
1

A Multi-objective Evolutionary Algorithm for
Finding Knee Regions Using Two Localized

Dominance Relationships
Guo Yu, Student Member, IEEE, Yaochu Jin, Fellow, IEEE, and Markus Olhofer

Abstract—In preference based optimization, knee points are
considered the naturally preferred trade-off solutions, especially
when the decision-maker has little a priori knowledge about
the problem to be solved. However, identifying all convex knee
regions of a Pareto front remains extremely challenging, in
particular in a high-dimensional objective space. This paper
presents a new evolutionary multi-objective algorithm for locat-
ing knee regions using two localized dominance relationships.
In the environmental selection, the α-dominance is applied to
each subpopulation partitioned by a set of predefined reference
vectors, thereby guiding the search towards different potential
knee regions while removing possible dominance resistant so-
lutions. A knee-oriented dominance measure making use of the
extreme points is then proposed to detect knee solutions in convex
knee regions and discard solutions in concave knee regions. Our
experimental results demonstrate that the proposed algorithm
outperforms the state-of-the-art knee identification algorithms on
a majority of multi-objective optimization test problems having
up to eight objectives and a hybrid electric vehicle controller
design problem with seven objectives.

Index Terms—Multi-objective evolutionary optimization,
knees, knee-oriented dominance, α-dominance, preference

I. INTRODUCTION

MANY real-world optimization problems have multiple
conflicting objectives, to which a set of Pareto optimal

solutions will be found [1]. Without loss of generality, a multi-
objective optimization problem (MOP) can be formulated as
the following m-objective minimization problem:

minimize z(x) = (f1(x), · · · , fm(x))T , (1)

where x = (x1, · · · , xn) ∈ Ω is the decision vector. xLi ≤
xi ≤ xUi , i = 1, · · · , n, where xLi and xUi are the lower and
upper bounds, respectively, of the i-th decision variable. Ω ⊆
Rn is the decision space, and n is the number of decision
variables. z : Ω→ Rm consists of m objectives. When m is
larger than three, the MOP is also known as a many-objective
optimization problem (MaOP).

Recent decades have witnessed a great success in devel-
oping multi-objective evolutionary algorithms (MOEAs) for
solving MOPs [2]. Over the past a few years, research on
MOEAs has focused on solving MaOPs [3], [4], mainly due
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to the deteriorated performance of the MOEAs designated for
solving bi- or three-objective optimization problems. Although
considerable progress has been made in finding a set of
diverse and well converged trade-off solutions in dealing with
MaOPs, an implicit hypothesis made is that the obtained set of
solutions, which is typically small (e.g., up to a few hundreds),
is able to represent the entire Pareto optimal front (PoF) of an
MaOP. Unfortunately, this hypothesis usually does not hold,
in particular when the number of objectives is large [5].

In practice, the DM may be interested in only a few
subregions of the PoF instead of the whole PoF, e.g., the
central part of PoF, the boundary regions, the extreme regions.
If user preferences are available, we can use them to guide the
search towards the regions of interest (ROIs) [6], [7], thereby
making it easier for the DM to select a small number of
solutions for final implementation [8]. For the above reasons,
preference based evolutionary optimization algorithms have
attracted much research interest in the past decades [9], [10].

When user preferences are not available, knee points are
considered as the preferred solutions, since they need a large
compromise in at least one objective to gain a small improve-
ment in other objectives [11], [12]. Besides, knee solutions
are often prioritized in many MOEAs since they usually
contribute to a large hypervolume [13]. Many algorithms have
been proposed by taking advantage of knee solutions to more
efficiently solve MaOPs [13], [14] or dynamic optimization
problems [15]. Knee solution based MOEAs have already
found successful applications in solving real-world problems,
such as self-adaptive software [16], sparse reconstruction [17],
and driving strategy for electric vehicles [18].

In consequence, several a posterioi methods have been
proposed to characterize the knee points among a set of non-
dominated solutions. Das et al. [19], [20] suggested to identify
the knee points with the “maximum bulge” on the Pareto front
using the normal boundary intersection [21]. Branke et al.
[22] took advantage of the expected marginal utility (EMU)
to locate the knee regions. The niching method [23] defines
possible knee points in convex and concave regions based on
the density of the solution distribution. Other methods have
also been reported for identifying the knees of two-objective
problems, such as the reflex/bend angle based approaches [22],
[24], and its variant, the (α, β)-approach [12].

Notably, there is an assumption in all a posteriori ap-
proaches that a large set of well distributed and well converged
solutions is available. However, it is computationally expensive
to achieve such a solution set, especially for MaOPs. There-
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fore, a priori approaches to the search of knee regions are
popular. For example, in [25], [26], methods for characterizing
knee points with the max-min utility value is incorporated
in the environmental selection. However, the boundary points
usually have a larger utility value than other solutions and will
most likely be kept in the environmental selection, which may
mislead the search process. Zhang et al. developed a selection
method for solving MaOPs by prioritizing knee points [13]
identified based on the extreme points [19]. However, the
extreme solutions may become dominance resistant solutions
(DRSs) [27] that will seriously slow down the convergence of
the population. In [27], the DRSs are defined as the solutions
which are extremely inferior in at least one objective and
there exist very few solutionse that are able to dominate them.
The work in [28] recursively uses the EMU [22] to locate
the most promising knee candidates during the environmental
selection. However, this approach also favors the boundary
points and DRSs in the search, which degrades the conver-
gence performance. The angle-based pruning strategy [29] was
adopted to detect the knee regions [30] in the environmental
selection, although the issue of DRSs remains. Most recently,
we introduced an α-dominance to eliminate the DRSs for the
search of knee solutions [31]. However, uninterested solutions
like the boundary points and solutions from the concave knee
regions will still be selected. Too much convergence pressure
of the modified dominance may degrade the diversity of the
solutions by eliminating the knee candidates in a potential knee
regions, so that less knee regions will be finally reserved.

A common issue as found in the above discussions is that
some particular solutions, such as some extreme and boundary
solutions, are detrimental to the effective search of knee
solutions. To address this issue, this work firstly introduces a
set of reference vectors to partition the objective space into a
number of subregions. Then, the α-dominance [27] is applied
separately in each subregion to find the potential knee regions
and to remove dominance resistant solutions, thereby guiding
the search towards multiple potential knee regions. Afterwards,
a knee-oriented dominance is proposed to identify the knee
solutions in each potential knee regions and eliminate the
boundary solutions as well as solutions in the concave knee
regions. However, boundary and extreme solutions may be
of interest to the decision-maker (DM). In practice, we can
store the boundary and extreme solutions in a separate archive.
After the environmental selection, the reference vectors will
be updated according to the number of associated solutions.
With the help of the localized α-dominance together with the
knee-oriented dominance, the proposed algorithm is able to
efficiently locate knee regions and knee solutions.

The main contributions of this paper are summarized as
follows:

1) A localized α-dominance based sorting is designed to
identify potential knee regions and get rid of the DRSs.

2) A knee-oriented dominance measure making use of the
extreme solutions is proposed to accurately locate the
knee solutions and eliminate the boundary solutions, and
solutions in the concave knee regions.

