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Abstract—In quality-diversity algorithms, the behavioural di-
versity metric is a key design choice that determines the quality
of the evolved archives. Although behavioural diversity is tradi-
tionally obtained by describing the observed resulting behaviour
of robot controllers evaluated in a single environment, it is often
more easily induced by introducing environmental diversity, i.e.,
by manipulating the environments in which the controllers are
evaluated. This paper proposes Quality-Environment-Diversity,
an algorithm that repeatedly generates a random environment
according to a probability distribution over environmental fea-
tures (e.g., number of obstacles, arena size and robot sensor
and actuator characteristics), evaluates the controller in that
environment, and then describes the controller in terms of the
features of that environment, the environment descriptor. Our
study compares Quality-Environment-Diversity to three baseline
task-specific and generic behavioural descriptors, in 5 different
robot swarm benchmark tasks. For each task, the quality of
the evolved archives is assessed by their capability to provide
high-performing compensatory behaviours following injection of
250 unique faults to the robots of the swarm. The evolved
archives achieve a median 2- to 3-fold reduction in the impact
of the faults on the performance of the swarm. A qualitative
analysis of evolved archives is done by visualising the relation
between diversity of compensatory behaviours, here called useful
behavioural diversity, and fault recovery metrics. The resulting
signatures indicate that, due to the diversity of environments
inducing useful behavioural diversity, archives evolved by QED
provide robot swarm controllers that are capable of recovering
from high-impact faults.

Index Terms—quality-diversity algorithms, evolutionary
robotics, behavioural diversity, fault recovery, swarm robotics

I. INTRODUCTION

Swarm robotics [1], [2] studies the emergence of collective
behaviour in large-scale teams of robots. The robots in a
swarm are simple and have limited sensory, computational
and communication capabilities. The tasks they have to
accomplish are relatively complex and may not be achievable by
individual members of the swarm [3]. Robot swarms have been
investigated in loosely-coordinated tasks such as collaborative
exploration, monitoring and surveillance [4], [5], as well as
tightly-coordinated tasks such as self-assembly [6], coordinated
movement [7] and foraging [8], [9].

Despite the robustness conferred to robot swarms by the
decentralised inter-robot coordination [10], they remain brittle
systems that are rendered inoperable when inadvertent faults
are sustained by individual robots of the swarm. Studies on
fault tolerance in swarm robotics have revealed that even partial
failures to one or a few robots may significantly hamper the
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capability of the swarm to complete its mission [11], [12].
In developing fault-tolerant robot swarms, many studies have
investigated fault-detection algorithms, for individual robots
of the swarm to robustly detect faults, both endogenously in
themselves [13], and exogenously in neighbouring robots [14],
[15], [16], [17]. However, to the best of our knowledge, fault-
recovery in swarm robotics, wherein robots of the swarm adapt
their behaviour to compensate for the different faults that they
may sustain, is an open challenge [18].

Fault recovery has been previously investigated in the context
of single-robot systems with multiple actuated degrees of
freedom providing redundancy, such as quadruped and hexapod
walking robots and multi-joint pick-and-place robot arms [19].
Many of these studies are model-based, and involve updating
the model of the robot to restore the accuracy of movements
when unexpected faults, such as damages in the actuators,
perturb the robot-environment interaction [20], [21], [22].
While such an approach is promising when the model learned is
accurate, its extension to swarm robotic systems seems elusive,
since: a) even small deviations of the self-model to reality
may accumulate rapidly when considering the large number of
robots in the swarm; and b) the self-model of one robot may
not be able to anticipate changes due to faults sustained by
other robots of the swarm. An alternative, model-free approach,
explored for a hexapod robot with damaged actuators [23],
is to recover from faults by intelligently searching over a
diverse archive of walking behaviours. Such behaviours were
evolved using quality-diversity algorithms [24], [25], special
evolutionary algorithms that aim to evolve a behaviourally
diverse archive of high-performing solutions. This model-free
approach appears promising for fault recovery in a robot swarm.

An important aspect of quality-diversity algorithms is the
choice of behavioural descriptor, a feature vector that is used
to characterise the behaviours of the evolved solutions based
on observable characteristics during the fitness evaluation.
Many studies employing quality-diversity algorithms have
relied on hand-coded descriptors based on domain-specific
insights or dimensions that are of particular interest to the
end-user [26], [27], [28], [29], [30]. Generic behavioural
descriptors have recently been proposed, including methods
that automatically derive the behavioural description from the
sensor-actuator trajectories of the robot [31], [32], such as
Stochastic Policy Induction for Relating Inter-task Trajectories
(SPIRIT) [31], without the need for any domain-specific
information. Other approaches such as Systematically Derived
Behaviour Characterisations (SDBC) [33] exploit domain-
specific information in a systematic manner, deriving the
behavioural description from the averaged relations between
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different entities, such as robots and objects of interest in the
environment. Importantly, for swarm robotic systems, the effect
of the choice of behavioural descriptor on the quality of the
evolved archive for fault recovery remains to be investigated.

A commonality amongst quality-diversity algorithms is that
all of the individuals in the archive are evaluated in the same
operating environment. However, the bias-variance dilemma
[34] implies that controllers trained or evolved in a specific
environment will excel in that environment but may fail to
generalise to the larger domain of interest. To allow the
evolution of robust robot controllers, various studies have
explored modifying the fitness evaluation to provide tolerance
to faults injected in the robot hardware [35], to bridge the robot
simulation-reality gap [36], [37], and produce robot controllers
with better generalisation capabilities [38]. Moreover, recent
work in active curriculum learning [39], [40] and open-ended
co-evolution [41], [42] demonstrates the beneficial impact of
enabling controllers to learn on ever-more challenging and
diverse environments targeted to the controller’s current skill
levels. Other studies in evolutionary computation show that
recording a variety of solutions associated with the task-
objective solved, provides evolution with stepping stones
leading to higher behavioural diversity and the ability to
solve problems of greater complexity [43], [44]. The above-
mentioned findings demonstrate that the environment in which
learning takes place is crucial for generalisation, robustness,
and complex skills; therefore, some robot behaviours may best,
if not only, be obtained by learning in a variety of environments.

