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Abstract—For almost 20 years, quality indicators (QIs)
have promoted the design of new selection mechanisms of
multiobjective evolutionary algorithms (MOEAs). Each indicator-
based MOEA (IB-MOEA) has specific search preferences related
to its baseline QI, producing Pareto front approximations with
different properties. In consequence, an IB-MOEA based on a
single QI has a limited scope of multiobjective optimization prob-
lems (MOPs) in which it is expected to have a good performance.
This issue is emphasized when the associated Pareto front geome-
tries are highly irregular. In order to overcome these issues, we
propose here an island-based multiindicator algorithm (IMIA)
that takes advantage of the search biases of multiple IB-MOEAs
through a cooperative scheme. Our experimental results show
that the cooperation of multiple IB-MOEAs allows IMIA to per-
form more robustly (considering several QIs) than the panmictic
versions of its baseline IB-MOEAs as well as several state-of-
the-art MOEAs. Additionally, IMIA shows a Pareto-front-shape
invariance property, which makes it a remarkable optimizer when
tackling MOPs with complex Pareto front geometries.

Index Terms—Island model, multiobjective optimization, qual-
ity indicators (QIs), selection mechanism.

I. INTRODUCTION

QUALITY indicators (QIs) have been especially note-
worthy in the evolutionary multiobjective optimization
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field [1]. QIs evaluate the quality of Pareto front approxi-
mations1 generated by multiobjective evolutionary algorithms
(MOEAs) [2], focusing on three specific aspects: 1) conver-
gence toward the Pareto front; 2) diversity of solutions; and
3) the coverage of the Pareto front. Mathematically, a QI is a
set function that assigns a real value to one or more approx-
imation sets simultaneously. This implies that QIs impose a
total order in the set � of all approximation sets, depend-
ing on their particular preferences [3]. From the plethora of
currently available QIs [1], the unary indicators that measure
convergence and coverage at the same time by a single value,
without requiring any knowledge of the true Pareto front, have
a preponderant position among them and have been extensively
used to compare MOEAs’ performance. Remarkable examples
of unary convergence indicators are the hypervolume indica-
tor (HV) [4], R2 indicator [5], inverted generational distance
(IGD) [6], IGD plus (IGD+) [7], additive ε indicator (ε+) [3],
and averaged Hausdorff distance (�p) [8].

In addition to the assessment of approximation sets, QIs
have also promoted the design of selection mechanisms of
MOEAs, giving rise to the so-called indicator-based MOEAs
(IB-MOEAs) [9]. IB-MOEAs include the incorporation of QIs
into environmental selection, density estimation, and archive
update rules. The underlying idea of these indicator-based
mechanisms is to select from a set of N solutions a subset
of size k < N such that the indicator value is optimized. In
the context of MOEA design, IB-MOEAs have remarkable
properties. The indicator-based mechanisms allow increasing
the selection pressure, which impacts in solving multiobjective
optimization problems (MOPs) with more than three objec-
tive functions, i.e., the so-called many-objective optimization
problems (MaOPs). This is an important property since Pareto-
based MOEAs (i.e., MOEAs whose environmental selec-
tion is based on the Pareto dominance relation)2 have poor
performance when solving MaOPs due to the dilution of the
selection pressure related to the exponential increase of mutu-
ally nondominated solutions in high-dimensional objective
spaces. Additionally, due to the preferences of each indicator,

1A Pareto front approximation, or approximation set, denoted as A, is a set
of solutions in objective space (especially mutually nondominated solutions)
that aims to approximate a Pareto front.

2Given �x, �y ∈ R
n, �x is said to Pareto dominate �y (denoted as �F(�x) ≺ �F(�y))

if and only if fi(�x) ≤ fi(�y) for all i = 1, . . . , m and there is at least an
index j ∈ {1, . . . , m} such that fj(�x) < fj(�y). In case that fi(�x) ≤ fi(�y) for
all i = 1, . . . , m, then �x is said to weakly Pareto dominate �y (denoted as
�F(�x) � �F(�y)).
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IB-MOEAs generate approximation sets with different distri-
butions for a specific Pareto front geometry [10], [11]. In the
specialized literature, there is a wide range of IB-MOEAs,
each one having particular advantages and drawbacks [9].

QIs have particular preferences that result in a different
order of the approximation sets in � [12]. For instance,
HV prefers solutions on the boundaries of concave Pareto
fronts (when the reference point is not close to the Nadir
point). In contrast, R2 tends to prefer solutions uniformly
distributed (more evidently for concave and linear Pareto
front shapes) because of the regular use of a set of convex
weight vectors3 for its calculation. Hence, if a QI is employed
to guide the selection process of an MOEA, the generated
Pareto front approximations will inherit characteristics related
to it [10]. In consequence, an IB-MOEA using a single base-
line QI will have a good performance on some MOPs and bad
performance on some others. This situation resembles the No-
Free Lunch theorem [13]. To overcome this issue, a possible
solution is to compensate for the weaknesses of an indica-
tor with the strengths of others, which motivates the creation
of multiindicator-based MOEAs (MIB-MOEAs). Additionally,
the combination of QIs’ preferences in MIB-MOEAs could
bring collateral improvements in the design of MOEAs whose
performance does not depend on the Pareto front shapes as
stated in [14].

