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Abstract—The recently introduced Real-Valued Gene-pool Op-
timal Mixing Evolutionary Algorithm (RV-GOMEA) has been
shown to be among the state-of-the-art for solving grey-box
optimization problems where partial evaluations can be lever-
aged. A core strength is its ability to effectively exploit the
linkage structure of a problem, which often is unknown a priori
and has to be learned online. Previously published work on
RV-GOMEA however demonstrated excellent scalability when
the linkage structure is pre-specified appropriately. A mutual-
information-based metric to learn linkage structure online, as
commonly adopted in EDA’s and the original discrete version of
GOMEA, did not lead to similarly excellent results, especially in a
black-box setting. In this article, the strengths of RV-GOMEA are
combined with a new fitness-based linkage learning approach that
is inspired by differential grouping that reduces its computational
overhead by an order of magnitude for problems with fewer
interactions. The resulting new version of RV-GOMEA achieves
scalability similar to when a predefined linkage model is used,
outperforming also, for the first time, the EDA AMaL.GaM upon
which it is partially based in a black-box setting where partial
evaluations can not be leveraged. '

Index Terms—Genetic Algorithm, Linkage Learning, Fitness

I. INTRODUCTION

A key strength of many state-of-the-art model-based evolu-
tionary algorithms (EA’s) lies in the effective exploitation of
a problem’s linkage structure [5], [11], [29], [33]. When the
linkage structure of a problem is known, this information can
be used to solve the optimization problem more effectively.
If a problem is fully decomposable into sub-problems, these
lower-dimensional sub-problems can be solved independently
to achieve better efficiency [17]. Conversely, if a problem is
(partially) inseparable and its variables are strongly dependent,
trying to solve the problem with a model that wrongly assumes
decomposability is very inefficient [31]. This is known to
hold for problems with discrete (binary) variables, e.g., the
deceptive trap function [37], as well as real-valued variables,
e.g., the rotated ellipsoid function [21].

A well-known approach that effectively exploits the linkage
structure of a problem in the discrete domain is Gene-pool
Optimal Mixing (GOM) [39]. In GOM, variables modeled
in the same linkage set will be affected by recombination
together, ensuring that no valuable information captured in the
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specific combination of variables is lost. The recombination
operator applies recombination to partial solutions by iterating
over all linkage sets in a linkage model. For every linkage
set, recombination is executed only on the variables repre-
sented in the current linkage set, thereby exchanging partial
solutions between individuals. If this recombination leads to
improved fitness of a solution, the changes to that solution
are accepted. The Gene-pool Optimal Mixing Evolutionary
Algorithm (GOMEA) [3] randomly chooses a donor solution
for different linkage sets, thereby using the entire gene-pool
in search for optimal sub-solutions.

In many real-world applications, the optimization problem
is not a black-box. It may be treated as such if exploiting
specific properties is difficult, but generally some additional
knowledge is available. This may include the possibility to
use partial evaluations, which are used to evaluate the impact
of variation on a solutions’ objective value in a fraction of %
time of a full fitness evaluation if only & variables are changed.
Most literature, especially in case of real-valued variables is
however focused on black-box optimization [13], [14].

Because OM works specifically by changing subsets of
variables in existing solutions for which the fitness of the
solution is known, partial evaluations can be leveraged ex-
cellently, also in case of real-valued variables. This makes
GOMEA a well-suited method for solving real-world grey-
box problems. Indeed, recent results show that superior results
can be obtained over taking a black-box approach for real-
world problems, including brachytherapy treatment planning
[18], [20] and deformable image registration [6], [41]. These
results were obtained with the recently introduced Real-Valued
GOMEA (RV-GOMEA) [5] that leverages the strengths of
GOMEA for the real-valued domain.

The linkage learning method employed by GOMEA has
shown excellent performance and scalability in the discrete
domain, but some issues have been encountered when applying
the same approach to the continuous search spaces of the
real-valued domain. A fundamental drawback of the currently
used mutual information-based approach lies in its inability to
correctly recognize fully decomposable sub-components. At
the root of this lies the fact that this method has problems
in identifying independent variables because selection causes
the solutions to align with the fitness contours in the search
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Fig. 1: Non-decomposable Gaussian search distribution (green
iso-lines) learned (with maximum-likelyhood estimation) from
a population of selected solutions on a 2D version of the
decomposable sphere problem (purple iso-lines).

space as illustrated in Figure 1. Additional mechanisms such as
the anticipated mean shift in AMaLGaM [2] and the evolution
path in CMA-ES [9] cause the solution and Gaussian model of
variation to align with the joint direction of improvement (i.e.,
the gradient in smooth problems), similar to how momentum
is used in gradient descent algorithms when training neural
networks [36]. In either case, the mutual information of the
Gaussian model will indicate that dependencies exist, even if
this is not the case, e.g., on the sphere function, especially
when the population is initialized far away and not bracketing
the optimum. Moreover, the method is based on the spread
of the population and often many generations are needed for
the linkage structure to be properly exposed by a population.
Other methods used to identify linkage such as delta grouping
and the random grouping scheme [26], [42] are also unable to
correctly detect independent variables.

An alternative approach to identifying the linkage structure
of a problem is based on measuring the changes in fitness
values by perturbing certain variables. This method was first
introduced in combination with the greedy linkage learning
approach known as Differential Grouping [25], generally used
with cooperative co-evolution [19], [30]. Whilst this method
is able to correctly identify independent variables, it does not
allow for overlapping linkage sets nor does it define a compa-
rable measure on the dependence of variables. Lastly, when the
problem consists mainly of decomposable sub-components,
learning the linkage model is unnecessarily computationally
expensive, as all of the /(¢ — 1) possible pairs have to be
checked, even for completely decomposable problems.

