
566 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 24, NO. 3, JUNE 2020

A Divide-and-Conquer Evolutionary Algorithm for
Large-Scale Virtual Network Embedding

An Song , Student Member, IEEE, Wei-Neng Chen , Senior Member, IEEE, Yue-Jiao Gong , Member, IEEE,

Xiaonan Luo , and Jun Zhang , Fellow, IEEE

Abstract—The subgraph isomorphism problems, which aim
to map subgraphs to a given graph, are widely seen in many
applications and are usually nondeterministic polynomial-time
complete (NP-complete). As a representative extension of the sub-
graph isomorphism problem, virtual network embedding (VNE)
is a key problem in datacenter scheduling and network virtu-
alization. Existing metaheuristic approaches to VNE problems
tend to schedule networks as a whole. But when the problem
scale grows, the performance of these approaches may degen-
erate due to the curse of dimensionality. In this article, we
intend to propose a divide-and-conquer evolutionary algorithm
with overlapping decomposition (ODEA) to solve large-scale VNE
problems. First, realizing the fact that the decision variables in
graph-based optimization problems like VNE are usually non-
separable, an overlapping decomposition method is introduced
by investigating the characteristic of the network structure. In
this method, the critical elements which have tight connections
to many other nodes can belong to multiple subcomponents.
As a result, the decision variables with tight connections can
always be evolved together in multiple subcomponents. Second,
to combine the subsolutions into a complete feasible solution,
a competitive strategy is devised. Through the competition among
critical elements, the optimizing information is shared among
subcomponents, which can further improve the effectiveness of
ODEA. The proposed ODEA can adopt different metaheuristics
as the optimizer, and we conduct experiments on both the sce-
narios with a single virtual network and with a series of online
networks. The experimental results verify that ODEA can signif-
icantly improve the performance of different metaheuristics in
large-scale VNE problems.

Index Terms—Graph matching, large-scale optimization, meta-
heuristics, virtual network embedding (VNE).
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I. INTRODUCTION

GRAPH matching is a fundamental problem in differ-
ent fields that employ structural representations, such as

biology, social networks, and network management [1]. The
general purpose of graph matching is to find the similarity
relationship among graphs. In particular, the matching from
subgraphs to a given graph, i.e., subgraph isomorphism [2],
has drawn increasing attention, because in many cases we
should determine whether a substructure is included within the
whole structure. The subgraph isomorphism detection problem
is NP-complete and the computational complexity is factorial
in the worst case [1]. The concept of subgraph isomorphism
is widely applied in different fields, such as molecular struc-
ture analysis [3], recognition of 3-D objects [4], database
searching [5], and so on.

One representative extension of subgraph isomorphism is
the virtual network embedding (VNE) problem [6], which is
commonly seen in network virtualization [7] and cloud dat-
acenter scheduling [8]. The objective of VNE is to find the
optimal mapping from virtual networks (VNs) to a substrate
network (SN), such that VNs and SNs are homeomorphic
under resource constraints. The deployment of VNs is com-
posed of two parts: 1) the virtual node mapping (VNoM, i.e.,
mapping from virtual nodes to substrate nodes) and 2) the vir-
tual link mapping (VLiM, i.e., mapping from virtual links to
substrate links). Both of them should satisfy the constraints of
networks, such as the CPU constraints of substrate nodes and
the bandwidth constraints of substrate links. Due to these con-
straints, the VNE problem is intractable, which is known to be
nondeterministic polynomial-time hard (NP-hard) [6]. Even if
all VNs are known in advance, the VNE problem is still NP-
hard since it can be transformed into the NP-hard multiway
separator problem [9].

As VNE problems are important and challenging, many
methods have been proposed and they can be roughly clas-
sified into three categories: 1) exact algorithms [10]–[13];
2) heuristic algorithms [14]–[18]; and 3) metaheuristic algo-
rithms [19]–[23]. Exact algorithms formulate VNE problems
as integer linear programming problems [24], e.g., the VNE
node-link formulation (VNE-NLF) [10]. Although the global
optimum is guaranteed to be found, exact algorithms are
time-consuming when the scale of the problem increases.
Heuristic algorithms utilize problem-dependent information to
search for near-optimal solutions, such as the algorithm with
subgraph isomorphism detection (ASID) [18] and the random
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walk with breadth-first search (RW-BFS) [15]. Heuristic-based
methods are time-efficient but the approximated solutions
found by heuristics might be far from the global optimum
in complicated situations, leading to poor performance [6].
To further improve the quality of solutions, metaheuristic
algorithms were proposed to solve VNE problems, e.g., the
unified enhanced particle swarm optimization (UEPSO) [21]
and the ant colony optimization based on topology decompo-
sition (ACO-TD) [19]. Compared with exact algorithms, the
execution time of metaheuristic approaches is controllable and
acceptable. Compared with heuristics, metaheuristic methods
have a stronger optimization capability, which has been shown
in recent studies [19]–[21], [25].

However, as the scale of the problem further increases,
the search space will increase exponentially and the struc-
ture of VNs also becomes more complicated, which makes
the VNE problem even more difficult. The exponentially grow-
ing complexity is a great obstacle for existing metaheuristic
approaches, since most of them optimize all decision vari-
ables as a whole, which may be badly influenced by the
curse of dimensionality. To overcome this shortcoming, in this
article, we propose the overlapping divide-and-conquer evolu-
tionary algorithm (ODEA) to solve large-scale VNE problems.
ODEA has the following two key features.

1) ODEA adopts the divide-and-conquer strategy to deal
with large-scale networks. In general, one node usually
has only a local influence on the whole network. In other
words, a node may have a strong influence on its neigh-
bors and weak influence on remote nodes. Therefore, it is
natural to utilize the divide-and-conquer strategy to par-
tition a large network into small subnetworks [26], [27].
Following this idea, a whole VN in ODEA is parti-
tioned into several small sub-VNs and then the mappings
of sub-VNs are optimized cooperatively. Compared to
the original network, sub-VNs have lower dimensions
and much simpler structure. Thus, the search space for
embedding such sub-VNs can be reduced.

2) The overlapping decomposition is devised in ODEA to
deal with the interconnection among subcomponents.
The classical divide-and-conquer strategy in many evo-
lutionary algorithms decomposes a large problem into
mutually exclusive subcomponents and each subcom-
ponent is optimized independently, such as differential
grouping (DG) [28] and its extension DG2 [29] in
continuous optimization. Such exclusive decomposition
can work well on totally or partially separable prob-
lems. However, sometimes it is impossible to obtain
independent exclusive subcomponents in practice, par-
ticularly in graph-based optimization problems including
VNE. If these nonseparable problems are decomposed
into exclusive subcomponents, the dependence among
interconnected subcomponents will be ignored, leading
to poor optimization performance. To alleviate such defi-
ciency, we devise the overlapping decomposition for
ODEA. The critical elements in a VN can be assigned
to multiple subcomponents rather than a single exclusive
subcomponent. Thus, the dependence among sub-VNs
can be taken into account in ODEA.

All in all, there are three major procedures in ODEA:
1) graph partitioning; 2) subgraph mapping; and 3) graph inte-
gration. The graph partitioning procedure partitions a large
VN into several overlapping sub-VNs. The overlapping mech-
anism can thus handle the dependence among sub-VNs.
Then, the subgraph mapping and graph integration proce-
dures are alternate in each iteration. The subgraph mapping
procedure is responsible for the mapping of sub-VNs to the
SN. Metaheuristic methods are adopted as the optimizer for
mapping. The graph integration procedure integrates subso-
lutions found so far to construct the whole solution. During
the graph integration, overlapping elements in sub-VNs may
have multiple values in different subcomponents. An appro-
priate value for each overlapping element is selected by the
competitive strategy in ODEA.

