mutation strategies
(DE/nrand/1 and DE/nrand/2) to improve the niching ability
of DE. The nearest neighbor of the parent is used as the
basis in producing the offspring solution. In a later study, an
enhanced algorithm (dADE/nrand/1) [35] was developed by
incorporating a parameter adaptation scheme and a dynamic
archive into DE/nrand/1. In addition to PSO and DE, the
nearest neighborhood has also been employed in the design
of multimodal estimation of distribution (MEDA) [36]
and multimodal ant colony optimization (MACO) [37]
algorithms.

The nearest neighborhood is generally more effective than
the index-based neighborhood with respect to the ability of
niche preservation. This is because it reduces the connections
between individuals that are in different niches. The drawback
of the concept is that additional computation cost is required.
To find the nearest neighbors, we have to calculate the dis-
tance for each pair of individuals. This inevitably increases
the time complexity. Moreover, a neighborhood size k needs
to be specified. In multimodal fitness landscape, it might be
the case that the basins of attraction are of different sizes and
shapes and there does not exist a unified setting of k suitable
for all the individuals in the population.

F. Niching Methods With Fuzzy Neighborhood

In the fuzzy neighborhood, given an individual xi, all other
individuals in the population are potential neighbors of xi, but
they vary in the membership degree. More specifically, each
individual is assigned a selection probability according to its
distance to xi. The smaller the distance, the higher the selection
probability. The assignment strategy is generally formulated by
a probabilistic model. An important point to recognize is that
the nearest neighborhood can be viewed as a specialization
of the fuzzy neighborhood, where the probability of selecting
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the k nearest neighbors is set to 1/k and the probability of
selecting other individuals decays to zero.

Biswas et al. [38] proposed a parent-centric normalized
neighborhood (PCNN) mutation operator. The operator adopts
a probabilistic selection scheme to build a neighborhood for
each individual. There is an inversely proportional relation-
ship between the probability and the Euclidean distance. In
the subsequent study, Biswas et al. [39] presented a local
information sharing mechanism. Not only the neighborhood
information but also the fitness of individuals is incorporated
in the probabilistic model for parent selection. The underlying
idea is to increase the probability of selecting elite individ-
ual in the vicinity of the target vector undergoing mutation.
Zhang et al. [40] developed a fast niching technique based on
the theory of locality sensitive hashing (LSH). Individuals in
the population are mapped to a number of buckets using a fam-
ily of hash functions. The information exchanges are restricted
to individuals placed in the same bucket. By doing so, two
close individual have a higher probability for recombination
than those that are far apart.

The fuzzy neighborhood concept provides a fine-grained
assessment of the relationships between individuals. It is more
flexible than the nearest neighborhood and can be adapted
to different multimodal fitness landscapes. Like the nearest
neighborhood, we need to compute the distance matrix for
the population. This imposes a burden on the time complexity
of the algorithm. In addition, a probabilistic model has to be
specified in order to assign membership degrees to the individ-
uals. This requires more expertise and effort than specifying
the neighborhood size k.

Besides the above-mentioned methods, there are niching
methods that encode the neighborhood information indi-
rectly. For example, some algorithms [41]–[43] transform
multimodal problems into multiobjective problems and solve
them using multiobjective optimization techniques. The neigh-
borhood information is involved in the design of the second
objective function to encourage the individuals to detect and
exploit different optima in the search space. It is worth men-
tioning that the niching methods reviewed in this section are
far from exhaustive. For more information about evolution-
ary multimodal optimization and niching methods, interested
readers are advised to consult the survey papers [44] and [45].

III. VORONOI NEIGHBORHOOD

In this section, we present the formal definition of Voronoi
neighborhood. Then, an approximation algorithm for finding
Voronoi neighbors in high dimensional space is developed.
Finally, the characteristics of Voronoi neighborhood are high-
lighted through comparison with the existing neighborhood
concepts.

A. Definition of Voronoi Neighborhood

The new neighborhood concept is defined based on the
Voronoi diagram, which is one of the most fundamental struc-
tures in computational geometry. The Voronoi diagram (also
known as Dirichlet tessellation) is proved to be very useful
in a wide variety of fields, especially in computer science
and engineering (e.g., cluster analysis, collision detection, and
motion planning). The formal definition of Voronoi diagram is

Fig. 1. Example of the Voronoi diagram for a set of randomly generated
points.

given as follows [46]. Let P = {x1, x2, . . . , xN} denote a set of
site points and d(xi, xj) denote the Euclidean distance between
xi and xj. The closure of a set A is denoted by Ā and the
line segment from xi to xj is denoted by xixj. B(xi, xj) is the
bisector of xi and xj defined as

B
(
xi, xj

) = {p|d(p, xi) = d
(
p, xj

)}
. (4)

It is the perpendicular line through the center of the line seg-
ment xixj. It separates the halfplane H(xi, xj) containing xi
and the halfplane H(xj, xi) containing xj. The halfplane H(xi,
xj) is defined according to the following formula:

H
(
xi, xj

) = {p|d(p, xi) < d
(
p, xj

)}
. (5)

The Voronoi region (or Voronoi cells) of xi with respect to P
is defined as

VR(xi, P) =
⋂

xj∈P,i �=j

H
(
xi, xj

)
. (6)

Finally, the Voronoi diagram of P is defined as

V(P) =
⋃

xi,xj∈P,i �=j

VR(xi, P) ∩ VR
(
xj, P

)
. (7)