We investigate the effect of environmental diversity in
quality-diversity algorithms on the quality of the evolved
archive of solutions, and consequently on the fault-recovery
performance of the robot swarm. Quality-diversity algorithms
may be improved by evaluating robot swarms in a diversity
of environments because the selected behavioural descriptors
may omit important information on the dynamics of the
swarm (e.g., the summary statistics of the SDBC descriptor
[33] fail to capture inter-robot interactions at fine temporal
resolutions). Additionally, a given behaviour may be more
easily characterised by the type of environment in which
it is high-performing (e.g., a high-performing behaviour for
patrolling a cluttered arena with a low robot density swarm).
The contributions of this work are the following:

• a novel framework, called Quality-Environment-Diversity
(see Section II), which describes the behaviour of in-
dividual solutions based on the randomly generated
environment in which they are evaluated – such that an
environment descriptor serves as a convenient implicit
behavioural descriptor and encourages useful diversity,
variations in behaviour tailored to plausible environmental
challenges;

• a comparative study of the impact of the choice of
the behavioural descriptor on behavioural diversity (see
Section IV-A) and fault recovery (see Section IV-B) in
five common swarm robotics tasks;

• a visualisation tool to analyse useful behavioural diversity
and performance in fault recovery (see Section IV-B).

II. QUALITY-ENVIRONMENT-DIVERSITY ALGORITHM

In quality-diversity algorithms, one evolves an archive of
high-performing and behaviourally diverse solutions. In this
context, a genotype is a set of parameters that encodes the
solution (e.g., a neural network) to a particular problem (e.g.,
controlling a robot). To obtain behavioural diversity, each
solution is evaluated in the same environment, E , which
represents all aspects of the application of interest other than
those encoded by the genotype. The evaluation in E results in
two outcomes of interest: i) a fitness score, representing the
solution’s performance; and ii) a behavioural descriptor, a vector
of floating-point features of interest to the end-user that may be
orthogonal to the fitness (e.g., various walking gaits of a multi-
legged robot, the distance between different mobile robots in a
swarm, etc.). The behavioural descriptor serves as a practical
description of the phenotype, the observable characteristics
of the genotype when interacting with the environment, and
storing solutions with varying behavioural descriptor in an
archive results in behavioural diversity.
This paper proposes quality-environment-diversity algorithms,
which evolve an archive of high-performing solutions that
is organised based on environmental diversity rather than
behavioural diversity. To obtain environmental diversity, a prob-
ability distribution over environments generates an environment
in which a new child solution is to be evaluated. After evolution,
the resulting archive then represents high-performing solutions
for widely differing regions in an environment space. The
environment space is centred around a normal operating envi-
ronment E , which represents the typical application of interest.
We hypothesise that quality-environment-diversity results in a
generic and implicit description of useful behavioural diversity.

a) Quality-environment-diversity with MAP-Elites: We
use quality-environment-diversity to evolve parameters of a
neural network controller for robots in a homogeneous swarm,
where each robot has a clone of the same controller. In this case,
the environment comprises all aspects of the simulation that
are extraneous to the controller – this includes the surroundings
(e.g., obstacles, friction, weather) but also how the robots are
embodied (e.g., sensory range, actuator velocity, number of
robots). To evolve the neural network controller, we make
use of a direct encoding of a recurrent neural network with
mutation operators that can change the topology – by adding
or removing neurons or connections – as well as change the
interconnection weights between neurons [45]. More details
about the evolutionary operators and parameters are provided
in Section I.B of Supplemental Materials.
The QED implementation is based on Multi-dimensional
Archive of Phenotypic Elites (MAP-Elites) [26], a quality-
diversity algorithm used in numerous studies in evolutionary
computation [46], [47], [30], [48], [29], [26], [25], [28]. MAP-
Elites evolves a topologically organised behaviour-performance
map M, or map. The map’s organisation is based on a
behavioural descriptor, a D-dimensional vector in which each
dimension represents a feature of the robot swarm’s behaviour.
Our QED algorithm differs from MAP-Elites in that solutions
are located in the mapM based on their environment descriptor,
a set of features of the environment in which the solution has
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been evaluated.
The QED algorithm is initialised with an empty map
M, and first generates a set of random controllers P . An
environment generator then randomly generates an environment
Ẽ , one for each controller i ∈ {1, . . . , |P |}, and evaluates
the performance of the controller in that environment. Each
of the evaluated solutions is described by the environment
descriptor of the environment it was evaluated in. Finally,
similar to MAP-Elites, if the performance of the evaluated
solution exceeds that of the current solution at that location
in the environment-performance map, it is added to the map,
replacing the solution at that location. Therefore, solutions are
only retained in the environment-performance map if they are
the best for the environment type defined by their location in
the environment-performance map or if no solution exists at
that location. After initialisation, QED improves the solutions
in the environment-performance map through: i) the generation
of new environments; and ii) random variation and selection
of the existing solutions in the map. At each iteration, the
algorithm picks a solution from the map at random, following
a uniform distribution. A copy of that solution is then randomly
mutated (see Table S1 for parameters of mutation operators).
The environment generator generates a random environment Ẽ ,
in which the mutated solution is evaluated. If it outperforms
the current solution at the location corresponding to Ẽ , the
mutated solution is inserted in that location. The evolutionary
process is repeated until the maximal number of evaluations
is expended. An implementation of the QED algorithm is
illustrated in Algorithm 1.

Algorithm 1 Quality-Environment-Diversity with MAP-Elites,
evolving a D-dimensional environment-performance map M.

1: M← ∅ . Empty D-dimensional map.
2: for i = 1 to p do . Random initial population.
3: P [i]← random-controller()
4: Perform add-controller(P [i])
5: end for
6: for i = 1 to I do . Repeat for I iterations.
7: c ∼M . Randomly select controller c from M.
8: c′ ← mutate(c) . Mutate c (details in Table S1).
9: Perform add-controller(c′)

10: end for
11: procedure ADD-CONTROLLER(controller c)
12: Randomly select Aj ∈ Pj ∀j ∈ {1, . . . , D}
13: Generate environment Ẽ parametrised by A
14: β ← environment-descriptor(Ẽ)
15: if M[β] = ∅ or f(Ẽ , c) > f(Ẽ ,M[β]) then
16: M[β] = c . Add individual c to the map M.
17: end if
18: end procedure

b) Environment generation for quality-environment-
diversity: The generation of a diverse set of environments is an
essential aspect of the QED algorithm. In our implementation of
the QED, the environment for the robot swarm is characterised
by the following six attributes A = 〈A1, . . . , A6〉: i) maximum
linear speed of the robots in the swarm; ii) size of the robot
swarm; iii) size of the arena the swarm is operating in; iv)

TABLE I: Environment attributes of the QED algorithm, and
their value in normal and perturbed environments. The environment
attributes are characteristics of the robots of the swarm, and their
operating environment.