We conduct experiments to explore the optimizing behav-
ior of ODEA. The performance of ODEA is tested on both
the scenarios of offline and online VNs. Four metaheuris-
tics, including the set-based PSO (SPSO) [30], UEPSO [21],
the PSO with random walk (RWPSO) [22], and CB-GA [25]
are implemented under the ODEA. The experimental results
show that ODEA is general for different metaheuristics and is
promising for solving large-scale VNE problems.

The reminder of this article is organized as follows. In
Section II, we discuss related works about VNE problems
and divide-and-conquer evolutionary algorithms. Then, the
VNE problem is formally defined in Section III. Section IV
describes the proposed ODEA in details. In Section V, we
study the optimizing behavior of different decomposing meth-
ods and the influence of parameters. In Section VI, sufficient
experiments are conducted to verify the generality and the
effectiveness of ODEA. The conclusions are finally drawn in
Section VII.

II. RELATED WORKS

The VNE problem has been proven NP-hard and meta-
heuristic algorithms have been widely applied. In this section,
we first review the metaheuristic algorithms for VNE. Then,
we also make a brief review on the existing divide-and-conquer
techniques used by evolutionary algorithms for solving large-
scale optimization problems.

A. Metaheuristic Algorithms for VNE Problems

Metaheuristic algorithms are a class of algorithms
inspired by natural phenomenon, such as particle swarm
optimization (PSO) [30], ant colony optimization (ACO) [31],
genetic algorithm (GA) [32], etc. As globally optimal solu-
tions to VNE problems are hard to find, researchers pay more
attention to finding near-optimal solutions with metaheuristic
algorithms

The most popular metaheuristic method for VNE is
PSO. Zhang et al. [21] proposed a variant of PSO, named
UEPSO, to solve VNE problems. Positions of particles in
UEPSO represent the VNoM and velocities are vectors with
binary values which represent the difference between current
solutions and the best solution. Following the basic PSO pro-
cedure, UEPSO replaces the arithmetic operators defined on
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the continuous space in PSO with the operators on the discrete
space. Therefore, particles in UEPSO can search for optimal
solutions to VNE on discrete space. Based on the arith-
metic operators of UEPSO, Cheng et al. [22] further proposed
the PSO with a Markov random walk model (RW-PSO).
Incorporated a modified PageRank algorithm, RW-PSO eval-
uates the ranks for both virtual nodes and substrate nodes.
During optimization, the virtual nodes with high ranks are
more probable to be embedded on the substrate nodes with
high ranks. In this way, not only the network resources but
also the network topologies are taken into account.

Other metaheuristic methods for VNE include GA and ACO
approaches. Mi et al. [33] applied GA to solve VNE prob-
lems and proposed two GA-based algorithms, called CB-GA
and RW-GA. The chromosomes in CB-GA and RW-GA rep-
resent the VNoM only. In each generation, the chromosomes
are randomly paired and execute the crossover and muta-
tion process with predefined probabilities. This operation is
repeated until the maximum number of iterations is reached.
Compared to PSO-based approaches for VNE problems, GA-
based methods provide better diversity of populations so that
more potential solutions can be found. Chang et al. [25]
proposed the ACO-based algorithm with the random walk
model (RW-ACO) to solve VNE problems. In RW-ACO, the
artificial ant colony is launched to search the optimal map-
ping of VNs. The solutions are constructed step by step
according to the artificial pheromones which are associated
with the usage of substrate bandwidth. Solutions with less
usage of bandwidth can reinforce artificial pheromones and
their components will be reused with higher probabilities in
future generations. Fajjari et al. [23] applied max–min ACO
to solve VNE (VNE-AC). The objective of VNE-AC is to
minimize the mapping cost of VNs and maximize the mini-
mum of residual bandwidth in the SN. VNE-AC can improve
the acceptance rate and provider’s revenue compared to
heuristic approaches.

The experimental results in metaheuristics [19], [21], [25]
have shown that metaheuristic algorithms for VNE can
significantly outperform several classical heuristics, such
as ASID [18], deterministic VNE with the shortest path
(D-ViNE-SP) [34], and VNE-Greedy [16]. However, many
metaheuristics adopt the nondecomposition mechanism and
optimize all VNoM and VLiM as a whole. When the scale
of VNs increases and the topologies of networks become
complicated, the metaheuristics with the nondecomposition
mechanism might lose their effectiveness. To alleviate such
deficiency, we devise the divide-and-conquer metaheuristics
to deal with large-scale VNs, which will be introduced in
Section IV.

B. Evolutionary Algorithms Under the Divide-and-Conquer
Concept

In order to solve large-scale optimization problems, the
divide-and-conquer methodology is adopted by evolutionary
algorithms and leads to a new evolutionary scheme, coop-
erative co-evolution (CC) [28], [35], [36]. Usually, CC first

divides the optimization problem into several mutually exclu-
sive subcomponents, and then each subcomponent is optimized
by a specific evolutionary optimizer. So far, many group-
ing strategies have been proposed for continuous function
optimization problems, such as DG [28], [35], [36], global
DG (GDG) [37], and DG2 [29].

However, most practical applications are discrete combina-
torial optimization problems [36], [38], [39]. For these prob-
lems, the decomposition strategy designed in continuous space
cannot be applied directly. Hence, how to decompose appli-
cation problems is still a challenge for CC-based approaches.
Mei et al. [40] applied CC to solve capacitated arc routing
problems. They divided close routes into the same group with
the fuzzy k-medoids methods. As a result, the dependence
among groups can be reduced. Gomes et al. [41] extended the
CC architecture in solving heterogeneous multiagent systems.
Through investigating the behavior of agents, the agents with
similar behavior can be assigned to the same subcompo-
nent. In this way, homogeneous subteams are formed inside
the whole heterogeneous team. Gong et al. [42] proposed
a multiobjective CC algorithm to solve the sparse unmixing
of hyperspectral data. The decision vectors interact with each
other in this problem and they adopted the random grouping
to split nonseparable decision variables into low-dimensional
decision vectors.

Generally, there are insufficient researches of CC in solv-
ing nonseparable practical problems. Moreover, most exist-
ing CC-based works cannot deal with the interconnection
among subcomponents. Since CC decomposes problems into
independent and exclusive subproblems, the coordination
and dependence of subcomponents are difficult to take into
account. In this article, we study the overlapping decomposi-
tion rather than exclusive decomposition, which can consider
the dependence and interconnection among subproblems while
CC-based approaches cannot.

III. NETWORK MODEL AND VNE PROBLEM DEFINITION

The VNE problem is an extension of the graph isomorphism
problem. The problem can be abstracted as mappings from
VNs to an SN subject to resource constraints. In this section,
we first present the network model and then the mathematical
formulation of VNE problems is provided.