In this paper, we try to overcome the earlier stated draw-
backs of existing linkage learning methods by using the
fitness-based dependency strengths to build an adapted linkage
model based on the Linkage Tree as used in RV-GOMEA.
Two different linkage model building methods are proposed.
Both methods separate decomposable sub-problems as much
as possible without separating non-decomposable variables
that are strongly dependent. The resulting linkage models

are integrated into RV-GOMEA, which has been proven to
perform excellently on real-valued benchmark problems when
correct linkage models are provided [5]. The introduced meth-
ods will be compared with existing linkage learning methods
in combination with RV-GOMEA for a variety of benchmark
problems. The hypothesis is that the proposed method is able
to scale almost identically to offline learned linkage models
but without the need of problem-specific knowledge. In the
black-box domain, we expect a performance similar to that of
AMalLGaM, something that has not been achieved before.

As for various real-world applications of (RV-)GOMEA
like brachytherapy treatment planning [18], [20], deformable
image registration [6], [41] and more [15], the optimal linkage
model is not known and strong dependencies are imposed
through geometry, for example, deformation vector field nodes
or potential windmill locations that are near each-other are
strongly dependent, but those far apart are weakly dependent.
The provable added value of RV-GOMEA for these real-world
problems could be increased even further if correct linkage
models could be learned efficiently online.

The remainder of this article is structured as follows. In
Section I we elaborate on the existing RV-GOMEA. Exist-
ing methods to model the dependencies of an optimization
problem are discussed in Section III. In Section IV our
newly proposed incremental approach for learning the linkage
structure of a problem is introduced. The benchmark problems
used to validate the performance of our method are introduced
in Section V, and Section VI shows scalability results on these
problems. The implications of our work and further challenges
ahead are discussed in Section VII. Lastly, we summarize and
draw conclusions about our findings in Section VIIL

II. RV-GOMEA

One of the key elements of GOMEA is its variation opera-
tor: the GOM method. This method uses a so-called Family of
Subsets (FOS) to exploit the linkage structure of a problem.
The current version of RV-GOMEA [5] is a combination of
the existing GOMEA [3], which performs excellently in the
discrete domain, extended with a continuous sampling model
as employed in the state-of-the-art for numerical optimization,
the Adapted Maximum-Likelihood Gaussian Model Iterated
Density-Estimation Evolutionary Algorithm (AMaLGaM) [1].
This section will explain how linkage is modeled in RV-
GOMEA by using a Family of Subsets (Sub-section II-A)
and how a new population is generated by using GOM (Sub-
section II-B). Then the application of RV-GOMEA in the grey-
box domain is justified in Sub-section II-C.

A. Family of subsets

The linkage structure of a problem is modeled in GOMEA
using a FOS, denoted as F. The set S = {0,1,....,¢ — 1}
contains all problem variables and every set F;, € F is a
subset of S. The complete FOS F is a subset of the power-set
P(S) of S. Lastly, the FOS F is complete, meaning that every
problem variable is represented in at least one subset of F.
There are various methods for constructing a FOS. Different
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FOS structures have proven to work best on different problems
[39]. Here we partially focus on two types:

1) Marginal product FOS: A marginal product FOS is
defined as a set F where for every F;, F; € F it holds
that 7; N F; = (). The univariate FOS is a special case of a
marginal product FOS with |F| = ¢ and thus |F;| = 1 for all
F;, € F.

2) Linkage tree FOS: The linkage tree FOS is most com-
monly used and shown to be the most universal in discrete
optimization [38], [39]. The defining property of a linkage tree
FOS is that every set F; € F that contains more than one set
is the union of two other sets in F. Conceptually the linkage
tree is built by iteratively merging the two FOS elements with
the highest dependence F; and F; to form a new FOS element
Fi. that is added to the FOS, thus F; U F; = F;. When only
pairwise-dependencies are used an implementation exists that
allows for an LT FOS to be built in O(nf?) time [12]. The
process of iteratively merging linkage sets is repeated until no
more merges are possible, i.e., the full set of variables is added
or the maximum linkage set size |Fj| = 100 is reached.

B. Gene-Pool Optimal Mixing

The core principle of GOMEA, Gene-pool Optimal Mixing
(GOM), mixes the population following the FOS subsets
represented in the linkage model. Variables that are represented
in the same FOS subset will be recombined together. In
the real-valued domain, recombination alone does not suffice
as one needs to sample values not currently present in the
population and thus a continuous model is needed. In the
recently introduced RV-GOMEA [5] solutions in the space
represented by a FOS subset are sampled from a multivariate
Gaussian that is estimated with maximum-likelihood based
on the selection, as is done in AMalL.GaM [1]. During one
generation of RV-GOMEA, for every F; € F of size |F;| = k
a k—dimensional multivariate Gaussian is estimated from the
n -7 best individuals in the population P (7 being the fraction
of solutions selected from the population, in this case 0.35 as
used in original AMalL.GaM [1]). To create new offspring, all
linkage sets J; are considered in random order. For every
individual in the population, |F;| new values are sampled
from the multivariate Gaussian and inserted into the existing
individual. If the algorithm is run in a grey-box setting, partial
evaluations can be leveraged to evaluate this new solution.
In a black-box setting, a complete evaluation is required to
determine whether the fitness of the solution has improved.
If the change resulted in an increase in fitness, the changes
are accepted. If not, the change is accepted with probability
pcePt — (.05. The next linkage set is then considered.
If an individual does not improve for a certain number of
generations, a method called forced improvement is applied
to alter the individual following a convex linear combination
of the parent solution and the elitist solution of the population,
i.e. by moving it closer to the elitist solution.