Currently, there are a few MIB-MOEAs in the special-
ized literature [14]–[22]. According to the available pro-
posals, MIB-MOEAs have been mainly designed in two
ways: 1) using a single selection mechanism that incorpo-
rates the search biases of multiple QIs [15]–[17], [21], [22]
and 2) utilizing simultaneously multiple selection mechanisms,
each one based on a single QI [14], [18]–[20]. From these
approaches, a remarkable one is the cooperative MIB-MOEA
(cMIB-MOEA) [20]. The core idea of cMIB-MOEA is the
cooperation of five steady-state IB-MOEAs4 based on HV, R2,
IGD+, ε+, and �p under the master–slave paradigm to exploit
the search properties of the selected algorithms. All the IB-
MOEAs are connected bidirectionally to a master node that
maintains a global Pareto front approximation in an archive.
During fmig iterations, the IB-MOEAs are independently exe-
cuted to evolve in isolation their populations. After this period,
each IB-MOEA sends its whole population to the master node
where the subpopulations are combined with the current con-
tents of the global archive to obtain the set of nondominated
solutions. If the maximum archive size is exceeded, a pruning
process is performed, aiming to get the set of solutions that
minimize the Riesz s-energy [25]. Finally, a migration pro-
cedure is performed to improve the diversity of IB-MOEAs.
In each island, the individual contributions to the associated
indicator of all the solutions are calculated, and nmig ones with
the worst contribution values are replaced by the same number

3A vector �w ∈ R
m is a convex weight vector if ∀i = 1, . . . , m, wi ≥ 0 and∑m

i=1 wi = 1.
4The IB-MOEAs are based on the framework of the S-metric selection

evolutionary multiobjective algorithm (SMS-EMOA) [23]. Hence, they use
a steady-state selection where the nondominated sorting algorithm [24] and
an indicator-based density estimator are the primary and secondary selection
criteria, respectively.

of solutions randomly selected from the global archive. The
only restriction is that the replacing solutions must had been
generated by other IB-MOEAs. cMIB-MOEA exhibited better
performance than its baseline IB-MOEAs and a Pareto front
shape invariant performance emerged from the cooperative
scheme.

In this article, we present an extension of cMIB-MOEA,
denoted as island-based multiindicator algorithm (IMIA), to
study the effect of the cooperation of multiple IB-MOEAs.
Unlike cMIB-MOEA that uses a master–slave model and it
is not parallelized, IMIA is a parallel MOEA that strictly
follows the island model. Five steady-state IB-MOEAs, each
one using a density estimator based on HV, R2, IGD+, ε+,
and �p, evolve micropopulations in isolation and, after a
predefined number of iterations, they synchronously commu-
nicate through an improved migration process, adopting a
user-defined communication topology. Additionally, instead of
adopting a master node with a global archive to manage a cen-
tralized Pareto front approximation, IMIA uses a distributed
approach where each island maintains its own approximation
set. As a result, this allows IMIA to increase the selection
pressure when tackling MaOPs and increase the diversity of
solutions in comparison with cMIB-MOEA that has some
problems in MaOPs. Finally, IMIA improves the migration
method of cMIB-MOEA by iteratively replacing the worst
contributing solutions to the given indicator by solutions com-
ing from IB-MOEAs indicated in the communication topology.
Overall, these improvements make IMIA a better optimizer
than cMIB-MOEA. The experimental results show that IMIA
takes advantage of the properties of each IB-MOEA to increase
its exploration ability, producing Pareto front approximations
with a high-quality degree of convergence, diversity, and cov-
erage, regardless of the Pareto front geometry of the MOP
being solved. The main contributions of this article are the
following.

1) We propose the first island-based IB-MOEA, called
IMIA, whose core idea is the cooperation of multiple
IB-MOEAs. Moreover, we implement IMIA using the
multicore parallel scheme to reduce its computational
cost.

2) We show that due to the cooperation of multiple IB-
MOEAs, IMIA can perform more robustly (under seven
QIs: HV, R2, IGD+, ε+, �p, Riesz s-energy, and the
Solow–Polasky Diversity [26]) than the panmictic ver-
sions of its baseline IB-MOEAs. In this regard, we
define a robust performance as the capacity of an
MOEA to consistently obtain the best results under
several QIs (measuring convergence and diversity) for
MOPs with different Pareto front shapes and scaling the
dimensionality of the objective space.

3) IMIA generates Pareto front approximations with high
diversity (especially for MOPs with highly irregular
Pareto front geometries) in comparison with its base-
line panmictic IB-MOEAs and several state-of-the-art
MOEAs specifically designed to tackle different Pareto
front shapes.

The remainder of this article is organized as follows.
Section II provides the mathematical definitions of QIs
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employed in the proposal. An overview of the current
multiindicator-based MOEAs is provided in Section III. Our
proposed approach is outlined in Section IV. Section V
presents the experimental results. Finally, Section VI con-
cludes this article and sketches the future research directions.

II. BACKGROUND

In this section, we formally define an MOP and the QIs: HV,
R2, IGD+, ε+, �p, Riesz s-energy (Es), and the Solow Polasky
diversity (SPD). In all cases, let A be an approximation set and
Z be a reference set. m is the dimensionality of the objective
space.

Throughout this article, we focus, without loss of general-
ity, on unconstrained multiobjective optimization problems for
minimization [2], which are defined as follows:

min
�x∈X

�F(�x) := [
f1(�x), f2(�x), . . . , fm(�x)]T (1)

where �x = (x1, x2, . . . , xn)
T is the n-dimensional vector of

decision variables and X ⊆ R
n; fj : X → R, j = 1, . . . , m are

the objective functions.
Definition 1 (Unary Quality Indicator): A unary quality

indicator I is a function I : � → R, which assigns a real
value to a Pareto front approximation. � is the set of all
approximation sets.

