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A Grid-Based Inverted Generational Distance for
Multi/Many-Objective Optimization

Xinye Cai, Member, IEEE, Yushun Xiao, Miqing Li, Member, IEEE, Han Hu, Hisao Ishibuchi Fellow, IEEE,,
Xiaoping Li, Senior Member, IEEE,

Abstract—Assessing the performance of Pareto front (PF)
approximations is a key issue in the field of evolutionary
multi/many-objective optimization. Inverted Generational Dis-
tance (IGD) has been widely accepted as a performance indicator
for evaluating the comprehensive quality for a PF approximation.
However, IGD usually becomes infeasible when facing a real-
world optimization problem as it needs to know the true PF a
priori. In addition, the time complexity of IGD grows quadrat-
ically with the size of the solution/reference set. To address the
aforementioned issues, a grid-based IGD (Grid-IGD) is proposed
to estimate both convergence and diversity of PF approximations
for multi/many-objective optimization. In Grid-IGD, a set of
reference points is generated by estimating PFs of the problem in
question, based on the representative nondominated solutions of
all the approximations in a grid environment. To reduce the time
complexity, Grid-IGD only considers the closest solution within
the grid neighborhood in the approximation for every reference
point. Grid-IGD also possesses other desirable properties such
as Pareto compliance, immunity to dominated/duplicate solutions
and no need of normalization. In the experimental studies, Grid-
IGD is verified on both the artificial and real PF approximations
obtained by five many-objective optimizers. Effects of the grid
specification on the behavior of Grid-IGD are also discussed in
detail theoretically and experimentally.

Index Terms—Many-objective optimization, Inverted genera-
tional distance, Performance indicator, Grid system.

I. INTRODUCTION

Many real-world optimization problems involve the simul-
taneous optimization of multiple conflicting objectives. Unlike
a single-objective optimization problem, a multiobjective opti-
mization problem (MOP) has a set of Pareto optimal solutions,
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concerning the trade-offs between different objectives. The set
of all the Pareto optimal solutions is usually called the Pareto
set (PS) and its mapping in the objective space is called the
Pareto front (PF) [1]. A PF approximation apparently can
help decision makers for understanding the tradeoff relation-
ship among different objectives and selecting their preferred
solutions. Over the past decades, multiobjective evolutionary
algorithms (MOEAs) [2], [3], [4], [5] have been accepted as
a major methodology for approximating the PFs in nonlinear
MOPs [6], [7].

In the field of MOEAs, the performance evaluation is a
critical issue. The quality of an obtained solution set can
be measured by performance indicators [8], [9] in one or
several of the following aspects: 1) convergence, 2) spread
(i.e., coverage [10] or extensity [11]) and 3) uniformity. The
combination of the latter two is usually called diversity of a
solution set [12], [11].

The performance indicators used to assess solution sets
obtained by multiobjective optimizers are critical. An ideal
indicator should be able to correctly reflect the quality of a
solution set. To achieve such a goal, a performance indicator is
desirable to have as more following properties as possible [9].

1) Less prior problem information needed: Many existing
indicators require additional problem information, e.g.,
the true Pareto front or a reference point. As the accuracy
of such indicators largely depend on those references,
it is desirable for indicators to have as little reference
information as possible.

2) No need of scaling and normalization: For some indica-
tors, scaling (or normalization) may need for indicators
whose calculation involves objective blending. Never-
theless, an indicator may not need such an operation
when different objectives may contribute equally to the
indicator values. Apparently, indicators without requir-
ing scaling and normalization are more desirable.

3) No effect of adding dominated or duplicate solutions:
as dominated or duplicate solutions do not provide
any useful information for the decision maker in the
context of Pareto optimality, indicators that have no
effect of adding dominated or duplicate solutions are
more desirable.

4) Low computational cost: The increasing number of
objectives results in an exponential increase in the
time and space complexity for some commonly used
indicators, e.g., hypervolume [13] and hyperarea differ-
ence [14]. Such indicators are incapable of computing
high-dimensional PFs. It is more desirable to design an
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indicator with low computational cost.
5) Pareto compliance property: Pareto compliance property

is very important for the indicator design. The formal
definition of strict/weak Pareto compliance can be re-
ferred to Section II. A. Unfortunately, many widely
used indicators, e.g., Inverted Generational Distance
(IGD) [15], [16], are Pareto non-compliant.

Some comprehensive performance indicators, such as Hy-
pervolume (HV) [13] and Inverted Generational Distance
(IGD) [15], [16], are very popular in multiobjective evolu-
tionary optimization community [8], [9]. However, they do
not own several above-mentioned desirable properties. For
instance, although Monte Carlo sampling-based approximation
can significantly reduce the computational cost of calculat-
ing HV and makes it possible to use for high-dimensional
PFs [17], the proper choice of the reference point is a tedious
task, which will largely affect the ability of HV to distinguish
the quality of PF approximations [18]. For IGD, a reference
set that can well-represent the real PF is required, which
apparently is very difficult to meet for real-world optimization
problems. Recent studies also show that IGD-based compar-
ison results largely depend on the specification of such a
reference set [19].

To meet the above-mentioned properties, we propose a grid-
based IGD (Grid-IGD) as a comprehensive performance indi-
cator for multiobjective optimization. The major motivations
of this work can be summarized as follows:

1) For a real-world MOP, IGD is generally infeasible as
the true PF in question is usually unknown in advance.
A grid system can provide a set of reference points by
adopting the utopia point (i.e., the left bottom corner
for a minimization problem) of each grid that the non-
dominated solutions are located in. Such a reference set
automatically generated from the solution sets by a grid
system makes Grid-IGD require very little prior problem
information and have no need of normalization before
calculation.

2) As referenced in [20], when the true PF of an MOP is
unknown, the current mainstream methods use all the
non-dominated solutions as the reference points [21],
[19]. The main disadvantage of this approach is that the
generated reference points are always not uniform over
the entire PF. Such a biased distribution of the reference
points may lead to the biased comparison results [20].
How to design a method that is easy to implement and
can sample well-distributed reference points in the high-
dimensional space, is of great importance for calculating
IGD. A grid system, as an inherent diversity mainte-
nance mechanism, can be suitable for such a task.

3) The time complexity of IGD is O(mMN) where m is
the number of objectives, M is the number of reference
points and N is the size of solution set. The time
complexity is usually significantly larger than O(mN2)
as the number of reference points is usually much larger
than the size of PF approximation. In IGD, calculating
the distance of a reference point to a far away solution
appears to be redundant as it only takes the closest dis-

tance into account. When the grid system is introduced,
the grid distance between solutions can be seen as a
form of the definition for solutions’ neighborhood. If
each reference point only considers its neighborhood,
it will lead to a much less time complexity, which is
especially desirable for evaluating the performance of
high-dimensional PF approximations, as well as using
IGD potentially as an online indicator.

4) IGD is Pareto non-compliant, not immune to dominated
solutions, and requires normalization before calculation.
The lack of these desirable properties seriously limit its
use and may also cause misleading comparison results.
A comprehensive indicator that possesses most or even
all of the aforementioned desirable properties needs to
be further designed.

The rest of this paper is organized as follows. Related
work on the proposed indicator, i.e., Grid-IGD, is introduced
in Section II. Section III elaborates Grid-IGD. In Section
IV, the systematic experiments are conducted to verify the
effectiveness of Grid-IGD. Finally, the paper is concluded in
Section V where future research directions are also suggested.

