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A Grid-Based Inverted Generational Distance for
Multi/Many-Objective Optimization

Xinye Cai, Member, IEEE, Yushun Xiao, Miqing Li, Member, IEEE, Han Hu, Hisao Ishibuchi Fellow, IEEE,,
Xiaoping Li, Senior Member, IEEE,

Abstract—Assessing the performance of Pareto front (PF)
approximations is a key issue in the field of evolutionary
multi/many-objective optimization. Inverted Generational Dis-
tance (IGD) has been widely accepted as a performance indicator
for evaluating the comprehensive quality for a PF approximation.
However, IGD usually becomes infeasible when facing a real-
world optimization problem as it needs to know the true PF a
priori. In addition, the time complexity of IGD grows quadrat-
ically with the size of the solution/reference set. To address the
aforementioned issues, a grid-based IGD (Grid-IGD) is proposed
to estimate both convergence and diversity of PF approximations
for multi/many-objective optimization. In Grid-IGD, a set of
reference points is generated by estimating PFs of the problem in
question, based on the representative nondominated solutions of
all the approximations in a grid environment. To reduce the time
complexity, Grid-IGD only considers the closest solution within
the grid neighborhood in the approximation for every reference
point. Grid-IGD also possesses other desirable properties such
as Pareto compliance, immunity to dominated/duplicate solutions
and no need of normalization. In the experimental studies, Grid-
IGD is verified on both the artificial and real PF approximations
obtained by five many-objective optimizers. Effects of the grid
specification on the behavior of Grid-IGD are also discussed in
detail theoretically and experimentally.

Index Terms—Many-objective optimization, Inverted genera-
tional distance, Performance indicator, Grid system.

I. INTRODUCTION

Many real-world optimization problems involve the simul-
taneous optimization of multiple conflicting objectives. Unlike
a single-objective optimization problem, a multiobjective opti-
mization problem (MOP) has a set of Pareto optimal solutions,
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concerning the trade-offs between different objectives. The set
of all the Pareto optimal solutions is usually called the Pareto
set (PS) and its mapping in the objective space is called the
Pareto front (PF) [1]. A PF approximation apparently can
help decision makers for understanding the tradeoff relation-
ship among different objectives and selecting their preferred
solutions. Over the past decades, multiobjective evolutionary
algorithms (MOEAs) [2]], [3l], [4]], [S] have been accepted as
a major methodology for approximating the PFs in nonlinear
MOPs [6], [7].

In the field of MOEAs, the performance evaluation is a
critical issue. The quality of an obtained solution set can
be measured by performance indicators [8], [9] in one or
several of the following aspects: 1) convergence, 2) spread
(i.e., coverage [10] or extensity [L1]) and 3) uniformity. The
combination of the latter two is usually called diversity of a
solution set [12], [L1].

The performance indicators used to assess solution sets
obtained by multiobjective optimizers are critical. An ideal
indicator should be able to correctly reflect the quality of a
solution set. To achieve such a goal, a performance indicator is
desirable to have as more following properties as possible [9].

1) Less prior problem information needed: Many existing
indicators require additional problem information, e.g.,
the true Pareto front or a reference point. As the accuracy
of such indicators largely depend on those references,
it is desirable for indicators to have as little reference
information as possible.

2) No need of scaling and normalization: For some indica-
tors, scaling (or normalization) may need for indicators
whose calculation involves objective blending. Never-
theless, an indicator may not need such an operation
when different objectives may contribute equally to the
indicator values. Apparently, indicators without requir-
ing scaling and normalization are more desirable.

3) No effect of adding dominated or duplicate solutions:
as dominated or duplicate solutions do not provide
any useful information for the decision maker in the
context of Pareto optimality, indicators that have no
effect of adding dominated or duplicate solutions are
more desirable.

4) Low computational cost: The increasing number of
objectives results in an exponential increase in the
time and space complexity for some commonly used
indicators, e.g., hypervolume [13] and hyperarea differ-
ence [14]. Such indicators are incapable of computing
high-dimensional PFs. It is more desirable to design an



indicator with low computational cost.