Definition 2 (Hypervolume Indicator [4]): Given an anti-
optimal reference point �r ∈ R

m, HV is defined as follows:

HV(A, �r) = L
(
⋃

�a∈A

{�b | �a ≺ �b ≺ �r
}
)

(2)

where L(·) denotes the Lebesgue measure in R
m.

Definition 3 (Unary R2 Indicator [5]): The unary R2 indi-
cator is defined as follows:

R2(A, W) = − 1

|W|
∑

�w∈W

max
�a∈A

{u�w(�a)} (3)

where W is a set of weight vectors and u�w : R
m → R is a

scalarizing function defined by a weight vector �w ∈ W that
assigns a real value to each m-dimensional vector.

Definition 4 (IGD+ Indicator [7]): The IGD+ for
minimization is defined as follows:

IGD+(A, Z) = 1

|Z|
∑

�z∈Z

min
�a∈A

d+(�a,�z) (4)

where d+(�a,�z) =
√∑m

i=1 (max{ai − zi, 0})2.
Definition 5 (Unary ε+ Indicator [3]): The unary ε+ indi-

cator gives the minimum distance by which a Pareto front
approximation needs to or can be translated in each dimen-
sion in the objective space such that a reference set is weakly
dominated. Mathematically, it is defined as follows:

ε+(A,Z) = max
�z∈Z

min
�a∈A

max
1≤i≤m

{ai − zi}. (5)

To define the averaged Hausdorff distance (�p), it is first
necessary to introduce a variant of the indicators generational
distance (GD) [27] and IGD [6], denoted as GDp and IGDp,
respectively.

Definition 6 (GDp Indicator [8]):

GDp(A,Z) =
(

1

|A|
∑

�a∈A
d(�a,Z)p

)1/p

(6)

where d(�a,Z) = min�z∈Z
√∑m

i=1(ai − zi)2.
Definition 7 (IGDp Indicator [8]):

IGDp(A,Z) = GDp(Z,A) =
⎛

⎝ 1

|Z|
∑

�z∈Z
d(�z,A)p

⎞

⎠

1/p

. (7)

Definition 8 (Averaged Hausdorff Distance Indicator
(�p) [8]): For a given p > 0, �p is defined as follows:

�p(A, Z) = max
{
GDp(A, Z), IGDp(A, Z)

}
. (8)

As with IGD, the �p indicator requires an aspiration set. �p

was proposed to eliminate some shortcomings of IGD such as
its sensitivity to the cardinality of sets [8].

Definition 9 (Indicator Contribution): Let I be any indica-
tor in the set {HV, R2, IGD+, ε+,�p}. The individual contri-
bution C of a solution �a ∈ A to the indicator value is given
as follows:

CI(�a,A) = |I(A) − I(A \ {�a})|. (9)

Definition 10 (Riesz s-Energy [25]): For a given s > 0, the
Riesz s-energy indicator is defined as follows:

Es(A) =
∑

�a∈A

∑

�b∈A\{�a}

∥
∥
∥�a − �b

∥
∥
∥

−s
(10)

where ‖·‖ represents the Euclidean distance. As s → ∞, Es

prefers more uniform solutions. This indicator measures the
even distribution of a set of points in d-dimensional manifolds.

Definition 11 (Riesz s-Energy Individual Contribution):
The individual contribution C of a solution �a ∈ A to the Riesz
s-energy indicator is as follows:

CEs(�a,A) = 1

2

[
Es(A) − Es(A \ {�a})]. (11)

Unlike (9), CEs involves the term 1/2 since
∥
∥
∥�a − �b

∥
∥
∥ =

∥
∥
∥�b − �a

∥
∥
∥ for all �a, �b ∈ A.

Definition 12 (Solow Polasky Diversity [26]): Let C ∈
R

N×N be a full-rank matrix. The (i, j)-element of C is defined

by cij = e
−θ ·‖�ai−�aj‖
2 , i, j = 1, . . . , N where �ai, �aj ∈ A and

θ > 0 is a user-defined parameter. Each cij denotes the corre-
lation between �ai and �aj. If two points are of the same species,
the correlation is one. Let M = C−1. Hence, the SPD is
given by

SPD(A) =
N∑

i=1

N∑

j=1

mij. (12)

According to Basto-Fernandes et al. [26], SPD(A) tends to
N if the distance between all species tends to be very large.
In contrast, SPD(A) tends to one if species are very similar
with respect to each other. The parameter θ indicates how fast
the population tends to N when the distances increase.
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III. PREVIOUS RELATED WORK

In this section, we briefly review some MIB-MOEAs and
MOEAs that were designed to tackle MOPs with different
Pareto front shapes.

A. Multiindicator-Based MOEAs

To the best of our knowledge, the first MIB-MOEA was
proposed by Phan and Suzuki [15] in which multiple indicator-
based mating selection mechanisms were combined, using
the AdaBoost algorithm. The proposal, denoted as boost-
ing indicator-based evolutionary algorithm (BIBEA), aimed to
select potential parents for crossover, avoiding the bias of a
single selection mechanism, increasing the convergence speed
of the algorithm and producing well-diversified Pareto fronts.
In further work, Phan et al. [16] proposed BIBEA-P, which
improves the previous multiindicator mating selection scheme
by using PDI-Boosting instead of AdaBoost. The authors also
proposed a multiindicator environmental selection mechanism,
ensembling HV and ε+, among other QIs.