Attribute Description Value Perturbations injected

A1
Robots’ maximal
linear speed 10 cm/s P1 = {5, 10, 15, 20}cm/s

A2
Number of robots
in the swarm 10 P2 = {5, 10, 15, 20}

A3 Arena size 16m2 P3 = {4, 9, 16, 25}m2

A4
Number of obsta-
cles 0 P4 = {0, 2, 4, 6}

A5

Robots’ range-
and-bearing sensor
range

1m P5 = {25, 50, 100, 200}cm

A6
Robots’ proximity
sensor range 11 cm P6 = {5.5, 11, 22, 44}cm

number of obstacles in the arena; and v) maximum range-
and-bearing sensor range of the robots in the swarm; and
vi) maximum proximity sensor range of the robots in the
swarm. The environment attributes are selected to elicit a
diverse repertoire of swarm behaviours from perturbations
reshaping the pathways of robots’ sensory-motor interactions.
In our environment generator, the values for each of the
attributes Aj , j ∈ {1, . . . , 6} of the generated environments
are randomly selected following a uniform distribution from
a select set of perturbations around the value of the attribute
in a normal operating environment. The selected perturbations
on the environment attributes typically vary in range from a
quarter of to two-fold the normal value of the attribute (see
Table I for details on the range of perturbations).

III. EXPERIMENTAL METHOD

A. Robot swarm simulation

To evaluate the fitness and the behavioural descriptor of
the solutions, we use a physics-based, discrete-time robot
swarm simulator named ARGoS [49], designed to realistically
simulate complex swarm behaviours. Exemplary simulations
of the normal operating environment and a QED environment
are shown in Fig. 1.

In a normal operating environment, the robot swarm simu-
lated is composed of 10 two-wheel differential-drive Thymio
mobile robots [50] in an environment of size 4 × 4 m2.
The Thymio robot is 11 cm long and 8.5 cm wide, with a
maximum linear speed of 10 cm/s, a maximum angular speed
of 127.32 ◦/s, and a control cycle of 0.20 s. The Thymio robot
model is equipped with five frontal and two rear infrared
proximity sensors of range 11 cm for obstacle avoidance and
two actuators which control the robot’s speed and direction.
The model is further augmented with 8 range-and-bearing
sensors with range of 1m to estimate the distance of the closest
neighbouring robot within angular segments of size 45 ◦ (the
maximal distance within range is chosen if no robot is in range
for that segment). Each robot in the swarm is controlled by
a copy of the same neural network controller, which takes as
inputs the activations of the 7 proximity sensors, the 8 range-
and-bearing sensors, and a bias activation. The outputs of the
neural network are the left and right wheel velocities of the
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(a) Normal environment (b) Cluttered environment

Fig. 1: Exemplary simulations in (a) the normal operating environment
and (b) a cluttered environment based on a 3× 3m2 arena with 15
robots and 4 obstacles, one of many QED environments.

robot. All sensory activations input to the neural network are
scaled in the range [−1, 1], while the output neuron activations
in range [−1, 1] are mapped into wheel velocities in the range
[−10, 10] cm/s.

In QED evolution, the normal operating environment is as
described above, however, attributes of the simulation are varied
according to Table I. In this case, any obstacles introduced
into the environment are static, cylindric objects with height
0.5m and a radius of 0.15m.

To ensure desirable swarm behaviours, a performance
evaluation consists of multiple trials, such that robots of the
swarm and obstacles in the environment, if any, are positioned
randomly at the start of each trial. The performance evaluation
comprises 50 trials for evolutionary experiments and 10 trials
for analysing the behaviours after evolution, and each fitness
trial has a duration of 400 s.

B. Tasks for the robot swarm

Robot swarm controllers are evolved in independent experi-
ments for the aggregation, dispersion, flocking, patrolling, and
border-patrolling tasks. Multiple evaluation trials are performed
for each of the tasks to evaluate fitness accurately. We outline
the robot swarm tasks below (for detailed task specifications and
fitness functions, see Section S1.A of Supplemental Materials):
• Aggregation: Robots of the swarm are tasked to form a

coherent and stable cluster. The fitness function penalises
robots for having a large distance to the centre of mass
of the swarm, and averages the penalty over robots in the
swarm and control cycles in the evaluation trial.

• Dispersion: The robots of the swarm are tasked with
maximising their total sensing coverage of the arena,
relevant for the coverage of large areas in patrolling and
monitoring missions [5], [51]. The fitness function is
defined as the average distance of all the robots of the
swarm to their nearest neighbours, averaged across control
cycles in the evaluation trial.

• Flocking: The swarm is tasked to move in a tightly-
coordinated flocking manner. The fitness functions rewards
pairs of robots in the swarm for moving rapidly in the same
direction within a range of 50 cm. The fitness function
considers the average of this reward over the control cycles
in the evaluation trial.

• Patrolling: Robots of the swarm are tasked to actively
patrol an arena, a behaviour relevant for surveillance type
missions. The arena of the swarm is discretised uniformly
into a 10-by-10 grid of cells, initially all given the minimal
cell value of 0. A cell’s value is set to 1 when visited by a
robot and decays continually at a rate 0.005 /s otherwise.
The fitness function is the average of the values for all
the cells in the arena aggregated across control cycles in
the evaluation trial.

• Border-patrolling: The task, while similar to patrolling,
requires the robots of the swarm to patrol along the walls
of the arena. The fitness function is similar to patrolling,
except that aggregation only considers the outermost cells.