II. BACKGROUND

A. Basic Definitions

A multiobjective optimization problem (MOP) can be de-
fined as follows:

minimize F (x) = (f1(x), . . . , fm(x))T (1)
subject to x ∈ Ω

where Ω is the decision space, F : Ω → Rm consists of m
real-valued objective functions. Note that an MOP is usually
called a many-objective optimization problem (MaOPs) when
m > 3. The attainable objective set is {F (x)|x ∈ Ω}. Let
a, b ∈ Rm, a is said to dominate b, denoted by a ≺ b, if
and only if ai ≤ bi for every i ∈ {1, . . . ,m} and aj < bj
for at least one index j ∈ {1, . . . ,m}; a is said to weakly
dominate b, denoted by a � b, if and only if ai ≤ bi for every
i ∈ {1, . . . ,m}1. Given a set S in Rm, a solution in S is called
non-dominated in S if no other solution in S dominates it. A
solution x∗ ∈ Ω is Pareto-optimal if F (x∗) is non-dominated
in the attainable objective set. F (x∗) is then called a Pareto-
optimal (objective) vector. In other words, any improvement
in one objective of a Pareto optimal solution must lead to
deterioration in at least another objective. The set of all the
Pareto-optimal points is called the Pareto set (PS) and the set
of all the Pareto-optimal objective vectors is the Pareto front
(PF) [1].

In [8], the above-mentioned Pareto dominance relation
between solutions was extended to a relation between solution
sets as follows. Let A and B be two solution sets. A is
said to dominate B, denoted by A ≺ B, if and only if
∀bj ∈ B, ∃ai ∈ A : ai ≺ bj . A is said to weakly dominate B,
denoted by A � B, if and only if ∀bj ∈ B, ∃ai ∈ A : ai � bj .

A quality indicator is said to be strictly Pareto compliant [8],
[9], if and only if ∀A,B : A ≺ B =⇒ I(A) < I(B); where

1In the case of maximization, the inequality signs should be reversed.
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I(.) is a mapping from a set of objective vector to an indicator
value. Similarly, a quality indicator is said to be weakly Pareto
compliant [8], [9], if and only if ∀A,B : A � B =⇒ I(A) ≤
I(B); where I(.) is a mapping from a set of objective vector
to an indicator value.

The ideal and nadir objective vectors can be used to define
the ranges of PFs as follows. The ideal objective vector z∗ is
a vector z∗ = {z∗1 , . . . , z∗m}T , which can be computed by

z∗j = min
x∈Ω

fj(x), j ∈ {1, . . . ,m}. (2)

The nadir objective vector znad is a vector znad =
{znad1 , . . . , znadm }T , which can be computed by

znadj = max
x∈PS

fj(x), j ∈ {1, . . . ,m}. (3)

B. Previous work

As mentioned in the last section, IGD and HV are very
popular in the field of multiobjective evolutionary optimiza-
tion. The definition of IGD [15], [16] and HV [13] are given
as follows.
• Inverted Generational Distance (IGD) [15], [16]: Let P ∗

be a set of points uniformly sampled over the true PF,
and S be the set of solutions obtained by an MOEA. The
IGD value of S is computed as:

IGD(S, P ∗) =

∑
y∈P∗ dist(y, S)

|P ∗|
(4)

where dist(y, S) is the Euclidean distance between a
point y ∈ P ∗ and its nearest neighbor in S, and |P ∗| is the
cardinality of P ∗. IGD calculates an average minimum
distance from each point in P ∗ to those in S, which
measures both convergence and diversity of a solution
set S. The lower the IGD value is, the better the quality
of S is.

• Hypervolume (HV) [13]: Let r∗ = (r∗1 , r
∗
2 , ..., r

∗
m)T be a

reference point in the objective space that is dominated
by all solutions in a PF approximation S. HV metric
measures the size of the objective space dominated by
the solutions in S and bounded by r∗.

HV (S) = V OL(
⋃
y∈S

[y1, r
∗
1 ]× ...[ym, r∗m]) (5)

where V OL(•) indicates the Lebesgue measure.
The main advantage of HV is its strictly Pareto com-
pliance property [22]. One main drawback of the HV
compared with the IGD is its large computational bur-
den for many-objective optimization problem. Although
some fast computational methods have been proposed for
HV [23], [24], [25], it is still difficult to compute the
exact value of HV for a large solution set with many
objectives. Another weakness of HV is that it may be in
favor of very non-uniform solution sets on a highly non-
linear Pareto front no matter what reference point is [26],
possibly leading to unfair comparison results.

In addition to the aforementioned performance metrics,
other comprehensive performance indicators are also fre-
quently used, as follows.

• Modified Inverted Generational Distance (IGD+) [27]:
Let P ∗ be a set of points uniformly sampled over the
true PF, and S be the set of solutions obtained by an
MOEA. The only difference between the IGD(S, P ∗)
and IGD+(S, P ∗) lies in the distance calculation. In the
minimization problems, the distance calculation for IGD+

is

dist+(y, S) =

√√√√ m∑
i=1

(max{yi − zi, 0})2 (6)

where dist+(y, S) is the modified distance between
a point y ∈ P ∗ and its nearest neighbor z ∈ S.
This distance modification ensures that IGD+ is weakly
Pareto compliant whereas the original IGD is Pareto non-
compliant. Like IGD, the lower the IGD+ value is, the
better the quality of S is. Although IGD+ possesses
the weak Pareto compliance property, it still requires
prior knowledge of PF as a reference set, as well as
normalization before calculation.

• ∆p [28] can be seen as an “averaged Hausdorff distance”
between the obtained solution set S and the reference set
P ∗, which evaluates both convergence and diversity as
follows [29], [30].

∆p(S, P
∗) = max(GDp(S, P

∗), IGDp(S, P
∗))

= max((
1

|S|
∑
y∈S

dist(y, P ∗)p)
1
p ,

(
1

|P ∗|
∑
y∈P∗

dist(y, S)p)
1
p )

(7)

where dist(y, P ∗) is the Euclidean distance between a
solution y ∈ S and its nearest neighbor in P ∗, and |S| is
the cardinality of S, dist(y, S) is the Euclidean distance
between a solution y ∈ P ∗ and its nearest neighbor in S,
and |P ∗| is the cardinality of P ∗. The lower the ∆p value
is, the better the quality of S for approximating the whole
PF is. However, a reference set, as well as normalization
is still needed before calculating ∆p.

• p-metric [31] is a newly proposed indicator for high-
dimensional approximations. With a set of uniform ref-
erence vectors, the objective space can be divided into
subregions of hypercones. Given a solution set S, a
solution y ∈ S belongs to i-th subregion Φi if i =

argmaxλi∈V
(λi)T ·y
‖λi‖‖y‖ , where λi is the i-th reference vec-

tor. In each subregion Φi, the solution with the closest
distance ri to the origin point is used to compute p-metric,
as follows.

p-metric =

M∑
i=1

1

ri
(8)

where M is the number of subregions and 1
r = 0

indicates no solution exists in such a subregion. It can be
observed from Eq.(8) that the diversity of a solution set,
in terms of the p-metric, is measured by the number of
reference vectors (subregions) that have been associated
with solution(s). It should be noted that for p-metric, one
subregion may contain more than one solution but one
solution can be located in one and only one subregion.
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As pointed out in [10], its accuracy cannot be improved
by increasing the number of reference vectors, as N
solutions can be at most located in N subregions. In
addition, p-metric needs normalization before calculation.
The existence of dominated solutions may also affect its
comparison results.

• R2 [32] was first proposed to assess the relative quality
of two solution sets. Assuming the standard weighted
Tchebycheff function with a particular reference point z∗,
the indicator can be used to assess the quality of a single
individual set against z∗[33]. Given an approximation
set S, a set of weight vectors W , and the standard
Tchebycheff aggregation function, the R2 indicator can
be defined as:

R2(S,W, z∗) =
1

|W |
∑
w∈W

min
y∈S
{max{wi(yi−z∗i )}} (9)

where i ∈ {1, . . . ,m}, w = (w1, . . . , wm) is a weight
vector, z∗ is the ideal point. A lower R2 value indicates
that a solution set S is closer to the reference point.
The R2 indicator possesses a desirable property of weak
Pareto compliance. However, it still needs a reference
point and normalization before calculation.

• Hypervolume Ratio (HVR) [34] is calculated as the ratio
of the hypervolume(HV) [13] of non-dominated solutions
S to the hypervolume of Pareto optimal solutions(P ∗).