3) A framework for detecting knee regions and knee so-
lutions is developed by embedding the localized α-
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Fig. 1. (a) An illustrative example of Pareto dominance and α-dominance,
where p1 dominates p3 in terms of both Pareto dominance and α-dominance,
while p1 and p2 are non-dominated with each other in terms of Pareto dom-
inance. (b) An example of localized α-dominance, where the objective space
is divided into three subspaces by a set of reference vectors (L1, L2, L3).
As a result, solutions A and B are associated with L1, C and D with L2,
and E with L3. According to the conventional α-dominance, A and E are
non-dominated and the rest are dominated. According to the localized α-
dominance, however, A, C, D, and E are non-dominated with each other,
but B is dominated by A.

dominance and knee-oriented dominance in the environ-
mental selection. The proposed framework is compared
with a few state-of-the-art methods on a set of widely
used test problems to show its superior performance in
both convergence and accuracy in detecting knee regions
and knee solutions.

The rest of the paper is organized as follows. Section II
introduces the related definitions and dominance relationships,
based on which a new knee-oriented dominance relationship
is proposed. A new environmental selection strategy is then
suggested in Section III, in which the population is first
sorted based on the localized α-dominance and further locally
sorted according to the knee-oriented dominance before the
environmental selection. Section IV presents the sensitivity
analysis and experimental results, together with a discussion
of the comparative results. Section VI concludes the paper.

II. A KNEE-ORIENTED DOMINANCE RELATIONSHIP

In this section, the definitions of the related dominance
relationships and knee points are introduced, before we present
the new knee-oriented dominance relationship proposed in this
work. All discussions are based on minimization problems as
defined in 1.

A. Related definitions

Definition 1 (Pareto dominance) Given two solutions
x1, x2 ∈ Ω, x1 is said to Pareto dominate x2, denoted by
x1 ≺ x2, if and only if the following equation is satisfied:

∀i ∈ {1, 2, . . . ,m}, fi(x1)

≤ fi(x2) ∧ ∃j ∈ {1, 2, . . . ,m} : fj(x1) < fj(x2).
(2)

The PoF is composed of all the Pareto optimal solutions
in the objective space and the collection of Pareto optimal
solutions in the decision space is denoted by the Pareto optimal
set (PoS). For example in Fig. 1(a), p1 ≺ p3, but p1 and p2
are non-dominated.
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Definition 2 (α-dominance [27]) A solution x is said to
α-dominate solution y, denoted by x ≺α y, if the following
condition holds:

∀i ∈ {1, 2, . . . ,m}, gi(x, y) ≤ 0 ∧
∃j ∈ {1, 2, . . . ,m}, gj(x, y) < 0,

(3)

where gi(x, y) = fi(x) − fi(y) +
∑m
j 6=i αij(fj(x) − fj(y)),

and αij is the predefined bound of the trade-off rates.
We can see from the above definition, α-dominance makes

the Pareto dominance relationship stronger, when α > 0. In
Fig. 1(a) for instance, p1 ≺α p2 and p1 ≺α p3, although p1
and p2 are non-dominated according to the Pareto dominance.

Definition 3 (Localized α-dominance [31]) A solution x
is said to localized α-dominate solution y, if the following
condition holds:

I(x) = I(y) ∧
∀i ∈ {1, 2, . . . ,m}, gi(x, y) ≤ 0 ∧
∃j ∈ {1, 2, . . . ,m}, gj(x, y) < 0,

(4)

where gi(x, y) = fi(x)−fi(y)+
∑m
j 6=i αij(fj(x)−fj(y)), and

αij is the predefined bound of trade-off rates. For example in
[31], αij is recommended to set as 0.75 for knee identification.
I is the index of a reference vector, where I(x) = I(y) means
that x and y are associated with the same reference vector.

Fig. 1(b) illustrates how the localized α-dominance can
change the dominance relationship. If the conventional α-
dominance relationship is applied to sort the five solutions
in the plot, then A and E are in the first frontier, and the
rest are all in the second frontier. By contrast, A, C, D and
E are non-dominated according to the localized α-dominance
and will be in the first frontier, while B will be in the second
frontier.

Definition 4 (Knee points [19]) A knee (k) is defined to be
the one having the maximum distance from the convex hull
of individual minima (CHIM) to the hyperplane S constructed
by the extreme points.

k = arg max
p

(d(p, S)) (5)

where p is a solution on the PoF. d(z(p), S) denotes the dis-
tance from solution p to the hyperplane S : f1 + · · ·+fm = 1
in a normalized coordinator system.

In the above definition, an extreme point x in the i-th
objective can be described as follows for a given population
P :
∀y ∈ P,∃i ∈ {1, . . . ,m}, x = argmax fi(y)

x
∧ ∀j ∈

{1, . . . , i− 1, i+ 1, . . . ,m}, fj(x) = min fj(y).
In Fig. 2, point B is the knee point on the PoF, which has the

largest distance to the hyperplane constructed by the extreme
points (A and C). Additional definitions of knee points can
be found in [12], [32].

B. Motivation

Most existing a priori knee search methods introduce a
secondary criterion, such as the max-min utility [26], expected
marginal utility [28], angle-based pruning [30], and distance
to the hyperplane [13] into the environmental selection to
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Fig. 2. An illustrative example of the knee point (B) of a PoF. Solutions A
and C are the extreme points.

guide the search towards the potential knee regions. It has
also been found that a selection method favoring knee points
can enhance the convergence because the knee candidates are
shown to be able to contribute to the hypervolume more than
other solutions [13].

It should be noted that most existing a priori knee search
methods also favor the boundary points or extreme points dur-
ing the search. These solutions, however, may easily become
the DRSs in the environmental selection, seriously degrading
the convergence of the population and misleading the search
process. Besides, even though a modified dominance measure
is introduced to deal with the DRSs in the optimization [31],
some undesired solutions such as the boundary solutions or
the solutions in the concave knee regions cannot be eliminated
in the selection, which slows down the convergence. On the
contrary, some potential knee regions may get lost during
the search if a modified dominance relationship results in an
overly large selection pressure.

Therefore, this work aims to design a selection mechanism
that is able to get rid of the DRSs, boundary solutions, and
solutions in the concave knee regions, while properly guiding
the population towards all knee regions of the PoF, and finally
detecting as many knee points as possible.

C. Proposed knee-oriented dominance relationship

In knee solution detection, it is essential to locate potential
knee regions before the knee solutions can be identified. In this
section, we introduce a new dominance relationship, called
knee-oriented dominance, that favors solutions in potential
knee regions in environmental selection.

Given two solutions A and B from CHIM, A is said to
knee-oriented-dominate solution B if the following conditions
are satisfied.

µ(A,B) < 0,
subject to:
µ(A,B) = 〈

−−−→
NidA,

−−→
AB〉 − τ · (max{δi(A)}

i=1,...,m

+ min{δi(A)}
i=1,...,m

),

δi(A) = arc tan(

√∑m
j=1,j 6=i(fj(A)−fj(Nid))2

|fi(A)−max fi(E)−ε| ),

(6)
where µ(A,B) < 0 means solution A knee-oriented-
dominates B, δi(A) is an acute angle determined by the i-
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Fig. 3. An illustrative example of the knee-oriented dominance relationship,
where φ is the acute angle between

−−−→
NidA and

−→
AB, denoted by 〈

−−−→
NidA,

−→
AB〉.