C. Baseline algorithms

Our study compares QED to three baseline algorithms,
variants of MAP-Elites that employ different behavioural
descriptors, ranging from task-specific to generic: i) a
3-dimensional hand-coded descriptor designed with detailed
knowledge of the swarm robotic tasks, in the sense that the
shape and dimensions of the arena are assumed to be known
and that it may not be suitable when the environment contains
dynamic entities other than the swarm; ii) Systematically
Derived Behaviour Characterisations (SDBC), a 10-dimensional
behavioural descriptor that requires some domain-specific
knowledge on the task domain, namely the types of entities
of interest, but is otherwise generic [52]; and iii) Stochastic
Policy Induction for Relating Inter-task Trajectories (SPIRIT),
a completely generic 1024-dimensional behavioural descriptor
of the policy of the robot [31]. Importantly, as maps generated
with the QED algorithm may contain a maximum of 4096
solutions (six environment attributes and four perturbations
per attribute, see Table I), the behaviour-performance maps of
the baseline algorithms are discretised to contain the same
number of 4096 solutions. To find a suitable discretisation
for high-dimensional behavioural descriptors, we apply the
Centroidal Voronoi Tesselations (CVT) MAP-Elites algorithm
[53] for SPIRIT and SDBC.
Hand-coded behavioural descriptor (HBD): During the
evaluation trial, the behavioural descriptor tracks the positions
of the robots in a swarm over a uniform grid of cells of size
equal to the Thymio robot, to compute the following features:
i) the uniformity of the visitation probabilities of different
cells in the arena; ii) the average distance of the robots to the
centre of the arena; and iii) the total number of cells visited
by the robots in the arena at least once during a trial. The
resulting behavioural descriptor for the swarm is the average
of these features across all evaluation trials.
Systematically Derived Behaviour Characterisations
(SDBC): We replicate the 10-dimensional characterisation
used in [52], the mean and standard-deviation over the
evaluation trial of five features recorded at each control cycle:
i) the average linear velocity of the robots in the swarm;
ii) the average angular velocity of the robots in the swarm;
iii) the average distance between the robots of the swarm and
the walls of the arena; iv) the average distance between each
robot in the swarm; and v) the average distance between each
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robot in the swarm and its closest neighbouring robot. The
resulting behavioural descriptor for the swarm is the geometric
median of these features across all evaluation trials.
Stochastic Policy Induction for Relating Inter-task
Trajectories (SPIRIT): The behavioural descriptor counts the
frequencies of sensory states s ∈ S and actions a ∈ A over
all the robots of the swarm and all the evaluation trials during
the simulation, to estimate conditional probabilities p(a|s) for
all a ∈ A and all s ∈ S . If a state s has been visited N times,
where N > 0, then p(a|s) is estimated as the frequency of the
state-action pair (s, a) divided by N . If a state s ∈ S has not
been visited, p(a|s) = 1/|A| for all a ∈ A. The action space
A comprises the left and right wheel velocities of the robot,
each binned into four equal sized intervals in range ±10 cm/s.
The sensor space S comprises 6 sensor groups, the front-left,
front-centre, front-right and rear proximity sensors of the
robot, as well as the front- and rear-facing range-and-bearing
sensors, each binarised such that a sensor group is considered
active (set to 1) if any one of its sensors’ readings exceeds
half of the maximum range of that sensor. Therefore, SPIRIT
in this set-up results in |S| = 64 probability distributions of
16 actions each, for a 1024-dimensional descriptor.

D. Metrics for analysis

Performance: The performance of a solution is defined as
the fitness averaged across all independent trials in which
it is evaluated. To find the best performance for a given
environment, QED maps must be re-evaluated1. Due to the
large number of solutions in QED maps, 50 trials of fitness
evaluation would exceed our computational budget. Therefore,
the performances of solutions evolved by QED are all re-
evaluated for 10 trials each, and for comparable estimates of
performance, the solutions evolved by the other algorithms
(HBD, SDBC, and SPIRIT) are also re-evaluated for 10 trials.
Where indicated, the empirical maximum performance of a
swarm robotic task, the maximal performance observed across
all replicates and algorithms, is used to normalise performance.
Behavioural diversity: For a behavioural diversity metric
comparable across QED, HBD, SDBC and SPIRIT, the
solutions of all generated maps are projected into the 1024-
dimensional space of SPIRIT, which provides a completely
generic behavioural descriptor. The projected maps are further
processed into valid behaviour-performance maps by main-
taining only the highest performing solution for each of the
centroids in the projected SPIRIT space. In this projected
space, two probability distributions p1 and p2, corresponding
to a given pair of behavioural descriptors, are compared by
computing the average of the total variation distances between
their corresponding conditional probability distributions:

d(p1, p2) =
1

2|S|
∑
s∈S

∑
a∈A
|p1(a|s)− p2(a|s)| .

1Note that for QED, the best solution for the normal operating environment
may not be at that location in the environment-performance map, thus requiring
a re-evaluation of all the solutions in the environment-performance map.

IV. RESULTS

The maps generated by the QED, HBD, SDBC and SPIRIT
quality-diversity algorithms are assessed in two phases. In the
first phase, the maps are evaluated on their performance in
the normal operating environment and on the coverage, i.e.,
the number of unique solutions in the map (see Section IV-A).
In the second phase, we introduce sensor/actuator faults one
or more robots of the swarm and assess: i) their impact on
the performance of the swarm; ii) how well the swarm is
able to recover from them; and iii) as a metric for useful
diversity, how behaviourally diverse are the recovery solutions
(see Section IV-B). The results are aggregated across all swarm
robotic tasks; detailed task-specific results are available in
Section II-III of the Supplemental Materials.

A. Map quality analysis

Evolutionary experiments are repeated in five independent
replicates. Comparing QED to baseline algorithms on all 5 tasks
yields a total of 4 algorithms × 5 tasks × 5 replicates = 100
evolutionary runs. The performance awarded to the evaluated
robot controller is the average fitness across 50 independent
trials. The quality-diversity algorithms are evolved over
30,000 generations to ensure at least a weak convergence
in the performance and coverage of the generated maps
(see Fig. 2a-b, and Fig. S1 in Supplemental Materials),
while respecting the available computation budget for our
experiments2.
Performance: During evolution, the maps generated by the
baseline algorithms (HBD, SDBC, SPIRIT) do not vary widely
in their performance (see Fig. 2a), and while QED achieved
the highest performance, a cautious interpretation is required
because solutions in QED’s environment-performance maps
are evolved in environments with varying levels of difficulty;
that is, some QED environments (e.g., those with smaller
arenas in the patrolling task) allow a higher performance than
can be obtained in the normal operating environment.