In 2016, Li et al. [17] introduced the stochastic ranking-
based multiindicator algorithm (SRA) that aims to balance
the search biases of the indicator ε+ and the shift-based den-
sity estimator (SDE) [28]. SRA uses the stochastic ranking
algorithm as its environmental selection mechanism as well
as to balance the search biases of ε+ and SDE. SRA exhib-
ited promising performance on different benchmark prob-
lems. However, the authors stated that further studies are
necessary.

In 2017, Hernández Gómez and Coello Coello [18]
proposed to use an environmental selection mechanism based
on R2 in conjunction with the Riesz s-energy as the back-
bone of a density estimator to break the ties of the former
mechanism by promoting good diversity. The simultaneous
utilization of both schemes allows to improve the diversity
of solutions due to the properties of the Riesz s-energy, while
keeping a high selection pressure due to the R2 indicator.

Focusing on taking advantage of the search properties of R2,
IGD+, ε+, and �p, Falcón-Cardona and Coello Coello [19]
proposed a hyperheuristic method that, according to the cur-
rent state of the evolutionary process, selects the best-suited
indicator-based density estimator (IB-DE), using a Markov
chain. The so-called multiindicator hyperheuristic (MIHPS)
gave insights about the competition of IB-DEs and the way
in which each one is preferred according to the state of the
search. In 2019, Falcón-Cardona et al. [14] proposed a density
estimator that, depending on a statistical analysis of conver-
gence, switches between an IGD+-based density estimator to
increase diversity and a Riesz s-energy-based density estimator
to promote diversity in the case that the convergence behav-
ior is stagnated. Due to the use of this mechanism, a Pareto
front shape invariance property emerges in an MOEA. In 2020,
Falcón-Cardona et al. [21] proposed a density estimator that
ensembles five IB-DEs, using the AdaBoost algorithm as in the
case of BIBEA. Unlike BIBEA that requires an offline learn-
ing process, the ensemble IB-DE performs an online learning
to adjust the weights of the linear combination of IB-DEs.
This proposal showed robust performance under several QIs,

i.e., due to its use, an MOEA is able to obtain the best results
with respect to different indicators.

B. MOEAs Focused on Irregular Pareto Front Shapes

AR-MOEA [29] uses a density estimator based on the
enhanced IGD (IGD-NS) which, unlike the original IGD, pro-
motes in a better way the convergence and uniformity of
solutions. However, the main contribution of AR-MOEA is the
utilization of an adaptative technique that, at each generation,
creates a new reference set, based on the solutions stored in
an external archive, aiming to approximate the current Pareto
front shape. This reference set is employed to calculate the
IGD-NS contributions of all the solutions. This adaptive ref-
erence set, in conjunction with IGD-NS, allows AR-MOEA to
effectively tackle MOPs with different Pareto front shapes.

Balancing convergence and diversity is the underlying idea
of GrEA [30]. To this aim, GrEA exploits a grid-based scheme
to increase the selection pressure toward the Pareto front while
maintaining a good diversity of solutions. Compared to other
grid-based MOEAs, GrEA focuses on each individual instead
of the whole grid and it employs three grid-based selection
criteria. Moreover, an adaptive mechanism is applied to shape
the neighborhood of individuals, promoting a better diversity.
Finally, both the neighborhood structure and the three grid-
based selection criteria are used to adjust the fitness values of
the solutions.

SPEA2+SDE [28] combines SPEA2 [31] with the
SDE [28]. SDE is a general method that can be embedded into
any distance-based density estimator to increase the selection
pressure and to preserve a good diversity of solutions which
is desirable when solving MaOPs. For this sake, SDE adjusts
the position of solutions according to their relative proxim-
ity to the Pareto front, by using the d+ distance of IGD+
instead of the Euclidean distance. This slight modification
allows a distance-based density estimator to take into account
convergence and diversity information in order to increase the
selection pressure.

Two_Arch2 [32] is a hybrid MOEA that uses two sub-
populations: 1) one dedicated to maintain convergence and
2) the other to preserve diversity. Two_Arch2 was especially
designed to tackle MaOPs. The convergence subpopulation is
updated based on the ε+ indicator. The other subpopultion
aims to maintain diversity by using an update rule based on an
L1/m norm, where m is the number of objective functions. Both
subpopulations interact to produce a Pareto front approxima-
tion with both convergence and diversity properties regardless
of the Pareto front geometry.