Here, δ3 = min
i=1,...,m

{δi(A)} and δ2 = max
i=1,...,m

{δi(A)}.

th objective value of solution A, the ideal point Nid. The
ideal point is defined by fj(Nid) = min fj(E) − ε, where
E = {Ei|i = 1, 2, ...,m}, is the set of extreme points, and
ε is a small positive constant 1 to ensure the denominator
is not equal to zero. In the above equation, τ ∈ [1/2, 1]2is
a parameter controlling the size of the knee region to be
achieved. Fig. 3 provides an example of the knee-oriented
dominance relationship between two solutions, where δ3 =

min
i=1,...,m

{δi(A)} and δ2 = max
i=1,...,m

{δi(A)}. A knee-oriented-

dominates B, provided that φ is smaller than τ · (δ2 + δ3).
In this work, we use max{δi(A)}

i=1,...,m

+min{δi(A)}
i=1,...,m

to indicate

the size of the area solution A dominates with the help of
the extreme points. The corresponding proof is presented in
Section I of the Supplementary material. µ(A,B) < 0 in
Eq. 6 means that solution A knee-oriented-dominates B, if
the sum of these two angles is larger than the acute angle
〈
−−−→
NidA,

−−→
AB〉 (when τ = 1). The reason to choose these

two angles is that different knee regions may have different
curvatures and different solutions in the same knee region can
have different values of max{δi(A)}

i=1,...,m

and min{δi(A)}
i=1,...,m

. In this

work, we adopt the maximum and minimum of the m angles
to roughly characterize how big the region should a solution
knee-oriented-dominate. Fig. 4 (a) shows three solutions A, B
and C and their dominated region. We can see that solutions
A and B are non-knee-oriented-dominated from each other,
while C is knee-oriented-dominated by both A and B. We can
also see from Fig. 4 (a) that the farther a solution from the
hyperplane is, the more likely it is a knee point, and the less
likely such a solution will be dominated by other solutions.
Here, we do not use the average of all δi, i = 1, . . . ,m,
simply because the average angle value may be less capable
of capturing the differences of the solutions in different knee
regions. As shown in Fig. 4 (b), the dominated area of a

1ε = E-05.
2Section VI in the Supplementary materials provides a sensitive analysis

and a self-adjusting strategy on the parameter τ in the knee-oriented domi-
nance.

Algorithm 1 : Overall framework of LBD-MOEA
Input: Population Size: n, termination condition: T , extreme

point set: E, Number of reference vectors: N
Output: Population: P = {x1, x2, · · · , xn}

1: P = Initialization (n)
2: Evaluation (P )
3: W = Reference− V ector −Generator(N)
4: UpdateExe(E,P ) //*Initialize the extreme points.*//
5: while ¬T do
6: Q = MatingSelection (P )
7: Q = Crossover (Q)
8: Q = Mutation (Q)
9: Evaluation (Q)

10: R = P ∪Q
11: (RI , RC) = Association(W,R)
12: UpdateExe(E,R) //* update extreme points.*//
13: P = BiEnvironmentalSelection (R,n,E,RI)
14: UpdateRef(W,RC) //*Update reference vectors.*//
15: end while
16: Output(P )

solution (shaded area) becomes larger when the solution moves
closer to the hyperplane S.

The definition of knee-oriented-dominance in Eq. (6) and
the discussions above assume that there is one knee region
only. One potential issue with such global knee-oriented-
dominance comparison is that solutions in a knee region can be
knee-oriented-dominated by solutions in another knee region
that have a larger degree of curvature, leading to the loss
of knee solutions in the search process. For example, Fig. 5
shows three knee solutions, A, B and C. According to the
definition of knee-oriented-dominance, solution B is knee-
oriented-dominated by solution A, and actually, all solutions
in the knee region in which solution B is located are knee-
oriented-dominated by A. As a result, all solutions in the knee
region of solution B will get lost during the search, which is
not desirable. This issue can be resolved if the knee-oriented-
dominance is applied for comparing solutions in a local region
only. To this end, a set of reference vectors is adopted in this
work in the environmental selection to partition the overall
objective space into a number of subspaces and the knee-
oriented dominance comparisons are restricted to each local
subspace, thereby enabling the search towards multiple knee
regions. Section III will detail how to group solutions before
the knee-oriented non-dominated sorting is performed.

III. AN MOEA DRIVEN BY TWO LOCALIZED DOMINANCE
RELATIONSHIPS

In this section, we firstly present the overall framework
of the proposed localized bi-dominance driven MOEA, called
LBD-MOEA, followed by a description of the details of its
main components. Finally, an analysis of the computational
complexity of the algorithm is given.

A. Overall framework
The overall framework of LBD-MOEA is presented in

Algorithm 1. Firstly, the population P is initialized and
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Fig. 4. (a) Illustration of three solutions and their dominated regions denoted by the shaded area. (b) It is shown that more closer a solution to the hyperplane
is, the wider its dominated will become.
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Fig. 5. An illustrative example showing the importance of patitioning the
objective space into a number of subspaces in order to keep solutions in
multiple knee regions. If the knee-oriented-dominance is used to compare
solutions in the whole objective space, solution A will dominate all solutions
in the knee region in which B is located.

evaluated, followed by the generation of a set of reference
vectors in Line 3 and the initialization of the extreme points Ep
in Line 4. A number of genetic operations, including mating
selection, crossover, and mutation are then performed from
Line 6 to Line 9 to generate an offspring population Q. After
that, Q and P are merged into a combined population R.
Then all individuals in R are associated with their closest
reference vectors in Line 11. After that, the bi-dominance
driven environmental selection described in Line 13 is applied
on R to select the solutions to be passed to the next generation
P . Finally, the reference vectors are updated in Line 14. The
above steps (Lines 6 to 14) are repeated until the termination
condition is satisfied.

The main components of LBD-MOEA include reference
vector generation, update of the extreme solutions, objective
partition, bi-dominance driven environmental selection, and
the update of reference vectors. In the following, we present
the details of each component.

B. Reference vector generation

The method for reference vector generation in NSGA-III
[33] is adopted in this work, which is based on the normal-
boundary intersection [21]. The number of the reference
vectors (N ) is determined as follows.

Given two predefined positive integers (H1 and H2) and the
number of objectives (m),

N =

Ç
H1 +m− 1

m− 1

å
+

Ç
H2 +m− 1

m− 1

å
, (7)

where H1 and H2 are introduced to equally divide the bound-
ary layer and inner layer into H1 and H2 parts, respectively.

Suppose that a point x = (x1, · · · , xm) is generated
satisfying the following condition:

m∑
i=1

xi = H, xi ∈ N, (8)

then the corresponding reference vector vi = (v1, · · · , vm)
can be calculated as follows:

vi,j =
xi
H
, j = 1, 2, . . . ,m (9)

where H is H1 when reference vectors for the boundary layer
are to be generated, and H is H2 when reference vectors for
the inner layer are generated.

C. Update of extreme points

The extreme points are important in knee-oriented domi-
nance comparisons because they are used for calculating the
angles in Eq. 6, which need to be constantly updated as the
evolution proceeds.

In this work, the method for detection of extreme points in-
troduced in [34] is adopted to update the extreme points. Given
a solution set P , the extreme point set E = {E1, · · · , Em} is
updated as follows:

Ei = arg min
p∈P

Ã
m∑

j=1,j 6=i

(fj(p)− z∗j )2, (10)
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where z∗i = min
p∈P

fi(p), and i = 1, · · · ,m. m is the number of

objectives.
In the Section V of the Supplementary material, this study

also investigates the effect of the extreme points to the per-
formance of the proposed algorithm. The investigation shows
that the extreme points from the whole population play a much
larger role in improving the performance of LBD-MOEA than
the extreme points from the first front obtained by the localized
α-dominance sorting.