For brevity, we may write Ri for VR(xi, P). According to the
definition, each Voronoi region Ri is the intersection of N − 1
halfplanes containing xi. Hence, the Voronoi regions are dis-
joint convex polygons. The common boundary of two Voronoi
regions is called a Voronoi edge. If a Voronoi edge e borders
the regions Ri and Rj, then e ⊆ B(xi, xj) holds. The endpoints
of Voronoi edges are called Voronoi vertices, they belong to
the common boundary of three or more Voronoi regions. The
numbers of vertices and edges of the polygon are determined
by its surrounding site points. Provided N site points, there
are at most 2N − 5 Voronoi vertices and 3N − 6 Voronoi
edges. An example of the Voronoi diagram is given in Fig. 1.
From the figure, it can be observed that the entire proxim-
ity information about the site points has been included in an
explicit manner. Another thing worth noting is that the Voronoi
diagram of a set of points is dual to the Delaunay triangulation
for the same set of points. Given a population of individu-
als, the Voronoi neighborhood of an individual xi is defined
as follows.

Definition: An individual xj is called a Voronoi neighbor of
xi if their associated Voronoi cells are adjacent (have a com-
mon edge). The Voronoi neighborhood of xi is defined as the
set containing all the Voronoi neighbors of xi.
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Fig. 2. Illustration of the definition of Voronoi neighborhood.

To illustrate the definition, Fig. 2 plots the Voronoi neigh-
borhoods of two individuals located in the middle of the
diagram (xi and xj). It is easy to see that the Voronoi neigh-
borhoods of xi and xj are given by Li = {xa, xb, xc, xd, xe}
and Lj = {xb, xf , xg, xh}, respectively.

B. Approximation Algorithm for Finding Voronoi Neighbors

There exist several polynomial time algorithms for comput-
ing the Voronoi diagram in 2-D space. For an arbitrary set of
site points, Shamos [47] showed that the optimal time bound
is O(NlogN). The divide and conquer algorithm [48] and the
plane-sweep algorithm [49] are examples of the asymptotic
optimal algorithms that match the time bound. However, these
algorithms cannot be generalized to higher dimensional space.
The Bowyer–Watson algorithm [50], [51], which is developed
by Bowyer and Watson independently, is able to generate
the Delaunay triangulation in any number of dimensions. The
Voronoi diagram can be obtained from the Delaunay triangula-
tion according to the duality relation between them. The time
complexity of the algorithm is O(aDN(1+1/D) + bDN), where
aD and bD are two constants depend on the dimension D.
Simulations conducted in [50] showed that the two constants
increase rapidly with the increase of D. Brown [52] perceived
the possibility of transforming the problem into the convex
finding problem. The method is characterized by its good
generalization ability. However, determining high dimensional
Voronoi diagram is computationally very expensive by means
of the transformation. In practice, the problem dimensionality
is generally larger than two. Hence, the existing methods can-
not be applied since their execution time grows exponentially
with the dimensionality. To address the problem, we devise
an efficient and practical approximation algorithm capable of
finding the Voronoi neighbors in an acceptable time.

The pseudocode of the approximation algorithm is given in
Algorithm 1. The main question is how to determine whether
two individuals are adjacent with respect to the definition of
Voronoi neighborhood. Suppose that xi and xj are two indi-
viduals being considered. We first calculate the midpoint (mij)
of the segment connecting xi and xj. Then, the distances from
the midpoint to all other individuals are computed and the
minimum distance (mindis) is recorded. Subsequently, we test
whether the distance between mij and xi is smaller than mindis.
If the answer is positive, the two individuals are recognized to
be Voronoi neighbors. If the answer is negative, xj is excluded
from the neighbor list of xi. In the second case, since there
exists an individual closer to the midpoint, it is very likely

Algorithm 1 Voronoi Neighborhood Construction for xi

01: Initialize the neighbor list Li to be empty;
02: for xj ∈ P\{xi}:
03: mij = (xi + xj)/2;
04: mindis←∞
05: for xk ∈ P\{xi, xj}:
06: if mindis>dis(xk, mij) then:
07: mindis = dis(xk, mij);
08: end if
09: end for
10: if mindis ≥ dis(xi, mij) then:
11: Li = Li ∪ {xj};
12: end if
13: end for

Fig. 3. Illustration of the approximation algorithm for finding Voronoi neigh-
bors. (a) Correctness in 1-D space. (b) and (c) Two typical cases in 2-D space.
(d) Type II error.

that the Voronoi cells of xi and xj are separated by another
cell that lies between them.

Fig. 3 illustrates how the approximation algorithm works.
In the figure, the blue circles are used to represent individu-
als (site points). The notation mab indicates the midpoint of
individual xa and individual xb. Similarly, mac is the midpoint
of xa and xc. Bisectors of the individuals are shown in red
dashed lines. The ellipse with dashed borders points out the
nearest individual to the midpoint. The notation “

√
” indicates

that the corresponding individual is recognized as a Voronoi
neighbor of xa and the notation “×” indicates the opposite.

There are several situations indistinguishable to the approx-
imation algorithm and this leads to approximation errors.
Generally speaking, the approximation errors can be cate-
gorized into two groups, i.e., false positive error (Type I
error) and false negative error (Type II error). A Type I error
means that two separated individuals are mistakenly identi-
fied as neighbors, while a Type II error refers to the exclusion
of an adjacent individual from the neighbor list. It is easy
to infer that the approximation algorithm is free from the
Type I errors. In 1-D space, the algorithm can always return
exact Voronoi neighbors, as illustrated in Fig. 3(a). In higher
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Fig. 4. Illustration of the four neighborhood concepts. (a) Index-based neigh-
borhood. (b) Nearest neighborhood. (c) Fuzzy neighborhood. (d) Voronoi
neighborhood.