To obtain good performance in an EA it is often important
to correctly set the population size parameter. However, the
best-suited population size is problem dependent and can thus

not be set without any problem specific knowledge. To avoid
needing to tune the population size parameter, RV-GOMEA
uses an interleaved multi-start scheme (IMS) that runs multiple
independent EA instances with growing population sizes. As
smaller population sizes converge quicker but get stuck in local
optima, an instance will be terminated once it is outperformed
by another instance that has a larger population size.

C. Grey-box domain

Most of the research done on EAs is aimed at black-box
optimization problems where no knowledge about the problem
or its underlying structure is known. Other existing research
that does operate in the grey-box domain such as [8], [10],
[40] is fundamentally restricted to discrete optimization. In
this article, we consider a domain of grey-box optimization
problems where partial problem evaluations can be performed
as this is directly applicable to real-valued optimization [5].
Whilst partial evaluations can be applied, that does not impose
that the optimal problem structure is known and thus in both
domains, effective linkage learning plays an important part in
optimization. In a grey-box setting, partial evaluations allow
for the recalculation of fitness when there are only few, e.g.
k, modified variables in O(g(k)) time, rather than incurring
the O(g(¥)) overhead of full evaluations since these are only
needed when all variables are changed. With g() typically
being a polynomial function e.g. g(¢) = ¢ or g(¢) = (. The
cost of one partial function evaluation is therefore counted as %
with k as the number of changed variables. Since the optimal
mixing phase of RV-GOMEA makes almost exclusively partial
modifications to existing solutions, RV-GOMEA can very
effectively leverage partial evaluations which makes it an
effective algorithm for grey-box problems.

D. RV-GOMEA

The earlier introduced RV-GOMEA [5] combines the pre-
viously explained components into a real-valued evolutionary
algorithm that exploits the linkage structure of a problem by
iteratively applying GOM to different (sub)sets of problem
variables in every generation.

III. RELATED WORK

Multiple methods have been proposed to identify the struc-
ture of an unknown optimization function. In this section two
of these methods will be discussed. Firstly, a population-
based method that uses the spread of a population in the
search-space to model dependencies is discussed. Secondly,
a fitness-based method where the fitness values are directly
used to measure linkage between variables is discussed. Both
of these methods focus on pairwise dependencies. Once these
dependencies are known, dependencies between subsets of
variables are extrapolated from them.

A. Distribution-based methods

One of the methods used to extract dependencies based on
the distribution of a population is the Mutual Information (MI)
method [16]. The mutual information M I;; of variables z;
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and x; defines how much information about x; we can derive
by knowing x; and vice versa. The MI is computed based on
the probability distribution associated with the variables. In the
case of real-valued variables, a parametric distribution is often
used. In our case, as the AMalLGaM model is essentially a
normal distribution, to calculate the MI between two variables
x; and x;, the Pearson product-moment correlation coefficient
ri; can be used with r;; € [—1,1]. A high absolute value
of 7 corresponds to a high linear correlation between x; and
2;. The mutual information between x; and x; is defined as

follows:
= log ( ) (1)
(ri5)

where r;; = X5/ (6:65) € [-1,1] 2)

Where ii,j and ¢; are obtained from a covariance matrix
that is estimated with maximum likelihood based on the
selection. r; ; is only computed for pairs of variables. A FOS
can be built from these pairwise dependencies as described in
Section II-A2.

B. Fitness-based methods

The second method we consider to define whether two
variables interact is directly based on fitness values and clas-
sifies a pair of variables as either separable or non-separable
specifically by comparing the difference in fitness whilst
making the exact same perturbation for z; for different values
of z; [22], [23]. A more recent application of this method
is leveraged in Differential Grouping [25]. Four points in the
solution space are picked by combining all possible points
that can be created by picking two different values for each
x; and x;. The differences in fitness values for those points
are used to calculate the interaction between x; and x; by
determining if the change in fitness caused by a modification
to x; is affected by a modification to x;. Variables x; and z;
are said to interact when |A; —A; ;| > € for some user-defined
small €, where A; and A, ; are defined as follows:

Ai = (f(®)|zi = aj,xj = a;)— 3)
(f(x)|z; = a; + b;, x5 = aj) 4)
Aij = (f(®)|zi = ai,vj = aj +bj)— 5)
(f(x)|z; = a; + bi, x5 = a; + bj) (6)

where a; and b; can be any real value as long as z; and x;
remain within the function bounds. In this method «a; and b;
are selected randomly such that for every x;, a; and a;+b; fall
within the bound for x; inside the current population. In our
experiments, € is set to 0 where we rounded to the smallest
possible machine precision to ignore calculation errors.

IV. SCALED FITNESS-BASED LINKAGE LEARNING

To learn a linkage tree FOS, it is necessary to define a notion
of linkage, or dependency, strength between pairs of variables.

We denote d; ; as the pairwise dependency strength between
x; and x; where:

ANEYIAY
diyj = ’
1-— Az/Az,j

From d; ; a matrix D of size ¢ x £ can be constructed,
storing all pairwise dependency strengths of an /-dimensional
problem. By definition of equation 7 the values of this matrix
will lie within [0,1) with O for independent variables and
d; ; > 0 indicating some interaction between x; and x;.
It is worth noting that even though d; ; does not represent
an absolute dependency strength between variables, it can be
used to compare the relative pairwise dependency strength by
comparing d; ; and d; . This property makes it possible to
learn a linkage tree FOS based on the information stored in
D as described in [5].

otherwise

(7

A. Analysis of overhead

Filling matrix D requires @ dependency checks. For
each of these dependency checks, four evaluations are needed,
which results in a total number of 2/(¢ — 1) evaluations. It is
shown in [28] that it is possible to decrease the number of
evaluations to 1 + ¢ + e ey by using the same a; and b;
for every check and storlng f(2)|z;=a;+b,; for every z; € x.
When partial evaluations can be leveraged, the overhead can be
decreased even further. Since only one variable is changed for
the evaluations done to compute d; ;, the number of changed
variables £ = 1 and therefore it is possible to decrease the
total number of evaluations even further to 1+ 3 (€ + e 1))
=2+ 5L

1) Plcklng a; and b;: As described in Section III-B, «;
and b; can be picked randomly. However, for this method to
work, a; and b; should be set and should remain unchanged.
The values for a; and b; are estimated based on the current
population:

a; = min(x;) + ((mazx(z;) — min(z;)) - 0.35)  (8)

b, = (max(z;) — min(z;)) - 0.35 9

The value of 0.35 has been empirically found to work well
for setting a; and b; but every value > 0 and < 0.5 is
acceptable as the resulting values for z; will be within the
current population.