C. State-of-the-Art MOEAs

Currently, big data optimization problems are one impor-
tant research field. To deal with these problems Yi et al. [33]
proposed an adaptive mutation operator, embedded into the
NSGA-III [34] since the variation operators importantly influ-
ence the performance of MOEAs on MOPs with many
decision variables. Following this attempt of solution where
the genetic operators have a decisive role, Yi et al. [35]
benchmarked the performance of three crossover operators,
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using NSGA-III, on a human electroencephalogram signal
processing problem, which is a large-scale MOP. The use
of different crossover operators allowed NSGA-III to present
a better performance when solving large-scale MOPs. More
recently, Gu and Wang [36] and Zhang et al. [37] introduced
the information feedback models (which is the use of his-
torical information of individuals to update the process of
the current generation) to deal with large-scale MOPs. This
methodology was used to improve the performance of both
NSGA-III and MOEA/D [38], generating significant improve-
ments. In addition to large-scale MOPs, other important and
demanding problems are the interval MOPs (IMOPs) since
to obtain a reasonable good solution, a large number of
function evaluations are required. Sun et al. [39] incorpo-
rated several local searches to increase the performance of
an MOEA by improving its exploration skills. These local
search mechanisms are activated only when the underlying
MOEA reaches a specific hypervolume value. In consequence,
a significant performance improvement is achieved. Another
important technique to solve large-scale MOPs is the use
of multiple populations since they allow to explore differ-
ent regions of the search space. Tian et al. [40] proposed a
multipopulation MOEA to deal with large-scale multimodal
MOPs. The proposed approach guides the multiple populations
using adaptive search directions to provide efficient conver-
gence in the huge search space, differentiating the plethora of
regions. Last but not least, dynamic MOPs are also challeng-
ing problems that deserve the attention from the evolutionary
multiobjective optimization community. Under this direction,
the use of multiobjective particle swarm optimizers (MOPSOs)
is a viable alternative. Kouka et al. [41] designed an MOPSO
to tackle dynamic MOPs where the key contribution is the
use of multiple populations and cooperative agents that share
knowledge to deal with the changing search environment.
Their experimental results showed the effectiveness of this
approach.

IV. ISLAND-BASED MULTIINDICATOR ALGORITHM

The proposed IMIA algorithm is an island-based MOEA
where in each island an steady-state IB-MOEA (follow-
ing the framework of SMS-EMOA) evolves a micropop-
ulation5 in isolation during a given number of iterations
(fmig iterations). After that, a synchronous migration pro-
cess is performed where each island sends nmig solutions to
each island indicated by a connection topology. Additionally,
due to the use of micropopulations, each island main-
tains an external archive where the best-found solutions
are stored to preserve high diversity. In the following,
we broadly describe the general framework of IMIA, the
generic steady-state IB-MOEA employed in each island,
the migration process, and the management of the external
archives.

5The decision of using micropopulations is because
Hernández-Gómez et al. [42] found that the computational cost of SMS-
EMOA when solving MaOPs does not considerably grow if populations of
no more than 15 individuals are used.

Algorithm 1 IMIA General Framework
Require: Set of indicators I = {I1, . . . , Ik}; Population size μ;

migration frequency fmig; number of solutions to migrate nmig;
topology matrix M.

Ensure: Pareto front approximation A.
1: Randomly initialize Pj, j = 1, . . . , k with |Pj| = μ/k

2: Aj = Non-dominated
(⋃k

i=1 Pi

)
, j = 1, . . . , k

3: while stopping criterion is not fulfilled do
4: parallel for j = 1 to k do
5: {Pj, Aj} = IB-MOEA(Pj, Ij, Aj, μ, fmig, nmig, M)
6: end parallel for
7: end while
8: A = ⋃k

j=1 Aj ∪ Pj
9: A = Non-dominated(A)

10: if |A| > μ then
11: Obtain �z∗ and �znad from A and normalize it
12: end if
13: while |A| > μ do
14: �aworst = arg max�a∈A CEs(�a,A)
15: A = A \ {�aworst}
16: end while
17: return A

A. General Framework

The general framework of IMIA is presented in
Algorithm 1. To execute IMIA, the user needs to provide the
indicator Ij that each island j = 1, . . . , k will use; the size
μ of the approximation set to be generated; and the migra-
tion parameters, namely, fmig, nmig, and the topology matrix
M (or adjacency matrix). In line 1, all the subpopulations Pj

are randomly initialized and then each archive Aj is set to
have the globally nondominated solutions. The main loop of
IMIA (lines 4–8) consists of the parallel execution of the IB-
MOEAs (described in Algorithm 2) where they communicate
synchronously to migrate solutions after being executed fmig
iterations. This process continues until the stopping criterion is
met. In line 9, all the subpopulations and archives are merged
in a single set A from which we obtain the nondominated solu-
tions. If the cardinality of A is greater than μ, the solutions in
A are normalized so that we iteratively reduce its cardinality
by deleting at each iteration the worst contributing solution to
the Riesz s-energy until A has μ individuals [43]. Finally, A
is returned as the approximation set.

B. Generic Steady-State IB-MOEA

Algorithm 2 introduces the generic steady-state IB-MOEA
(following the SMS-EMOA framework [23]) that is executed
on every island. Each IB-MOEA requires seven inputs for its
execution: the population to be evolved, the baseline indicator
I employed in the density estimator, and the local archive with
the given maximum size that is set to μ, fmig, nmig, and M.
This generic IB-MOEA does not have initialization instruc-
tions since P and A were initialized in lines 1 and 2 from
Algorithm 1, respectively. Hence, this allows IB-MOEAs to
be executed iteratively in the main loop of IMIA. The main
loop of the IB-MOEA is executed in lines 2–17 for fmig itera-
tions. First, a new offspring solution is generated from P, using
roulette-wheel parent selection, simulated binary crossover
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Algorithm 2 Generic Steady-State IB-MOEA
Require: Population P; indicator I; local archive A; maximum

archive size μ; migration frequency fmig; number of solutions
to migrate nmig; topology matrix M.