TABLE I
CHARACTERISTICS OF THE FOUR NEIGHBORHOOD CONCEPTS

dimensional space, some Type II errors may occur. Fig. 3(b)
and (c) shows two examples where the Voronoi neighbors
are correctly identified (both xb and xc are Voronoi neigh-
bors of xa). An example of the Type II error is demonstrated
in Fig. 3(d) (xc is a Voronoi neighbor of xa but it is falsely
rejected due to the existence of xb). It can be observed that
the line segments xaxb and xaxc are oriented in roughly the
same direction and xb plays a similar role as xc. Therefore,
the information loss caused by the exclusion of xc is not very
significant.

The running time of the approximation algorithm can be
estimated directly from the pseudocode. There are totally
N − 1 midpoints given N individuals. For each midpoint,
N − 1 distance calculations are required. Note that a single dis-
tance calculation takes O(D) time, the overall time complexity
of the algorithm is O(D · N2).

C. Comparison With Existing Neighborhood Concepts

Fig. 4 illustrates the four neighborhood concepts and Table I
summarizes their features. In the figure, the red arrow lines
are used to indicate the neighborhood relation. It means that
the end point is one of the neighbors of the starting point
for a specific neighborhood definition. The index-based neigh-
borhood is efficient in terms of processing complexity, but it
ignores the spatial correlation between individuals. In com-
parison, the nearest neighborhood is more straightforward

and intuitive, and the fuzzy neighborhood is more general-
ized and flexible. They all require the users to specify some
parameters, which may be difficult to decide (i.e., the com-
munication topology in index-based neighborhood, the size
parameter in nearest neighborhood, or the probabilistic model
in the fuzzy neighborhood). Unlike these concepts, the Voronoi
neighborhood is parameter-free. The neighbors of individu-
als are uniquely determined by the population distribution.
Moreover, the Voronoi neighborhood is more informative than
the existing ones. Not only the distance information but also
the structural information is embedded in the neighborhood
construction. Here, the structural information refers to the
information about how the individuals are arranged in the
search space. The Voronoi neighborhood provides a sort of
structural information that tells us the surrounding neighbors
around each individual.

In some special cases, the Voronoi neighborhood may be
the same as the nearest neighborhood [e.g., the individual in
the Voronoi cell B shown in Fig. 4(b) and (d)], but at other
times they differ considerably [e.g., the individual in Voronoi
cell A shown in Fig. 4(b) and (d)]. Another difference worth
noting is that the Voronoi neighborhood relation is symmetric
while the nearest neighborhood relation is nonsymmetric. In
the definition of nearest neighborhood, it may happen that xi
is one of the k-nearest neighbors of xj but xi is not in the
nearest neighbor list of xi.

Although the Voronoi neighborhood offers some advantages
over the existing concepts, it is not without defects. The time
complexity of finding Voronoi neighbors is higher than those
of the other three types of neighbors. We need to calculate
the distance for O(N2) pairs of points. Generally, the dis-
tances are computed in a sequential manner. Since the distance
calculation for each pair of points is an independent task, it
is possible to reduce the running time by distributing all the
calculation tasks over multiple CPU cores. Nevertheless, the
best way to address the complexity issue is to develop more
advanced approximation algorithms capable of finding Voronoi
neighbors in O(NlgN) time or in linear time.

IV. VORONOI NEIGHBORHOOD BASED CROWDING DE
FOR MULTIMODAL OPTIMIZATION

In this section, we demonstrate the use of the Voronoi neigh-
borhood in the design of an effective multimodal optimization
algorithm. During the search process, the Voronoi neigh-
bors of the individuals are identified using the approximation
algorithm. Then, the evolutionary states of the individu-
als are estimated by examining their correlations with the
Voronoi neighbors and the population is divided into three
groups accordingly. Each group is assigned a tailored search
strategy. Lastly, a VNCDE is developed by integrating the
multiple-strategy search mechanism with the crowding selec-
tion technique.

A. Evolutionary State Estimator

To extract useful information from the Voronoi neigh-
borhood, we propose an ESE. The pseudocode of ESE is
presented in Algorithm 2. From Fig. 2, it can be observed
that the individuals are generally surrounded by their Voronoi
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Algorithm 2 Evolutionary State Estimation for xi

01: Initialize the set of learning exemplars V to be empty;
02: for xk ∈ Li:
03: if xk better than xi then:
04: V = V ∪ {xk};
05: end if
06: end for
07: if V is empty then:
08: Attach the “dominator” label to xi;
09: else:
10: compute θ according to (8);
11: if θ < π/2 then:
12: Attach the “challenger” label to xi;
13: else:
14: Attach the “explorer” label to xi;
15: end if
16: end if

Fig. 5. Illustration of the three types of individuals. (a) Dominator.
(b) Challenger. (c) Explorer.

neighbors (except for some individuals located in the cor-
ner of the search space). The positions of the individuals in
the multimodal landscape can be estimated by exploiting the
observation. Fig. 5 illustrates the basic principle. Suppose that
we are handling maximization problems. For an individual
xa, a comparison is made between its fitness and those of its
Voronoi neighbors. The neighbors with better fitness are col-
lected in a set V. Then, the average of the angles formed by
the rays {xaxk|xk ∈ V} is computed. Specifically, the average
angle θ is determined by the following formula:

θ =
∑

xi,xj∈V ∠xixaxj

(m− 1)m/2
(8)

where

∠xixaxj = arccos

(
(xi − xa)

(
xj − xa

)T
‖xi − xa‖

∥∥xj − xa
∥∥
)

(9)

and m represents the number of individuals in V. There are
three possible scenarios for the comparison.