Employing the values of a; and b; for every pair of variables
will give us 1+ ¢+ « e =D new solutions with their associated
fitness values. However these solutions are heavily centered
in one area of the solution space with ¢ solutions containing a;
in all but one of the problem dimensions and (82 D solutions
with a; in all but two of the problem dimensions. For this
reason these solutions will only be added to the population if
their objective value is lower than any other solution in the
population, i.e, if the solution is an elitist solution.
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B. Incremental dependency updating

It is plausible to assume that real-world high-dimensional
problems tend not to be fully dependent with strong depen-
dencies (e.g., a 1000-dimensional rotated ellipsoid), but to
be non-decomposable only to some extent. We therefore aim
to slightly bias our method toward the assumption of less-
than-fully dependent problems by decreasing the number of
evaluations needed on sparsely dependent problems. To this
end, to spread the computational load of filling the dependency
matrix, every d;; is initially set to the default value of 0
(independent). In each generation, ¢ random pairs are evaluated
and a new FOS is learned. Since the right linkage model is not
dependent on the population size, the same linkage structure is
used for every population that is maintained with respect to the
IMS explained in Section II-B. We call this process incremen-
tal dependency updating. The pseudo-code for this algorithm
can be found in Algorithm 1. The process of checking all
@ pairs will be called a dependency cycle. When all pairs
have been checked, no checks will happen for 2% generations
where k is the number of cycles that have taken place
already. To better allocate the computational budget during
optimization of a problem that is suspected to be independent,
the dependency cycle is stopped prematurely and started again
after 2F generations with new random pairs. Specifically, the
dependency cycle is stopped whenever no dependencies are
found in one iteration (¢ checks) and if the average number
of found dependencies over all dependence cycles so far is
smaller than some minimum value. We used % as this was
empirically found to work well on a variety of problems. Since
the matrix is initialized with 0’s the computational resources
are geared more toward univariate optimization which results
in a slight bias to decomposable problems. Yet, by restart-
ing the dependency cycle every 2* generations, changes in
function landscapes can be captured and the dependencies
can be updated accordingly by estimating a; and b; again
as described in section IV-Al. This can result in a different
d; ; for the same pair of variables x; and x;. As a result of
the initialization of the dependency matrix, all variables are
assumed to be independent and will only be considered to be
dependent once an actual dependency is detected. Stopping
the dependency detection when no dependencies are found is
therefore not expected to significantly change the outcome of
the dependency checks.

C. Pruning

Based on the information obtained from the scaled fitness-
based dependency detection, a pruning method for the Linkage
Tree FOS described in Section II-A2 can be used. The goal of
pruning is to eliminate unnecessary linkage sets. A smaller
FOS reduces the number of function evaluations and time
spent on GOM per generation. If only the linkage sets that
best capture the dependency between variables are correctly
maintained, the efficiency of GOMEA may very well improve.

Consider the moment during the learning of the FOS, that
two linkage sets JF; and F; are to be merged to create
Fi = F;UF;. If all variables in F}, are pairwise dependent, F;

and F; are removed from the FOS. Since all variables in F,
are dependent, mixing these variables together (which in RV-
GOMEA entails sampling from a joint Gaussian distribution)
will likely yield better results than separately mixing the
variables from F; or F;. Similarly, if there is no pairwise
dependence between any variable in J; and any other variable
in F;, F is not added to the newly learned FOS.

In case that there are some pairwise dependencies between
subsets, but not every variable in JF; is dependent on every
variable in JF;, the problem consists of non-decomposable
overlapping sub-components. For this case we present two
different pruning approaches, resulting in different FOS struc-
tures:

1) (Partial) linkage Tree: In this case, the two subsets JF;
and F; are merged together into J;, and all linkage FOS sets
are kept in the FOS. This approach will result in a (partial)
linkage tree where the biggest linkage sets are the size of the
biggest non-decomposable sub-components.

2) Marginal product: The second approach ignores the
subset of dependencies between F; and F; and keeps only the
fully dependent linkage sets F; and JF; in the FOS without
merging any more sets. Combined with the other pruning steps
this will always create a marginal product FOS, containing
every variable exactly once.

D. FOS-based population size

With the problem-specific knowledge obtained by our link-
age learning method, we can project a minimally required
population size needed for RV-GOMEA to work well. If ~
is the size of the biggest linkage set in F then following [2]
the minimal population size np,s. needed can be calculated as
Npase = 17 + 37,/7. We combine this baseline with the IMS
described in Section II-B. Across all populations in the IMS,
one FOS is maintained since the linkage structure of a problem
is not dependent on the population size. The incremental
dependency updating as described in Section IV-B thus counts
every generation equally, i.e., if due to IMS multiple popula-
tions are maintained simultaneously, incremental dependency
updating is performed during every generation (regardless
of the population index). Since a single solution from one
population is used to perform the fitness difference testing for
all populations, the population size of each population in the
IMS is irrelevant. Every time a new FOS is built and the size of
the biggest fully dependent linkage set has increased, npqse 18
recalculated and the populations with a population size smaller
than npqs. are stopped.