After re-evaluation in the normal operating environment
(see method in Section III-D), all the algorithms evolve
high-performing solutions for aggregation, patrolling and
border-patrolling tasks, differing no more than 3% of the
empirical maximum performance (see Table S2 in Supplemental
Materials). By contrast, in the flocking task, the performance
varies widely between 0.25-0.85 for QED, 0.70-0.98 for SDBC,
and 0.66-1.0 for SPIRIT, with the exception of HBD which
consistently evolved high performing solutions between 0.97-
0.99. The performance was less divergent in the dispersion task,
with the baseline algorithms and QED achieving a performance
in 0.93-1.0, and 0.81-0.87 respectively. A summary of the
data across all tasks (see Fig. 3a) suggests that the QED
algorithm may sacrifice the performance of its solutions in the
normal operating environment for an improved performance
on the perturbed environments in which they were evolved;
that is, since all algorithms have the same budget of function
evaluations, QED allocates on average 1 out of 4096 function

2A single replicate required about 300-700h (resp. 900h) of computational
time on a 40-cores Intel Xeon Gold 6138 at 2GHz, for baselines (resp. QED).
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(a) Performance time-line (b) Coverage time-line

Fig. 2: Evolutionary analysis: Mean±SD of best performance (a) and map coverage (b) evolution over 30,000 generations, aggregated across
25 independently evolved maps (5 independent replicates for each of 5 swarm robotic tasks). Performance is the average fitness across 50
trials, normalised by the empirical maximum for the normal operating environment, the environment in which baseline algorithms evolve
solutions – in QED, this is only one of its many environments.

evaluations to the normal operating environment and 4095 out
of 4096 function evaluations to perturbed environments.
Behavioural diversity: As an approximate indicator of be-
havioural diversity in the algorithms’ own behaviour spaces,
we compute the coverage (see Fig. 2b), the number of cells
in an algorithm’s own behaviour space that are filled with
a solution. The coverage of maps generated by QED, HBD,
SDBC and SPIRIT is 4094 ± 2, 1091 ± 19, 130 ± 5, and
127 ± 1, respectively (Mean ± SD across all swarm robotic
tasks and replicates). With a maximal coverage of 4096 for all
algorithms, this finding indicates that the behaviour spaces of
the baseline algorithms are sparse, i.e., not all cells represent
feasible robot swarm behaviours, whereas the behaviour space
of QED is dense, with all cells representing feasible robot
swarm behaviours. The high QED coverage is explained by its
property of controllable coverage; that is, QED’s environment
generator can be set to reliably generate all environments
within its environment space. These findings are not sufficient,
however, to demonstrate that QED is behaviourally diverse,
since the QED space is based on environmental diversity rather
than behavioural diversity.

To compare the behavioural diversity of maps generated by
the QED, HBD, SDBC and SPIRIT algorithms, we project
their solutions into a common generic behaviour space (see
Section III-D for details). All the maps generated have a
similar averaged pair-wise distance between solutions, ranging
between 0.60 − 0.62, in the projected space. The coverage
in the projected behaviour-performance maps differs more
widely (see Fig. 3b), with the QED achieving coverage of
49 ± 20 (Mean ± SD across all swarm robotic tasks and
replicates), at least on par with the baseline algorithms – HBD
(55 ± 10), SDBC (26 ± 2), and SPIRIT (51 ± 11) – which
are based on behavioural descriptors. In sum, as hypothesised,
QED’s environment descriptor serves as an implicit behavioural
descriptor.

B. Fault recovery analysis
A traditional analysis of behavioural diversity is limited

in the sense that behavioural diversity in itself is not a

sufficient condition for fault recovery or adaptation; there
may be behaviours which contribute to diversity but not to
fault recovery. Similarly, a high performance in the normal
operating environment does not necessarily generalise towards
environments not seen during evolution. Therefore, we analyse
behavioural diversity and performance within the context of
robot swarm fault recovery.
Fault injections: When a robot swarm is operating in its
normal operating environment, any fault to a single robot’s
sensors or actuators effectively changes the operating environ-
ment. Because different robots in the same swarm may have
different faults, the space of possible environments is greatly
expanded. To sample a part of this space, the fault injection
scheme determines for each robot in the swarm independently
a randomly chosen fault before any trials are started. The fault
is chosen from the following 8 fault types previously used in
studies on fault-detection in robot swarms [17], [54], which
are applied at each control cycle with random variables being
sampled anew:
• PMIN: the front proximity sensor readings are set to the

minimum (0);
• PMAX: the front proximity sensor readings are set to the

maximum (1);
• PRAND: the front proximity sensor readings are generated

randomly in the range [0, 1];
• LW-H: the speed of the robot’s left wheel is halved;
• RW-H: the speed of the robot’s right wheel is halved;
• BW-H: the speed of both wheels is halved;
• ROFS: a large offset vector (r, θ) is added to range-

and-bearing readings, with r ∼ U(0.75, 1.0) and θ ∼
U(−180◦, 180◦);

• NONE: no fault is applied.
Importantly, none of the resulting environments are seen during
the evolutionary phase by any of the algorithms and a particular
challenge is that different robots experience different faults.
In our experiments, a total of 250 unique combined faults are
sampled and applied for all 5 swarm robotic tasks. Due to the
large number of faulty environments and the large number of
solutions in the evolved maps, the number of trials for the
fitness evaluation is limited to 10.
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(a) Re-evaluated performance (b) Projected coverage

Fig. 3: Post-evolutionary analysis: all solutions in the maps are re-evaluated in the normal operating environment for 10 independent trials,
resulting in 25 data points (5 replicates on 5 tasks). (a) boxplot of the best performance across maps; and (b) coverage of the solutions when
projected in the SPIRIT behaviour space3.

Fault recovery: In our experiments, fault recovery searches
the map for the best solution to the faulty environment, i.e., the
recovery solution. To assess map quality in the context of fault
recovery, we compare the best performance in the faulty and
normal operating environments and assess the useful diversity,
the behavioural diversity across the recovery solutions.