In the first scenario, the set V is empty and no surround-
ing individuals have better fitness than the individual xa, as
demonstrated in Fig. 5(a). This suggests that the individual is
close to a peak in the search space. The individual is therefore
labeled as dominator.

In the second scenario, the set V contains several superior
individuals and the average angle θ is smaller than π /2, as
shown in Fig. 5(b). Because the learning directions are inclined
at a small acute angle, it is likely that xa is climbing a hill. The
individual is in a proper position to challenge the dominator of
its niche and can potentially be improved by moving toward
the directions indicated by its Voronoi neighbors. Hence,
a challenger label is attached to the individual.

In the third scenario, there are multiple Voronoi neighbors
that have better fitness than xa and the average angle is equal
to or larger than π /2, as depicted in Fig. 5(c). This indicates
that the individual locates in a valley and there exist multiple
moving directions that can improve the fitness of xa. Since
xa has not been restricted to any optima in the search space,
a more exploratory search can be conducted by the individ-
ual without sacrificing the convergence speed. Therefore, the
individual is assigned a label of explorer.

By performing systematic comparisons, the ESE divides
the individuals into three different groups, namely, domina-
tors, challengers, and explorers, according to their role in the
population.

B. Voronoi Neighborhood-Based Crowding DE

A VNCDE is designed to tackle multimodal problems by
making use of the information extracted by the ESE. The
detailed procedures of VNCDE are provided in Algorithm 3.
At the beginning of the algorithm, a population of individu-
als are randomly sampled from the search space. Then, the
individuals are iteratively updated via genetic operators. The
detailed procedures are described as follows. For each individ-
ual in the population, the Voronoi neighbors are first identified
using the approximation algorithm shown in Algorithm 1.
Next, we estimate the evolutionary state of the individual
using the ESE algorithm shown in Algorithm 2. According
to the estimated evolutionary state, a tailored search strat-
egy is employed to generate an offspring solution. After the
offspring solution has been produced and evaluated, VNCDE
compares the offspring with the nearest individual in the pop-
ulation. The nearest individual will be replaced if the offspring
has better fitness. The above procedures are repeated until the
termination criterion is satisfied.

The main idea of the algorithm is to assign the most suitable
search strategy to each type of individuals so that the peaks
can be located with improved efficiency and the multiple con-
vergence ability of CDE can be enhanced. Specifically, the
offspring solutions are generated with three different strategies.

For individuals classified as dominators, no individual in
their Voronoi neighborhoods has higher fitness values. It is
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Algorithm 3 VNCDE
01: Generate an initial population of individuals

P = {x1, x2, . . . , xN} by uniformly and randomly sample
N individuals in the search space;

02: Evaluate the fitness of the individuals in the initial
population;

03: FEs = N;
04: while FEs<MaxFEs do:
05: for i = 1 to N:
06: Find the Voronoi neighbors of xi using Algorithm 1;
07: Use ESE to estimate the evolutionary state of xi;
08: if xi is classified as dominator then:
09: Generate an offspring solution ui with the

local search strategy (10);
10: end if
11: if xi is classified as challenger then:
12: Generate an offspring solution ui with the

directional search strategy (11);
13: end if
14: if xi is classified as explorer then:
15: Generate an offspring solution ui with the

exploratory search strategy (12);
16: end if
17: Evaluate the fitness of ui;
18: FEs = FEs+ 1;
19: Find the individual xj in the population that has the

smallest distance to ui;
20: if the fitness of ui is better than xj then:
21: Replace xj with ui;
22: end if
23: end for
24: end while

probably that each dominator is close to a peak in the search
space. Therefore, a Gaussian-based local search strategy that
makes small modifications to the individuals are employed,
with the intention that the dominators can move to their nearby
peaks. The offspring solution ui is produced by adding small
perturbations to the parent xi, as formulated in

ui,j = xi,j + G(0, σ ), for j = 1, 2, . . . , D. (10)

G(0, σ ) denotes a random number drawn from the Gaussian
distribution with mean zero and standard deviation σ . The
standard deviation σ is set to 1E-r to locate peaks with high-
accuracy requirement and to increase the algorithm’s ability
for fine tuning (r is from a discrete uniform distribution with
mean five).

For individuals classified as challengers, there are several
individuals with higher fitness in their Voronoi neighborhoods.
The difference vectors between the challengers and the better
individuals point to roughly the same direction. It is proba-
bly that the challengers are in positions halfway up a hill.
Therefore, a directional search strategy “DE/current-to-nbest”
is employed so that the challengers can learn from the elite
individuals in their corresponding region of attractions. In this
way, the convergence rate of subpopulations can be improved.
The learning exemplar xnbest is selected from the set of Voronoi
neighbors superior to xi (roulette wheel selection based on nor-
malized fitness). The offspring solution ui is generated in the
following manner:

ui,j = xi,j + F · (xnbest,j − xi,j
)+ F · (xr1,j − xr2,j

)
(11)

where xr1 and xr2 are the two neighbors distinct from xnbest.

Fig. 6. Two possible scenarios where the angle is smaller than π /2 but the
learning exemplars located in different regions of attraction. (a) One peak
behind another. (b) Two close peaks.