Ensure: Updated population P and local archive A
1: g = 0
2: while g < fmig do
3: Generate offspring �q from population P
4: Q = P ∪ {�q}
5: Obtain �z∗ and �znad from Q and normalize it
6: {R1, . . . , Rt} = Non-dominated-sorting(Q)
7: if |Rt| > 1 then
8: �rworst = arg min�r∈Rt

CI(�r, Rt)
9: else

10: �rworst is the single solution in Rt
11: end if
12: if �q �= �rworst then
13: A = Insert(A, �q, μ)
14: end if
15: P = Q \ {�rworst}
16: g = g + 1
17: end while
18: {P,A} = Migration(P, I,A, μ, fmig, nmig, M)
19: return {P,A}

(SBX), and polynomial-based mutation (PBM) [24]. This solu-
tion is added to P to generate the set Q that is then normalized
and processed by the nondominated sorting algorithm [24] to
create a set of dominance layers {R1, . . . , Rt}. If the last layer
Rt contains more than one solution, then the worst contribut-
ing solution �rworst ∈ Rt to I is identified. Otherwise, �rworst
is set to be the sole solution in Rt. In case that �rworst is not
the newly created solution, the latter is inserted in the local
archive A using Algorithm 3. Finally, �rworst is removed from
Q to shape the next population P and the iteration counter g is
increased by one. Once the main loop is broken, the migration
process of Algorithm 4 is performed. Since the migration is
a blocking process due to its synchronous design, IB-MOEA
will wait until all the immigrant solutions have arrived. Finally,
the updated P and A are returned.

C. Archive Management

The external archive (Algorithm 3) is managed by two
selection criteria: 1) Pareto dominance and 2) Riesz s-energy
minimization [43]. A solution �r to be inserted is first tested
using the Pareto dominance relation against all the individuals
in A. Every time that �r dominates a solution �a ∈ A, the latter
is removed from A. However, if at least one solution in the
archive weakly dominates �r, then the process is stopped and
A is returned without adding �r. Assuming that �r is not weakly
dominated by any of the elements in A, the former is added to
the archive. If the cardinality of the archive is greater than its
maximum possible size μ, it is necessary to prune it follow-
ing an iterative process. At each iteration, the solution with the
worst contribution to the Riesz s-energy indicator is removed
until the desired size μ is reached. Finally, A is returned.

D. Migration Process

The exchange of individuals via migration is crucial for the
overall performance of IMIA. It increases the diversity of both

Algorithm 3 Insert
Require: Archive A; solution �r to be inserted; maximum archive

size μ.
Ensure: Updated archive A

1: for all �a ∈ A do
2: if �r ≺ �a then
3: A = A \ {�a}
4: else if �a � �r then
5: return A
6: end if
7: end for
8: A = A ∪ {�r}
9: while |A| > μ do

10: �aworst = arg max�a∈A CEs(�a,A)
11: A = A \ {�aworst}
12: end while
13: return A

Algorithm 4 Migration
Require: Population P; indicator I; archive A; maximum archive

size μ; migration frequency fmig; number of solutions to migrate
nmig; topology matrix M.

Ensure: Updated population P and archive A
1: for all destination islands in M of the current island do
2: for j = 1 to nmig do
3: Randomly select a solution �r ∈ P to migrate
4: Send solution �r
5: end for
6: end for
7: Let L denote the number of source islands of this island
8: t = 1
9: while t ≤ L · nmig do

10: �rworst = arg min�r∈P CI(�r, P)
11: P = P \ {�r}
12: t = t + 1
13: end while
14: t = 1
15: while t ≤ L · nmig do
16: if a solution �r is received then
17: A = Insert(A, �r, μ)
18: P = P ∪ {�r}
19: t = t + 1
20: end if
21: end while
22: return {P,A}

the main population and the local archive in each island. In
Algorithm 4, the migration is performed in lines 1–6 where the
invoked island sends nmig solutions (randomly selected from
the main population P) to each of its neighboring islands that
are determined by the topology matrix M. After sending the
solutions, the island is ready for receiving immigrant solutions.
Hence, it is first necessary to determine which solutions from
P will be replaced. In our case, we iteratively delete from P
the L · nmig worst contributing solutions to the given indicator
I in lines 9–13, where L is the number of source islands of
the current island. The blocking reception process is described
in lines 15–21, where the algorithms wait until receiving the
total L · nmig of immigrant solutions. Each time a solution is
received, it is inserted in the archive (using Algorithm 3) and
it is directly added to P in one of the available places. Once
all the immigrant solutions were received, the updated P and
A are returned.
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E. Runtime Complexity

In this section, we provide the runtime complexity of a sin-
gle iteration of the parallel for in lines 4–6 in Algorithm 1.
Hence, it is necessary to first determine the runtime complex-
ity of the Insert and Migration operations, shown in
Algorithms 3 and 4, respectively. It is worth noting that the
cardinality of each Aj is at most μ and |Pj| = μ/k for all
j = 1, . . . , k. The complexity of the Insert operation is
dominated by the while loop in lines 9–12 since the for loop
takes O(m|Aj|) = O(mμ). The while loop requires the selec-
tion of the worst contributing solution to the Riesz s-energy,
which is performed using the algorithm proposed in [43] that
takes �(mμ2). Hence, the overall complexity of the Insert
algorithm is �(mμ2).

The Migration algorithm (see Algorithm 4) is mainly
composed of three loops. The for loop in lines 1–6 takes
O((k − 1) · nmig), where an island can send solutions to at
most k − 1 islands. The while loop in lines 15–21 invokes the
Insert algorithm a total number of L · nmig times, where
L is at most k − 1. Hence, this while loop is performed in
O((k − 1) · nmig · mμ2). The remaining while loop dominates
the complexity of the Migration because it involves the
selection of the worst contributing solution to the Ij indicator.
Let τj(μ) denote the complexity of determining the worst con-
tributing solution to Ij. In consequence, line 10 of Algorithm 4
takes O(τj(μ/k)) and this operation is repeated L · nmig times.
Thus, the overall complexity of the Migration algorithm is
O((k − 1) · nmig · τj(μ/k)). Regarding τj(μ), in the case of
using HV via the walking-fish-group (WFG) algorithm [44],
τ(μ) = O(2μ). On the other hand, in the case of using IGD+,
R2, ε+, and �p, computing the worst contributing solution
takes τ(μ) = �(mμ2), according to [45].