5) Pareto compliance property: Pareto compliance property
is very important for the indicator design. The formal
definition of strict/weak Pareto compliance can be re-
ferred to Section II. A. Unfortunately, many widely
used indicators, e.g., Inverted Generational Distance
(IGD) [135], [16], are Pareto non-compliant.

Some comprehensive performance indicators, such as Hy-
pervolume (HV) [13] and Inverted Generational Distance
(IGD) [15], [16], are very popular in multiobjective evolu-
tionary optimization community [8]], [9]. However, they do
not own several above-mentioned desirable properties. For
instance, although Monte Carlo sampling-based approximation
can significantly reduce the computational cost of calculat-
ing HV and makes it possible to use for high-dimensional
PFs [17]], the proper choice of the reference point is a tedious
task, which will largely affect the ability of HV to distinguish
the quality of PF approximations [18]. For IGD, a reference
set that can well-represent the real PF is required, which
apparently is very difficult to meet for real-world optimization
problems. Recent studies also show that IGD-based compar-
ison results largely depend on the specification of such a
reference set [19].

To meet the above-mentioned properties, we propose a grid-
based IGD (Grid-IGD) as a comprehensive performance indi-
cator for multiobjective optimization. The major motivations
of this work can be summarized as follows:

1) For a real-world MOP, IGD is generally infeasible as
the true PF in question is usually unknown in advance.
A grid system can provide a set of reference points by
adopting the utopia point (i.e., the left bottom corner
for a minimization problem) of each grid that the non-
dominated solutions are located in. Such a reference set
automatically generated from the solution sets by a grid
system makes Grid-IGD require very little prior problem
information and have no need of normalization before
calculation.

2) As referenced in [20], when the true PF of an MOP is
unknown, the current mainstream methods use all the
non-dominated solutions as the reference points [21]],
[19]. The main disadvantage of this approach is that the
generated reference points are always not uniform over
the entire PF. Such a biased distribution of the reference
points may lead to the biased comparison results [20].
How to design a method that is easy to implement and
can sample well-distributed reference points in the high-
dimensional space, is of great importance for calculating
IGD. A grid system, as an inherent diversity mainte-
nance mechanism, can be suitable for such a task.

3) The time complexity of IGD is O(mM N) where m is
the number of objectives, M is the number of reference
points and N is the size of solution set. The time
complexity is usually significantly larger than O(mN?)
as the number of reference points is usually much larger
than the size of PF approximation. In IGD, calculating
the distance of a reference point to a far away solution
appears to be redundant as it only takes the closest dis-

tance into account. When the grid system is introduced,
the grid distance between solutions can be seen as a
form of the definition for solutions’ neighborhood. If
each reference point only considers its neighborhood,
it will lead to a much less time complexity, which is
especially desirable for evaluating the performance of
high-dimensional PF approximations, as well as using
IGD potentially as an online indicator.

4) IGD is Pareto non-compliant, not immune to dominated
solutions, and requires normalization before calculation.
The lack of these desirable properties seriously limit its
use and may also cause misleading comparison results.
A comprehensive indicator that possesses most or even
all of the aforementioned desirable properties needs to
be further designed.

The rest of this paper is organized as follows. Related
work on the proposed indicator, i.e., Grid-IGD, is introduced
in Section II. Section III elaborates Grid-IGD. In Section
IV, the systematic experiments are conducted to verify the
effectiveness of Grid-IGD. Finally, the paper is concluded in
Section V where future research directions are also suggested.