D. Association

The association operator is to partition the objective space
into a number of subregions, where each solution is associated
with its closest reference vector. This work adopts the associ-
ation method presented in [33], which is defined as follows:

RI(x) = argmin
i=1,··· ,N

‖z(x)− (Nid − d · vi)‖

RC(vi) = count(RI(P ) == i)

where

d =
‖(Nid −z(x))T vi‖

‖vi‖

(11)

where vi is the i-th reference vector in the reference set and
i = 1, . . . , N . Nid is the ideal point. RI records the indices
of the reference vectors of solution x, and RC is the number
of solutions associated with each reference vector.

E. Bi-dominance driven environmental selection

The proposed bi-dominance driven environmental selection
is detailed in Algorithm 2, which consists of two major steps.
One is to sort the population using the localized α-dominance
relationship (Line 3), and the other is to re-sort the solutions
in the critical frontier resulting from the first step using the
localized knee-oriented-dominance (Line 9). Refer to the next
paragraph for a definition of the critical front.

In the first step in Algorithm 2, the population is divided
into a number of sub-populations using a set of reference
vectors. Each sub-population is sorted separately using the α-
dominance so that each individual is assigned a front number.
The sub-populations are then combined and divided into a
number of fronts according to their front number (Line 3).
Then, the solutions are selected front by front according to
their front number in an ascending order (refer to Lines 5 –
6). The selection continues until it starts to select solutions
from the critical front denoted by Lı. The critical front is
defined as the last front from which only pat of its solutions
will be selected, i.e., |Lı|∧|P | > n, where n is the population
size, Lı is the number of solutions in the critical front, and P
is the number of solutions that have been selected so far (Line
9 of Algorithm 2).

The second step of Algorithm 2 is the knee-oriented dom-
inance based selection (Line 9 of Algorithm 2). In this step,
the algorithm is going to select n − |P | solutions from the
critical front, which becomes more important for identifying
multiple knee regions when most solutions are on the critical
front after the localized α-dominance based sorting. While the

Algorithm 2 : BiEnvironmentalSelection
Input: Population: R = {x1, x2, · · · , xr}, output population

size: n ≤ r, extreme point set: E, indices of the reference
vectors: RI

Output: Population: P = {x1, x2, · · · , xn}
1: P = ∅
2: //* Do localized α-dominance sorting.*//
3: α_nondominatedSorting (R,RI) = {L1, L2, · · · }
4: for each Lı ∈ {L1, L2, · · · } do
5: if |P |+ |Lı| ≤ n then
6: P = P ∪ Lı
7: else
8: //*Do localized knee-oriented dominance selection on critical layer.*//
9: P = P ∪KDSelection (Lı, n− |P | , E,RI)

10: end if
11: end for

Algorithm 3 : KDSelection
Input: Population: L = {x1, x2, · · · , xl}, output population

size: ` ≤ l, extreme point set: E, the set of indices of the
solutions: RI

Output: Population: P = {x1, x2, · · · , x`}
1: P = ∅
2: U = {L1,L2, · · · } ∧L1 = ∅,L2 = ∅, · · · . //* A set of

empty lists in U .*//
3: CR : {CR1, · · · , CRk} = Grouping(RI) //*Do grouping

on the solutions from the critical layer by using the indices of their
associated reference vectors.*//

4: for each CRi ∈ CR do
5: KDdominanceSorting (CRi) =

{
Si1, S

i
2, · · ·

}
//*Do

localized knee-oriented sorting on each sub-population.*//
6: U =

{
Si1 ∪L1, S

i
2 ∪L2, · · ·

}
7: end for
8: for each Li ∈ U ∧ |P | < ` do
9: if |P |+ |Li| ≤ ` then

10: P = P ∪Li

11: else
12: P = P ∪ CrowdingDistance (Li, `− |P |)
13: end if
14: end for

first step is mainly to drive the population towards the Pareto
front, the second step is meant to select a set of solutions from
each knee region close to the knee point, and discard boundary
solutions and the solutions in concave regions. The details of
knee-oriented dominance based selection are presented in the
next subsection.

F. Localized knee-oriented-dominance based selection

The localized knee-oriented dominance based selection con-
sists of four steps. First, solutions on the critical front are again
divided into the sub-populations according to the reference
vectors each individual is associated with in the localized
α-dominance based sorting. Second, the solutions in each
sub-population are re-sorted according to the knee-oriented-
dominance relationship and a front number is assigned to each
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f1

f2

1st cluster

2nd cluster

3rd cluster

(1,1)

(1,2)

(1,2)

(2,1)

(2,2)

(3,3)

(3,1)

(3,2)

(4,1)

(4,2)

4th cluster

(a) (b)
Fig. 6. (a) An illustration of the localized knee-oriented-dominance based
selection on the critical front. Ten solutions are first grouped into four
sub-populations, sorted separately using the knee-oriented-dominance, and
assigned a sub-front number. The sorted solutions are combined again and
sorted into three layers based on their sub-front number, where these layers
consist of the solutions highlighted in different shapes and colors. Each
solution is assigned with two numbers. The first number indicates the sub-
population the solution is grouped into and the second number is its sub-front
number. (b) A illustration of the crowding distance, where A,B,C,D,E are
the solutions, and a, b, c, i, j, k represent the distances computed according
to the research [35]. Notably, A and E are the extreme points of the whole
population.

solution. As previously discussed, the localized α-dominance
based sorting is able to prevent a knee region having a
large curvature from dominating other knee regions. Third,
the sorted solutions in different sub-populations are combined
again, which are then grouped into a number of sub-frontiers
according to their knee-oriented-dominance front number.
Then, the crowding distance is calculated for individuals on
each sub-front. By now, all solutions on the critical front
are sorted into sub-fronts according to their front number in
an ascending order and solutions on the same sub-front are
sorted according to the crowding distance in a descending
order. Finally, the knee oriented selection can be completed
based on the rank of the sub-frontiers at first and then based
on the crowding distance, similar to the selection in the
non-dominated sorting based genetic algorithm (NSGA-II)
[35]. Algorithm 3 lists the pseudo code of the knee-oriented-
dominance based selection, where the knee-oriented sorting is
a non-dominated sorting that uses the proposed knee-oriented
dominance instead of the Pareto dominance as used in NSGA-
II.

Fig. 6 (a) gives an example of selecting solutions from
the critical front using the localized knee-oriented-dominance
sorting. In this example, ten solutions on the critical front
are grouped into four sub-populations. Then, solutions in
each sub-populations are sorted into sub-fronts according to
the knee-oriented-dominance. For instance, three solutions in
the first sub-population are sorted into two sub-fronts, where
solution (1,1) means a solution in sub-population 1 has been
assigned a front number 1 (the first sub-front), while two
solutions, both labelled (1,2), are assigned a front number of 2.
Similarly, the two solutions in sub-population 2 are sorted into
two sub-fronts, the three solutions in the third sub-population
are sorted into three sub-fronts, and the two solutions in sub-
population 4 are sorted into two sub-fronts. Afterwards, the ten
solutions are combined again and sorted into three sub-fronts.
That is, four solutions labelled (1,1), (2,1), (3,1), and (4,1) are

(a) three-objective (b) five-objective (c) eight-objective

Fig. 7. The KD values of the solutions obtained by KD-MOEA and NSGA-II
over the generations on PMOP2 with three, five, and eight objectives.