HV R =
HV (S)

HV (P ∗)
(10)

HV is the volume of space occupied by the union of
hypercubes constructed by the non-dominated solutions
and the reference point. Thus, HVR quantifies both the
convergence and the diversity of the non-dominated so-
lutions. A higher HVR indicates that the non-dominated
solutions are closer to the Pareto front and more diverse
in the objective space.

• Hypervolume Difference (HVD) [35] measures the gap
between the hypervolume of the obtained PF approxima-
tion S and that of the true PF, i.e., P*. HVD indicator
can be defined as:

HVD = HV (S)−HV (P ∗) (11)

where HV (S) is the hypervolume of a set S. By com-
paring the hypervolume of an observed nondominated set
with that of the true Pareto set, a quantitative measure
is obtained as to how much worse an observed non-
dominated set is when compared to the true Pareto set.
Unfortunately, like HV, both HVR and HVD require prior
knowledge on a reference point. Their computational
complexity is exponential to the number of objectives,
which makes both of them difficult to use for high-
dimensional PF approximations.

The major properties summarized in Section I of the afore-
mentioned indicators and our proposed Grid-IGD are listed
in Table I. It can be seen that Grid-IGD has almost all the
desirable properties. For instance, unlike HV, HVR, HVD,
IGD, IGD+, ∆p and R2, Grid-IGD does not need any prior
knowledge about reference point or true PF, although it needs

to specify one neighborhood size parameter T for reducing its
computational complexity. Unlike HVR, HVD, IGD, IGD+,
∆p, p-metric and R2, it does not need to scale before using,
not to mention that the dominated or duplicate solutions have
no effect on it. Unlike indicators based on HV whose com-
putational complexity grows exponentially with the increase
of the objectives, the computational complexity of Grid-IGD
grows linearly with the increase of the objectives and it is
less than quadratic with regard to the population size. Thus
it can work well for high-dimensional PF approximations. In
contrast to the original IGD, ∆p and p-metric that are Pareto
non-compliant, Grid-IGD possesses the desirable weak Pareto
compliance property.

It is worth noting that only the representative performance
indicators that measure both convergence and diversity for
multi/many-objective optimization have been discussed above.
There exist more performance indicators that measures either
one of the above two aspects or both of them in the literature.
A more comprehensive survey can be found in [9].

III. GRID-IGD

The grid system has already been adopted in some
multi/many-objective optimization algorithms. For example,
in ε-MOEA [36], the solutions are selected based on the ε-
dominance and distances to the grid corner points. Similarly,
the grid system has been adopted in [37] for designing many-
objective optimization algorithm, due to its inherent property
of reflecting the information of neighborhood structures among
the solutions. In [3], a constrained decomposition with a grid
system is proposed for multiobjective optimization. As Grid-
IGD is also computed in a grid system, the setup of a grid
system is firstly introduced in this section, followed by the
main framework of Grid-IGD.

A. The setup of a grid system

A grid system can be set up as follows. Each objective is
divided into K equal intervals within the approximations of
the ideal point z∗ and the extended nadir point ze nad, which
can be defined as follows.

ze nad = znad + (znad − z∗)/K (12)

The reason of adopting the extended nadir point instead of the
original nadir point have been elaborated in Section.III-B2.

Then the grid interval vector D for m objectives can be
calculated by:

D = (d1, . . . , dm)
T where dj =

(
ze nadj − z∗j

)
/K (13)

Definition 1: Grid Index: For a solution x, its grid index in
the grid system can be defined as follows.

gj(x) = b(fj(x)− z∗j )/djc , j ∈ {1, . . . ,m} (14)

where b�c denotes the floor function. The grid index of x is
marked as G(x) = (g1(x), ...gm(x)) ∈ {0, . . . , (K − 1)}m.
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TABLE I: The comparison between the existing indicators and Grid-IGD

Indicator HV HVR HVD IGD IGD+ ∆p p-metric R2 Grid-IGD

Prior knowledge reference reference reference reference reference reference reference one parameter
needed point point point PF PF PF point T

Scaling before
X X X X X X Xcalculation needed

Effect of dominated/
X X Xduplicate solutions

Difficult for high
X X Xdimensional PFs

Computational exponential exponential exponential
quadratic quadratic quadratic quadratic quadratic

less than quadratic

effect in m in m in m (O(Nlogm−1N))

Pareto Compliant strictly strictly strictly weakly weakly weakly

Definition 2: Grid corner point: For a solution x whose grid
index is G(x) = (g1(x), . . . , gm(x)), its grid corner point zgcp

can be defined as follows.

zgcp(x) = (zgcp1 , . . . , zgcpm )T where zgcpj = z∗j + dj × gj
(15)

where dj is the grid interval on the j-th objective.
Definition 3: Grid Distance: Let u, v ∈ Rm be two points,

the grid distance GD(u, v) between u and v is defined as

GD(u, v) =

m∑
j=1

|gj(u)− gj(v)|. (16)

Definition 4: Grid Neighbors: For a solution set S, the grid
neighbors of a point r ∈ Rm within distance T is defined as

GN(r, T, S) = {x|GD(r, x) ≤ T x ∈ S}. (17)

B. The main framework of computing Grid-IGD

For an m-objective optimization problem, given M approx-
imations S1, · · · , SM (|S1| = · · · = |SM | = N ), Grid-IGD is
used to estimate both the convergence and diversity among
the M approximations. The main procedure of computing
Grid-IGD is presented in Algorithm 1. The M approximations
S1, · · · , SM , the number of objectives m and the grid
neighborhood size T are given as three inputs.

The whole framework of Grid-IGD can be further divided
into three major steps: 1) initialization, 2) generating reference
points and 3) computing Grid-IGD for each approximation. In
the following sections, each step is specified in detail.

1) Initialization: In Step 1 (line 1-3 of Algorithm 1), an
efficient Divide-and-Conquer Nondominated Sorting (DCNS-
F) [38] is firstly employed for obtaining the nondominated
set Snon of all the M approximations S1

⋃
S2 · · ·

⋃
SM . The

ideal and extended nadir points are then initialized based on
Eq. (2) and (12).

2) Generating reference points: In Step 2 of the Algorithm
1, a set of reference points R is generated by taking the
grid corner points of all the nondominated solutions in Snon.
However, such a method may cause that the distribution of the
generated reference points is not as extensive as that of the
nondominated set Snon, which leads to a biased measurement
of Grid-IGD, as shown in Fig. 1a.

A simple and effective way of improving it is to increase
the upper bounds of the grid system by extending from znad to

Algorithm 1: Grid-Based IGD (Grid-IGD)
Input : M approximations: S1, · · · , SM ;

The number of objectives: m;
The grid neighborhood size: T ;

Output: Grid-IGD1, Grid-IGD2, · · · , Grid-IGDM ;
Step 1: Initialization:

1 Snon = NONDOMINATED SELECT(S1

⋃
S2 · · ·

⋃
SM );

2 Approximate the ideal point z∗ based on Eq.(2) and the
extended nadir point ze nad based on Eq. (12);
Step 2: Generating reference points:

3 K = max{K0, 1};
4 do
5 Set up the grid system based on Eq. (13) and (14);
6 Rt = R;
7 R = ∅;
8 foreach y ∈ Snon do
9 R = R ∪ {zgcp(y)};

10 end
11 K + +;
12 while |R| ≥ |Snon|/2|;
13 if ||Rt| − |Snon|/2|| < ||R| − |Snon|/2|| then
14 R = Rt;
15 end
Step 3: Computing Grid-IGD:

16 for i = 1→M do
17 Grid-IGDi = CGI(Si, R,m, T, z

e nad);
18 end
19 return Grid-IGD1, Grid-IGD2, · · · , Grid-IGDM ;

ze nad, which ensures that the boundary solutions are located
in the new grids based on Eq. (13). It can be observed in
Fig. 1b that, by such a simple adjustment, the boundary
solutions A and B are located at two new grids with much
closer reference points (A′ and B′); meanwhile the spread of
the reference points have been significantly improved.

It can be easily proved that if Snon is distributed in |R|
grids, the number of generated reference points is |R| as each
grid may have one and only one grid corner point.