II. BACKGROUND
A. Basic Definitions

A multiobjective optimization problem (MOP) can be de-
fined as follows:

F(z) = (fi(x),..., fm(z)" (1)

subject to x € Q

minimize

where € is the decision space, F : ) — R™ consists of m
real-valued objective functions. Note that an MOP is usually
called a many-objective optimization problem (MaOPs) when
m > 3. The arttainable objective set is {F(z)|x € Q}. Let
a,b € R™, a is said to dominate b, denoted by a < b, if
and only if a; < b; for every ¢ € {1,...,m} and a; < b,
for at least one index j € {1,...,m}; a is said to weakly
dominate b, denoted by a =< b, if and only if a; < b; for every
ie{l,... ,m Given a set S in R™, a solution in S is called
non-dominated in S if no other solution in .S dominates it. A
solution z* € ) is Pareto-optimal if F(x*) is non-dominated
in the attainable objective set. F'(x*) is then called a Pareto-
optimal (objective) vector. In other words, any improvement
in one objective of a Pareto optimal solution must lead to
deterioration in at least another objective. The set of all the
Pareto-optimal points is called the Pareto set (PS) and the set
of all the Pareto-optimal objective vectors is the Pareto front
(PF) [

In [8], the above-mentioned Pareto dominance relation
between solutions was extended to a relation between solution
sets as follows. Let A and B be two solution sets. A is
said to dominate B, denoted by A < B, if and only if
Vb; € B,da; € A:a; < b;. Ais said to weakly dominate B,
denoted by A < B, if and only if Vb; € B,3a; € A : a; < b;.

A quality indicator is said to be strictly Pareto compliant [8]],
[9], if and only if VA, B: A < B = I(A) < I(B); where

'In the case of maximization, the inequality signs should be reversed.



I(.) is a mapping from a set of objective vector to an indicator
value. Similarly, a quality indicator is said to be weakly Pareto
compliant [8], [9], if and only if VA, B: A< B — I(A) <
I(B); where I(.) is a mapping from a set of objective vector
to an indicator value.

The ideal and nadir objective vectors can be used to define
the ranges of PFs as follows. The ideal objective vector z* is
a vector z* = {zf,..., 2 }T, which can be computed by

zj:gcrleigfj(x),je{17...,m}. ()

d d

The nadir objective vector z"™*® is a vector z"** =

{zpad . zreddT which can be computed by
z?“d:wrrel%éfj(x)J e{l,...,m}. 3)

B. Previous work

As mentioned in the last section, IGD and HV are very
popular in the field of multiobjective evolutionary optimiza-
tion. The definition of IGD [15], [16] and HV [13] are given
as follows.

o Inverted Generational Distance (IGD) [15], [[L6l]: Let P*
be a set of points uniformly sampled over the true PF,
and S be the set of solutions obtained by an MOEA. The
IGD value of S is computed as:

> yep- dist(y, S)
[P

where dist(y,S) is the Euclidean distance between a
point y € P* and its nearest neighbor in S, and | P*| is the
cardinality of P*. IGD calculates an average minimum
distance from each point in P* to those in .S, which
measures both convergence and diversity of a solution
set .S. The lower the IGD value is, the better the quality
of S is.

« Hypervolume (HV) [13]: Let 7* = (5,75, ...,7%,) be a
reference point in the objective space that is dominated
by all solutions in a PF approximation S. HV metric
measures the size of the objective space dominated by
the solutions in S and bounded by r*.

HV(S) = VOL(|J[yr, 73] % - lym:75)) - (9)

yeS

IGD(S, P*) =

“4)

where VOL(e) indicates the Lebesgue measure.
The main advantage of HV is its strictly Pareto com-
pliance property [22]]. One main drawback of the HV
compared with the IGD is its large computational bur-
den for many-objective optimization problem. Although
some fast computational methods have been proposed for
HV [23], [24], [25], it is still difficult to compute the
exact value of HV for a large solution set with many
objectives. Another weakness of HV is that it may be in
favor of very non-uniform solution sets on a highly non-
linear Pareto front no matter what reference point is [26]],
possibly leading to unfair comparison results.
In addition to the aforementioned performance metrics,
other comprehensive performance indicators are also fre-
quently used, as follows.

o Modified Inverted Generational Distance (IGD%) [27]:

Let P* be a set of points uniformly sampled over the
true PF, and S be the set of solutions obtained by an
MOEA. The only difference between the IGD(S, P*)
and IGDT (S, P*) lies in the distance calculation. In the
minimization problems, the distance calculation for IGD™
is

m

dist* (y, ) = Z(max{yi - 2;,0})? (6)

i=1

where dist™(y,S) is the modified distance between
a point y € P* and its nearest neighbor z € §S.
This distance modification ensures that IGD™ is weakly
Pareto compliant whereas the original IGD is Pareto non-
compliant. Like IGD, the lower the IGD™ value is, the
better the quality of S is. Although IGD™ possesses
the weak Pareto compliance property, it still requires
prior knowledge of PF as a reference set, as well as
normalization before calculation.

A, [28] can be seen as an “averaged Hausdorff distance”
between the obtained solution set .S and the reference set
P*, which evaluates both convergence and diversity as
follows [29]], [30].

A,(S, P*) = max(GD,(S, P*), IGD,(S, P*))

1 1
— — 1 )P\ p
= max(( 5] yezsdzst(y,P P)r, -

> dist(y.5)")7)

yeP*

1
[P

(

where dist(y, P*) is the Euclidean distance between a
solution y € S and its nearest neighbor in P*, and |S| is
the cardinality of S, dist(y, S) is the Euclidean distance
between a solution y € P* and its nearest neighbor in S,
and | P*| is the cardinality of P*. The lower the A, value
is, the better the quality of .S for approximating the whole
PF is. However, a reference set, as well as normalization
is still needed before calculating A,,.

o p-metric [31] is a newly proposed indicator for high-

dimensional approximations. With a set of uniform ref-
erence vectors, the objective space can be divided into
subregions of hypercones. Given a solution set S, a
solution y € S belongs to ¢-th subregion ®; if ¢ =
argmazx Aievm, where A’ is the i-th reference vec-
tor. In each subregion ®;, the solution with the closest
distance r; to the origin point is used to compute p-metric,
as follows.

Mo
- t ic = — 8
p-metric ;:1 . (8)
where M is the number of subregions and 71 =0

indicates no solution exists in such a subregion. It can be
observed from Eq.(8) that the diversity of a solution set,
in terms of the p-metric, is measured by the number of
reference vectors (subregions) that have been associated
with solution(s). It should be noted that for p-metric, one
subregion may contain more than one solution but one
solution can be located in one and only one subregion.



As pointed out in [10], its accuracy cannot be improved
by increasing the number of reference vectors, as N
solutions can be at most located in N subregions. In
addition, p-metric needs normalization before calculation.
The existence of dominated solutions may also affect its
comparison results.

o R2 [32] was first proposed to assess the relative quality
of two solution sets. Assuming the standard weighted
Tchebycheff function with a particular reference point z*,
the indicator can be used to assess the quality of a single
individual set against z*[33]. Given an approximation
set S, a set of weight vectors W, and the standard
Tchebycheff aggregation function, the R2 indicator can
be defined as:

1
R2(S, W, 2*) = ngv E%g{max{wl(yz—z:‘)}} 9
where ¢« € {1,...,m}, w = (wy,...,w,,) is a weight

vector, z* is the ideal point. A lower R2 value indicates
that a solution set S is closer to the reference point.
The R2 indicator possesses a desirable property of weak
Pareto compliance. However, it still needs a reference
point and normalization before calculation.

« Hypervolume Ratio (HVR) [34]] is calculated as the ratio
of the hypervolume(HV) [13]] of non-dominated solutions
S to the hypervolume of Pareto optimal solutions(P*).

HV(S)

HVE= HV (P*)

HV is the volume of space occupied by the union of

hypercubes constructed by the non-dominated solutions

and the reference point. Thus, HVR quantifies both the

convergence and the diversity of the non-dominated so-

lutions. A higher HVR indicates that the non-dominated

solutions are closer to the Pareto front and more diverse
in the objective space.