A. Network Model

The SN and the VN are modeled as an undirected weighted
graphs Gs = (Ns, Ls) and Gv = (Nv, Lv), respectively. Here,
Ns and Ls represent the set of substrate nodes and substrate
links where the subscript “s” stands for SNs. Similarly, Nv and
Lv represent the set of virtual nodes and virtual links where
the subscript “v” stands for VNs. Each substrate node n∈Ns

(or virtual node n∈Nv) has a node weight nws(n) (or nwv(n)).
Similarly, each substrate link l∈Ls (or virtual link l∈Lv) has
a link weight lws(l) (or lwv(l)) [14], [43]. In VNE problems,
the weight of nodes usually represents CPU resources and the
weight of links represents bandwidth. An example of a typical
SN and a VN are depicted in Fig. 1. Nodes A–F are substrate
nodes which constitute the SN. Nodes a–c are virtual nodes
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Fig. 1. Examples of VNE. The node mapping for VN1 is {a→B, b→E,
c→C} and the link mapping is {(a, b)→(B, E), (a, c)→(B, C),
(b, c)→(E, D, C)}, which needs to satisfy the resource constraints from nodes
and links.

which constitute the VN. All links and nodes are labeled with
corresponding weights.

B. VNE Problem Definition

Given the SN Gs = (Ns, Ls) and the VN Gv = (Nv, Lv),
generally, the VNE problem can be divided into two one-
to-one mappings, i.e., the VNoM, �N : Nv → Ns, and the
VLiM, �L: Lv → Ps where Ps is the set of all loop-free
substrate paths in the SN Gs. As shown in Fig. 1, the
VNoM for VN1 is {a→B, b→E, c→C} and the VLiM for
VN1 is {(a, b)→(B, E), (a, c)→(B, C), (b, c)→(E, D, C)}.
During the mapping, the following constraints should be
satisfied [6], [15], [21].

In VNoM, first, each virtual node should be mapped to one
substrate node

∀x ∈ NV , �N(x) ∈ NS (1)

and two virtual nodes are not allowed to be mapped to the
same substrate node

∀x, y ∈ NV , �N(x) = �N(y), iff x = y. (2)

Besides, the weights of substrate nodes should be larger than
or equal to those of virtual nodes

∀x ∈ NV , nwV(x) ≤ nwS(�N(x)). (3)

As for VLiM, each virtual link l is mapped to a path on
the SN

∀l ∈ LV , �L(l) ∈ PS. (4)

The weight of a path P is defined as the lowest weight of
the substrate links constituting P, denoted as pw(P). During
VLiM, the weights of substrate paths should be larger than or
equal to the weights of virtual links

∀l ∈ LV , lwV(l) ≤ pw(P)

where P = �L(l). (5)

The objective of VNE problems is to find the optimal map-
ping from VNs to an SN, which can minimize the allocated
resources (including node weights and link weights). When
embedding a single VN, the allocated node weights equal the
sum of all virtual node weights, which means they are identical
in different solutions to VNoM. However, the allocated link

Fig. 2. Framework of ODEA. “Sub-solu” stands for subsolution.

weights of SNs are correlated to the solutions to VLiM. More
precisely, if a virtual link is mapped to a long path on the
SN, this virtual link will occupy more link weights of SNs
than that is mapped to a short path. Therefore, from the per-
spective of optimization, we consider the objective function of
embedding a single VN as minimizing the total allocated link
weights for virtual links [21], [44], formulated as

min :
∑

l∈LV

|�L(l)|∑

i=1

lwV(l) (6)

where |.| is the length of a substrate path. For example in
Fig. 1, the total allocated link weight is 30×1+20×1+25×2 =
100.

In practice, VN requests arrive at an SN continually and
each VN request is associated with its duration. In the online
situation, we denote the ith VN request as VNRi = (Gv, ta, td)
where ta is the time when VNRi arrives and td is the dura-
tion of VNRi. When VNRi comes to the SN at time ta, the
VNE algorithm should find the mappings for virtual nodes and
virtual links. If any feasible solutions can be found, the corre-
sponding resources (including node weights and link weights)
are allocated to VNRi for td time units. Otherwise, this VN
request will be rejected. If a VN request is completed, the
allocated resources of the VN will be released for future VN
requests.

IV. ODEA

As aforementioned, we propose the ODEA to solve large-
scale VNE problems. In this section, we first briefly introduce
the basic framework of ODEA and then present the details of
major procedures, i.e., graph partitioning, subgraph mapping,
and graph integration.

A. Framework of ODEA

Fig. 2 presents the general framework of ODEA. Following
the divide-and-conquer strategy, ODEA first partitions a large
VN into several sub-VNs (i.e., graph partitioning procedure).
Note that these sub-VNs are overlapped with each other due
to the overlapping decomposition. Then each sub-VN is opti-
mized by a specific evolutionary optimizer (i.e., subgraph
mapping procedure). Naturally, k subsolutions will be gen-
erated for k subproblems, respectively. Since sub-VNs are
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Algorithm 1 Graph Partitioning
input: the VN Gv, the number of groups sub_num, the maximum

overlapping nodes max_OL in each group;
output: sub-VNs subs={s1, s2, . . . , ssub_num}

1: subs=MLkB(Gv, sub_num);//exclusive decomposition
2: for i=1:|subs|
3: s=subs(i);
4: find the virtual nodes set conn whose elements connect to s,

conn = {v∈Nv| ∃w∈s, (v, w)∈Lv};
5: if |conn| > max_OL
6: sort the virtual nodes in conn in decreasing order according

to connection strength (7);
7: select top max_OL nodes in conn into OL_nodes;
8: else
9: OL_nodes = conn;

10: end if
11: s = s ∪ OL_nodes;
12: subs(i) = s;
13: end for

overlapped, there exist inter-relations among subsolutions.
Finally, subsolutions obtained by evolutionary optimizers are
carefully integrated to construct a whole solution, especially
for overlapping elements (i.e., graph integration).

B. Graph Partitioning

The basic idea of graph partitioning is to put interactional
nodes into the same group to reduce the dependence among
subproblems [28], [29]. However, as the topologies of VNs are
connected graphs, all decision variables are indeed interacting
with each other through virtual links so that the ideal decom-
position does not exist. Therefore, we should take the influence
of dependent sub-VNs into account.

Based on the above analysis, we develop the overlapping
decomposition strategy for ODEA. The overlapping decom-
position contains two steps. First, the whole large VN is
partitioned into exclusive small sub-VNs with the exclu-
sive decomposition. Second, some critical virtual nodes are
selected and are put into several sub-VNs to construct the
overlapping decomposition. The complete graph partitioning
procedure is shown in Algorithm 1.

1) Exclusive Decomposition: The traditional the divide-
and-conquer framework divides the whole dimension into
several exclusive subproblems. Following this idea, VNs are
partitioned into exclusive sub-VNs in the exclusive decom-
position at first, which provides the input of the overlapping
decomposition.

Most existing partitioning strategies divide VNs into several
simple structures (e.g., star topologies [45]) or the combi-
nations of simple structures (e.g., the combinations of ring
topologies and tree topologies [19]). In these strategies, the
size and the number of sub-VNs are correlated to the scale
of the whole VNs, which means they are not controllable.
As a consequence, these strategies have two shortcomings:
1) if the size of sub-VNs is too large, the embedding of large
sub-VNs is still as difficult as embedding the whole VN and
2) if the size of sub-VNs is too small, the whole VN will be
partitioned into too many sub-VNs and there will be many
interconnections among sub-VNs. These connections increase

(a) (b)

Fig. 3. Examples of exclusive decomposition and overlapping decomposition.
Only the links connecting to two sub-VNs are labeled with weights for the
sake of brevity. First, the exclusive decomposition is obtained by the MLkP
scheme. Then the connection strength of connected nodes for each sub-VN
is evaluated. For example in (a), the connection strength between the node 7
and sub-VN1 is (10 + 20)×2 = 210 while the connection strength between
the node 6 and sub-VN1 is 30×1 = 30. Thus, the nodes with top connection
strength (e.g., node 7) are more probable to be added to the overlapping
decomposition.

the dependence among subproblems so that the performance
of divide-and-conquer framework might be limited.