The runtime complexity of Algorithm 2 is dominated by
line 8 where it is determined the worst contributing solution
to the given indicator in O(τ (μ/k)). The remaining operations
are at most O(μ2). For instance, the nondominated sorting is
performed in O(m(μ/k)2) and the Insert operation in line
13 takes O(mμ2). Since the while loop is repeated fmig times
and in line 18, the Migration is executed, the overall com-
plexity of Algorithm 2 is O(fmig·(τ (μ/k)+mμ2)+(k−1)·nmig·
τ(μ/k)). Since fmig, nmig, and k are constants, the complexity
can be written as O(τ (μ/k) + mμ2), which also corresponds
with the complexity of the parallel for in Algorithm 1.

V. EXPERIMENTAL RESULTS

This section is devoted to analyzing the performance
of IMIA, employing islands with SMS-EMOA [23],
R2-EMOA [5], IGD+-MaOEA [45], ε+-MaOEA, and �p-
MaOEA (the last two algorithms are similar to IGD+-
MaOEA). We decided to utilize these five IB-MOEAs because
according to Falcón-Cardona and Coello Coello [10], they
exhibit different convergence and diversity properties that
can be combined to compensate for the weaknesses of
a given IB-MOEA with the strengths of the others. The
islands are linked through a fully connected graph topol-
ogy and each IB-MOEA uses a micropopulation of μ/5

TABLE I
SUMMARY OF PARETO FRONT SHAPES RELATED

TO THE SELECTED MOPS

individuals. IMIA is compared with panmictic versions6 of its
five baseline IB-MOEAs and five state-of-the-art MOEAs7:
1) AR-MOEA [29]; 2) GrEA [30]; 3) SPEA2+SDE [28];
4) Two_Arch2 [32]; and 5) SRA [28] (which is a MIB-
MOEA). These five state-of-the-art MOEAs share one prop-
erty: they have been designed to tackle MOPs with different
Pareto front shapes.

For comparison purposes, we adopted the test suites Deb-
Thiele-Laumanns-Zitzler (DTLZ) [47], WFG [48], and their
inverted versions DTLZ−1 and WFG−1 [49], using 2, 3, 4, 5,
6, and 7 objective functions. Table I presents an overview of
the Pareto front shapes related to the considered test problems,
where it is emphasized if the Pareto front geometry is corre-
lated with the shape of a simplex formed by a set of convex
weight vectors. Regarding the DTLZ and DTLZ−1 test prob-
lems, the number of variables was set to n = m+K −1, where
m is the number of objective functions, and K = 5 for DTLZ1,
K = 10 for DTLZ2-DTLZ6, and K = 20 for DTLZ7. Their
inverted counterparts share the same value of K. Concerning
the WFG and WFG−1 problems, Table II shows the num-
ber of variables and position-related parameters together with
the number of objective functions. For each test instance, we
performed 30 independent executions and, to have statistical
confidence, we employed the one-tailed Wilcoxon rank-sum
test, using a confidence level of α = 0.05.

IMIA8 was implemented using the C programming language
(compiler GCC 4.7.2 20121109) and we adopted the OpenMP
library to deal with the parallel execution of the islands (line
4 of Algorithm 1). The running environment is the following:
Intel Core i7-3930K CPU @ 3.20 GHz (6 cores), having 8-
GB RAM and Red Hat 4.7.2-8 as the operating system. It is
worth noting that all the algorithms were executed under the
same running environment.

6They were implemented following Algorithm 2, adding an initialization
phase for the main population and not using the external archive nor the
migration process.

7We employed the algorithms implemented in the PlatEMO platform [46].
8The source code of IMIA is available at http://computacion.cs.cinvestav.

mx:/jfalcon/IMIA/.
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TABLE II
COMMON PARAMETER SETTINGS APPLICABLE TO ALL THE μ VALUES

A. Parameters Settings

For a fair comparison, IMIA and all the selected MOEAs
use the same population size μ. On the one hand, when com-
paring IMIA with the panmictic IB-MOEAs, we used different
values of μ = 50, 75, 100, 120, 140. On the other hand, we
set μ = 140 for the comparison of IMIA with AR-MOEA,
GrEA, SPEA2+SDE, Two_Arch2, and SRA. IMIA and all
the selected MOEAs utilize simulated binary crossover and
PBM as their genetic operators [24]. For two- and three-
objective MOPs, we set the crossover probability to 0.9, and
the crossover distribution index to 20, while for MaOPs these
values are set to 1.0 and 30, respectively. For all test instances,
the mutation probability is set to 1/n (where n is the num-
ber of decision variables), and the mutation distribution index
is set to 20. We employed a maximum number of function
evaluations as the stopping criterion (see Table II). Regarding
IMIA, fmig = μ/5, nmig = 1, and a fully connected graph
topology is employed as M in all cases. The global and local
archives of IMIA have a cardinality that is equal to μ. Due
to the use of the island model, IMIA was implemented adopt-
ing a multicore parallel approach via OpenMP. To generate
the weight vectors that R2-EMOA requires, Uniform Design,
using the Hammersley method (UDH) [50] is employed. It is
worth noting that UDH can produce sets of weight vectors
of any cardinality, unlike the simplex-lattice design method.
Additionally, we used the achievement scalarizing function as
the utility function for R2-EMOA. {IGD+, ε+,�p}-MaOEA
uses the current set of nondominated solutions as reference
set. Regarding the PlatEMO implementations, AR-MOEA,
SPEA2+SDE, and SRA do not need special parameters set-
tings while GrEA and Two_Arch2 do. The number of divisions
of the objective space employed by GrEA is shown in Table II.
The size of the convergence archive of Two_Arch2 is equal
to the population size and the fractional distance is set to 1/m
for all the test instances. These parameter values are suggested
by the authors of GrEA and Two_Arch2 in [30] and [32],
respectively.