« Hypervolume Difference (HVD) [35] measures the gap
between the hypervolume of the obtained PF approxima-
tion S and that of the true PF, i.e., P*. HVD indicator
can be defined as:

HVD = HV(S) — HV(P*)

(10)

Y

where HV (S) is the hypervolume of a set S. By com-
paring the hypervolume of an observed nondominated set
with that of the true Pareto set, a quantitative measure
is obtained as to how much worse an observed non-
dominated set is when compared to the true Pareto set.
Unfortunately, like HV, both HVR and HVD require prior
knowledge on a reference point. Their computational
complexity is exponential to the number of objectives,
which makes both of them difficult to use for high-
dimensional PF approximations.

The major properties summarized in Section I of the afore-
mentioned indicators and our proposed Grid-IGD are listed
in Table [ It can be seen that Grid-IGD has almost all the
desirable properties. For instance, unlike HV, HVR, HVD,
IGD, IGD™, A, and R2, Grid-IGD does not need any prior
knowledge about reference point or true PF, although it needs

to specify one neighborhood size parameter 1" for reducing its
computational complexity. Unlike HVR, HVD, IGD, IGD™,
A, p-metric and R2, it does not need to scale before using,
not to mention that the dominated or duplicate solutions have
no effect on it. Unlike indicators based on HV whose com-
putational complexity grows exponentially with the increase
of the objectives, the computational complexity of Grid-IGD
grows linearly with the increase of the objectives and it is
less than quadratic with regard to the population size. Thus
it can work well for high-dimensional PF approximations. In
contrast to the original IGD, A, and p-metric that are Pareto
non-compliant, Grid-IGD possesses the desirable weak Pareto
compliance property.

It is worth noting that only the representative performance
indicators that measure both convergence and diversity for
multi/many-objective optimization have been discussed above.
There exist more performance indicators that measures either
one of the above two aspects or both of them in the literature.
A more comprehensive survey can be found in [9].

III. GRID-IGD

The grid system has already been adopted in some
multi/many-objective optimization algorithms. For example,
in e-MOEA [36], the solutions are selected based on the e-
dominance and distances to the grid corner points. Similarly,
the grid system has been adopted in [37] for designing many-
objective optimization algorithm, due to its inherent property
of reflecting the information of neighborhood structures among
the solutions. In [3]], a constrained decomposition with a grid
system is proposed for multiobjective optimization. As Grid-
IGD is also computed in a grid system, the setup of a grid
system is firstly introduced in this section, followed by the
main framework of Grid-IGD.

A. The setup of a grid system

A grid system can be set up as follows. Each objective is
divided into K equal intervals within the approximations of
the ideal point z* and the extended nadir point 2°-"%¢, which
can be defined as follows.

Ze_nad _ Znad + (Znad _ Z*)/K (12)
The reason of adopting the extended nadir point instead of the
original nadir point have been elaborated in Section/III-B

Then the grid interval vector D for m objectives can be
calculated by:

D=(di,...,dy)" where d;j= (26"~ z%) /K (13)

J

Definition 1: Grid Index: For a solution z, its grid index in
the grid system can be defined as follows.

9i(@) = [(fj(z) = 27)/d;| , 5 €{1,...,m}

where |.] denotes the floor function. The grid index of z is
marked as G(z) = (g1(2), ...gm(z)) € {0,..., (K — 1)}™.

(14)



TABLE I: The comparison between the existing indicators and Grid-IGD

Indicator HV HVR HVD IGD IGDT A, p-metric R2 Grid-IGD
Prior knowledge reference reference reference reference  reference  reference reference one parameter
needed point point point PF PF PF point T
Scahrfg before v v v v v v v
calculation needed
Effect. of domlqated/ v v v
duplicate solutions
Difficult for high
dimensional PFs v v v
Computational exponential ~ exponential  exponential . . . . . less than quadratic
. . . quadratic ~ quadratic =~ quadratic = quadratic  quadratic 1
effect inm inm inm (O(Nlog™~"N))
Pareto Compliant strictly strictly strictly weakly weakly weakly

Definition 2: Grid corner point: For a solution  whose grid
index is G(z) = (¢1(x), ..., gm(x)), its grid corner point z9P
can be defined as follows.