To find the appropriate decomposition for large-scale
VNs, we adopt the multilevel k-way partitioning (MLkP)
scheme [46]. Through this scheme, an arbitrary network can
be partitioned into k subnetworks with a similar scale and the
edge-cut among networks is small. Given the expected num-
ber of sub-VNs, sub_num, we partition the VN into sub_num
exclusive sub-VNs (line 1 in Algorithm 1). Naturally, the
appropriate value of parameter sub_num is related to the scale
of VNs and will be studied later in Section V. Fig. 3(a) illus-
trates an example of exclusive decomposition. The VN is
provided with eight nodes and it is divided into two sub-VNs
(i.e., sub_num = 2). Virtual nodes 1–4 compose sub-VN1 and
the nodes 5–8 compose sub-VN2.

2) Overlapping decomposition: After the exclusive decom-
position, the whole VN is partitioned into exclusive sub-
VNs, and the interconnections among sub-VNs are ignored.
However, the topologies of VNs are connected graphs and thus
the dependence among sub-VNs should never be neglected.
When the mappings of these sub-VNs are optimized indepen-
dently, the embedding of one sub-VN might be disturbed by
other interactional sub-VNs. In addition, some virtual nodes
can strongly connect to different sub-VNs and it might be irra-
tional to divide these virtual nodes into only one sub-VN. For
example in Fig. 3(a), although virtual node 4 is divided into
sub-VN1, it also has connections to sub-VN2. Therefore, it
should be acceptable to include node 4 into sub-VN2, too.

To achieve the desired effect, we devise the overlapping
decomposition strategy, which partitions a VN into overlap-
ping sub-VNs. The virtual nodes that connect to multiple
sub-VNs are overlapped with different sub-VNs so that the
partitioning results are more reasonable. Through the overlap-
ping elements, the optimization of sub-VNs is not independent
and thus the disturbance from other sub-VNs is reduced.

The overlapping decomposition is based on the results of
exclusive decomposition. After the exclusive sub-VNs are
obtained, each sub-VN extends its range to overlap critical
virtual nodes. The selection of critical virtual nodes to be over-
lapped is quite important to the performance of overlapping
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decomposition. Herein, we devise two rules to find these criti-
cal nodes. First, if a virtual node does not connect to a sub-VN
directly, the impact of the virtual node on the sub-VN can be
ignored. In Fig. 3(a), node 7 has connections to sub-VN1 while
node 5 does not have. Therefore, node 7 has more impacts on
sub-VN1 than node 5 and the impact of node 5 is ignored
in this situation. As a result, the first rule is that only the
connected nodes should be overlapped by a sub-VN.

Second, if there are lots of nodes that connect to a sub-VN,
we should select a part of the connected nodes to overlap.
Here, the connected nodes have different connection strength
to a sub-VN. On the one hand, the connection strength is
influenced by the number of connections. If a virtual node
has many connections to a sub-VN, this node should have
a stronger connection strength than the virtual nodes with few
connections. In Fig. 3(a), node 7 has two connections to sub-
VN1 while node 6 has only one connection. Thus, node 7
may have stronger connection strength than node 6. On the
other hand, as the topologies of VNs are weighted graphs,
the connection strength is also influenced by the weights of
connections (i.e., link weights). If the connections between
the virtual node and the sub-VN are provided with high link
weights, they can raise the connection strength as well.

To measure the connection strength quantitatively, we devise
the CS metric to evaluate the connection strength between
the sub-VN Gv’ and the connected virtual node n, which is
calculated as

CS(G′v, n) = |L| ×
∑

l∈L

lwv(l)

L = {
lmn ∈ Lv|m ∈ N′v

}
(7)

where the virtual link set L represents the connections between
the sub-VN Gv’ and the virtual node n. The CS metric compre-
hensively considers the impact from the number of connections
and link weights. The more connections and link weights that
exist between the virtual node and the sub-VN, the stronger
the corresponding connection strength is. Virtual nodes with
large CS values are more worthy of overlapping. For example
in Fig. 3 (a), the CS between sub-VN1 and node 7 is eval-
uated as (10 + 20)×2 = 60 while the CS between sub-VN1
and node 6 is evaluated as 30 × 1 = 30. Since node 7 has
a stronger connection strength than node 6, node 7 is more
worthy of overlapping by sub-VN1 than node 6.

The entire overlapping decomposition strategy is shown
in lines 2–13 of Algorithm 1. First, we find the connected
nodes to sub-VNs (line 4 in Algorithm 1). If there are lots
of connected nodes and they exceed the maximum number of
overlapping nodes max_OL, the connected nodes are sorted
in decreasing order according to the CS metric [i.e., (7)]
(line 6 in Algorithm 1). Then, the top max_OL connected
nodes and their links are added to the sub-VNs (line 7, and
lines 11 and 12 in Algorithm 1). The parameter max_OL is
specified in advance and we will study it later in Section V.
Fig. 3(b) depicts an example of the overlapping decomposition.
The VN with eight nodes is partitioned into two overlapping
sub-VNs. The nodes 1–4, 7 compose sub-VN1 and nodes 4–8
compose sub-VN2. Nodes 4 and 7 are overlapped by these
two sub-VNs.

Algorithm 2 Integration
input: the sub-VN sub, the mapping ms of sub-VN, the best solution

of VNE gbest
output: the fitness value of the sub-solution ms;

1: gbest’=gbest;
2: for each virtual node node in sub
3: prune the mapping results of node and its connected links from

gbest’;
4: end for
5: ms = ms ∪ gbest’;
6: evaluate the fitness value of ms;

C. Subgraph Mapping and Graph Integration

After the whole VN is divided into overlapping sub-VNs,
different metaheuristics for VNE can be adopted to embed
sub-VNs in the subgraph mapping procedure. The embedding
of sub-VNs includes the mapping of virtual nodes and all con-
nected virtual links, which means the links that connect two
sub-VNs are also embedded [e.g., links (7, 8) and (4, 6) for
embedding sub-VN1 in Fig. 3(b)].

1) Graph Integration: After the embedding of sub-VNs, the
next is to integrate subsolutions to evaluate the fitness value
of them. Actually, the embedding of sub-VNs is a partial solu-
tion since only a part of a VN is mapped. As the objective
of VNE is to minimize the allocated resources for all virtual
links [i.e., (6)], the fitness value for partial solutions cannot be
evaluated directly. Partial solutions should be complemented
as whole solutions, and then the fitness values of them can
be evaluated. For fair comparisons, the complemented part
should be identical, such that the only difference among com-
plemented solutions is the embedding of sub-VNs. Hence, the
fitness values of complemented solutions can reflect the quality
of embedding sub-VNs.