The analysis of the fault recovery includes a total of three
metrics: i) the impact, the proportional change in performance
after transferring the best solution of the normal operating
environment to the faulty environment; ii) the recovered
performance, the performance of the best solution to the faulty
environment; and iii) the resilience R, the proportional change
in performance comparing the best solution for the faulty
environment EF to the best solution for the normal operating
environment E :

R(M, EF |E) =
maxc∈M f(EF , c)−maxc′∈M f(E , c′)

maxc′∈M f(E , c′)
,

(1)
where M is the map. A summary of these metrics, using
the median and inter-quartile range across all fault injections,
demonstrates the viability of our approach to fault recovery
(see Table II; for task-specific fault-recovery statistics and
statistical significance, see Table S3 in Supplemental Materials).
All quality-diversity algorithms have a median recovered
performance between 86-88% of the empirical maximum perfor-
mance. Despite the median impact of the fault being 23-25% of
the original performance in the normal operating environment,
the median resilience score indicates that after fault recovery,
the drop in performance is reduced to 8-12%. These results
also demonstrate differences between the algorithms: QED
has the highest score (Median ± IQR) for impact of the fault
(−0.23 ± 0.26), recovered performance (0.88 ± 0.16), and
resilience (−0.08±0.07), whereas SPIRIT has the lowest score
for impact of the fault (−0.25± 0.29), recovered performance
(0.86 ± 0.13), and resilience (−0.12 ± 0.13). Significance
scores indicate that the magnitude of QED’s positive resilience

effect compared to other conditions is medium to large, with
few exceptions. Explaining its high IQR, the impact of the
fault depends strongly on the type of task, ranging between
0-20% for aggregation, 10-40% for dispersion, 10-50% for
patrolling, 0-60% for border-patrolling, and 60-100% for
flocking. Interestingly, our data indicate no direct relation
between fault type and the impact of the fault.

To predict an algorithm’s fault recovery performance in

TABLE II: Median ± IQR of the impact of faults, the recovered
performance, and the resilience, aggregated across all 1250 injected
faults for 5 swarm robotic tasks in 10 independent trials.

Impact of
fault

Recovered
performance

Resilience

HBD −0.25± 0.33 0.87± 0.11 −0.12± 0.11
SDBC −0.24± 0.26 0.87± 0.10 −0.11± 0.08
SPIRIT −0.25± 0.29 0.86± 0.13 −0.12± 0.13
QED −0.23± 0.26 0.88± 0.16 −0.08± 0.07

the face of unknown faults, we visualise its resilience as a
function of the impact of the fault, giving each algorithm its
unique impact-resilience signature (see Fig. 4a)4. This analysis
demonstrates that QED’s comparative resilience advantage
derives not only from having lower impacts, typically giving
only a 10% drop in performance, but also from being more
resilient to high-impact faults; although all algorithms have a
positive correlation between impact and resilience (0.4-0.6),
QED has a smaller slope (a = 0.17) compared to other
algorithms (a = 0.19 for HBD, a = 0.19 for SDBC, and
a = .30 for SPIRIT) when considering a linear regression
model of resilience as a function of impact.

3Upper (resp. lower) edges of the box mark the first (resp. third) quartile of
the data, the red line indicates the median, and whiskers extend to the highest
(resp. lowest point) within a distance of 1.5 times the IQR from the quartiles.

4To better visualise the majority of the data at a fine resolution and allow
meaningful estimates of the slope that are not affected by extreme observations,
the observations with extreme impacts (i.e., those with impacts larger than
50%) are removed from the analysis of Fig. 4, resulting in around 1000 data
points for each algorithm.
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To explain its improved resilience to high-impact faults, our
hypothesis is that QED overcomes high-impact faults by finding
high-performing fault recovery behaviours that are especially
different from the normal behaviour, i.e., the behavioural
descriptor obtained from the best-performing solution to the
normal operating environment. To assess this interpretation, the
resilience and the behavioural diversity of the fault recovery
solutions are visualised in Fig. 4b. Confirming its resilience
property, QED has typical values around −0.07 with most of
its probability mass in [−0.10, 0] while other algorithms have
a resilience centred around −0.10 with most of the probability
mass in [−0.20, 0]. Importantly, QED exhausts nearly the entire
spectrum of distances around the normal behaviour, while other
algorithms have a maximal distance of 0.7-0.8. As a signature in
contrast to QED, SPIRIT has both low diversity and resilience.
Combining the diversity data with the above-mentioned slope
data, where resilience degrades slowly for QED but swiftly
for SPIRIT as the fault impact grows larger, provides a first
supporting argument for our hypothesis.

To further demonstrate that the solutions that are highly
differing from the normal behaviour are frequently used for
recovery from high impact faults, we visualise behavioural
diversity as a function of the impact of the fault. This analysis
(see Fig. 4c) confirms that faults with a large, negative impact
on performance are more likely to yield solutions with a higher
behavioural distance to the normal behaviour. The visualisation
is supported by the negative correlations between impact of
the fault and behavioural diversity and a large negative slope
for all algorithms (a = −0.66 for HBD, a = −1.01 for SDBC,
a = −0.36 for SPIRIT, and a = −0.98 for QED) when
considering a linear regression model of behavioural diversity
as a function of fault. Another observation is that, although
baseline algorithms (HBD, SDBC, and SPIRIT) have larger
fault impacts, some of which exceed a drop of 40% of the
original performance, they only rarely find solutions at high
behavioural distances (d > 0.70) to the normal behaviour,
whereas QED does so frequently for faults with an impact
greater than 20%. These findings confirm our hypothesis
because for high-impact faults, QED more frequently finds
solutions differing strongly from the normal behaviour. Large
behavioural differences to the highest-performing behaviour in
the normal operating environment are expected because QED
allows solutions with low performance on the normal operating
environment to reproduce and direct evolution.

As a visual demonstration, the above-mentioned relation
between high-impact faults, resilience, and behavioural diversity
around the normal behaviour is supported by video footage of
the border-patrolling task (see https://youtu.be/BN6i-NugCGg).
In this footage, all algorithms (HBD, SDBC, SPIRIT, and QED)
can reduce the impact of faults to the front proximity sensors
by using a controller which drives backwards and relies on
the rear proximity sensors. Another common observation for
all algorithms is that the robots with one faulty wheel make
circular movements at a fixed position. However, in the baseline

5The proportion estimates are based on a Gaussian kernel density estimation
with 100-by-100 grid size and bandwidth according to Scott’s rule, n−1/(d+4),
where n is the number of data points and d = 2 is the dimensionality.

algorithms (HBD, SDBC, and SPIRIT), such robots interfere
with the entire swarm, resulting in a traffic congestion, while
in QED these robots are isolated and other robots in the swarm
stay close to the walls and avoid collision. We believe this
is due to the environment in which the solution was evolved:
with a larger number of robots each having a higher speed, the
robots in the swarm came in frequent contact with each other,
and therefore avoiding other robots was important to obtain
a high performance. This footage is in line with the above-
mentioned findings: despite the high impact of the fault, QED
drops a mere 2% in performance, using a recovery solution
which has a behavioural distance of 0.8 to its normal behaviour,
while other algorithms drop 7-8% and have a distance between
0.6-0.7 to their normal behaviour.