The exemplar xnbest has a high probability to be in the same
peak region as xi. However, it is worth noting that there are
two scenarios not in line with the case shown in Fig. 5(b).
The two scenarios are illustrated in Fig. 6. The first scenario
is that one peak is behind another peak in the moving direc-
tion of individuals. The second scenario is that two peaks are
close to each other in the search space. As shown in Fig. 6,
the angles are less than π /2 but the learning exemplars lie
in different peaks. In these scenarios, the DE/current-to-nbest
strategy will be employed by VNCDE as well. Whichever the
neighbor chosen, the difference vector between xa and nbest
will point to approximately the same direction after adding
another difference term xr1 − xr2. It is expected that the gen-
erated mutant vector brings xa closer to one of the peaks.
Hence, DE/current-to-nbest is still a suitable strategy to use.

For individuals classified as explorers, they are inferior
to some of the individuals in their Voronoi neighborhoods.
The difference vectors between the explorers and the superior
neighbors point to opposite directions. It is probably that the
explorer are located in valleys or in outer ranges of a peak
region. Therefore, the global search strategy “DE/rand/1” is
utilized to motivate them to explore other search regions. By
doing so, the exploration capability of the algorithm can be
enhanced without impairing the exploitation capability. The
jth dimension of the offspring solution is computed according
to the following formula:

ui,j =
⎧⎨
⎩

xr1,j + F · (xr2,j − xr3,j
)
, if rand(0, 1)

≤ Cr or j = jrand
xi,j, otherwise

(12)

where xr1, xr2, and xr3 are the individuals randomly sampled
from the Voronoi neighborhood of xi.

C. Complexity Analysis

The proposed algorithm contains five major steps, namely,
the initialization, the identification of Voronoi neighbors, the
ESE procedure, the reproduction procedure, and the environ-
mental selection procedure. The initialization runs in O(D ·N)
time. It is only executed once at the beginning of the algorithm.
The other four steps are in the main loop of VNCDE and are
executed repeatedly. Both the ESE procedure and the repro-
duction procedure require O(D·N) time. The time spent on the
environmental selection is O(D · N2). The procedure used to
find Voronoi neighbors is the most time-consuming step that
dominates other terms. According to the analysis conducted
in the previous section, the running time of the procedure is
O(D ·N3). Therefore, the overall time complexity of VNCDE
is O(D · N3) per iteration.
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TABLE II
ALGORITHMS IN COMPARISON

V. EXPERIMENTAL STUDY

In this section, we carry out experiments to study the
performance of the multimodal algorithms developed based
on the Voronoi neighborhood. The effects of the algorithmic
components are investigated in this section as well.

A. Experimental Setup

1) Algorithms in Comparison: We compare VNCDE with
a number of state-of-the-art multimodal algorithms that are
based on the index-based neighborhood, the nearest neigh-
borhood, and the fuzzy neighborhood. In total, 16 algorithms
are involved in the comparison. They are listed in Table II.
All the algorithms are implemented in C++ and are com-
piled using the Microsoft Visual C++ compiler. They are
executed on a computer with Intel Xeon X5675 CPU and
12-GB RAM. The correctness of the code has been ver-
ified through comparison with the results reported in the
literature.

2) Test Functions: The benchmark function set for the
CEC2013 special section on multimodal optimization [53]
is adopted to test the performance of multimodal algo-
rithms. The benchmark set contains 20 multimodal func-
tions with various characteristics. The first ten functions
F1–F10 are basic multimodal functions commonly used in
the evolutionary multimodal optimization community. The
remaining ten functions (F11–F20) are composite functions
constructed by combining the basic functions. All the test
functions are to be maximized. The mathematical descrip-
tions of the test functions and their characteristics can be
found in [53].

3) Parameter Settings: It is worth noting that throughout
this paper, the term “parameter-free” is used to describe the
Voronoi neighborhood. The algorithm built upon the Voronoi
neighborhood (VNCDE) does not get rid of parameters. The
parameters inherited from CDE are set as follows. The pop-
ulation size is fixed at 100. The scale factor F and the
crossover probability Cr are set to 0.5 and 0.9, respectively.

DE/inrand/1, DE/nrand/1, dADE/nrand/1, r2pso, r2pso-lhc,
r3pso, and r3pso-lhc are algorithms developed without using
niching parameters. For the other compared algorithms, their
parameters are determined based on the recommendations of
their developers and our empirical investigations. We have
examined several different settings for each algorithm and have
chosen the best performing one. For NCDE and NSDE, the
neighborhood size parameter m is set to 10% and 20% of
the population size, respectively. Similarly, in PNPCDE, the
parameter k related to the neighborhood size is fixed at 10%N.
In LoICDE and LoISDE, k is dynamically decreased from
12.5%N to 5%N. In LIPS, nsize is dynamically increased from
5 to 8. The above parameter settings are mostly consistent with
those suggested by the developers.

The termination criterion of the algorithms is defined by
the maximum number of function evaluations (MaxFEs). The
settings of MaxFEs for the 20 benchmark functions are kept
the same as those suggested in [53]. For each test func-
tion, 50 independent runs are performed to obtain statistically
reliable results.