A second use of population sizing is if the linkage tree FOS
is built, and not all variables in one linkage set are pairwise
dependent, e.g., if 7, = {1,2,3} and d12 = 0.5,d13 =
0,d2.3 = 0.5. The population size is then not updated as
described earlier, but the FOS set F; is only added to F if
| Fil < Ymaz» With Yrae = ("_317)§ the maximal acceptable
linkage set size for a population in the IMS of size n.
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Algorithm 1 Incremental dependency updating

1: pairs < shuf flePairs() > All possible pairs, randomly ordered
2: waitingCycles < 0 > The number of waiting cycles
3: k<« 0 > The number of cycles that have take place
4: passedGenerations < 0 > The generations that have taken place
5: total Dependencies < 0 > The total dependencies found
6: while not terminated do

7: if waitingCycles =0 then

8: Dependencies + evaluate Lpairs(pairs) > Number of dependencies found
9: total Dependencies < total Dependencies + Dependencies
10: passedGenerations < passedGenerations + 1

11: if (Dependencies = 0 and total Dependencies < 2 - passedGenerations) or all pairs are evaluated then
12: waitingCycles « 2F

13: k<—k+1

14: pairs < shuf flePairs()

15: total Dependencies, Dependencies < 0

16: else

17: waitingCycles < waitingCycles — 1

18: continue RV-GOMEA

19:

Linkage model Description

RV-GOMEA- RV-GOMEA with a learned fitness-based linkage
FBLT tree

RV-GOMEA- RV-GOMEA with a learned fitness-based marginal
FBMP product model

RV-GOMEA-UNI

RV-GOMEA with a predefined univariate linkage
model

RV-GOMEA-UNIS5

RV-GOMEA with a predefined linkage model us-
ing blocks of 5 consecutive variables.

RV-GOMEA- RV-GOMEA with a predefined full linkage model
FULL
RV-GOMEA-LT RV-GOMEA with a learned linkage tree model,

based on Mutual Information as described in [5]
RV-GOMEA with a learned linkage structure based
on differential grouping as proposed in [25]
AMalLGaM with a predefined univariate linkage
model

AMaLGaM with a learned fitness based linkage
model

RV-GOMEA-DG

AMaLGaM-UNI

AMalLGaM-FB

TABLE I: All algorithms used for our experiments.

V. EXPERIMENTS
A. Benchmark algorithms

To conduct our experiments we compare the performance of
RV-GOMEA in combination with our two proposed methods
for fitness-based linkage learning, described in Section IV,
to existing versions of RV-GOMEA and AMalL.GaM. Table
I gives an overview of all versions of RV-GOMEA and
AMaLGaM that are used for our experiments, differing only
in how the linkage model is defined or learned.

For our newly proposed methods, we make a distinction
between a fitness-based linkage tree (RV-GOMEA-FBLT)
and a fitness-based marginal product linkage structure (RV-
GOMEA-FBMP) of which the differences between the result-
ing models are described in Section IV-C.

Because the second pruning approach of the fitness-based
linkage learning method will always create a marginal product

linkage structure, this method can also be used to create a
linkage structure for AMalLGaM, equipping it with a linkage
learning method for the first time. The MP linkage model is
used to restrict the covariance matrix of AMal.GaM, i.e., the
covariance is assumed to be 0 for variables in different FOS
elements. AMaLGaM-FB will be compared to the previously
described versions of RV-GOMEA. 2

B. Benchmark problems

To study the impact of different types of linkage learning
on the performance of RV-GOMEA, we first consider a set
of six optimization problems. Whilst some of these problems
are not decomposable, none of the used benchmark problems
are fully dependent, aligned with the idea that real-world high-
dimensional optimization problems are highly unlikely to have
a linkage structure where each variable is dependent on every
other variable. The problems we will consider are Sphere,
Michalewicz, Rastrigin, Rosenbrock, Sum of Rotated Ellipsoid
Blocks (SoREB) and an overlapping version of SoREB.

The first three benchmark functions exhibit no dependen-
cies. First, we consider the Sphere function which is a widely-
used benchmark for real-valued optimization. The Sphere
function has a smooth landscape and no local minima.

-1
Fphere (@) = ) @
1=0

Second, we consider the Michalewicz function. In compar-
ison with the smooth Sphere function, it contains ¢! local
optima that are unevenly distributed throughout the search
space. The definition of the Michalewicz function is as follows,
with z; € [0,7]:

2The C source code for these algorithms can be found at

https://github.com/chantal-olieman/rv-gomea
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Next, the Rastrigin function is also a non-linear and multi-
modal function but its local minima are evenly spread and
superimposed on the Sphere function.

-1
Srastrigin (&) = 10€ + Z [icf — 10 cos (271':131')]

=0

The fourth benchmark function we consider is the Rosen-
brock function that contains a parabolic valley with one global
optimum and one local optimum for 4 < ¢ < 100 [32]. Finding
the global optimum in this valley is considered relatively hard.
Finding the valley is trivial, but converging to the global
minimum requires a search through this parabolic valley that
requires differently oriented covariance matrices at different
points during the search. By design, every consecutive pair
of optimization variables in this function is dependent which
results in ¢ — 1 overlapping dependent components. The
definition of the Rosenbrock function is as follows:

Y4

fRoscnbrock (:B) =
A

|
N

[100 (i1 — 22)” + (1 = @2)?