29P(z) = (29, ..., 29P)T  where 297 =

15)
where d; is the grid interval on the j-th objective.

Definition 3: Grid Distance: Let u,v € R™ be two points,

the grid distance GD(u,v) between u and v is defined as
GD(u,v) =Y [g;(u) — g;(v)]. (16)

j=1

Definition 4: Grid Neighbors: For a solution set .S, the grid
neighbors of a point » € R™ within distance 7" is defined as

GN(r,T,S) ={z|GD(r,z) <T xz e St (17)

B. The main framework of computing Grid-IGD

For an m-objective optimization problem, given M approx-
imations Sy, -+, Sy (|S1] = -+ = |Sm| = N), Grid-IGD is
used to estimate both the convergence and diversity among
the M approximations. The main procedure of computing
Grid-IGD is presented in Algorithm [I] The M approximations
S1, +++, Su, the number of objectives m and the grid
neighborhood size T' are given as three inputs.

The whole framework of Grid-IGD can be further divided
into three major steps: 1) initialization, 2) generating reference
points and 3) computing Grid-IGD for each approximation. In
the following sections, each step is specified in detail.

1) Initialization: In Step 1 (line 1-3 of Algorithm [I), an
efficient Divide-and-Conquer Nondominated Sorting (DCNS-
F) [38]] is firstly employed for obtaining the nondominated
set Syon of all the M approximations S |JSa - -+ Sa. The
ideal and extended nadir points are then initialized based on
Eq. (@) and (12).

2) Generating reference points: In Step 2 of the Algorithm
[l a set of reference points R is generated by taking the
grid corner points of all the nondominated solutions in Sy,,.
However, such a method may cause that the distribution of the
generated reference points is not as extensive as that of the
nondominated set .S,,,,,, which leads to a biased measurement
of Grid-IGD, as shown in Fig. [Ta]

A simple and effective way of improving it is to increase
the upper bounds of the grid system by extending from 2"? to

Algorithm 1: Grid-Based IGD (Grid-IGD)
Input : M approximations: Si, - -, S
The number of objectives: m;
The grid neighborhood size: T’
Output: Grid-IGD,Grid-IGDs,--- ,Grid-IGD y;
Step 1: Initialization:
1 Spon = NONDOMINATED_SELECT(S1 |JS2 - - - Snm)s
2 Approximate the ideal point z* based on Eq. H and the
extended nadir point z°-"*? based on Eq. (12)
Step 2:
K =max{Ky,1};
do

s

Generating reference points:

3
4
5 Set up the grid system based on Eq. and ;
6 Rt = R;
7 R = (;
8 foreach y € S,,,, do
o | | R=RU{7())
10 end
11 K+ +;
12 while |R| > |S,,0n]/2[;
B3 if [|Re| = [Snon|/2(| < [IR| = [Snonl|/2|| then
4 | R=Ry;
15 end
Step 3: Computing Grid-IGD:
16 for i =1 — M do
17 | Grid-IGD; = CGI(S;, R,m,T, z¢-"%);
18 end
19 return Grid-1GD1,Grid-IGDs, - -- ,Grid-1GDy;

z¢-"ad_which ensures that the boundary solutions are located

in the new grids based on Eq. (I3). It can be observed in
Fig. [If] that, by such a simple adjustment, the boundary
solutions A and B are located at two new grids with much
closer reference points (A’ and B’); meanwhile the spread of
the reference points have been significantly improved.

It can be easily proved that if S, is distributed in |R)
grids, the number of generated reference points is |R| as each
grid may have one and only one grid corner point.

In Step 2, the grid system is set up based on the approxima-
tion of the ideal and extended nadir point, elaborated in Section
T-A] The value of the interval parameter K in such a grid
system is initialized as the maximum value of its lower bound



Ky (see Section III. C) and 1. Then, the K value is adaptively
determined by desirably approximate S,,,, /2 reference points
(Line 3-12). A set of reference points R can be eventually
obtained (Line 13-15).