4) Performance Metrics: To determine whether a peak has
been located, an accuracy level ε needs to be specified. If
the difference between the height of a peak and the fitness
of an individual is less than ε, then the peak is considered
to be found. It can be inferred that the higher the accuracy
requirement, the more difficult the optimization task. In the
experiment, a challenging accuracy level, i.e., ε = 1E-04, is
employed. Given the accuracy level, the number of optimal
solutions found by an algorithm can be computed via the spe-
cialized algorithm described in [53]. Two performance metrics
are adopted to evaluate the performance of the multimodal
algorithms.

a) Peak ratio: Peak ratio (PR) is the average percentage
of global peaks found over multiple independent runs. It is
calculated as follows:

PR =
∑NR

i=1 NPFi

NPK · NR
(13)
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where NPFi is the number of peaks found in the ith run. NPK
and NR in the denominator denote the number of global peaks
and the number of runs, respectively.

b) Success rate: Success rate (SR) is the ratio of the
number of successful runs (NSR) to the total number of runs
(NR). A successful run of an algorithm is a run in which all
the global peaks are located. It is computed according to the
following formula:

SR = NSR

NR
. (14)

B. Overall Performance

The experimental results of the algorithms are reported in
Table S1 in the supplementary material, where the PR and SR
values are provided. Moreover, to determine the statistical dif-
ference between the PR values of VNCDE and those of the
other algorithms, the Wilcoxon rank sum tests are conducted
at significance level α = 0.05. The notations “#” and “b”
in the table indicate that the PR values achieved by VNCDE
are significantly better and worse than that of its competitor,
respectively. From the table, it can be observed that VNCDE
outperforms the other algorithms on more than nine test func-
tions. VNCDE achieves the 100% PR and 100% SR for the
test functions F1–F5, F10, and F11, which suggests that it can
effectively solve these problems. According to the reported PR
values, VNCDE also consistently converges to multiple peaks
for the complex composite problems with rugged landscape
(F13–F20). When compared with NCDE, LoICDE, and Fast-
NCDE, VNCDE exhibits better performance on 13, 11, and
9 functions, respectively. This reveals the advantage of the
Voronoi neighborhood over the nearest neighborhood and the
fuzzy neighborhood. The enhanced performance of VNCDE
is largely attributed to the ESE and the multiple-strategy
search mechanism, which make systematic use of the struc-
ture information encoded in the Voronoi neighborhoods of
individuals.

To further investigate the differences between VNCDE
and the competitors, the multiple-problem Wilcoxon’s test
and the Friedman’s test are conducted by using the KEEL
software [54]. Table S2 in the supplementary material provides
the results of the Wilcoxon’s test. We can observe that VNCDE
has higher R+ values than R- values in all the cases and the cor-
responding p values are less than 0.05, indicating that VNCDE
is superior to the competitors on the 20 multimodal functions.
The overall rankings of the algorithms provided by the statis-
tical test are summarized in Table III. As shown in the table,
VNCDE has the highest ranking, followed by algorithms that
are based on the fuzzy neighborhood and the nearest neighbor-
hood. The performance of the algorithms with the index-based
neighborhood structure is slightly worse than those in the other
categories.

Moreover, we have studied the convergence speed of the
algorithms and the efficacy of the multiple-strategy search
mechanism. The details are provided in the supplementary
material due to the space limit.

C. Running Time

In this section, we compare the running time of the algo-
rithms. The experimental results are provided in Table S3 in

TABLE III
RANKINGS OF THE ALGORITHMS BY THE FRIEDMAN’S TEST

Fig. 7. Running time comparison of NCDE and VNCDE. (a) F1–F5.
(b) F6–F10. (c) F11–F15. (d) F16–F20.

the supplementary material. Moreover, Fig. 7 visualizes the
running time of NCDE and VNCDE with box plots. The
results are averaged over 50 independent runs and the time
used for fitness evaluations has been counted as well. All the
algorithms are executed in the same environment.

From the table, it can be observed that the index-based
algorithms (DE/inrand/1 and rpso) are the fastest among all
the compared algorithms. For the basic multimodal problems
(F1–F10), the running time is dominated by the primitive oper-
ations of the algorithms. For complex composite problems
(F11–F20), the running time is dominated by the evaluation of
the objective functions. Fast-NCDE and Fast-LIPS are able to
achieve similar time efficiency as the index-based algorithms.
This is attributed to the use of locality sensitive hash func-
tions, which alleviate the need of distance calculations. The
nearest and fuzzy neighborhood-based algorithms generally
spend more time than index-based algorithms. As indicated by
the complexity analysis, VNCDE is the most time-consuming
algorithm. The time spent by VNCDE is about three times
longer than NCDE, as shown in Fig. 7.

The high complexity of VNCDE mainly comes from
the construction of Voronoi neighborhoods. Algorithm 1 is
designed for the purpose of illustrating the usefulness of
Voronoi neighborhoods. It is very simple and primitive. We
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believe that more advanced algorithms can be developed to
achieve quadratic or even linear time complexity through
extended future research.

D. Comparison With Four Recent Algorithms

In this section, we compare VNCDE with four more
recently proposed algorithms, i.e., MOMMOP [43],
LMCEDA [36], LMSEDA [36], and EMO-MMO [55].
MOMMOP is a novel algorithm that transforms a multimodal
problem into a multiobjective problem. The transformed
problem has mutually conflicting objectives and each Pareto
optimal solution corresponds to a peak of the original
problem. LMCEDA and LMSEDA are two algorithms based
on clustering and estimation of distribution. Three strategies,
namely, a dynamic cluster sizing strategy, a reproduction
strategy that alternatively utilizes Gaussian and Cauchy
distributions, and an adaptive local search strategy, have
been incorporated in the two algorithms to enhance the
niching performance. EMO-MMO divides the optimization
process into three stages. In the first stage, an approximate
fitness landscape is obtained by solving the transformed
multiobjective problem. In the second stage, a peak detection
method is used to find regions where optimal solutions may
exist. In the third stage, local search is performed to find the
optimal solutions inside the detected peak regions.