(a) three-objective (b) five-objective (c) eight-objective

Fig. 8. The KD values of the solutions obtained by LBD-MOEA and its
variant (LBD-MOEA*) over the generations on PMOP2 with three, five, and
eight objectives.

on the first sub-front, five solutions labelled (1,2), (2,2), (3,2),
and (4,2) are on the second sub-front, and one solution labelled
(3,3) is on the third sub-front. Then, the crowding distance will
be calculated for solutions on the same sub-front. For example,
if seven out of ten solutions need to be selected for the next
generation in Fig. 6 (a), the solutions highlighted in red circles
in the first sub-front will be selected at first, then three out
of five solutions from the second sub-front (consisting of
the solutions highlighted in green triangles) will be chosen
according to their crowding distances. Hence, solution (1,2)
(the one that is closer to the f2 axis in the 1st cluster), solution
(3,2) in the 2nd cluster, and solution (4,2) in the 4th cluster
will be selected since their crowding distances are the three
largest among all solutions on the same front. Another example
is shown in Fig. 6 (b) to illustrate the crowding distance
when there are Pareto dominated solutions, where solution D
Pareto dominates C, because the bi-dominance relationship is
compliant with the Pareto dominance in a CHIM or cluster but
not compliant with the Pareto dominance when the solutions
from different CHIMs or clusters are selected for comparison,
investigated in Section II of the Supplementary material.
Different from the crowding distance defined in [35], solutions
A and E are the extreme points of the whole population
in this study, and assigned with an infinitely large crowding
distance, while the crowding distance of B,C,D is a + j,
b + k, and i + c, respectively. Hence, solutions A,B,D,E
having a larger crowding distance than C are selected, if four
out of five solutions need to be selected. In summary, the
crowding distance is to choose the solutions from different
clusters regarding to their closeness to each other.

A pilot study is conducted to verify that the proposed
knee-oriented selection is able to help drive the population
towards the Pareto front in the early search stage and then
guide the population to knee regions in the later search stage.
To this end, we replace the crowding distance in NSGA-II
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with the proposed knee-oriented sorting, called KD-MOEA
and compare the convergence performance of KD-MOEA with
NSGA-II in terms of the knee-driven dissimilarity (KD) [32] a
knee-oriented benchmark problem (PMOP2) [32] with three,
five and eight objectives, respectively. The experimental results
are plotted Fig. 7, respectively. Recall that KD describes the
obtained solution set whether contains at least one solution
close to each true knee point of the Pareto front, and the
smaller the KD value, the better the performance.

Fig. 7 shows that KD-MOEA and NSGA-II perform very
differently on the three-, five- and eight-objective PMOP2
test instances, where the knee regions with slightly different
degrees of convexity are distributed on an asymmetrical PoF,
illustrating three typical different cases in search for knee
regions. Both KD-MOEA and NSGA-II converge quickly in
terms of KD on the three-objective PMOP2, as shown in Fig. 7
(a), since the Pareto dominance works well for driving the
population to the Pareto front for three-objective problems.
However, since the selection strategy in NSGA-II is not meant
for finding knee regions, its performance in terms of KD is
poor because the solutions that are not in a knee region will
also be kept in the final population. By contrast, the knee-
oriented dominance in KD-MOEA favoring knee solutions
will discard solutions not in a knee region, resulting in a
much better KD value than that of NSGA-II. Furthermore, the
difference in Fig. 7 (b) becomes more apparent as the number
of objectives increases, in which case the number of the knee
regions also significantly increases. Notably, in Fig. 7 (c), the
KD values of NSGA-II increase in the initial stage of the
search. This is because the solutions in the high-dimensional
objective space are easily Pareto non-dominated, especially in
the early search stage. However, the KD value of KD-MOEA
decreases quickly and is close to zero in the final stage of
the search, indicating that the knee-oriented sorting is able
to guide the population towards the PoF and find the knee
candidates in the knee regions of the PoF.

Another pilot study is to verify that the proposed knee-
oriented dominance can improve the search of the poten-
tial knee regions after the α-dominance sorting, so that we
compare the LBD-MOEA embedded with both localized α-
dominance and knee-oriented dominance, and LBD-MOEA*
without the knee-oriented dominance. From Fig. 8, we can see
that both algorithms converge fast to the PoF according to the
KD values, which indicates that both algorithms are able to
drive the subpopulation towards the potential knee regions.
By contrast, LBD-MOEA has better KD performance than
LBD-MOEA* on PMOP2 with 3, 5, and 8 objectives, mainly
because the knee-oriented dominance can help the search
concentrate on the potential knee regions. Consequently, LBD-
MOEA will find better knee candidates in the knee regions
than the LBD-MOEA* in the final stage of the search of knee
candidates.

G. Reference vector update

The reference vectors are updated at each generation to
make sure that the partition of the sub-population roughly
reflects the distribution of the knee regions, which is unknown

(a) three-objective (b) five-objective (c) eight-objective

(d) three-objective (e) five-objective (f) eight-objective

Fig. 9. The KIGD values of the solutions obtained by LBD-MOEA and its
variant (LBD-MOEA′) over the generations on PMOP2 and PMOP14 with
three, five, and eight objectives, where plots (a) – (c) are the results on PMOP2
with unimodal functions, and (d) – (f) on PMOP14 with degenerate PoFs.

in the beginning. Refer to Line 14 of Algorithm 1. During the
optimization, some reference vectors may have no solution
associated with, which may indicate that these regions are not
of interest in terms of search for knee regions. Consequently,
it is essential to update of the reference vectors.

In this work, reference vectors with no solution or only
one solution associated with will be updated (Line 14 of
Algorithm 1). Reference vectors having no solution asso-
ciated with will be replaced with a random vector, e.g.,
v = (r1/

∑m
i=1 ri, · · · , rm/

∑m
i=1 ri), ri = rand(0, 1)

and i = 1, . . . ,m. In addition, reference vectors as-
sociated with one solution will also be updated in the
following way. Given a solution p whose objectives are
(f1(p), · · · , fm(p)), the reference vector is updated by v =
(f1(p)/

∑m
i=1 fi(p), · · · , fm(p)/

∑m
i=1 fi(p)). The previous

strategy is mainly for the diversity of the population towards
the knee regions. Instead of the waste of the search in the
subregions associated with no solutions, random sampling the
reference vectors may assist the search towards undetected
knee regions or may drive the search close to the detected
knee regions when the reference vectors are close to the knee
regions. The latter strategy aims to adjust the distribution of
the reference vectors associated with only one solution, which
may assist in the search of the subspaces. With the help of this
strategy, the associated solution is easily remained because
it is located along the reference vector. Consequently, new
solutions may be generated in next generations and the search
of potential knee region in this subspace will be conducted.
An example is shown in Fig. 9 to investigate the diversity
performance of LBD-MOEA and its variant (LBD-MOEA′

with fixed reference vectors) on PMOP2 and PMOP14 with
three, five and eight objectives, respectively. The plots show
that the KIGD values of LBD-MOEA is smaller than that of
its variant. KIGD [32] evaluates the diversity of the solutions
covering the knee regions, and the smaller the KIGD value, the
better the performance. The results indicate that the strategy
to update the reference vectors can improve the diversity of
LBD-MOEA in search for more potential knee regions. As a
result, the algorithm is able to explore potential knee regions
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and the ability to identify knee points is enhanced.

H. Computational complexity

The computational complexity of LBD-MOEA comes
mainly from the knee-oriented environmental selection, which
consists of the localized α-dominance sorting and knee-
oriented sorting. The localized α-dominance sorting follows
the same procedure of the Pareto non-dominated sorting [35]
whose complexity is O(n2 × m). But the calculation of
gi(x, y) in α-dominance introduces an additional complexity
of O(m) on each objective. Therefore, the complexity of the
α-dominance based non-dominated sorting is O(n2 × m2),
where n and m are the population size and the number of
objectives, respectively. In the knee-oriented selection, the
angle between two solutions needs to be calculated, which
requires a computational complexity of O(m). Note, however,
that the knee-oriented sorting is only applied on the critical
front. The worst case occurs when all solutions are on the
critical front. Thus, the complexity of knee-oriented sorting
is O(n2 × m). The complexity of the crowding distance is
O(m× n log n).