I
o

The SoREB function uses a rotation function Ry that defines
the counterclockwise rotation of a vector around the origin by
an angle of 6 and an ellipsoid function fiipsoia . Due to the
construction of the SoREB function, the variables in every
block of k consecutive optimization variables have strong
dependencies, but are independent from any other optimization
variables outside of their block. For our benchmark we use
a block size of £ = 5 and a rotation of § = 45°. Partial
evaluations can only be performed by recalculating the fitness
for all k variables present in the same block as ;. The
ellipsoid function and the SoREB function are defined as
follows:

-1
_6e_
Settipsoia () = Z [10 -1 xf]
i=0
k—

~

1
[ fenipsoia (Ro ([@i, - .-

i—0

Jsorn (veczz, k) = s Trit)-1]))]

-

The SoREB function is a problem containing only non-
overlapping non-decomposable sub-components of size k. We
define an overlapping version of this problem as OSoREB.
In addition to the original SOREB problem, a second set of
SoREB blocks is used with blocks of length 2 for every pair
of consecutive parameters in successive blocks of SOREB with
k =5 (e.g., for x4, x5 and xg, x1¢). For partial evaluations ev-
ery k variables in the same block as x; need to be recalculated
(at a cost of k/1). If x; is either the first or last variable of
a block, and is thus part of a pair of consecutive parameters

in successive blocks, then that block of size 2 needs to be
recalculated as well at a cost of 2/1. The definition of OSOREB
is as follows:

¢/k—1

fosores (%, k) = fsores(z, k) + Z [fettipsoid (Ro ([Tri—1, Tki]))]

=1

C. Setup

1) Evaluating linkage learning: We employ different means
to verify the validity and impact of different linkage learning
algorithms. The dependency matrices produced by our fitness-
based method is compared to the matrices produced by the
existing mutual information method. The dependency matrices
give us valuable insight into the pairwise dependencies found
during optimization, which is used to create the FOS structures
used for GOM. For all benchmark problems, the pairwise de-
pendencies are known and can thus be easily compared to the
learned dependency matrices. Average dependency matrices
are computed over 30 independent runs with ¢ = 50 for all
benchmark problems. As our linkage learning approach builds
a model on the relative dependencies between variables, the
heatmaps shown are normalized according to min-max feature
scaling, such that all values range between [0, 1] without loss
of information. For all non-overlapping benchmark problems,
we also verify whether the learned linkage sets corresponds to
the combination of optimal linkage sets that capture all exist-
ing dependencies but do not combine independent variables.

2) Evaluating scalability: Another important aspect of our
evaluation is the scalability analysis of RV-GOMEA on a
subset of the benchmark functions. Scalability graphs are
commonly used to benchmark the performance of optimization
algorithms because they summarize the most important aspects
of the algorithm’s performance as well as provide a prediction
regarding the performance on higher-dimensional problems.
We compare the scalability of RV-GOMEA when using dif-
ferent linkage learning models as described in Section V-A.
For a broader comparison of the previously existing versions
of RV-GOMEA with different state-of-the-art EAs, we refer to
[5]. For visibility we have only plotted RV-GOMEA-FBMP
on non-overlapping problems since RV-GOMEA-FBLT both
produce the same FOS structure and thus have the same
scalability.

For every benchmark problem, 30 independent runs are
performed with a time limit of 10% seconds (roughly 2 hours
and 45 minutes). All experiments are performed on a 64-
core (4 x 16-core AMD Opteron(tm) Processor 6386 SE)
server running Fedora 28 where each run is performed on a
single core. In every run the population is randomly initialized
between [—115, —100] for every variable, i.e., definitely not
bracketing the optimum, except for fuichalewicz, Where we
initialize between [0, 7], which is also its constrained range.
A problem is considered to be sufficiently minimized if the
elitist solution reaches a value to reach (VIR) of 10719 if the
optimum value is 0 (which is the case for all problems except
FMichalewicz) and 95% of the optimum for fuichalewicz)-
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Fig. 2: Heatmaps over 30 runs for ¢ = 50 with the Fitness-Based measure
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Fig. 3: Heatmaps over 30 runs for £ = 50 with the Mutual Information measure

If all runs are solved within the time limit, the problem
size is doubled, until the maximum dimensionality of 104
is reached. Since various real-world optimization problems,
as well as all our benchmark problems allow for partial
evaluations, we have decided to focus mainly on grey-box
optimization in order to obtain a realistic view of the per-
formance of our algorithm on most real-world optimization
problems.

VI. RESULTS
A. Dependency matrices

Figure 2 shows heatmaps of the dependency matrices for
all benchmark problems as calculated by RV-GOMEA-FBLT.
For the mutual information measure shown in Figure 3,
the dependency matrices for SOREB and OSoREB become
more specific and less noisy after more evaluations, this
becomes apparent in Figures 3h and 3g. All heatmaps shown
are zoomed in to the first 20 dimensions, making it easier
to inspect the dependencies, whilst still optimizing a 50-
dimensional problem. On the fully decomposable problems:

Sphere, Rastrigin and Michalewicz the mutual information
measure is not able to correctly identify the independence
of the variables. Even if variables are independent, a cor-
relation is measured. In combination with the normalization
of the dependency matrices used to create a FOS we can
conclude that this measure encounters high amounts of noise
for decomposable problems. The fitness-based method is able
to correctly identify two independent variables, which results
in a matrix containing only 0’s for all three decomposable
benchmark problems.

It is worth noting that the results obtained by our fitness-
based method cannot be compared to the Ml-based results
without careful consideration. Whilst our fitness-based method
can easily detect separability of two variables (whilst ignoring
machine precision) it is close to impossible to detect sepa-
rability whilst using the mutual information measure because
selection causes the solutions to align with the fitness contours
in the search space (Figure 1.). Further, the Mutual Information
needs to be normalized because the absolute values have
no real meaning. This makes the actual values computed
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for the fitness-based and MI-based approaches incomparable.
However, the way our algorithm uses information extracted
from these two measures can be used to compare the measures
themselves. Specifically, both measures are used to build a
dependency structure (in our case FOS) for the problem at
hand by iteratively merging the variables that are most closely
linked according to the normalized two measures are used.
Thus only relative values are important within one measure as
this drives which variables are merged first.