In Step 2, the grid system is set up based on the approxima-
tion of the ideal and extended nadir point, elaborated in Section
III-A. The value of the interval parameter K in such a grid
system is initialized as the maximum value of its lower bound
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K0 (see Section III. C) and 1. Then, the K value is adaptively
determined by desirably approximate Snon/2 reference points
(Line 3-12). A set of reference points R can be eventually
obtained (Line 13-15).

Algorithm 2: Computing Grid-IGD (CGI)
Input : The approximation: S;

The reference points: R;
The number of objectives: m;
The grid neighborhood size: T ;
The extended nadir point: ze nad;

Output: Grid-IGD;
1 Initialize d∗ = (d∗1, . . . , d

∗
|R|);

2 for j = 1→ |R| do
3 Compute d∗j based on Eq. (18);
4 end

5 Grid-IGD(S,R) =
∑|R|

j=1 d
∗
j

|R| ;
6 return Grid-IGD;

3) Computing Grid-IGD: In Step 3 of Algorithm 1), Grid-
IGD value of each approximation S is computed by calling
Algorithm 2, which can be described as follows.

In Algorithm 2, for each reference point r ∈ R, its grid
neighbors GN(r, T, S) are obtained based on Eq. (17). After
that, the distance d∗ between each reference point r and its
closest neighbor s ∈ GN(r, T, S) is computed as follows.

d∗ =

{
min

s∈GN(r,T,S)
dist∗(r, s), GN(r, T, S) 6= ∅

dist∗(r, ze nad), GN(r, T, S) = ∅ .
(18)

where dist∗ is a modified Euclidean distance, adopted for the
weak Pareto compliance property [27]

dist∗(r, s) =

√√√√ m∑
i=1

(max{(si − ri), 0})2 (19)

dist∗(r, ze nad) is the penalty adopted when no solution in S
exists within the grid neighborhood of reference point r. In
this case, the extended nadir point ze nad is considered to be
the closest solution in S to r.

The final Grid-IGD value is the average of the distance
d∗ for all the reference points (line 5 of Algorithm 2). Like
IGD/IGD+, the smaller the Grid-IGD value, the better a PF
approximation is.

IGD/IGD+ estimates the absolute quality of a nondominated
set by assuming all the nondominated solutions as the refer-
ence PF, which may lead to a bias measurement. Nevertheless,
it is rather difficult to obtain a representative PF approximation
from all the nondominated solutions with low computational
cost. Alternatively, unlike IGD/IGD+, Grid-IGD evaluates the
relative quality of different approximations, by adopting a set
of well-distributed grid corner points out as a substitute of
true Pareto optimal solutions. It is worth noting that such grid
corner points (reference points) are generated regarding all
the PF estimates (found by all the compared algorithms), as
presented in Algorithm 1.

C. Discussion on the lower bound K0 in Grid-IGD

In this section, we estimate the lower bound K0 of the
interval parameter K by the approximation size |S|. With the
increase of K value, the number of grids grows exponentially
and the approximation tends to distribute in more different
grids. If each solution in the approximation is located in a
different grid, an ideally diverse set of reference points can be
generated.

For an m-objective optimization problem, the maximum
number of reference points would be generated when the
PF approximation is extremely convex or concave and the
solutions are evenly distributed at most Km − (K − 1)m

grids. The approximation size |S| and the interval parameter
K satisfy:

|S| ≤ Km − (K − 1)m (20)

Eq.(20) is a unitary high order inequality whose solutions can
be obtained based on the Abel’s Theorem [39].

When m = 2, 3 and K satisfies:K ≥ d
|S|+1

2 e, m = 2

K ≥ d1
2

+

√
3(4|S| − 1)

6
e, m = 3

(21)

When m ≥ 4 and the range of K can be determined
by using the number line method to solve the inequality as
follows. 

∑m
i=1Ki =

(m+1
2 )

m+1∑m−1
i=1

∏m
j=i+1KiKj =

(m+1
3 )

m+1

. . .∏m
i=1Ki = (−1)m+1 (−1)m+1+|S|

m+1

(22)

The lower bound K0 for obtaining |S| reference points can
be estimated by Eqs. (20)- (22).

D. Computational Complexity of Grid-IGD

The average complexity of DCNS-F in Step 1 of Algorithm
1 is O(Nlogm−1N). Step 2 of Algorithm 1 at most requires
O(mKN/2) (K � N ) to approximate the reference points.
In Step 3, the average number of solutions in each subset
is N

Q , where Q denotes the number of grids which contain
solutions. Therefore, Step 3 on average requires O(mTN)
computations. In summary, the time complexity of Algorithm
1 is max{O(Nlogm−1N), O(mTN)} (T � N ), where N is
the approximation size and m is the number of objectives. The
computational complexity of Grid-IGD is obviously less than
that of IGD, which needs quadratic time.

E. Weak Pareto compliance of Grid-IGD

Compared with IGD, one of the importantly desirable prop-
erty of Grid-IGD is its weak Pareto compliance, as follows.

Theorem 1: Grid-IGD is a weakly Pareto Compliant indi-
cator: if and only if ∀A,B : A � B =⇒ I(A) ≤ I(B).

The proof of this theorem can be found in the supplementary
material.
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(a) The distribution of the generated reference
points before extending the grid system.
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(b) The distribution of the generated reference
points after extending the grid system.

Fig. 1: An illustration of the reference points, generated by the approximations in a bi-objective optimization problem. The
open circles represent one approximation solution set and the open triangles represent the another one, the solid squares are
the reference points generated by the nondominated solutions of the two approximations.

IV. EXPERIMENTS AND DISCUSSIONS

In this section, the following experiments are conducted for
• validating Grid-IGD on artificial PFs;
• validating Grid-IGD on real PFs;
• validating Grid-IGD on MaOPs with irregular PFs;
• investigating the effects of the interval parameter K on

Grid-IGD;
• investigating the effects of maximum neighborhood size
T on Grid-IGD;

• investigating the effects of the uniformity of reference
points on IGD/IGD+/Grid-IGD;

A. Experimental Setups

In Section IV. B, the size N of each artificial PF approxi-
mation (m = 3) is set to 120, as shown in Table II.

In Section IV. C-G, Grid-IGD is adopted to evaluate the real
PF approximations, delivered by five many-objective optimiz-
ers (MOEA/D-DE [40], IBEA [41], PAES [42], GrEA [37]
and NSGA-III [43]). The experimental setups for the PF
approximations obtained by five many-objective optimizers are
listed in Table II.

For some optimizers (e.g., MOEA/D-DE [40] and NSGA-
III [43]), the population size is equal to the size of the
reference vector set. They can be obtained by uniformly
sampling on a unit simplex, which is usually called Das and
Dennis’s systematic approach [44]. In this case, the reference
vector size is

N =

(
m− 1

H +m− 1

)
(23)

where H > 0 is the number of divisions along each objective
coordinate and m is the number of objectives. However, as
pointed in [43], the direct use of Das and Dennis’s approach
may not be appropriate to use when m > 6. Instead, a two-
layer direction vector generation method [43], [45] has been
adopted for MaOPs with more than 6 objectives.

In all the experimental studies, each algorithm was run
30 times on each benchmark problem and the approximation
with the median Grid-IGD value is used for comparisons. All
the compared algorithms are implemented based on the open
source MOEA platform, JMetal [46].

To verify the effectiveness of Grid-IGD, IGD [15], [16],
(IGD+) [27], IGD-NS [47] and HV [13] have also been
adopted as the benchmark indicators for comparison in the
experimental studies. For HV, the reference point is set to 1.1
times of the maximum values of PF approximations.

For Grid-IGD, when the maximum neighborhood size T is
mK, where the complexity of Grid-IGD is the same as the
original IGD. However, in the experiments, the value of T is
set to 24 based on its sensitivity test in Section IV. F.