Overall, the expected computational complexity of LBD-
MOEA is O(n2 ×m2).

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experimental setting

To examine the performance of LBD-MOEA, six knee
identification algorithms are compared, including KD-MOEA,
a variant of NSGA-II replacing the crowding distance with
the proposed knee-oriented selection, TKR [26], EMUr [28],
KnEA [13], K-ASA [29], and α-MOEA-KI [31]. All parame-
ters are set following the recommended settings in the original
papers. Specifically, TKR uses mobile reference points and a
utility function to search the knee candidates, where the utility
is based on the ratio between the improvement and deterio-
ration when the objectives of two solutions are exchanged,
where a cleaning parameter is set to 0.001. EMUr recursively
uses the expected marginal utility to detect knee regions and
the internal solutions will be kept for comparison, where the
number of weight vectors is set the same as the population
size. KnEA is based on the distance from the solution to the
hyperplane constructed by the extreme points [19] and the
knee identification will continue on the final set, where the rate
of knee points is set to 0.5 as the same as the default setting.
K-ASA adopts the angle-based pruning strategy for the search
of knee regions, where threshold of the angle size is set to
0.95 for two-objective, and 0.90 for three- and many-objective
problems. α-MOEA-KI uses a localized α-dominance for the
search of knee regions, where α is suggested to set to 0.75.
The (H1, H2) in this work is set to (1, 5), (1, 3), (1, 2),
and (1, 3) for reference vector generation for the problems
with two, three, five, and eight objectives, respectively. We
refer the readers to Section III in the Supplementary materials
for a sensitive analysis on the number of reference vectors
and Section VI in the Supplementary materials for a sensitive
analysis on the parameter τ in the knee-oriented dominance.
The corresponding population size is set to 100, 105, 126 and

156. In the experiments, the binary tournament selection is
applied as the mating selection. The distribution indices in both
the simulated binary crossover and polynomial mutation are
set to 20. The crossover probability and mutation probability
are set to 1.0 and 1/n, respectively, where n is the number of
decision variables.

Two sets of knee-oriented benchmarks are introduced. The
first set includes DO2DK [22], CKP [23], DEB2DK [22], and
DEB3DK [22]. The second set is the PMOP test suite recently
proposed in [32]. The former is mainly designed for the knee
identification in two- and three-objective problems. The latter
is for the identification of knees in high-dimension objective
spaces. All parameter settings are presented in Table S1 in
the Supplementary material, where m and n are the number
of objectives and decision variables, respectively. (A,B, s, p)
and (K, l) are the parameters of the basic knee functions
in different sets of benchmarks to control the shape and
number of the knee regions. Each algorithm is executed for 30
independent runs on each test instance. The termination is set
to 1000 generations for the first set of benchmark problems,
except for DO2DK with 5000. For the second set (PMOP test
suite), the maximum number of generations is set to 3000
for PMOP1-PMOP3, PMOP6-PMOP9, and PMOP13, 5000
for PMOP10-PMOP12 and PMOP14, and 10000 for PMOP4
and PMOP5, respectively. In the comparative experiments, the
Wilcoxon rank sum test (a significance level is 0.05) is adopted
to analyze the results, where “+”, “−”, and “≈” indicate
that the result is significantly better, significantly worse and
statistically comparable to the solutions obtained by LBD-
MOEA, respectively.

All the compared algorithms are run on the PlatEMO [36]
in Matlab 2018b using the CPU with an Intel(R) Core(TM)
i5-8250U CPU @ 1.8GHz and 8.00 GB RAM. The operation
system is the 64 Microsoft Windows 10 on a 64-bit processor.

B. Performance indicators
For quantificationally analyzing LBD-MOEA, three knee-

oriented indicators from [32] are adopted for performance
evaluation, including the knee-driven generational distance
(KGD), knee-driven inverted generational distance (KIGD),
and the knee-driven dissimilarity (KD).

Given a reference point set (Q) of the convex knee regions
and true knee point set (K), the KGD, KIGD, and KD values
of an achieved solution set (P) are calculated as follows:
• Knee-driven generational distance (KGD):

KGD =
1

|P|

|P|∑
i=1

d(νi,Q) (12)

where d(νi,Q) means the shortest Euclidean distance
from a solution νi in P to the reference set Q.

• Knee-driven inverted generational distance (KIGD):

KIGD =
1

|Q|

|Q|∑
i=1

d(νi,P) (13)

where d(νi,P) means the shortest Euclidean distance
from the reference point νi in Q to the obtained solution
set P.
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• Knee-driven dissimilarity (KD):

KD =
1

|K|

|K|∑
i=1

d(νi,P) (14)

where d(νi,P) means the shortest Euclidean distance
from a the true knee point νi in K to the obtained solution
set P.

The KGD evaluates the proximity of the obtained solutions
to the reference points in the knee regions of the Pareto front.
The KIGD measures the diversity of the obtained solutions
covering the knee regions. The KD describes the obtained
solution set whether contains at least one solution close to
each true knee point. The smaller the values of the indicators
are, the better the performance of the algorithm is.

C. Experimental results and analysis

This section aims to compare the performance of LBD-
MOEA in comparison with six knee identification methods
in terms of three knee-driven indicators, KGD, KIGD, and
KD. The experiments are conducted on two sets of problems
listed in Table S1 in the Supplementary material. Tables S2-S4
in the Supplementary material present the comparative results
(mean and variance values) obtained by the seven algorithms
on 50 test instances with two, three, five, and eight objectives.

1) Comparison with KGD indicator: The KGD values
of the seven algorithms are presented in Table S2 in the
Supplementary material. The results indicate that LBD-MOEA
performs the best according to the best values and rank values
in comparison with the other six algorithms. Specifically,
LBD-MOEA ranks the first with 20 best records, followed
by K-ASA and α-MOEA-KI with 12 and 10 best records,
respectively. According to the rank sum test, LBD-MOEA
achieves better convergence performance on 42, 44, 47 and 40
out of 50 instances than TKR, KnEA, EMUr and KD-MOEA,
respectively. It may be because TKR, KnEA and EMUr

favor the extreme solutions or boundary solutions, which may
easily become DRSs. As a consequence, these solutions may
deteriorate the convergence performance. Specifically, TKR
uses the ratio between the improvement and deterioration when
the objectives of two solutions are exchanged, and since the
solutions from the extreme regions have a larger ratio, they are
more likely to be selected during the environmental selection.
KnEA uses the extreme solutions to construct the hyperplane
and locates the knee candidates that have the maximum
distance to the hyperplane. In EMUr, the expected marginal
utility value of the boundary points are larger than that of
some solutions in the knee regions. Additionally, KD-MOEA
may preserve the solutions from the concave regions when the
parameter to control the dominated area of a solution is small,
in which case the preserved solutions may mislead the search
process and further degrade the convergence performance.
In contrast, LBD-MOEA adopts the localized α-dominance
based non-dominated sorting during the environmental se-
lection, which is able to get rid of the DRSs. LBD-MOEA
outperforms α-MOEA-KI on most problems too, which also
adopts the localized α-dominance. This may be attributed to
the proposed knee-oriented selection used by LBD-MOEA,