By definition of the SOREB and OSoREB problems, the
first two variables of a block exercise the highest influence on
the total sum and thus show the strongest dependencies. This
strong dependency can be seen in all Figures 2c, 2d, 3c, 3d,
3g and 3h, but only the fitness-based method (2c, 2d) and the
mutual information method on SoREB after 10° evaluations
have extracted the correct block structure without displaying
noise between decomposable variables. One of the main
drawbacks of the mutual information method now becomes
immediately clear, because even though the dependencies will
eventually be found, RV-GOMEA is able to already solve this
instance of SOREB within 1e5 evaluations if a proper FOS is
provided [5].

B. FOS structures

We can divide the benchmark problems into non-
overlapping and overlapping optimization problems. Sphere,
SoREB, Michalewicz, and Rastrigin are non-overlapping. The
Rosenbrock problem and the OSoREB problem contain over-
lapping components. To better visualize the FOS structures
produced by our methods, Figures 4 and 5 show the elements
captured in a single FOS structure. In these figures, the hori-
zontal axis represents the index of the optimization variables.
Every linkage set is represented in one row of the figure, the
highlighted x values mark the presence of that optimization
variable in that one linkage set. Colors are used to improve
visibility but do not contain any additional information.

1) Non-overlapping benchmarks: For the non-overlapping
problems, the optimal FOS structures are known and can be
compared with the FOS structures generated by RV-GOMEA-
FB. We will look at the algorithm’s FOS structures created
for Sphere and SoREB. Rastrigin and Michalewicz are not
considered here since for these problems the dependency
matrix and thus FOS structure is equal to that of Sphere.
The FOS structures found and used by RV-GOMEA-FB for
Sphere and SoREB that can be seen in Figures 4a and 4b are
as expected, considering the dependency matrices discussed in
Section VI-A. For Sphere, it holds that a fully decomposable
problem can best be represented by a univariate FOS consist-
ing of exactly ¢ subsets, each containing a single optimization
variable. As stated in Section V-B the SoREB function is
rotated in blocks of k consecutive optimization variables with

= 5 in this case. Thus the dependencies of SOREB should
be represented by a marginal product FOS containing blocks
of size k as is the case in Figure 4b.

2) Overlapping benchmarks: The optimal FOS structures
for overlapping benchmarks are unknown because no marginal

product FOS can describe all dependencies without combining
independent variables or leaving out dependencies. For these
overlapping problems, a distinction is made between RV-
GOMEA-FBLT and RV-GOMEA-FBMP. The latter linkage
learning method creates a marginal product FOS, whereas the
former continues to build a linkage tree, eventually contain-
ing all non-decomposable linkage sets. Figure 5 shows the
FOS structures created for Rosenbrock and OSoREB by RV-
GOMEA-FBLT and RV-GOMEA-FBMP where | = 20.

(b) SOREB

(a) Sphere

Fig. 4: FOS structures for £ = 50 with every block representing
a single linkage set

(a) Rosenbrock MP (b) Rosenbrock LT

(c) OSoREB MP (d) OSoREB LT

Fig. 5: Linkage structures for ¢ =
representing a single linkage set

20 with every block

C. Scalability analysis

Figure 6 shows the performance of different linkage learning
methods in combination with RV-GOMEA on all six bench-
mark problems.

1) (Partially) Decomposable problems: For the fully de-
composable problems Sphere, Rastrigin and Michalewicz, we
can observe that RV-GOMEA-FBLT and RV-GOMEA-FBMP
scale as well as RV-GOMEA-UNI and better than AMaLGaM-
FB. Whilst RV-GOMEA is partially based on AMalLGaM,
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the optimal mixing employed in RV-GOMEA has not been
shown to outperform the model based EDA approach used by
AMaLGaM on all benchmark problems before. In this paper
suitable comparison has been made between RV-GOMEA and
AMalLGaM as both algorithms have been provided with the
same linkage learning method and better results have been
obtained by RV-GOMEA, implying that the optimal mixing of
(RV-)GOMEA has significant added value in the real-valued
domain.

The incremental dependency updates have minimal over-
head on the overall scalability as opposed to the original
differential grouping (RV-GOMEA-DG) where the number of
dependency checks needed to build a linkage model scales
quadratically with the problem size.

On SoREB, a non-univariate linkage model is used as RV-
GOMEA baseline, containing blocks of 5 consecutive opti-
mization variables (RV-GOMEA-UNIS5). RV-GOMEA-FBLT
and RV-GOMEA-FBMP find the same structure (fig. 4b), but
in the grey-box setting a small overhead is noticeable as the
problem size increases. This overhead is caused by a decrease
in the ratio of dependent to independent pairs as the problem
size increases. By the definition of SoREB, every variable
is dependent on the other £ — 1 variables in its block and
has no dependency on all other £ — k problem variables.
If the dimensionality of SoREB increases, the number of
blocks increases, but the size of the blocks will remain equal
to k. In other words, as ¢ grows larger, the number of
independent variables ¢ — k& becomes larger and the number of
dependency checks that result in a measured dependency of
0 increases. Eventually, every possible pair will be checked,
which ultimately still causes a quadratic overhead compared
to the baseline RV-GOMEA-UNIS5, which uses a predefined
structure, but still scales better than the original fitness-based
linkage learning used in RV-GOMEA-DG.