The experimental results at accuracy level ε = 1E-04 are
presented in Table S4 in the supplementary material, where
the highest PR values are marked in bold. The results of
MOMMOP, LMCEDA, LMSEDA, and EMO-MMO are taken
directly from their corresponding publications. Table S5 in the
supplementary material lists the rankings of the algorithms
provided by the Friedman’s test.

As can be seen in Table S4 in the supplementary material,
MOMMOP performs extremely well on the first ten problems.
All the global optima are successfully located by the algo-
rithm. EMO-MMO yields the highest PR and SR values on test
problems F1–F8 and F10–F14. However, their performance
deteriorates when solving composite problems with a larger
number of decision variables. In MOMMOP, each decision
variable is used to design two objectives. The number of objec-
tives increases linearly with the number of variables. This leads
to the loss of selection pressure for the nondominated sorting-
based operator. For EMO-MMO, approximating the entire
multimodal landscape becomes very difficult since the size
of the search space grows exponentially with the dimension-
ality. In comparison, VNCDE and LMSEDA have relatively
good performance on the composition problems (F15–F20).
Equipped with the Voronoi neighborhood-based search strate-
gies, VNCDE is capable of producing competitive results on
problems with different numbers of dimensions. According to
the Friedman’s test given in Table S5 in the supplementary
material, VNCDE has the overall best performance. EMO-
MMO and MOMMOP are in the second and third place,
respectively.

E. Effect of the Evolutionary State Estimator

In this section, we proceed to study the effect of the
ESE. Fig. 8 plots the three groups of individuals identified by
the ESE at the 20th iteration of VNCDE when solving F6 and

Fig. 8. Three groups of individuals identified by the ESE on 2-D multimodal
problems. (a) F6. (b) F10.

F10. In the figure, the dominators, challengers, and explorers
are represented by stars, circles, and triangles, respectively.
According to the figures, it can be seen that the evolutionary
states of the individuals are correctly identified. The domina-
tors are the most likely individuals to reach the peaks and
they are generally surrounded by the challengers. Some of
the dominators are near local optima [Fig. 8(a)]. In contrast,
the explorers are confined in valleys between the peaks or in
outer ranges of subpopulations [Fig. 8(b)]. These observations
confirm the efficacy of the approximation algorithm in finding
Voronoi neighbors and the validity of the ESE in classifying
the individuals.

F. Effect of Voronoi Neighborhood-Based Search Mechanism

To assess the impact of Voronoi neighborhood-based search
mechanism and crowding on the performance of VNCDE, we
compare the proposed algorithm with VNDE and CDE. VNDE
is a simplified variant of VNCDE that abandons the crowding-
based selection mechanism. The experimental results of the
three algorithms at accuracy level ε = 1E-04 are listed in
Table S6 in the supplementary material. The highest PR val-
ues are highlighted in bold. We can observe from the table
that VNCDE achieves the best results on most of the test
problems. According to the comparison results summarized
in the last row the table, VNCDE outperforms VNDE on
15 out of 20 test problems, and outperforms CDE on 12 test
problems. The PR values obtained by VNDE and CDE reveal
that both the Voronoi neighborhood-based search mechanism
and the crowding technique are effective in inducing multiple
convergence behavior. More importantly, combing the two
mechanisms endows VNCDE with the ability to reach a higher
level of performance.

The advantages of Voronoi neighborhood are twofold. First,
it is parameter free, so the algorithm built upon it will not be
influenced by the problem-related niching parameters. Second,
it provides useful information about the spatial distribution of
individuals, which can be exploited to reveal the evolutionary
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states. The evolutionary states can subsequently be used to
guide the selection of suitable reproduction strategies, so the
individuals are capable of exploiting their neighborhoods more
effectively.

To further demonstrate the advantages, we compare four
variants of VNCDE that are based on different types of
neighborhoods. The variants are denoted by IDE, NDE,
VNDE-random, and VNDE, respectively. In IDE, NDE, and
VNDE-random, an offspring solution is produced by randomly
drawing a strategy from the strategy pool containing Gaussian
local search, DE/current-to-nbest, and DE/rand/1. The only
difference between the algorithms is that the candidate vectors
(xr1, xr2, and xr3) are selected from index-based neighbor-
hood, k-nearest neighborhood, and Voronoi neighborhood. In
VNDE, the search strategy is chosen based on the role of the
parent identified by ESE. In order to isolate the effect of the
three types of neighborhoods, the traditional one-to-one selec-
tion mechanism of DE is adopted instead of the crowding
technique. Table S7 in the supplementary material provides
the PR and SR values obtained by the four algorithms. The
best PR values are marked in bold. The second and third last
rows summarize the win/tie/loss counts for VNDE-random and
VNDE, while the last row gives the rankings of the algorithms
obtained by the Friedman’s test.

It can be observed from Table S7 in the supplementary
material that VNDE-random outperforms IDE and NDE on
majority of the test problems. The index-based method often
suffers from the oscillation problem due to the ignorance of the
spatial correlation of individuals. The k-nearest neighborhood
needs to specify the size parameter and it does not take into
account the structural information. This may bias the search
toward a specific direction. In comparison, the Voronoi neigh-
borhood gathers all the surrounding individuals to facilitate the
search of peaks in local environments. The comparison result
of IDE, NDE, and VNDE-random confirms the first advantage
of the Voronoi neighborhood.

Another observation can be made is that by resort-
ing to the information extracted by ESE, VNDE suc-
ceeded in improving the performance of VNDE-random on
ten test problems. The evolutionary states of individuals
revealed by the Voronoi neighborhood and ESE are help-
ful in determining the proper use of the search strategies,
which contributes to the enhancement of the multiple con-
vergence ability. The comparison result of VNDE-random
and VNDE validates the second advantage of the Voronoi
neighborhood.