which can drive the population towards the knee regions and
eliminate boundary solutions and solutions in the concave
regions. K-ASA performs worse than LBD-MOEA on 34
instances. K-ASA adopts a angle-based pruning strategy in
the environmental selection. However, the angle between an
extreme point (or a boundary point) and its adjacent solution
can be very small, and consequently, the boundary points
will be kept according to the pruning strategy. Because of
this selection strategy, the boundary points may become the
DRSs and the convergence of K-ASA may be degraded by the
DRSs. The performance of LBD-MOEA is worse than that
of other algorithms on some problems such as PMOP5 and
PMOP6. PMOP5 has many knee regions close to each other,
which will make LBD-MOEA perform much local search,
slowing down the convergence speed. On the contrary, PMOP6
only has one global knee region. As a result, many reference
vectors do not have any solutions associated with them and
they are frequently adjusted, degrading the search performance
of LBD-MOEA. Overall, the experimental results demonstrate
that LBD-MOEA can effectively guide the evolutionary search
to find the knee regions on the majority of the test functions
investigated in this study compared with six state-of-the-art
algorithms.

2) Comparison with KIGD indicator: Table S3 in the
Supplementary material presents the comparative results in
terms of the KIGD indicator. The results show that LBD-
MOEA outperforms others on most instances. According to
the best records, LBD-MOEA achieves the best with 21 best
records, while α-MOEA-KI ranks the second with 9 best
results. According to the rank values, LBD-MOEA has better
diversity performance over 36, 40, 40, 42, 32, and 39 out of
50 instances compared with TKR, KnEA, EMUr, K-ASA, α-
MOEA-KI, and KD-MOEA, respectively. LBD-MOEA shows
better performance on most PMOP test problems including
PMOP1-PMOP4, PMOP7-PMOP13. Most of them are multi-
modal and have more knee regions than other test functions
such as PMOP6, making it more challenging for a search
algorithm to find the knee regions of these test problems.
Thus, the better performance of LBD-MOEA on the PMOP
test problems can be attributed to the fact that it is able to
search for multiple potential knee regions and converge to the
knee regions, while the selection mechanisms in the compared
algorithms tend to favor the solutions in the non knee regions.
For example, in the environmental selection of TKR and
EMUr, the solutions from the boundary regions have a larger
chance to be selected than the solutions from the knee regions
with a relatively smaller curvature. As a result, the algorithm
prefers to search the boundary regions and makes little effort
on exploring potential knee regions. Similarly, KnEA favors
solutions in the extreme regions, while K-ASA, α-MOEA-KI
and KD-MOEA prioritize solutions in the concave regions. As
a result, their KIGD performances are worse than that of LBD-
MOEA on these problems. However, the performance of LBD-
MOEA is less competitive than that of the compared methods
on the first set of test problems, probably because the selection
pressure of LBD-MOEA focuses too much on the knee regions
and the obtained solutions will crowded around the true knee
points. Consequently, its diversity performance is relatively
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poor. By contrast, KD-MOEA shows better performance than
LBD-MOEA. It may be because these problems are relatively
easy to be converged in comparison with the PMOP test
suite, where the distance functions of DEB2DK and DEB3DK
problems are unimodal but most PMOPs multimodal. As a
result, the localized α-dominance improving the convergence
rate cannot be reflected on these problems but more on the
PMOPs. Notably, LBD-MOEA also shows worse performance
on PMOP5 and PMOP6, probably due to the frequent adjust-
ment of reference vectors to search for multiple knee regions.
From the above comparative experiments, we demonstrate
that LBD-MOEA is able to find good knee candidates in the
knee regions on most test problems, especially those having
multiple knees regions.

3) Comparison with KD indicator: A further observation
on LBD-MOEA is made by comparing the KD values of the
solution sets obtained by the knee identification methods. The
results are given in Table S4 in the Supplementary material.
LBD outperforms others with 20 best records, followed by α-
MOEA-KI, KD-MOEA, and KnEA with nine, six, and six best
records, respectively. According to the rank values, the results
show that LBD-MOEA is competitive against the compared
algorithms on most instances, indicating that LBD-MOEA is
able to achieve good knee points. Specifically, LBD-MOEA
outperforms TKR, KnEA, EMUr, K-ASA, α-MOEA-KI, and
KD-MOEA on 38, 42, 39, 41, 32, and 38 out of 50 instances,
respectively. It is mainly due to the fact that the localized
dominated sorting and knee-oriented selection can guide the
search towards multiple potential knee regions during the
optimization and the solutions closer to the center of the knee
regions are favored over their neighbors in the environmental
selection. Besides, LBD-MOEA is relatively insensitive to
the DRSs and boundary solutions because these solutions are
eliminated during the environmental selection. Recall that both
α-dominance and knee-oriented dominance relationships are
able to enlarge the dominated area of the solutions in the
knee regions. Consequently, once a solution having a larger
curvature and is closer to the boundaries is obtained, the solu-
tion will dominate the solutions on the boundaries according
to the two localized dominance relationships. On the contrary,
the boundary regions, extreme regions or concave regions are
easily retained in other identification methods, which may
become DRSs and degrade the KD performance. To sum up,
LBD-MOEA shows a stronger capability of achieving knee
solutions than the compared algorithms on most test instances
studied in this work.

4) Visualization of the results and analysis: In the fol-
lowing, we visually compare some solution sets obtained in
Section IV-C to take a closer look at the performance of the
compared algorithms.

Figs. S1-S4 in the Supplementary material plot the knee
candidate solutions obtained by seven algorithms on the
DO2DK, DEB2DK, CKP, and DEB3DK problems. These
results show that LBD-MOEA, and KD-MOEA outperform
other methods in acquiring good knee candidates to the
knees or knee regions on these problems. α-MOEA-KI shows
similar results on DO2DK, DEB2DK, and CKP problems but
worse performance than LBD-MOEA on DEB3DK problems.

TKR shows good performance on DO2DK, DEB2DK, and
CKP problems. The following is the EMUr which is easily
impacted by the global and boundary solutions, so that it shows
good performance on DO2DK and DEB2DK problems. KnEA
easily finds the global knees but the local knee regions are
easily ignored. It is main because LBD-MOEA introduces the
techniques (modified dominance relationships) to deal with the
DRSs and boundary points, which can balance the optimiza-
tion and locating the knee regions. Consequently, LBD-MOEA
acquires better results than other methods on these problems.
Notably, Fig. S4 (h) shows that LBD-MOEA has found seven
out of nine knee regions. LBD-MOEA cannot distinguish very
close knee regions, mainly because the solutions in the closely
located neighboring knee regions will be partitioned in the
same sub-population and as a result, only the knee region
with a large curvature will be kept during the knee-oriented
environmental selection. In dealing with DEB3DK problems,
KD-MOEA and α-MOEA-KI also find seven knee regions,
but they also provide non-interested solutions. Both K-ASA
and TKR find five knee regions but TKR cannot eliminate
the boundary solutions or solutions in concave regions. KnEA
and EMUr are easily influenced by the boundary solutions and
extreme solutions, and consequently they perform worse than
the other compared algorithms.