As a final analysis of the results, we investigate which
environment attribute values are most important for QED’s
fault recovery by analysing the environments in which the
fault recovery solutions were evolved. A first part of the
analysis investigates a frequency-based metric (see Table S4a
in Supplemental Materials), which attribute values are most
frequently observed in fault recovery solutions, while a second
part of the analysis investigates a resilience-based metric (see
Table S4b in Supplemental Materials), which attribute values
correspond to the highest resilience scores. Analysis of the
frequency statistic demonstrates that all environment attribute
values are frequently represented in fault recovery solutions.
Attribute values corresponding to the normal operating envi-
ronment are not observed to be the most frequent for any of
the attributes, indicating that the attributes indeed are useful
to vary and therefore well-chosen. Although for each attribute,
its frequencies are close to uniform, there are the following
notable effects: i) the larger the range-and-bearing sensor range
of the environment, the more fault recovery solutions, with
a frequency of 34.2% for the 2m setting, as opposed to a
frequency of only 15.0% for the 0.5m setting; ii) a lowered
arena size, particularly the 3× 3m2 setting, leads to a higher
proportion of fault recovery solutions, 29.5%; iii) low maximal
linear velocities have a higher frequency, with the minimal
value of 5 cm/s being represented in 30.7% of the fault recovery
solutions and the maximal value of 20 cm/s being represented
in 21% of the fault recovery solutions; and iv) the setting of 4
obstacles is represented in 29.4% of the fault recovery solutions.
Computing the median resilience across the recovery solutions
with perturbed environment attributes, no clear difference is
observed, with scores ranging between −0.080 and −0.077. In
sum, all environment attributes appear to be important to vary,
although fault recovery solutions are more frequently found for
cluttered settings where agents must frequently interact with
objects and each other.

V. DISCUSSION

This paper investigates the use of quality-diversity algorithms
in a model-free approach to fault recovery in swarm robotic
systems, where different robots in a swarm are affected by dif-
ferent faults. Our novel Quality-Environment-Diversity (QED)
framework describes the behaviour of individual solutions
implicitly based on the environment in which they are evaluated.
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Fig. 4: Visualisation of fault recovery based on impact of the fault, resilience, and useful behavioural diversity of fault recovery solutions.
Useful behavioural diversity is based on the behavioural distances of fault recovery solutions to the normal behaviour and is computed in the
projected SPIRIT behaviour space. (a) Impact-resilience signature, the joint probability of resilience (y-axis) and impact of the fault (x-axis),
with the dashed line indicating the identity line – ideally, most of the probability is located in top-right, where faults do not affect the swarm’s
performance, and resilience is high across the impact spectrum, indicating recovery for high-impact faults; (b) Diversity-resilience signature,
the joint probability of behavioural distance to the normal behaviour (y-axis) and resilience (x-axis) – an ideal fault recovery profile with
useful diversity has high resilience and covers the entire distance spectrum; and (c) Diversity-impact signature, the joint probability of
behavioural distance to the normal behaviour (y-axis) and impact of the fault (x-axis) – the correlation between impact and behavioural
diversity indicates the need for useful diversity to recover from high-impact faults5.

With QED, the designer can easily formulate dimensions of
interest to evolve archives with useful behavioural diversity
tailored to a wide variety of plausible environmental challenges.
In our study, QED is compared to different baseline-algorithms,
including a domain-specific, hand-coded behavioural descriptor,
as well as two generic behavioural descriptors, SDBC and
SPIRIT, on five different swarm robotics benchmark tasks, with
and without injection of 250 unique combinations of faults.
Overall, the study demonstrates the use of quality-diversity
algorithms as a means for fault recovery in swarm robotics; the
quality-diversity algorithms are typically able to reduce the loss
of performance from 23-25% immediately after fault injection
to 8-12% after fault recovery with exhaustive search through the
archive of solutions. Due to the environmental diversity during
its evolution, QED confers benefits to generalisation. On the
map-level, the environmental diversity leads to a significantly
higher resilience due to the useful behavioural diversity profile
of QED, in which solutions that are especially different from
the normal behaviour help to recover from high-impact faults.

On the solution-level, a minor benefit of QED is observed
for the impact of the fault. Since its offspring solutions are
genetically similar to their parents but may be evolved in
highly differing environments, QED may increasingly select
for solutions that generalise across environments.

The results of our investigation provide us with several
recommendations. Based on the large resilience advantage and
the favourable diversity features of QED, environment diversity
is an important component to be considered when evolving
a diversity of solutions to a given optimisation problem; this
recommendation likely extends beyond the use case of swarm
robotics and fault recovery. Analogous to the bias-variance
dilemma in supervised learning settings, where generalisation is
often improved by presenting data from the target distribution
but the fit to the data may be reduced, QED provides an
improved map-level generalisation but at the cost of reducing
performance in the normal operating environment; that is,
map-resilience is improved but a trade-off to consider is that
performance in the normal operating environment may in some
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cases be significantly reduced by using QED. In fact, in the
dispersion task, QED’s resilience property was not sufficient
to overcome its low performance in the normal operating
environment. Our study also explores a hand-coded behavioural
descriptor, HBD, which exploits the prior knowledge of the
arena used in all the tasks. Despite its comparatively high fault
recovery performance in aggregation, dispersion, and flocking,
HBD has a comparatively low fault recovery performance
in patrolling and border-patrolling. This may be explained
by the high alignment [24] of the HBD descriptor with the
fitness function of the patrolling and border-patrolling tasks:
each behaviour is limited to a narrow range of fitness and
neighbouring regions of behaviour space have a correlated
upper limit to fitness. In patrolling, HBD only gives high-
performing solutions that have a large number of unique cells
visited. In border-patrolling, a large number of unique cells
visited combined with high uniformity of visitations amongst
those cells visited cannot lead to high-performing solutions.
Therefore, for fault recovery in swarm robotics, we cautiously
advise against the use of behavioural descriptors that are
‘aligned’ with the fitness function, contrasting to results in
deceptive maze problems [55], [56]. Further, our study finds
that, in the flocking task, fault recovery was not satisfactory
for any of the quality-diversity algorithms, with a loss of
60-80% of the original performance levels. Based on this
observation, the recommendation is that, when applying our
model-free approach to fault recovery in tightly-coordinated
tasks involving coordinated movement of robots [7], [8], [9],
each robot should use its own unique controller; this would
enable fault recovery in case different robots are affected by
different faults. For example, when one robot is affected by
a fault on its right actuator, and another robot is affected by
a fault on its left actuator, these two robots can only move
coordinately when they have a different controller. However,
using a unique controller for each robot results in at least
two challenges: i) there is a linear increase in the number of
dimensions in the genotypic space and therefore an exponential
increase in the search space; and ii) for descriptors based on
the policy of a single robot, such as the SPIRIT descriptor,
this also results in an exponential increase in the number of
behaviours, unless the resolution of the behaviour-performance
map is significantly reduced.