G. Effect of Problem Dimensionality

To investigate the effect of problem dimensionality on the
performance of VNCDE, we carry out experiments on three
scalable test problems, i.e., the modified Rastrigin problem
and two composition problems (CF1 and CF2). The dimen-
sionality of the problems ranges from 20 to 50. For the
modified Rastrigin problem, the termination criterion is set as
MaxFEs = 5000D. For CF1 and CF2, the termination crite-
rion is set as MaxFEs = 10 000D. Six competitive algorithms
are involved in the comparison, namely, DE/inrand/1, NCDE,
dADE/nrand/1, LoICDE, Fast-NCDE, and VNCDE. Their PR
values are summarized in Table S8 in the supplementary mate-
rial. The highest PR value for each test problem is emphasized

in bold. The running time of the algorithms (in seconds) is
reported in the table as well.

From the table, it can be seen that the VNCDE yields the
best results on 13 problem instances and Fast-NCDE yields the
best results 11 problem instances. For the modified Rastrigin
problem, the performance of the compared algorithms remains
promising under different numbers of dimensions. However,
when solving the complex composite problems CF1 and CF2,
the PR values obtained by the algorithms drop below 0.5.
Moreover, the performance deteriorates as the number of
dimensions increases. As for the computational complexity,
the index-based algorithm DE/inrand/1 consumes the least
time. The running time of Fast-NCDE is very close to
DE/inrand/1 owing to the use of efficient LSH functions. In
comparison, the time spent by VNCDE increases more rapidly
than the other algorithms. Fig. S1 in the supplementary mate-
rial depicts the growth trend of the running time for the
modified Rastrigin problem and CF1. As shown in the figure,
the computational complexities of the algorithms are linear in
the number of variables.

H. Effect of Population Size

To study the effect of population size on the performance
VNCDE, experiments are conducted on a problem with a large
number of global optima (the 3-D Vincent problem with
216 global optima) and the composite problems using ten
different settings of population size. Specifically, the popu-
lation size ranges from 20 to 200 with an increment of 20.
The other settings of the experiment remain unchanged. The
experimental results are tabulated in Table S9 in the supple-
mentary material, where the PR values and the running time
are provided. Fig. S2 in the supplementary material plots the
changes of the PR values along with the growth of the popula-
tion size, while Fig. S3 in the supplementary material displays
the outcome of the running time.

From the table and the figures, we can make the follow-
ing observations. For the Vincent problem, the PR values of
the algorithms generally increase with the population size.
The reason is that the number of global optima is larger
than the number of individuals, increasing the population size
helps to cover more promising search regions and increase the
number of located peaks. For the composition problems CF1
and CF2, the PR values of the algorithms are less suscepti-
ble to the setting of the population size. The performance of
VNCDE is more stable than the other algorithms. It achieves
the highest PR values on CF1 and CF2 under different pop-
ulation sizes. The robustness of VNCDE is mainly attributed
to the use of multiple search strategies, which enhances the
search flexibility of individuals in various scenarios. As for the
computational complexity, it can be observed that the running
time of DE/inrand/1 and Fast-NCDE is not influenced by the
population size. In comparison, the pairwise distance calcula-
tions for the population members prolong the running time of
NCDE and LoICDE. As revealed by the complexity analysis,
the time spent by VNCDE increases more significantly as the
population size grows.

VI. CONCLUSION

In this paper, a new neighborhood concept is introduced
based on a geometrical construction called Voronoi diagram.
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We showed the distinct properties of the Voronoi neighborhood
by comparing it with three existing concepts, namely, the
index-based neighborhood, the nearest neighborhood, and the
fuzzy neighborhood. Different from the existing concepts,
the Voronoi neighborhood is parameter-free and it contains
more information about the spatial distribution of individu-
als. To ensure the applicability of the concept, a polynomial
time approximation algorithm for finding Voronoi neighbors
in high dimensional search space is developed. Then, the
spatial information encoded in the Voronoi neighborhood is
extracted via an ESE. The ESE categorizes the individuals
in the population into three different groups, i.e., domina-
tors, challengers, and explorers. Each group of individuals are
treated differently according to their characteristics. Finally,
a new niching algorithm termed VNCDE is presented by
combining the Voronoi neighborhood-based search mechanism
with the crowding technique.

We have conducted a number of experiments to assess the
performance VNCDE. The numerical results indicate that the
ESE is able to correctly estimate the evolutionary states of
the individuals. Moreover, the Voronoi neighborhood-based
search strategies tailored for the dominators, challengers, and
explorers can greatly enhance their search efficiency. With the
new algorithmic components, VNCDE succeeded in locating
more optimal solutions than several state-of-the-art algorithms.
One major drawback of VNCDE is that it consumes much
more time than the compared algorithms. This is due to the
heavy computational burden incurred by Voronoi neighbor
finding.

In the future, it would be beneficial to develop more
efficient approximation algorithms to reduce the time com-
plexity of finding Voronoi neighbors, as well as to reduce
the number of Type II errors. Another plan is to test the
performance of VNCDE on more challenging benchmark
problems [56] and some real-world multimodal problems. To
avoid VNCDE overfitting to the benchmark problems and
to increase its generalizability to real-world applications, it
is desirable to employ automatic parameter tuning tools like
irace [57]. Finally, it remains to be investigated whether the
Voronoi neighborhood can be used to facilitate the design of
genetic operators for dynamic optimization and multiobjective
optimization.
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