Figs. S5-S8 in the Supplementary material present the
results obtained by seven algorithms on PMOP2, PMOP10,
PMOP11, and PMOP13 with eight objectives. PMOP2 is
relatively easy to be optimized. But the results indicate that
LBD-MOEA and α-MOEA-KI have better performance than
others to get candidate solutions close to the true knee points.
However, KnEA and EMUr favor the boundary solutions so
that their convergence performance is worse than others. By
contrast, the solutions obtained by K-ASA are diverse but not
properly located in the knee regions. KD-MOEA also shows
worse convergence performance. Similar performance can be
also shown on PMOP10 and PMOP11, which are hard to be
converged because different convergence speeds are designed
on different objectives. Consequently, the modified dominance
driven MOEAs like LBD-MOEA and α-MOEA-KI show
better performance than others. PMOP13 is very challenging,
because this problem is degenerated and only one global knee
region is on the PoF. Hence, most algorithms cannot deal with
the problem. LBD-MOEA shows better results as it has good
balance between the optimization and the search of the knee
regions. The following is α-MOEA-KI. The rest algorithms
cannot find good knee solutions mainly because they are
more sensitive to the DRSs during the optimization and the
convergence speed will be slowed down.

All in all, Tables S2-S4 in the Supplementary material sum-
marize the experimental results obtained by seven compared
algorithms on 50 instances in terms of the KGD, KIGD,
and KD indicators, and the results indicate that LBD-MOEA
is competitive in search for knee regions and location of
knee solutions. Its performance is also verified by the results
presented in Figs. S1 to S3 in the Supplementary material.
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Fig. 10. An illustration of the architecture of the HEV. The propulsions
to drive the car are from the combination of internal combustion engine
(ICE) and electric motor (EM), which are powered by the fuel and battery,
respectively. The battery can be charged by electricity grid from any changing
station or recharged during the braking. The HEV energy management
controller adjusts the ICE in terms of the current speed (v(t)) and state-
of-charge (SOC). The torque generated by the electric motor is determined in
terms of the request speed from the driver.

TABLE I
THE INDICATOR RESULTS OBTAINED BY SEVEN ALGORITHMS ON HEV

PROBLEM. THE BEST RESULTS ARE HIGHLIGHTED IN GREY.

Algorithm KGD KIGD KD
TKR 1.86E-01 9.73E-01 1.06E+00

KnEA 3.88E-01 1.77E+00 1.79E+00
EMUr 1.25E-01 7.91E-01 7.68E-01
K-ASA 5.18E-02 7.30E-01 6.80E-01

α-MOEA-KI 7.06E-02 7.97E-01 8.86E-01
KD-MOEA 7.97E-02 9.51E-01 8.93E-01

LBD-MOEA 7.57E-02 7.06E-01 5.33E-01

V. EXPERIMENT ON HYBRID ELECTRIC VEHICLE
CONTROLLER DESIGN

In this section, we compare seven algorithms on a hybrid
electric vehicle (HEV) controller design model [37] to inves-
tigate the effectiveness of LBD-MOEA. It should be pointed
out that no ground true about the knee points and knee regions
of the HEV controller design problem is known.

The general architecture of HEV is shown in Fig. 10.
The HEV energy management controller aims to minimize
seven objectives by switching the power sources between an
internal combustion engine (ICE) and an electric motor (EM),
where the objectives include the minimization of the fuel
consumption (FC), battery stress (BS), operation charges (OC),
emission, noise, urban operations (UO), and battery state-of-
change (SOC). Interested readers are referred to [37] for more
details of the seven-objective HEV controller design problem.

All algorithms are run on the seven-objective HEV con-
troller design problem with a maximum number of 78000 fit-
ness evaluations. In the seven compared algorithms, (H1, H2)
is set to (3,2) for the reference vector generator, and the
population size is set to 156. Other parameters are set the
same as in Section IV-A. The knee solutions obtained by seven
compared algorithms are shown in Fig. 11 (a) – (g). Since
the number and locations of the knee solutions of the HEV
controller design problems is unknown, we run three popular
MOEAs, namely MOEA/D [38], NSGA-III [33], and RVEA
[39] on the problems with 100,000 fitness evaluations for each
to collect as set of 828 Pareto non-dominated solutions. This

large set of solutions will be used as the “ground truth" of the
PoF of the HEV problem for evaluating the performance of
the solutions obtained by the compared algorithms. Then, three
a posteriori knee identification algorithms, TKR, KnEA, and
EMUr are adopted to identify the knee points from the 828
non-dominated solutions, which are shown in Fig. 11 (h). The
three sets of knee solutions are merged and redundant knee
solutions are removed, resulting in 52 knee points, referring
to Fig. 11 (i). The neighboring solutions of these knee points,
as shown in Fig. 11 (j), will then be used as the reference set
for calculating the knee-driven performance indicators, KGD,
KIGD, and KD for evaluating the quality of the solution sets
obtained by the seven compared algorithms.

The evaluation results are presented in Table I, where the
best results are highlighted. From these results, we can see that
LBD-MOEA outperforms all compared algorithms in terms of
KIGD and KD, although it is slightly than K-ASA in terms of
KGD. It indicates that LBD-MOEA has better performance in
locating more knee regions and is able to find solutions close
to the knee solutions of the approximated PoF. By contrast,
K-ASA may find more solutions close the reference solutions
in the knee regions but relatively far away from the knees.

Overall, LBD-MOEA has shown competitive performance
in acquiring knee solutions on the seven-objective HEV con-
troller design problem.

VI. CONCLUSION

In preference-driven evolutionary optimization, the lack of
a priori knowledge makes it difficult for the decision-makers
to explicitly express their preferences. In these cases, the
knee points are considered as the naturally preferred solutions.
Several online algorithms have been proposed to search for
knee regions by embedding different knee-oriented measures
into the environmental selection, although most existing meth-
ods do not perform well in striking a good balance between
converging to the knee solutions and searching for multiple
knee regions.

To address the issue, this paper proposed a localized knee-
oriented environmental selection for online detecting knee
solutions and knee regions. A localized α-dominance sort
and a localized knee-oriented-dominance sort proposed in
this work are embedded in the environmental selection. The
localized α-dominance based selection can alleviate impact of
the dominance resistant solutions and guide the search towards
different knee regions, whereas the localized knee-oriented-
dominance based selection can locate the knee solutions in a
potential knee regions and keep the knee solutions that may
be missed by the α-dominance based selection. Our empirical
results demonstrated that the proposed environmental selection
combining the localized α-dominance and the localized knee-
oriented dominance is able to maintain a good balance between
approximating multiple knee regions and locating the knee
solutions. The results also verified that the proposed method
outperforms its competitors on most problems studied in this
work having up to eight objectives and on a hybrid electric
vehicle controller design problem with seven objectives.

The experiments also show that the proposed algorithm
cannot distinguish multiple knee regions that are close to
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(a) TKR (b) KnEA (c) EMUr (d) K-ASA

(e) α-MOEA-KI (f) KD-MOEA (g) LBD-MOEA (h) Validation set

(i) (j)

Fig. 11. Plots (a) - (g) are the knee candidate solutions obtained by seven algorithms on hybrid electric vehicle controller design problem. Plot (h) presents
the approximated PoF of HEV controller design problem. (i) plots the potential knees of the approximated PoF. (j) presents the representative solutions in the
corresponding knee regions.

each other because solutions in these knee regions will be
very likely associated with the same sub-population, making
the localized α-dominance and the localized knee-oriented-
dominance ineffective. Thus, our future work will be dedicated
to developing new methods for distinguishing multiple knee
regions in a close neighborhood and develop more efficient
reference adaption method to deal with the issue. Another line
of research is to improve the search ability of the algorithm to
find knee solutions in higher dimensional objective spaces by
automatically setting the number of reference vectors during
the optimization.
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