To complement partial solutions, we integrate the embed-
ding of sub-VNs with the best solution gbest, found by the
population so far in the graph integration procedure (shown
in Algorithm 2). Since the embedding of sub-VNs includes
the mapping of virtual nodes and their connected links, we
first prune the mappings of these elements from the best solu-
tion (lines 2–4 in Algorithm 2). Then the embedding of the
sub-VN is integrated with the pruned best solution (line 5 in
Algorithm 2).

Note that a feasible solution to VNE problems should satisfy
the constraints of both node mappings and link mappings, see-
ing (1)–(5). During the graph integration procedure, the best
solution and the embedding of sub-VNs may have a conflict.
For example, some substrate nodes can be selected in both
the embedding of sub-VNs and the best solution. In this situ-
ation, the integration of gbest and the embedding of sub-VNs
may violate the constraint represented by (2) (i.e., two virtual
nodes are not allowed to be mapped on the same substrate
node). To avoid the violation of constraints, we use gbest as
a reference and the embedding of sub-VNs should avoid the
conflict with the best solution during the subgraph mapping
procedure. As a result, the complemented solutions can satisfy
the constraints of VNE problems and they are guaranteed to
be feasible.
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Fig. 4. Mapping of the VN with two overlapping sub-VNs. After the sub-
VN1 and sub-VN2 are optimized, the overlapping node c has two different
mappings c → E and c → D since the node c is mapped twice. With the
competitive strategy, the better one will be chosen.

Algorithm 3 Competitive Strategy
input: globally best solution gbest, the set of overlapping virtual

nodes OV;
output: updated gbest;

1: for each virtual node v in OV
2: candidate(v)={n∈Ns|substrate node n hosts v};
3: connect(v)={sub∈subs|v is directly connected to sub};//subs

is the set of all sub-VNs decomposed by Algorithm 1
4: for each sub-VN sub in connect(v)
5: evaluate the connection strength between v and sub using

Eq.(7);
6: end for
7: select the strongest sub∈connect(v) connected to v;
8: select the substrate node n from candidate(v) corresponding to

sub and construct the virtual node mapping (v, n);
9: gbest’ = gbest\v;

10: cpt = gbest’∪(v, n);// construct the competitor
11: if func(cpt) < func(gbest)// func() is the objective function,

seeing Eq. (6)
12: gbest = cpt;
13: end if
14: end for
15: replace the worst solution in the population with the updated

gbest;

2) Competitive Strategy: In overlapping decomposition,
some critical virtual nodes are overlapped by multiple sub-VNs
and thus an overlapping virtual node may be mapped to differ-
ent substrate nodes in multiple sub-VNs. For example in Fig. 4,
virtual node c is overlapped in sub-VN1 (composed of the
nodes a–c) and sub-VN2 (composed of the nodes c–e). In sub-
VN1, virtual node c is mapped to substrate node E while it is
mapped to substrate node C in sub-VN2. As each virtual node
should be mapped to one substrate node, there is a conflict
among overlapping nodes when integrating subsolutions.

To deal with the conflict in graph integration, we devise the
competitive strategy for overlapping virtual nodes. The basic
idea is to construct competitors for the gbest solution in the
use of overlapping virtual nodes. The pseudo code of the com-
petitive strategy is presented in Algorithm 3. After the graph
integration procedure, a rough gbest solution is found. For
each overlapping node v, we first collect the candidate sub-
strate nodes candidate(v) occupied by v [e.g., candidate(c) =
{E, C} in Fig. 4] and collect the sub-VNs connect(v) that
directly connect to v (e.g., connect(c) = {sub-VN1, sub-VN2}

in Fig. 4). Note that each candidate node in candidate(v) cor-
responds to a sub-VN in connect(v) [e.g., E corresponds to
sub-VN1 and C corresponds to sub-VN2 in Fig. 4]. Then,
we evaluate the connection strength CS [i.e., (7)] between the
overlapping node v and connected sub-VNs, and select the sub-
VN with the strongest connection (lines 4–7 in Algorithm 3).
After that, the candidate substrate node that corresponds to the
strongest sub-VN will be used to construct a competitor for
the overlapping virtual node v. For example in Fig. 4, the CS
between c and sub-VN1 is evaluated as (20 + 25) × 2 = 90
while CS between c and sub-VN2 is evaluated as 30×1 = 30.
Since sub-VN1 has stronger connection strength, the corre-
sponding substrate node E will be chosen to construct the
competitor. The competitor construction is carried out in two
steps. The first step is to delete the mapping of v from the
gbest solution. Then the second step is to map v to the can-
didate substrate node and add the mapping to the competitor
(lines 9 and 10 in Algorithm 3). Finally, if the competitor is
better than the gbest solution, gbest will be replaced by the
competitor. After all overlapping virtual nodes have been uti-
lized to challenge gbest, the competitive strategy finishes. With
the competitive strategy, K overlapping virtual nodes will con-
struct K competitors to challenge the gbest solution. By the
competitive strategy, we can make full use of the information
of overlapping nodes and thus the quality of gbest can be
further improved.

Note that the challenged gbest synthesize the optimizing
information of all sub-VNs, especially for overlapping virtual
nodes. We replace the worst solution in the population with
the enhanced gbest (line 15 in Algorithm 3). Through this, the
optimizing information of overlapping nodes is injected into
other sub-VNs and the competition result is shared with the
whole population.

D. ODEA Algorithm

Now, that the graph partitioning, subgraph mapping, and
graph integration procedures have been defined, we can give
the full ODEA algorithm, as provided in Algorithm 4.

At first, the population is initialized randomly. Since
ODEA can incorporate different metaheuristics for VNE, the
population can be initialized by the corresponding initializa-
tion strategy according to combined metaheuristics. Then the
VN is partitioned into several sub-VNs with the overlapping
decomposition algorithm (line 3 in Algorithm 4).

After graph partitioning, the embedding of sub-VNs is opti-
mized by the specific metaheuristic algorithm. Note that all
sub-VNs are iterated over a random permutation in each gener-
ation (line 5 in Algorithm 4). This mechanism has two benefits.
First, since the scale of all sub-VNs is similar, they should be
treated equally. If sub-VNs are embedded with a fixed order,
the sub-VNs that appear earlier in this order can have more
impact on the following sub-VNs in the last. On the con-
trary, the random permutation can provide an equal probability
of priority so that sub-VNs are embedded fairly. Second, in
the overlapping decomposition, overlapping virtual nodes are
embedded along with different sub-VNs and they might have
different embedding results. The random permutation is able



SONG et al.: DIVIDE-AND-CONQUER EVOLUTIONARY ALGORITHM FOR LARGE-SCALE VNE 573

Algorithm 4 ODEA
input: the virtual network Gv, the substrate network Gs and the

metaheuristic algorithm A;
output: the best solution found by the population gbest;

1: initialize the population pop randomly;
2: gbest ← the best solution from pop;
3: decompose Gv into sub-VNs subs using Algorithm 1;
4: for gen=1:max_gen
5: shuffle the order of subs randomly;
6: for each sub in subs
7: partial solutions sub_solus ← optimize the mapping of

sub with A referring to gbest;
8: complemented solutions com_solus ← unify sub_solus

with gbest using Algorithm 2;
9: gbest’ ← the best complemented solution in com_solus;

10: if func(gbest’)<func(gbest)// func() is the objective func-
tion, seeing Eq. (6)

11: gbest = gbest’;
12: end if
13: end for
14: competitive strategy using Algorithm 3;
15: end for

to explore more various combinations of embedding results for
overlapping nodes and it is helpful to find good combinations
of values.