TABLE II: The approximation size with the different number
of objectives in the experimental studies.

the number of objectives m 3 5 10

the approximation size N 120 126 276

B. Grid-IGD on Artificial PF Approximations

Three groups of artificial approximations are generated and
presented in Fig. 2-Fig. 4. In the first group, the approxima-
tions are uniformly distributed though their spread is quite
different from each other. As shown in Fig. 2a, the values
of all the solutions for each objective range in [0, 1]. As
shown in Fig. 2b, the values of all the solutions for each
objective range in [0.1, 0.8]. As shown in Fig. 2c, the values
of all the solutions for each objective range in [0.2, 0.6]. In
addition, such three approximations are all located on the
same hyperplane f1 + f2 + f3 = 1, as shown in Fig. 2d.
In the aforementioned figures, the wider distribution of an
approximation, the smaller Grid-IGD value it has. The above
observations indicate that Grid-IGD can accurately reflect the
spread of PF approximations.

In the second group, three approximations are distributed
over the entire PF, although their uniformities are different
from each other. These three approximations are generated in
the following way. First, the solutions are uniformly generated
on the plane f1 + f2 + f3 = 1, ranging in [0, 1], as shown
in Fig. 3a. After that, when 50% or 100% of solutions are
replaced with the randomly generated solutions on the same
plane, different solution sets can be obtained, as shown in Fig.
3b and 3c. As shown in Fig. 3a- 3c, the solution sets with
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(a) Every objective value of the PF
approximation ranges in [0, 1] and its
Grid-IGD or is 0.0408505

(b) Every objective value of the PF
approximation ranges in [0.1, 0.8]
and its Grid-IGD is 0.0662420

(c) Every objective value of the PF
approximation ranges in [0.2, 0.6]
and its Grid-IGD is 0.1407865

(d) The PF approximations in Fig 2a,
2b and 2c are located on the hyper-
plane f1 + f2 + f3 = 1

Fig. 2: The artificial PF approximations with different spread, uniformly located on the hyperplane f1 + f2 + f3 = 1

(a) Each objective value of all the PF
approximations ranges in [0, 1] and
its Grid-IGD is 0.0394702

(b) With 50% of solutions replaced
by randomly generated solutions on
the same plane and its Grid-IGD is
0.0466158

(c) With 100% of solutions replaced
by randomly generated solutions on
the same plane and its Grid-IGD is
0.0579717

Fig. 3: The artificial approximations with various uniformity, located on a same hyperplane f1 + f2 + f3 = 1

(a) PF approximation uniformly lo-
cated on the hyperplane f1 + f2 +
f3 = 1 and its Grid-IGD is
0.2926927

(b) PF approximation uniformly lo-
cated on the hyperplane f1 + f2 +
f3 = 0.8 and its Grid-IGD is
0.1771430

(c) PF approximation uniformly lo-
cated on the hyperplane f1 + f2 +
f3 = 0.5 and its Grid-IGD is
0.0016108

(d) The PF approximations in Fig 4a,
4b and 4c are uniformly located on
different hyperplanes

Fig. 4: The artificial approximations uniformly located on different hyperplanes

the worse uniformity have larger Grid-IGD values. Clearly,
Grid-IGD is able to correctly reflect the uniformity of PF
approximations.

In the third group, all the approximations are uniformly
distributed but with different convergence levels. Fig. 4a -
4c shows such three approximations, uniformly distributed
on the hyperplanes f1 + f2 + f3 = 1, f1 + f2 + f3 = 0.8
and f1 + f2 + f3 = 0.5, respectively. It can be observed that
Grid-IGD values decrease with better convergence levels for
the approximations. Obviously, Grid-IGD can correctly reflect
approximations’ convergence performance.

C. Grid-IGD on real PF approximations

DTLZ2 [48], whose PF is regular, has been selected as a
representative benchmark problem for verifying the effective-
ness of Grid-IGD. For DTLZ2, it is relatively easy for all the
optimizers to converge to its PF. This characteristic can help
test the diversity performance of approximations obtained by
the different algorithms.

The performance of PF approximations obtained by five op-
timizers on m-objective DTLZ2, in terms of IGD/IGD+/Grid-
IGD/IGD-NS/HV values and their corresponding ranks, are
given in Table III. Due to the page limit, PF approximations
or parallel coordinate plots on DTLZ2 are put in the supple-
mentary material.

It can be observed from Table III that the ranks of the
approximations obtained by the five compared algorithms, in
terms of Grid-IGD values, are always consistent with that
in terms of IGD+ values. This indicates that Grid-IGD is
able to correctly reflect the relative performance of different
algorithms on problems with regular PFs. Another interesting
observation is that the ranks of the approximations in terms
of IGD/IGD-NS are different from that of IGD+/Grid-IGD.
This can be explained by the fact that IGD/IGD-NS is not
Pareto compliant. The ranks of approximations in terms of
HV indicator are the same as that of IGD+/Grid-IGD on tri-
and 5-objective DTLZ2, but different on 10-objective DTLZ2.
The rank differences are produced by the PF approximations
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TABLE III: IGD, IGD+, Grid-IGD, IGD-NS and HV values for PF approximations obtained by five algorithms on m-objective
DTLZ2. Their ranks in terms of IGD/IGD+/Grid-IGD /IGD-NS/HV are presented in the parenthesis.

instances (m-obj) indicator MOEA/D-DE IBEA PAES GrEA NSGA-III

DTLZ2 (3-obj)

IGD 6.355E − 02 (2) 8.259E − 02 (4) 2.972E − 01 (5) 7.718E − 02 (3) 4.679E − 02 (1)

IGD+ 3.199E − 02 (4) 1.872E − 02 (1) 1.961E − 01 (5) 3.016E − 02 (3) 1.964E − 02 (2)
Grid-IGD 6.868E − 02 (4) 5.263E − 02 (1) 2.116E − 01 (5) 6.138E − 02 (3) 5.521E − 02 (2)
IGD-NS 6.272E + 02 (2) 8.152E + 02 (4) 2.933E + 03 (5) 7.618E + 02 (3) 4.618E + 02 (1)

HV 7.143E − 01 (4) 7.572E − 01 (1) 4.741E − 01 (5) 7.248E − 01 (3) 7.530E − 01 (2)

DTLZ2 (5-obj)

IGD 3.251E − 01 (4) 2.359E − 01 (3) 6.748E − 01 (5) 1.991E − 01 (2) 1.949E − 01 (1)

IGD+ 1.190E − 01 (4) 6.325E − 02 (1) 4.552E − 01 (5) 7.677E − 02 (3) 7.192E − 02 (2)
Grid-IGD 1.978E − 01 (4) 1.550E − 01 (1) 5.229E − 01 (5) 1.681E − 01 (3) 1.613E − 01 (2)
IGD-NS 2.880E + 03 (4) 2.089E + 03 (3) 5.977E + 03 (5) 1.763E + 03 (2) 1.726E + 03 (1)

HV 1.138E − 00 (4) 1.301E − 00 (1) 4.308E − 01 (5) 1.275E − 00 (3) 1.280E − 00 (2)

DTLZ2 (10-obj)

IGD 4.701E − 01 (2) 7.900E − 01 (5) 6.806E − 01 (4) 5.001E − 01 (3) 4.222E − 01 (1)

IGD+ 2.794E − 01 (2) 3.642E − 01 (4) 4.552E − 01 (5) 2.950E − 01 (3) 1.794E − 01 (1)
Grid-IGD 3.618E − 01 (2) 4.424E − 01 (4) 5.487E − 01 (5) 3.849E − 01 (3) 2.310E − 01 (1)
IGD-NS 3.300E + 03 (2) 5.537E + 03 (5) 4.784E + 03 (4) 3.511E + 03 (3) 2.958E + 03 (1)

HV 2.177E − 00 (2) 2.089E − 00 (3) 1.294E − 00 (5) 1.903E − 00 (4) 2.511E − 00 (1)

of IBEA and GrEA. It can be observed from the parallel
coordinate plots on 10-objective DTLZ2 (Fig. 3 in the supple-
mentary material) that IBEA has better performance in terms
of convergence but worse performance in terms of diversity,
than GrEA. Apparently, although IGD+/Grid-IGD and HV are
all Pareto compliant, different from HV, IGD+/Grid-IGD has
more preference towards diversity.