Only limited work has exploited environment diversity to
generate behaviourally diverse archives of controllers, with no
work so far in swarm robotics or fault recovery; QED provides
an alternative to existing approaches and is characterised by
applicability, scalability, and user-control. One approach that
uses environment diversity within quality-diversity algorithms
is the Innovation Engines [43], which automatically extracts
features from behaviour but scores the fitness dependent on the
behaviour characterisation, and in this sense the task objective
and the behavioural description are mutually dependent. While
Innovation Engines has been applied to generate images, this
method may not be applicable to evolutionary robotics, where
the performance of a robot must be assessed empirically in
expensive simulations rather than through a neural network
classification. Although not explicitly mentioned as a quality-
diversity algorithm, the Combinatorial Multi-Objective Evo-

lutionary Algorithm [44] stores a multitude of elite solutions
for different task-subtask decompositions and evaluates new
offspring on each of the decompositions. In comparison, the
QED framework is not limited to combinatorial tasks, and,
due to the use of the environment generator, may be able to
apply evolution on a wider diversity of environments. Finally,
the Paired Open-Ended Trailblazer (POET) [41] generates
an ever-increasing diversity of environments within a certain
difficulty level, and pairs each environment with a single
solution that is optimised on this environment based on local
rather than population-based optimisation. With its emphasis
on challenging environments, empirical results demonstrate
solutions to increasingly challenging single-robot control
problems. POET may not be applicable to expensive cost
functions due to the need to evaluate all individuals on all
environments (to avoid local minima on existing environments
and to initialise the best solution to a new environment); in
swarm robotics, this may be problematic because high-fidelity
simulations are required with many trials, long evaluation times
and many robots. In comparison to POET, QED provides an
increased user-control since environments are generated by a
user-defined probability distribution, rather than by incremental
mutations on existing environments. Further, QED may be
preferable when the space of environments must be exhausted
since POET rejects environments if they lead to either too high
or too low fitness scores. In fault recovery, this may imply that
POET rejects environments where robots are affected by faults
with a strong impact on performance.

A point of discussion is to what extent the fault recovery
results in simulation environments can be extrapolated to real-
world swarm robotic systems. While the present study assumes
that taking the best-performing controller in the archive comes
at no cost, a real-world swarm robotics fault recovery system
must select a compensatory behaviour in a limited number of
evaluations. However, as demonstrated by Cully et al. (2015)
in a single-robot study, Bayesian Optimisation represents one
approach to search efficiently for the best solution in an
evolved archive [23], [57]. This approach may potentially
work in robot swarms as well, and in this case, QED may
provide an alternative to existing behavioural descriptors to
improve fault recovery. As a potential alternative to Bayesian
Optimisation, with no restrictions on the map’s geometry
and no need for expensive trial and error, the topologically
organised environment-performance map used in QED with
MAP-Elites may be exploited by first detecting the environment
and then taking the corresponding controller in the map.
Additionally, QED may improve robustness to the simulation-
reality gap, because systems that are robust to a transfer from
one simulation environment to another may also be robust to
a simulation-to-reality transfer [58], and environment diversity
has been used previously in the control of a robotic arm to
improve the simulation-reality gap [37].

Our fault recovery study also presents a novel method to
evaluate the quality of archives developed by quality diversity
algorithms. Traditionally, archives evolved by quality-diversity
algorithms are evaluated based on behavioural diversity and per-
formance metrics obtained from evolution [26], [25]. However,
because the designer cannot predict the types of conditions
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that may arise in real-world application, this analysis is limited.
To predict how well an archive will fare in adverse conditions,
where faults strongly impact the performance of the swarm, our
study has considered a novel model selection tool, called the
impact-resilience signature. The signature provides a unique
profile for a quality-diversity algorithm by visualising how
strongly performance is expected to degrade in the face of
high-impact faults. A similar visual analysis of diversity as
a function of impact and resilience illustrates QED’s unique
profile, which increases resilience by finding behaviours that
differ strongly from the normal behaviour.

VI. CONCLUSION

We investigate fault recovery in swarm robotics, where
each robot in a swarm may be affected by different faults.
Our approach is to evolve a behaviourally diverse archive
of behaviours using quality-diversity algorithms. We formu-
late a novel quality-diversity algorithm, Quality-Environment-
Diversity (QED), which selects an environment at random in
which the solution is to be evaluated and then uses an envi-
ronment descriptor to characterise behaviour implicitly based
on this environment. This implicit behavioural characterisation
makes it easy to design behaviour spaces tailored to overcome
a wide variety of plausible environmental challenges. Our
extensive fault recovery study assesses the fault recovery of
QED, with its environment descriptor, and traditional quality-
diversity algorithms, each with their own behavioural descriptor,
on 5 swarm robotic tasks and 250 unique fault conditions per
task. Results demonstrate a successful fault recovery for all
quality-diversity algorithms and the unique profile of QED, with
a high robustness to faults and a high behavioural diversity in
its fault recovery solutions. In future work, the QED framework
may be implemented with alternative environment generators or
other quality-diversity algorithms such as Novelty Search with
Local Competition [59], and fault recovery performance may
be targeted directly by an adaptive selection of environments
during evolution.
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