During the subgraph mapping procedure, different meta-
heuristics for VNE can be adopted and the best solu-
tion gbest found so far is taken as a reference to avoid
the conflict between partial solutions and the best solution
(line 7 in Algorithm 4). Next, the partial solutions are com-
plemented with gbest in graph integration procedure (line 8 in
Algorithm 4). In this way, the fitness value of embedding sub-
VNs can be evaluated. The best embedding result of sub-VNs
is compared with gbest and the better one will be preserved
(lines 10–12 in Algorithm 4). After all sub-VNs are optimized,
a rough gbest solution is obtained and the competitive strategy
is used to enhance gbest (line 14 in Algorithm 4).

V. PARAMETER STUDY OF ODEA

There are two parameters in ODEA, the number of sub-VNs
sub_num (line 1 in Algorithm 1) and the maximum number
of overlapping nodes max_OL (line 5 in Algorithm 1). In this
section, we first introduce the experimental settings and then
the study of these two parameters is presented.

A. Experimental Settings

To study the impact of parameters on optimization, we
conduct experiments on embedding a single VN. For fair
comparisons, the topologies of all networks are generated
by the GT-ITM tool [47], which is used in many VNE
studies [34], [48]. The connectivity rate of SNs is fixed
at 10% [21]. The node weights and link weights of SNs are
uniformly distributed between 50 and 100 [34]. The substrate
nodes vary from 20 to 100 in increments of 20 to figure out
the trend of parameters. As for VNs, we follow the replication
idea proposed in [44]. The node weights and link weights of
VNs are 10% of corresponding substrate nodes and links. This

Fig. 5. Converging curves with varied sub_num for the exclusive
decomposition.

way of generating VNs can guarantee that the global optimum
exists and is known in advance.

We adopt SPSO [30] as the embedding algorithm. The
related parameters of SPSO, such as the inertia weight, are
set according to [30]. The maximum generation in all exper-
iments is set to 200 to ensure the convergence of compared
algorithms. We use Java to implement all algorithms and per-
form the programs on a machine with Intel Core i5-4590 CPU
at 3.30 GHz. The operating system is Linux and the JDK ver-
sion is 1.8. Thirty independent runs are performed to study
the average performance.

B. Study of the Parameter sub_num

sub_num is the number of sub-VNs that we expect to
partition. The setting of sub_num should balance the scale
of sub-VNs and the dependence among sub-VNs. A large
sub_num means the scale of sub-VNs is small and the connec-
tions among sub-VNs will increase. Embedding small sub-VNs
is much easier than large ones but the connections among
sub-VNs might deteriorate the performance of ODEA. To
investigate the parameter sub_num, we conduct experiments on
different scale of networks with various sub_num. The param-
eter max_OL is set to 3 when analyzing parameter sub_num,
which will be analyzed later.

Figs. 5 and 6 depict the converging curves of varied
sub_num with the exclusive decomposition and the overlap-
ping decomposition, respectively. The title “VN20” represents
that the VN is provided with 20 nodes. sub_num is varied in
{1, 2, 4, 6, 8, 10} for VNs with more than 40 nodes and
is varied in {1, 2, 3, 4, 5} for VNs with 20 nodes. Note
that sub_num = 1 means VNs are not partitioned in fact.
The ordinates in Figs. 5 and 6 are fractions of the optimal
fitness value, where 100% means the algorithm finds the
optimal value and 200% means the double of the optimal
value. From Figs. 5 and 6, we can first observe that sub_num
influences the performance of ODEA as approximate unimodal
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Fig. 6. Converging curves with varied sub_num for the overlapping
decomposition.

functions in each instance. For example, in the instance of
“VN60” in Fig. 5, the performance of ODEA becomes bet-
ter and better when sub_num increases from 1 to 4. However,
the performance of ODEA becomes poorer and poorer when
sub_num increases from 6 to 10. Second, the best value of
sub_num is positively correlated to the scale of networks. In
small-scale instances, ODEA with small sub_num can obtain
good results while the algorithms with large sub_num perform
better in large-scale VNs. Based on the above analysis, we use
following formula to linearly fit sub_num:

sub_num = arg min
s∈{2,4,6,8,...}

{|sizeof(GV)/ρ − s|} (8)

where Gv is a VN and ρ is the slope to describe the trend of
sub_num. ρ is set to 15 for the exclusive decomposition and
is set to 10 for the overlapping decomposition according to
Figs. 5 and 6.

Another interesting phenomenon is that, as shown in
Figs. 5 and 6, the performance of nondecomposition algo-
rithms (i.e., sub_num = 1) degrades when the scale of VNs
increases. In small-scale VNs, the nondecomposition algo-
rithms can optimize solutions well, such as in VN20 and
“VN40.” However, in large-scale VNs (e.g., “VN80” and
“VN100”), the converging curves of nondecomposition algo-
rithms are approximately horizontal lines, which means the
convergence speed in large-scale instances is much slower than
that in small networks, leading to poor performance.

C. Study of the Parameter max_OL

To reduce the influence of dependent sub-VNs, the sub-
VNs are overlapped with each other during the optimization.
The maximum number of overlapping nodes for sub-VNs is
denoted as max_OL. To investigate parameter max_OL, we
conduct experiments on different scale of networks with var-
ious max_OL. The parameter sub_num is set as (8) when
analyzing max_OL.

Fig. 7. Converging curves with varied max_OL for overlapping decomposi-
tion.

Fig. 7 depicts the converging curves of varied max_OL with
the overlapping decomposition. max_OL is varied in {0, 1,
2, 3} and max_OL = 0 means sub-VNs are exclusive with
each other (i.e., the exclusive decomposition). From Fig. 7,
the better performance of algorithms can be observed on
larger max_OL in each instance. This result verifies that the
dependence among sub-VNs indeed degrades the performance
of ODEA. That is, using more overlapping nodes means
that more connections among sub-VNs are considered during
optimization, which can reduce the influence of dependence
from sub-VNs and improve the performance of ODEA.

Besides, we can see that the influence of max_OL is similar
in all instances and max_OL = 3 can always obtain the best
results. This result implies that max_OL is independent of the
scale of VNs. Based on the observation of Fig. 7, max_OL is
set to 3 in all instances.

In the experiments, max_OL is tested up to 3. If max_OL
is larger than 3, the performance might be better but the
time complexity increases at the same time. In VNE prob-
lems, since each virtual link is mapped to the substrate
path using the shortest path algorithm, the mapping of vir-
tual links consumes more running time than the mapping of
virtual nodes. The time complexity of the shortest path algo-
rithm is usually O(N2) where N is the number of substrate
nodes. For the overlapping decomposition, the overlapping
nodes add extra virtual links to the sub-VNs and these
extra virtual links will consume more running time. Given
the size of VN n and number of sub-VNs sub_num, the size
of each sub-VN is about (n/sub_num). With the specified
connectivity rate r, there are about (n/sub_num)×r connec-
tions between each overlapping node and the sub-VN. Since
we have max_OL overlapping nodes, the total extra virtual
links for each sub-VN are about (n/sub_num)×r × max_OL.
Hence, the extra time complexity for all overlapping nodes is
O([n/sub_num]×r × max_OL×N2). The parameter sub_num
increases with the scale of VNs and thus the ratio (n/sub_num)

approaches a constant. The connectivity rate r and the number
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of substrate nodes N are also constants. Therefore, only
the value of max_OL influences the complexity and larger
max_OL results in a higher time complexity. To balance the
tradeoff of efficiency and effectiveness, max_OL is tested up
to 3 in our experiments.