D. Grid-IGD on MaOPs with irregular PFs

The effectiveness of Grid-IGD on MaOPs with the irregular
PFs is further verified in this section. DTLZ7 [48] contains
a typical irregular PF, consisting of 2m−1 disconnected seg-
ments, which can be either convex or concave. UF9 [49]
is a tri-objective problem with linear and discontinuous PF.
WFG2 [50] has a disconnected PF, which is scalable in the
number of objectives.

The performance of PF approximations obtained by five
optimizers on various problems, in terms of IGD/IGD+/Grid-
IGD/IGD-NS/HV values and their corresponding ranks, are
given in Table IV. Due to the page limit, their PF approxima-
tions or parallel coordinate plots are put in the supplementary
material.

It can be observed from Table IV that the ranks of the
approximations obtained by the five compared algorithms, in
terms of Grid-IGD values, are always consistent with that
in terms of IGD+ values. This indicates that Grid-IGD is
able to correctly reflect the relative performance of different
algorithms on problems with irregular PFs. Another interesting
observation is that the ranks of the approximations in terms
of IGD/IGD-NS are different from that of IGD+/Grid-IGD
on most problems. This can be explained by the fact that
neither IGD nor IGD-NS is Pareto compliant. In addition, the
ranks of the approximations in terms of HV indicator are the
same as that of IGD+/Grid-IGD on 3-objective problems, but
different on 5 and 10-objective problems, due to the fact that
HV and IGD+/Grid-IGD have different preferences towards
convergence or diversity.

E. Effects of interval parameter K on Grid-IGD

In this section, we investigate the effects of interval pa-
rameter K on Grid-IGD. With the increase of the K values,

the number of grids grows exponentially and the solutions
of an approximation tend to distribute in more different
grids, leading to an increasing number of reference points.
Apparently, the setting of parameter K can be determined
by the final number of reference points. Eqs. (20)- (22) only
estimates the lower bounds K0 of K values for keeping |S|
reference points, given m-dimensional PF approximations.

Fig. 6 shows the Grid-IGD values for different approxi-
mations with different K values in the range of [2, 100] for
various problems. It further verifies the effects of K on Grid-
IGD as follows.

When K values are too small, Grid-IGD generates too few
reference points to conduct fair measurements for different
PF approximations. However, an extremely large K value
also seems unnecessary as each solution of all the approxi-
mations will be located in a different grid and the number
of reference points is equal to the number of solutions for
all the approximations. Under this circumstance, Grid-IGD is
equivalent to IGD+ [27] using all the nondominated solutions
as a reference set. It can be observed from Fig. 6 that K is
indeed a problem-dependent parameter. However, when K is
set within a certain value range, a representative set of enough
diversely-populated reference points can be generated by Grid-
IGD for correctly ranking different PF approximations, as
shown in Fig. 6, Table III and Table IV.

A simple method for tuning the appropriate K value for
different problems is based on the number of reference points
generated by Grid-IGD, as presented in Algorithm 1. Table V
demonstrates the estimated lower bound K0 obtained by Eq.
(20) - (22), the actual number of reference points and the
corresponding K values obtained by Grid-IGD on different
problems with m-objectives in the experimental studies.

F. Sensitivity test of T on Grid-IGD

In this section, the sensitivity tests on the neighborhood
size T are conducted. Fig. 7 shows the grid-IGD values of
the approximations obtained by five MOEAs with different
T values on various problems. In the experiments, T values
range in [1,mK], where K is the number of intervals on each
objective and m is the number of objectives. The maximum
value of T is set to mK, as mK is the Manhattan distance
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TABLE IV: IGD, IGD+, IGD-NS, HV and Grid-IGD values for PF approximations obtained by five algorithms on problems
with irregular PFs with different number of objectives m. Their ranks in terms of IGD/IGD+/IGD-NS/HV/Grid-IGD are
presented in the parenthesis.

instance (m-obj) indicator MOEA/D-DE IBEA PAES GrEA NSGA-III

DTLZ7 (3-obj)

IGD 2.147E − 01 (4) 1.100E − 01 (3) 1.150E + 00 (5) 1.032E − 01 (2) 6.640E − 02 (1)

IGD+ 9.515E − 02 (4) 2.584E − 02 (1) 1.013E + 00 (5) 4.233E − 02 (3) 3.631E − 02 (2)
Grid-IGD 1.116E − 01 (4) 5.428E − 02 (1) 1.242E + 00 (5) 7.642E − 02 (3) 6.335E − 02 (2)
IGD-NS 2.187E + 03 (4) 1.100E + 03 (3) 1.150E + 04 (5) 1.032E + 03 (2) 6.640E + 02 (1)

HV 1.189E + 00 (4) 1.632E + 00 (1) 0.865E + 00 (5) 1.545E + 00 (3) 1.623E + 00 (2)

DTLZ7 (5-obj)

IGD 3.192E + 00 (5) 1.479E + 00 (3) 2.205E + 00 (4) 2.776E − 01 (1) 3.231E − 01 (2)

IGD+ 8.905E − 01 (3) 1.187E + 00 (4) 2.000E + 00 (5) 1.116E − 01 (1) 1.878E − 01 (2)
Grid-IGD 1.033E + 00 (3) 1.303E + 00 (4) 1.931E + 00 (5) 1.961E − 01 (1) 2.763E − 01 (2)
IGD-NS 3.192E + 04 (5) 1.480E + 04 (3) 2.206E + 04 (4) 2.776E + 03 (1) 3.232E + 03 (2)

HV 9.910E − 03 (5) 1.516E + 00 (3) 1.363E + 00 (4) 2.256E + 00 (1) 2.054E + 00 (2)

DTLZ7 (10-obj)

IGD 2.606E + 00 (3) 5.928E + 00 (5) 4.054E + 00 (4) 8.550E − 01 (1) 1.285E + 00 (2)

IGD+ 1.492E + 00 (3) 5.747E + 00 (5) 3.860E + 00 (4) 6.501E − 01 (1) 9.882E − 01 (2)
Grid-IGD 1.564E + 00 (3) 5.474E + 00 (5) 3.798E + 00 (4) 8.759E − 01 (1) 1.514E + 00 (2)
IGD-NS 5.142E + 04 (3) 1.167E + 05 (5) 7.982E + 04 (4) 1.683E + 04 (1) 2.537E + 04 (2)

HV 1.815E − 05 (5) 1.552E + 00 (3) 2.208E + 00 (2) 1.229E + 00 (4) 2.303E + 00 (1)

UF9 (3-obj)

IGD 3.123E − 01 (1) 3.936E − 01 (3) 6.836E − 01 (5) 3.950E − 01 (4) 3.818E − 01 (2)

IGD+ 3.099E − 01 (1) 3.423E − 01 (2) 6.780E − 01 (5) 3.744E − 01 (3) 3.764E − 01 (4)
Grid-IGD 8.922E − 02 (1) 1.850E − 01 (2) 4.949E − 01 (5) 2.139E − 01 (3) 2.300E − 01 (4)
IGD-NS 1.617E + 03 (3) 2.012E + 03 (2) 3.500E + 03 (5) 1.998E + 03 (1) 1.964E + 03 (4)

HV 5.877E − 01 (1) 5.061E − 01 (2) 1.226E − 01 (5) 4.717E − 01 (3) 4.514E − 01 (4)

WFG2 (3-obj)

IGD 5.161E − 01 (5) 2.396E − 01 (3) 2.598E − 01 (4) 2.101E − 01 (2) 1.737E − 01 (1)

IGD+ 1.956E − 01 (4) 3.840E − 02 (1) 2.003E − 01 (5) 5.902E − 02 (2) 8.630E − 02 (3)
Grid-IGD 2.335E − 01 (4) 1.269E − 02 (1) 2.802E − 01 (5) 1.479E − 02 (2) 1.705E − 01 (3)
IGD-NS 1.344E + 03 (5) 6.231E + 02 (3) 6.795E + 02 (4) 5.463E + 02 (2) 4.517E + 02 (1)