2) Non-decomposable problems: As the Rosenbrock
and OSoREB problem contain non-decomposable sub-
components, RV-GOMEA-FBLT and RV-GOMEA-FBMP
generate different linkage models and their scalability should
be evaluated independently. As shown in Section VI-B2, a
full linkage tree FOS is built in RV-GOMEA-FBLT to capture
the dependence between single parameters in different sub-
components, whereas a marginal product structure is used
by RV-GOMEA-FBMP. The former results in slightly better
scalability on OSoREB implying that there is indeed added
value in bigger FOS elements that can capture the linkage over
partially dependent (sub)-components. On the Rosenbrock
problem, RV-GOMEA-FBLT and RF-GOMEA-FBMP show
similar scalability but are outperformed by RV-GOMEA-UNI,
implying that even though this problem contains dependencies,
it can still be efficiently solved by a univariate linkage model.

VII. DISCUSSION

The method introduced in this paper is able to learn
pairwise dependencies between variables online. There are,
however, certain issues left unaddressed in finding the optimal
linkage structure to any optimization problem. One of the

key questions left unanswered is how to deal with problems
containing overlapping sub-components. The optimal linkage
structure to solve these benchmark problems is unknown, nor
do we know whether a universally optimal linkage structure
for these kinds of problems exists for RV-GOMEA. Whilst two
of our benchmark problems contain overlapping components,
the results between our two proposed linkage models did not
vary much and we did not manage to find a definitive optimal
structure for these benchmark problems. It is of value to note
that recent efforts to move from marginal dependency models
to conditional dependency models are a very likely candidate
to overcome this issue [7]. The work in this article can
readily be combined with these novel dependency modeling
techniques.

While RV-GOMEA was shown to perform well on noise-
free (real-world) problems [6], [18], [20], [41], future work
remains to study how well these algorithms fare in case
of noisy real-world problems and to find a suitable value
for € when determining dependencies in noisy (real-world)
problems.

While our proposed approach defines relative dependen-
cies on pairs of variables, it does not provide an absolute
or relative minimal value to define non-separability of sub-
components. Moreover, there is no guarantee that variables
that have detectable linkage with our approach should always
be considered inseparable during optimization. More research
is required to determine whether it is possible to find a measure
that allows for the further decomposition of weakly dependent
sub-components.

When focusing on the pairwise dependency checks done
on the Rosenbrock problem, it occurs that whilst the results
obtained from these checks are as expected, pairwise depen-
dencies might not be suitable to model the higher order de-
pendence of this non-decomposable problem. Even though two
variables x; and ;2 are not pairwise dependent, their optimal
values both depend on the value of z;;; and vice versa,
making them dependent to some extent. These higher order
dependencies cannot be captured by the pairwise dependency
checks done by the approach introduced in this article.

It would furthermore be interesting to explore the use of
more recent adaptations of differential grouping [27], [34],
[35] in combination with RV-GOMEA. Also, it was recently
shown that the mechanisms that drive the estimation and
sampling of the Gaussian distributions as taken from AMalL-
GaM, can be replaced by that of the leading Gaussian-based
ES, CMA-ES. This gives a different variant of RV-GOMEA
that scales better on selected problems such as SoOREB [4]
we expect all results and comparisons between RV-GOMEA
and AMalL.GaM to straightforwardly extend to that variant of
RV-GOMEA and CMA-ES with similar conclusions, but it
would be interesting to immediately combine this also with
the different recent adaptations of differential grouping.

Lastly, the order in which pairs are currently checked is
random. As a consequence, our approach as proposed here is
invariant to permutations of coordinates. If problem-specific
knowledge indicates that certain pairs of variables are more
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Fig. 6: Medians of scalability experiments with each data point being the median of 30 successful runs.
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likely to be dependent than others, these pairs can be evaluated
first, which is likely to improve RV-GOMEA-FBLT’s perfor-
mance even more on specific problems. However, this will
likely disrupt the coordinate permutation invariance property,
one of the currents strengths of RV-GOMEA-FBLT.

VIII. CONCLUSION

We have introduced a fitness-based linkage learning ap-
proach that can find pairwise dependencies between variables
and build a linkage structure online without the need for any
problem specific knowledge. The proposed method has been
evaluated on different well-known benchmark problems and
has proven to be efficient in determining the correct pairwise
dependencies between variables. Two different methods have
been proposed based on estimated pairwise dependencies to
model the linkage structure of a problem. These methods have
been integrated into RV-GOMEA and AMalLGaM and resulted
in both algorithms being able to exploit important depen-
dencies online. RV-GOMEA-FBMP and RV-GOMEA-FBLT
have shown to outperform a state-of-the-art (for black-box
scenarios) EA known as AMalLGaM upon which RV-GOMEA
was based, whilst leveraging the same linkage model. Because
a comparison between RV-GOMEA and AMalL.GaM has never
before resulted in better performance of one algorithm on all
benchmark problems, this is the first time we can conclude
that RV-GOMEA has outperformed the model-based EA that
it was partially based on which clearly shows the added value
of the optimal mixing employed by RV-GOMEA.

Whilst the two methods used for RV-GOMEA have equal
performance on (partially) decomposable benchmarks, the
generated linkage models differ for benchmark problems with
overlapping sub-components. The difference lies in whether a
(partial) linkage tree is built that captures all possible depen-
dencies, or a marginal product linkage model is used. Whilst
both methods have their strengths, RV-GOMEA-FBLT scales
better on problems with strong dependencies and overlapping
sub-components, thus proving to be a more robust method for
large-scale real-world optimization problems with unknown
problem structures.

Given the overall scalability of RV-GOMEA-FBLT, we
conclude that the proposed algorithm is able to learn a linkage
model online and scale as well as RV-GOMEA provided with
the optimal structure, the current state-of-the-art for grey-box
optimization.
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