We also analyze the parameters sub_num and max_OL by
varying both at the same time. The experimental results on
VN20 and VN100 are presented in Fig. S5 in the supplemen-
tary materials. From Fig. S5 in the supplementary materials,
it can be observed that the algorithm with large max_OL usu-
ally achieves better performance. The optimal parameters for
VN20 are sub_num = 2 and max_OL = 3, and those for
VN100 are sub_num = 10 and max_OL = 3. The analysis
results are consistent with the experiments in Figs. 6 and 7.

VI. COMPARATIVE EXPERIMENTS

To verify the promising performance of ODEA, we con-
duct comparative experiments in this section. First, as different
metaheuristics for VNE can be incorporated, we combine
different metaheuristics with ODEA to verify its generality.
Second, we compare the performance of ODEA in online
scenarios to make the experimental results more practical.

A. Generality of ODEA

The objective of VNE problems is to minimize the allocated
resources for mapping VNs. To fairly compare the optimizing
capability of different algorithms, we investigate the embed-
ding of a single VN. The objective function is formulated in (6)
and the network attributes are similar to those in Section V. To
test algorithms in large-scale situations, experiments are con-
ducted on two kinds of network scale, VNs with 80 nodes
and VNs with 100 nodes (most existing works only test
the VNs with no more than 40 nodes [21], [49]). For each
kind of network scale, 12 different instances are generated
and 30 independent runs for each instance are executed for
statistics.

To verify the generality of ODEA, we combine ODEA with
four representative metaheuristic approaches: 1) SPSO [30];
2) UEPSO [21]; 3) RWPSO [22]; and 4) CB-GA [25], and the
resultant algorithms are denoted as OD-SPSO, OD-UEPSO
OD-RWPSO, and OD-CB-GA, respectively. Moreover, to
investigate the effectiveness of overlapping decomposition,
we compare ODEA-based approaches with the corresponding
ones based on the exclusive decomposition, denoted as EX-
SPSO, EX-UEPSO and EX-RWPSO, EX-CB-GA. We also
adopt the variant of approximation algorithm VF2 [50] as
a baseline, denoted as VNE-VF in the supplementary materi-
als. All compared algorithms are concluded in Table I. Based
on the experiments in Section V, the number of sub-VNs
sub_num is set according to (8) for exclusive decomposi-
tion and overlapping decomposition. The maximum number
of overlapping nodes max_OL is set to 3 for overlapping
decomposition in all instances.

Table II presents the comparison results of fitness values in
large-scale situations for different algorithms. Due to the space
limitation, a part of results including CB-GA are put in the
supplementary materials. The column “optima” represents the

TABLE I
COMPARED ALGORITHMS

optimal fitness value in each instance [44]. A two-tailed t-test
at significance level 0.05 is conducted to examine whether the
results are significantly different or not. According to the t-test
results, the best results are highlighted in bold.

From Table II, we can see that all decomposition-based
algorithms (with the prefix “OD” or “EX”) can significantly
outperform the original metaheuristics in most instances. Such
promising results verify that the divide-and-conquer strategy
is effective in optimizing the embedding of large-scale VNs.
The effectiveness of decomposition-based algorithms comes
from two sides. On the one hand, ODEA and EX-VNE adopt
the divide-and-conquer mechanism and a large VN is decom-
posed into small sub-VNs. Embedding sub-VNs is much easier
than embedding large VNs. Thus, the better embedding results
of sub-VNs can be found to improve the quality of whole
solutions. On the other hand, the large VNs are decomposed
by MLkP method, which can reduce the dependence among
sub-VNs. Hence, the disturbance from other sub-VNs can be
reduced, which is also beneficial for ODEA and EX-VNE.

In terms of the comparison between the exclusive decom-
position and the overlapping decomposition, algorithms with
overlapping decomposition can outperform those with exclu-
sive decomposition, especially on networks with 100 nodes.
For UEPSO and RWPSO on the networks with 80 nodes,
there is no significant difference between exclusive decom-
position and overlapping decomposition on some instances
(e.g., “VN80-2” and “VN80-4”). However, exclusive decom-
position cannot outperform overlapping decomposition on
any instances. As for SPSO, OD-SPSO significantly outper-
forms EX-SPSO on all VNs with 80 nodes. On the networks
with 100 nodes, all metaheuristics with overlapping decom-
position can significantly outperform exclusive decomposition
on all instances. The superiority of overlapping decompo-
sition implies that the dependence among sub-VNs indeed
degrades the capability of ODEA. In exclusive decomposi-
tion, all sub-VNs are optimized independently. Hence, when
embedding a sub-VN, other connected sub-VNs might dis-
turb the optimization. With the overlapping decomposition,
sub-VNs are embedded with the portion of other connected
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TABLE II
COMPARISON RESULTS OF LINK COSTS IN LARGE-SCALE SITUATIONS FOR DIFFERENT ALGORITHMS

Fig. 8. Converging curves of different algorithms on the networks with 80 and
100 nodes.

sub-VNs (i.e., the overlapping nodes). Hence, each sub-VN
is not optimized independently and thus the disturbance from
connected sub-VNs can be reduced.

We can also observe that, although ODEA obtains the
best performance, the fitness values yielded by ODEA are
still almost double the ideal best fitness values. This phe-
nomenon implies that the average length of substrate paths
to host virtual links is about two. As a consequence, the
performance of ODEA approaches can still be improved in the
future. In addition, SPSO-based approaches can outperform
other approaches in most cases. This is because SPSO uses
probabilities to exactly record promising elements and intro-
duces heuristic information frequently during the step-by-step
solution construction.

Fig. 8 depicts the converging curves of compared algorithms
on networks with 80 nodes and 100 nodes. In the figure, one
metaheuristic approach, its ODEA and EX-VNE variants are
compared. From Fig. 8, we can observe that the metaheuris-
tics with overlapping decomposition are able to converge to
the lowest fitness values. The original metaheuristics achieves
the worst performance and the metaheuristics with exclu-
sive decomposition obtain the middle results between above
two kinds of algorithms. The converging curves of orig-
inal metaheuristics are very gentle which means that the
optimizing capability of original metaheuristics is too weak
in large-scale VNE problems. As the dimensions of VNs
increase, the structure of VNs becomes more complicated.
It is difficult for original metaheuristics to compare differ-
ent mappings of VNs from the perspective of whole solutions
and find a better structure of embedding. As for ODEA-
based approaches, the converging curves are much steeper
than the original metaheuristics. The steep curves mean that
ODEA-based approaches can continually find better solutions,
even in the high dimensional problem space. In ODEA, the
whole complicated VNs are decomposed into small sub-VNs
with simple structure. Therefore, the better embedding of
sub-VNs is easier to find and thus the better embedding of
the whole VNs can also be found continually during the
optimization.
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TABLE III
COMPARISON RESULTS OF ALGORITHMS WITH AND

WITHOUT THE COMPETITIVE STRATEGY

To investigate the effect of the competitive strategy, we
compare ODEA without the competitive strategy, which
is marked with “*” in Table III. From Table III, it can
be observed that OD-RWPSO and OD-UEPSO can both
significantly outperform its variant without the competitive
strategy on 10 out of 12 instances. On the one hand, the
competitive strategy makes full use of the optimizing results
of overlapping nodes with the consideration of VN topology
information. Hence, a better combination values of over-
lapping virtual nodes are explored. On the other hand, the
updated gbest after competition is injected to other sub-VNs.
As a result, the improvement of one sub-VN by the competitive
strategy is shared within the whole population. Therefore, the
competitive strategy can significantly improve final solutions
for ODEA in general.