HV 5.466E + 02 (4) 5.912E + 02 (1) 5.414E + 02 (5) 5.864E + 02 (2) 5.827E + 02 (3)

WFG2 (5-obj)

IGD 1.577E − 00 (5) 3.398E − 01 (4) 8.015E − 01 (2) 1.073E − 00 (3) 7.357E − 01 (1)

IGD+ 5.461E − 01 (4) 1.332E − 01 (1) 5.666E − 01 (5) 1.425E − 01 (2) 1.655E − 01 (3)
Grid-IGD 6.274E − 01 (4) 2.659E − 01 (1) 7.706E − 01 (5) 3.351E − 01 (2) 3.358E − 01 (3)
IGD-NS 9.498E + 03 (5) 5.662E + 03 (3) 4.865E + 03 (2) 6.460E + 03 (4) 4.444E + 03 (1)

HV 5.570E + 03 (4) 5.969E + 03 (1) 4.839E + 03 (5) 5.788E + 03 (3) 5.840E + 03 (2)

WFG2 (10-obj)

IGD 3.514E − 00 (4) 5.294E − 00 (5) 2.567E − 00 (1) 2.864E − 00 (2) 3.202E − 00 (3)

IGD+ 3.675E − 01 (4) 1.560E − 01 (1) 7.099E − 01 (5) 3.253E − 01 (3) 3.127E − 01 (2)
Grid-IGD 1.028E + 00 (4) 3.586E − 01 (1) 1.796E + 00 (5) 5.888E − 01 (3) 5.424E − 01 (2)
IGD-NS 6.971E + 04 (4) 1.048E + 05 (5) 5.165E + 04 (1) 5.721E + 04 (2) 6.381E + 04 (3)

HV 9.204E + 09 (2) 9.381E + 09 (1) 6.644E + 09 (5) 8.925E + 09 (3) 8.891E + 09 (4)

(a) All the non-dominated solutions
as a reference set on DTLZ2.

(b) All the grid corner points in a
grid system as a reference set on
DTLZ2.

(c) All the non-dominated solutions
as a reference set on DTLZ7.

(d) All the grid corner points in a
grid system as a reference set on
DTLZ7.

Fig. 5: Grid corner points (reference sets) obtained by Grid-IGD on tri-objective DTLZ2 or DTLZ7.

TABLE V: The estimated lower bounds K0 based on Eq. (20) - (22), the number of reference points obtained by Grid-IGD
and the corresponding K values on different problems with m-objectives in the experimental studies.

DTLZ2 DTLZ7 UF9 WFG2

the number of objectives m 3 5 10 3 5 10 3 3 5 10

the lower bound K0 (Eq. 20- 22) 7 3 2 7 3 2 7 7 3 2

obtained K values in the experiments 17 7 5 40 16 9 26 20 12 12

the number of reference points 276 306 603 275 278 683 110 153 221 492

the size of nondominated set Snon 554 592 1073 533 571 1297 228 281 423 938
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TABLE VI: IGD, IGD+ and Grid-IGD values for PF approximations obtained by five algorithms with three different sets of
reference points on m-objective DTLZ2. Their ranks in terms of IGD/IGD+/Grid-IGD are presented in the parenthesis.

indicator (m-obj) reference set MOEA/D-DE IBEA PAES GrEA NSGA-III

IGD (3-obj)
uniformly sampled true PF 6.355E − 02 (2) 8.259E − 02 (4) 2.972E − 01 (5) 7.718E − 02 (3) 4.679E − 02 (1)

all the nondominated solutions (Fig. 5a) 5.878E − 02 (4) 5.569E − 02 (3) 2.467E − 01 (5) 5.319E − 02 (2) 3.216E − 02 (1)
grid corner points (Fig. 5b) 8.168E − 02 (3) 8.244E − 02 (4) 2.855E − 01 (5) 8.120E − 02 (2) 6.233E − 02 (1)

IGD+ (3-obj)
uniformly sampled true PF 3.199E − 02 (4) 1.872E − 02 (1) 1.961E − 01 (5) 3.016E − 02 (3) 1.964E − 02 (2)

all the nondominated solutions (Fig. 5a) 3.182E − 02 (4) 1.266E − 02 (2) 1.632E − 01 (5) 1.974E − 02 (3) 1.468E − 02 (2)
grid corner points (Fig. 5b) 6.868E − 02 (4) 5.263E − 02 (1) 2.116E − 01 (5) 6.138E − 02 (3) 5.521E − 02 (2)

Grid-IGD (3-obj) grid corner points (Fig. 5b) 6.868E − 02 (4) 5.263E − 02 (1) 2.116E − 01 (5) 6.138E − 02 (3) 5.521E − 02 (2)

IGD (5-obj)
uniformly sampled true PF 3.251E − 01 (4) 2.359E − 01 (3) 6.748E − 01 (5) 1.991E − 01 (2) 1.949E − 01 (1)

all the nondominated solutions 2.210E − 02 (4) 1.365E − 02 (2) 5.931E − 01 (5) 1.196E − 02 (1) 1.269E − 02 (3)
grid corner points 2.785E − 01 (4) 2.091E − 01 (3) 6.648E − 01 (5) 1.984E − 01 (2) 1.840E − 01 (1)

IGD+ (5-obj)
uniformly sampled true PF 1.190E − 01 (4) 6.325E − 02 (1) 4.552E − 01 (5) 7.677E − 02 (3) 7.192E − 02 (2)

all the nondominated solutions 8.222E − 02 (4) 3.762E − 02 (1) 4.167E − 01 (5) 5.399E − 02 (2) 5.623E − 02 (3)
grid corner points 1.978E − 01 (4) 1.550E − 01 (1) 5.229E − 01 (5) 1.681E − 01 (3) 1.613E − 01 (2)

Grid-IGD (5-obj) grid corner points 1.978E − 01 (4) 1.550E − 01 (1) 5.229E − 01 (5) 1.681E − 01 (3) 1.613E − 01 (2)

IGD (10-obj)
uniformly sampled true PF 4.701E − 01 (2) 7.900E − 01 (5) 6.806E − 01 (4) 5.001E − 01 (3) 4.222E − 01 (1)

all the nondominated solutions 2.608E − 01 (2) 6.354E − 01 (5) 5.502E − 01 (4) 4.227E − 01 (3) 2.335E − 01 (1)
grid corner points 4.280E − 01 (2) 7.296E − 01 (5) 7.087E − 01 (4) 5.134E − 01 (3) 3.038E − 01 (1)

IGD+ (10-obj)
uniformly sampled true PF 2.794E − 01 (2) 3.642E − 01 (4) 4.552E − 01 (5) 2.950E − 01 (3) 1.794E − 01 (1)

all the nondominated solutions 1.579E − 01 (2) 2.228E − 01 (4) 3.295E − 01 (5) 2.140E − 01 (3) 5.990E − 02 (1)
grid corner points 3.618E − 01 (2) 4.424E − 01 (4) 5.487E − 01 (5) 3.849E − 01 (3) 2.310E − 01 (1)

Grid-IGD (10-obj) grid corner points 3.618E − 01 (2) 4.424E − 01 (4) 5.487E − 01 (5) 3.849E − 01 (3) 2.310E − 01 (1)

TABLE VII: IGD, IGD+ and Grid-IGD values for PF approximations obtained by five algorithms with three different sets of
reference points on m-objective DTLZ7. Their ranks in terms of IGD/IGD+/Grid-IGD are presented in the parenthesis.

indicator (m-obj) reference set MOEA/D-DE IBEA PAES GrEA NSGA-III

IGD (3-obj)
uniformly sampled true PF 2.147E − 01 (4) 1.100E − 01 (3) 1.150E + 00 (5) 1.032E − 01 (2) 6.640E − 02 (1)

all the nondominated solutions (Fig. 5c) 2.779E − 01 (4) 8.744E − 02 (2) 1.146E + 00 (5) 9.262E − 01 (3) 6.915E − 02 (1)
grid corner points (Fig. 5d) 2.031E − 01 (4) 1.152E − 01 (2) 1.380E + 00 (5) 1.288E − 01 (3) 9.650E − 02 (1)