Algorithm 2: Computing_Grid-I1GD (CGI)
Input

: The approximation: S
The reference points: R;
The number of objectives: m;
The grid neighborhood size: T
The extended nadir point: ze-nad.
Output: Grid-1GD;

1 Initialize d* = (d7, ..., dg);

2 for j =1 — |R| do

3 | Compute dj based on Eq. (18);

4 end

IR g«
s Grid-IGD(S, R) = 2

6 return Grid-1GD;

3) Computing Grid-IGD: In Step 3 of Algorithm [I)), Grid-
IGD value of each approximation S is computed by calling
Algorithm [2] which can be described as follows.

In Algorithm [2| for each reference point r € R, its grid
neighbors GN (r, T, S) are obtained based on Eq. (17). After
that, the distance d* between each reference point r and its
closest neighbor s € GN(r, T, S) is computed as follows.

min  dist*(r,s), GN(r,T,S)#0
d* =< seGN(rT,S) (18)
dist*(r, z6-nad), GN(r,T,8)=10.

where dist* is a modified Euclidean distance, adopted for the
weak Pareto compliance property [27]

m

> (maz{(s; —),0})?

=1

dist*(r,s) = (19)

dist*(r, 2¢-"%4) is the penalty adopted when no solution in S
exists within the grid neighborhood of reference point r. In
this case, the extended nadir point ze-nad i considered to be
the closest solution in S to r.

The final Grid-IGD value is the average of the distance
d* for all the reference points (line 5 of Algorithm [2). Like
IGD/IGD™, the smaller the Grid-IGD value, the better a PF
approximation is.

IGD/IGD™ estimates the absolute quality of a nondominated
set by assuming all the nondominated solutions as the refer-
ence PF, which may lead to a bias measurement. Nevertheless,
it is rather difficult to obtain a representative PF approximation
from all the nondominated solutions with low computational
cost. Alternatively, unlike IGD/IGD™, Grid-IGD evaluates the
relative quality of different approximations, by adopting a set
of well-distributed grid corner points out as a substitute of
true Pareto optimal solutions. It is worth noting that such grid
corner points (reference points) are generated regarding all
the PF estimates (found by all the compared algorithms), as
presented in Algorithm 1.

C. Discussion on the lower bound Ky in Grid-IGD

In this section, we estimate the lower bound K of the
interval parameter K by the approximation size |S|. With the
increase of K value, the number of grids grows exponentially
and the approximation tends to distribute in more different
grids. If each solution in the approximation is located in a
different grid, an ideally diverse set of reference points can be
generated.

For an m-objective optimization problem, the maximum
number of reference points would be generated when the
PF approximation is extremely convex or concave and the
solutions are evenly distributed at most K™ — (K — 1)™
grids. The approximation size |S| and the interval parameter
K satisty:

S| < K™ — (K —1)™ (20)

Eq.(20) is a unitary high order inequality whose solutions can
be obtained based on the Abel’s Theorem [39].
When m = 2,3 and K satisfies:

K> [ =2

1 /3048 —-1)
K>[-4 Y2221 77, m=3
>[5+ Y
When m > 4 and the range of K can be determined

by using the number line method to solve the inequality as
follows.

21

m41
m o ()
i=1 4% = 5 (s
m—1m I
i=1 Hj:z’+1 K;K; = mt1 (22)

o 1 (D™ L4]S
Hi:l K; = (_1) +1%+1+||

The lower bound K, for obtaining |S| reference points can
be estimated by Eqs. 20)- (22).

D. Computational Complexity of Grid-IGD

The average complexity of DCNS-F in Step 1 of Algorithm
is O(Nlog™~1N). Step 2 of Algorithm |1| at most requires
O(mKN/2) (K < N) to approximate the reference points.
In Step 3, the average number of so