B. Evaluation for Online VNs

In reality, the VNE system needs to deal with many VN
requests demanded by customers. As VN requests can arrive
at the system at any time, only arrived VNs are known to opti-
mizers while future VNs are unknown. When a VN request
comes to the system, the specific VNE approach will search for
the optimal embedding of VNs. If the VN cannot be embed-
ded due to the limitation of resources, it will be rejected by
the system. Different from embedding a single VN which is
a static situation, online VNs are dynamic and more chal-
lenging than single VN, which is necessary to test VNE
approaches from multiple views. In this section, we first intro-
duce the comparative metrics for online scenarios and then the
experiments for online VNs are presented.

1) Comparative Metrics: The objective of embedding a sin-
gle VN is to minimize the allocated resources formulated
by (6). However, as online scenarios are dynamic, different
metrics are utilized to evaluate the performance of algorithms.
Similar to the previous works [21], [22], [25], three kinds of
metrics are utilized: 1) the average revenue (avgR); 2) the
revenue to cost ratio (R/C); and 3) the acceptance ratio.

The revenue of infrastructure providers (InPs) mainly comes
from the satisfaction of the CPU demand and the bandwidth

demand of VNs. The more virtual resources customers require,
the more revenue InPs will earn. Given a VN Gv, the revenue
obtained by Gv at time t is formulated as

R(Gv, t) =
∑

n∈Nv

nwv(n)+
∑

l∈Lv

lwv(l) (9)

which is the summation of node weights and link weights in
the VN. In the online scenarios, VN requests arrive at the
system continuously. To evaluate the revenue in a long term,
the long-term average revenue is defined as

avgR = lim
T→∞

T∑

t=0

R(Gv, t)/T. (10)

From the perspective of InPs, an excellent VNE algorithm
should make more revenue for them. Hence, the larger the
average revenue, the better the VNE approaches.

For embedding the same VN, different embedding results
might occupy various substrate resources. Using more sub-
strate resource will pay more costs. Given a VN Gv and an SN
Gs, the cost of embedding Gv at time t is evaluated as

C(Gv, t) =
∑

n∈Nv

nwV(n) +
∑

l∈LV

|�L(l)|∑

i=1

lwV(l) (11)

which is the total allocated node weights and link weights.
From the perspective of long term, the long-term revenue to
R/C is defined as

R/C = lim
T→∞

(
T∑

t=0

R(Gv, t)

/ T∑

t=0

C(Gv, t)

)
. (12)

In R/C ratio, the cost is always larger or equal to the revenue
and thus the range of R/C belongs to (0, 1]. R/C ratio can
directly reflect the optimizing capability of algorithms. For
embedding the same VN, the revenue is the same but the cost
is different. A good VNE algorithm can pay lower costs and
thus the R/C ratio becomes larger. A value of 1.0 for R/C
means that the algorithm can find the optimal solutions.

In terms of the quality of service, a good VNE algorithm
should accept more VN requests to satisfy users’ requirements.
The acceptance ratio of VN requests is defined as

lim
T→∞

(
T∑

t=0

VNRa

/ T∑

t=0

VNR

)
(13)

where VNRa is the number of accepted VNs and VNR is
the total arrived VNs. The range of acceptance ratio is [0, 1].
A value of 0 means none of VNs can be successfully embed-
ded on the SN and a value of 1.0 represents the opposite.
Obviously, the larger the acceptance ratio, the better service
algorithms can provide.

2) Comparison Results for Online VNs: To make the
research more realistic, we simulate the online environments
in our experiments. Similar to previous works [10], [51], we
assume that VNs arrive in a Poisson process and the rate is
about 5 VNs per 100 time units. Each VN request is associated
with the duration which follows the exponential distribution
with an average of 500 time units [21]. The scale of VNs is
uniformly distributed between 80 nodes and 100 nodes, and
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Fig. 9. Comparison results of online VNs in terms of the R/C ratio, acceptance ratio, and average revenue.

the scale of SNs is 100 nodes. The connectivity rate for VNs
and SNs is fixed at 0.1. Note that the topologies of VNs and
SNs are both generated independently and thus they are not
identical. The node weights and link weights are randomly dis-
tributed between 50 and 100 for SNs and between 1 and 5 for
VNs [34], [43]. Each simulation runs for 40 000 time units and
the optimization does not affect the simulation time. According
to Fig. 7, the maximum generation is set to 100 since it is
enough for all algorithms to converge to satisfactory fitness
values.

Fig. 9 presents the comparison results of online VNs
obtained by different algorithms in terms of R/C ratio, accep-
tance ratio, and average revenue. In each sub figure, we
compare the original metaheuristics and its variant with the
exclusive decomposition and the overlapping decomposition.
Due to the space limitation, only the results of RWPSO are
presented.

In R/C ratio, ODEA-based algorithms can obtain higher R/C
ratios than the corresponding original metaheuristics. Higher
R/C ratios imply the allocated resources in ODEA are smaller
than those in the original metaheuristics on average. Thus,
the optimizing capability of ODEA is still better than original
metaheuristics for dealing with online VNs. The R/C ratios
obtained by the overlapping decomposition are competitive or
slightly better than the exclusive decomposition. The superior-
ity of overlapping decomposition verifies that the overlapping
mechanism indeed reduces the disturbance from dependent
sub-VNs and thus the optimizing capability of ODEA can be
further improved.

As for acceptance ratios, the acceptance ratios obtained by
ODEA are higher than original metaheuristics and exclusive-
decomposition approaches. This is because less substrate
resources are needed by ODEA to embed VNs and rela-
tively more resources are remained for accepting future VNs.
The last metric is the average revenue. To some degree,
the average revenue is correlated to the acceptance ratio
when the size of VNs is similar. Higher acceptance ratios
represent more VN requests are accepted, which is more
probable to bring high revenue naturally. Hence, ODEA can
gain more average revenue than the original metaheuristics
and exclusive-decomposition approaches. The trend of curves
in average revenue is also similar to those in acceptance
ratios.

In general, thanks to the decomposition mechanism,
ODEA can still outperform traditional metaheuristics for solv-
ing online VNs, in terms of R/C ratio, acceptance ratio, and

average revenue. At the same time, the overlapping mechanism
can effectively reduce the influence of dependence from other
sub-VNs and thus the optimizing capability is also further
improved, which is reflected in higher R/C and acceptance
ratios than the exclusive decomposition.

VII. CONCLUSION

Solving VNE problems in large-scale situations is impor-
tant and challenging. In this article, we propose ODEA to
solve large-scale VNE problems. In ODEA, large VNs are
decomposed into overlapping sub-VNs, which can reduce
the disturbance from interconnected subcomponents. We con-
duct comparative experiments on embedding a single VN and
online VNs. The comparison results on large-scale scenarios
verify that the proposed ODEA is promising.

In ODEA, all sub-VNs are optimized with the same opti-
mizer. Actually, these sub-VNs might have different attributes
and thus they can be optimized by various algorithms. How
to select appropriate optimizers adaptively to embed sub-VNs
will be studied in the future.
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