IGD+ (3-obj)
uniformly sampled true PF 9.515E − 02 (4) 2.584E − 02 (1) 1.013E + 00 (5) 4.233E − 02 (3) 3.631E − 02 (2)

all the nondominated solutions (Fig. 5c) 1.099E − 01 (4) 1.760E − 02 (1) 1.012E + 00 (5) 3.089E − 02 (3) 2.810E − 02 (2)
grid corner points (Fig. 5d) 1.116E − 01 (4) 5.428E − 02 (1) 1.242E + 00 (5) 7.642E − 02 (3) 6.335E − 02 (2)

Grid-IGD (3-obj) grid corner points (Fig. 5d) 1.116E − 01 (4) 5.428E − 02 (1) 1.242E + 00 (5) 7.642E − 02 (3) 6.335E − 02 (2)

IGD (5-obj)
uniformly sampled true PF 3.192E + 00 (5) 1.479E + 00 (3) 2.205E + 00 (4) 2.776E − 01 (1) 3.231E − 01 (2)

all the nondominated solutions 3.753E + 00 (5) 1.346E + 00 (3) 1.833E + 00 (4) 1.970E − 01 (1) 2.220E − 01 (2)
grid corner points 3.397E + 00 (5) 1.486E + 00 (3) 2.070E + 00 (4) 2.529E − 01 (1) 3.104E − 01 (2)

IGD+ (5-obj)
uniformly sampled true PF 8.905E − 01 (3) 1.187E + 00 (4) 2.000E + 00 (5) 1.116E − 01 (1) 1.878E − 01 (2)

all the nondominated solutions 1.021E + 00 (3) 1.183E + 00 (4) 1.689E + 00 (5) 1.189E − 01 (1) 1.826E − 01 (2)
grid corner points 1.033E + 00 (3) 1.303E + 00 (4) 1.931E + 00 (5) 1.961E − 01 (1) 2.763E − 01 (2)

Grid-IGD (5-obj) grid corner points 1.033E + 00 (3) 1.303E + 00 (4) 1.931E + 00 (5) 1.961E − 01 (1) 2.763E − 01 (2)

IGD (10-obj)
uniformly sampled true PF 2.606E + 00 (3) 5.928E + 00 (5) 4.054E + 00 (4) 8.550E − 01 (1) 1.285E + 00 (2)

all the nondominated solutions 4.000E − 00 (3) 5.318E − 00 (5) 4.126E + 00 (4) 1.130E − 00 (1) 2.142E − 00 (2)
grid corner points 3.275E + 00 (3) 5.593E + 00 (5) 3.917E + 00 (4) 1.020E + 00 (1) 1.657E + 00 (2)

IGD+ (10-obj)
uniformly sampled true PF 1.492E + 00 (3) 5.747E + 00 (5) 3.860E + 00 (4) 6.501E − 01 (1) 9.882E − 01 (2)

all the nondominated solutions 1.355E + 00 (2) 5.173E + 00 (5) 3.995E + 00 (4) 9.411E − 01 (1) 1.959E + 00 (3)
grid corner points 1.564E + 00 (3) 5.474E + 00 (5) 3.798E + 00 (4) 8.759E − 01 (1) 1.514E + 00 (2)

Grid-IGD (10-obj) grid corner points 1.564E + 00 (3) 5.474E + 00 (5) 3.798E + 00 (4) 8.759E − 01 (1) 1.514E + 00 (2)

between the extended nadir point ze nad and the ideal point z∗,
which is the maximum possible distance between a reference
point and a solution.

It can be observed from Fig. 7 that the absolute Grid-IGD
values of the approximations obtained by different multiob-
jective optimizers reach their maximum values after certain
large threshold values of T . However, the ranks of different
optimizers in terms of the Grid-IGD values remain the same
after certain threshold values of T on different problems. It
can be observed in Fig. 7 that the Grid-IGD remains stable
when T = m for most problems and T = 24 for all the tested
problems.

G. Effects of uniformity of reference points on IGD/IGD+

/Grid-IGD

One major difference between IGD/IGD+ and Grid-IGD
is the distribution of the reference points. For IGD/IGD+,
the nondominated solutions of all the PF approximations are
considered as a set of reference points when true PFs are
unknown a priori, which is a very common scenario for the
real-world multi/many-objective optimization problems. For
Grid-IGD, the reference set is more uniformly distributed due
to the use of the grid system. In this section, Grid-IGD is
compared with IGD/IGD+ and the effects of the distributions
of the reference set on them are also discussed.

The nondominated solutions of all the PF approximations
on tri-objective DTLZ2 are considered as a set of reference
points, as shown in Fig. 5a. It can be observed that the obtained
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(a) 3-objective DTLZ2 (b) 5-objective DTLZ2 (c) 10-objective DTLZ2 (d) 3-objective DTLZ7 (e) 5-objective DTLZ7

(f) 10-objective DTLZ7 (g) 3-objective WFG2 (h) 5-objective WFG2 (i) 10-objective WFG2 (j) 3-objective UF9

Fig. 6: Grid-IGD values of the approximations obtained by five MOEAs with different K values.

(a) 3-objective DTLZ2 (b) 5-objective DTLZ2 (c) 10-objective DTLZ2 (d) 3-objective DTLZ7 (e) 5-objective DTLZ7

(f) 10-objective DTLZ7 (g) 3-objective WFG2 (h) 5-objective WFG2 (i) 10-objective WFG2 (j) 3-objective UF9

Fig. 7: Grid-IGD values of the approximations obtained by five MOEAs with different T values.

reference set is not uniformly distributed over the entire PF.
On the contrary, the reference set obtained by the grid corner
points in Grid-IGD (K = 18) is more uniformly distributed,
as shown in Fig. 5b. Similarly, all the nondominated solu-
tions obtained by five algorithms on tri-objective DTLZ7 are
presented in Fig. 5c and its grid corner points are given in
Fig. 5d.

To investigate the effects of the distributions of the reference
sets, IGD/IGD+ using all the nondominated solutions as a
reference set, IGD/IGD+ using the uniformly sampled true
PFs as a reference set, IGD/IGD+ using the grid corner points
as a reference set and the proposed Grid-IGD are compared in
terms of the ranks of five algorithms on DTLZ2 and DTLZ7,
as shown in Table VI and Table VII, respectively.

It can be observed that the ranks of five compared algo-
rithms in terms of IGD+ using the uniformly sampled true
PFs as a reference set, IGD+ using the grid corner points as
a reference set and Grid-IGD are always consistent with each
other. However, five algorithms may have different ranks in
terms of IGD or IGD+ using all the nondominated solutions
as a reference set.

We can have the following observations based on Table VI
and Table VII.

• Using all the nondominated solutions as a reference set
is not a good strategy for IGD-based indicators, as the
uniformity of a reference set is of great importance for
fair performance evaluations of PF approximations.

• Without knowing the true PF a priori, Grid-IGD can still
provide a set of uniformly distributed reference points by
using the grid corner points, which successfully addresses
the above issue.

• Grid-IGD can better reflect the comprehensive perfor-
mance of the approximations delivered by multi/many-
objective optimizers, compared with IGD.

V. CONCLUSION

In this paper, a Grid-IGD is proposed for improving the
performance evaluations of the original IGD on PF approxima-
tions delivered by multi/many-objective optimizers. Different
from the original IGD, Grid-IGD does not require the informa-
tion about the true PFs a priori; it can more accurately reflect
the comprehensive quality of PF approximations and it has
lower computational complexity, which is very desirable for
evaluating high dimensional PF approximations. Experimental
results show the effectiveness of Grid-IGD for measuring the
comprehensive quality for both artificial approximations and
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the ones obtained by five MOEAs. The proof of Grid-IGD
as a weakly Pareto compliant indicator is also given. Further
work includes designing multi/many-objective optimization
algorithms based on Grid-IGD.
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