To assess the Pareto front approximations, we decided to
utilize seven QIs: HV, R2, IGD+, ε+, �p, Riesz s-energy,
and the SPD. The reason of this decision is that we aimed
to determine if the MOEAs’ performance is robust under sev-
eral quality measures, i.e., we wanted to know if the MOEA’s
performance was consistently good or bad in the light of the
selected convergence and diversity indicators. Table III shows
the reference points that HV employs per each test problem.
R2-EMOA uses UDH-based weight vectors and the vector-
angle distance scaling function. For the calculation of IGD+,
ε+, and �p, a reference set is required. The reference sets

TABLE III
REFERENCE POINTS FOR THE HV CALCULATION

are constructed by merging the Pareto front approximations
from the MOEAs, getting the nondominated solutions and,
then, applying a Riesz s-energy-based subset selection, with
s = m − 1 [43]. According to Hardin and Saff [51], a uniform
point set is favored if s is greater or equal to the dimension of
the manifold covered. The cardinalities of the reference sets
are equal to 100 · m. Finally, the parameter θ of SPD is set to
10 for all cases.

B. Comparing IMIA With Panmictic IB-MOEAs

In this section, we discuss the performance of IMIA in
comparison with the panmictic IB-MOEAs. Due to the high
computational cost of executing a panmictic SMS-EMOA on
MaOPs, we decided to compare IMIA with the IB-MOEAs in
MOPs with 2, 3, and 4 objective functions. However, to allow
an exhaustive experimentation, we used different population
sizes, i.e., μ = 50, 75, 100, 120, 140. Due to space limtia-
tions, Table IV summarizes all the numerical results, showing
the statistical ranks obtained by each MOEA per quality indi-
cator and population size. The complete numerical results are
available in the supplementary material.

For a population size of 50 individuals, Table IV shows that
SMS-EMOA is the best algorithm, getting the first place for all
the convergence indicators and the second place for diversity
indicators where IMIA has the best performance. In contrast,
IMIA is consistently the best-ranked algorithm for R2, �p, Es,
and SPD and it obtains the second and third places regarding
ε+ and HV, respectively, for μ = 75, 100, 120, and 140 indi-
viduals. For these μ values, SMS-EMOA is the best-ranked
algorithm for HV, IGD+, and ε+. This is an expected result
since SMS-EMOA optimizes HV and the preferences of this
QI are highly correlated with those of IGD+ and ε+ [12], [52].
A reason that explains why IMIA does not get the first places
for HV, IGD+, and ε+ is that the Pareto front approximations
of our proposed approach have a high degree of diversity as
it is shown in Fig. 1. For example, for the three-objective
DTLZ2 problem (see Fig. 1), SMS-EMOA, IGD+-MaOEA,
and ε+-MaOEA are the three best-ranked algorithms accord-
ing to Table 34 in the supplementary material and, from the
figure, it is clear that their Pareto front approximations are sim-
ilar but lacking diversity. However, IMIA, �p-MaOEA, and
R2-EMOA, whose approximation sets are remarkably more
diversified, are ranked fourth, fifth, and sixth, respectively.
Hence, having well-diversified Pareto fronts does not neces-
sarily imply a large hypervolume value. Under this direction,
it is possible to observe that an important advantage of IMIA
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TABLE IV
MEAN RELATED TO THE STATISTICAL RANKS OF THE COMPARISON BETWEEN IMIA AND THE PANMICTIC IB-MOEAS. A SYMBOL # IS PLACED

WHEN IMIA’S RANK IS SIGNIFICANTLY BETTER THAN THE OTHER IB-MOEAS BASED ON A ONE-TAILED WILCOXON TEST, USING A SIGNIFICANCE

LEVEL OF α = 0.05. THE TWO BEST VALUES ARE SHOWN IN GRAY SCALE, WHERE THE DARKER TONE CORRESPONDS TO THE BEST VALUE. THE

SUBINDEX IS THE RANK OF EACH MOEA

over its baseline panmictic IB-MOEAs is its ability to gen-
erate Pareto front approximations with high diversity. This
skill is due to a better exploration of the search space as
a result of the cooperation of the islands, where different
solutions are found, following the inner preferences of the
baseline QIs. In fact, IMIA is the best algorithm for both
Riesz s-energy and SPD for all the μ values. This is sup-
ported by Fig. 1 where regardless of the Pareto front shape,
IMIA is able to produce approximation sets covering the whole
Pareto front with well-diversified solutions. Overall, IMIA is
the most robust algorithm according to Table IV, since for all
the seven QIs and different population sizes, the performance
of IMIA is consistently good. This is a strong insight that
supports the fact that the cooperation of multiple IB-MOEAs
through IMIA is responsible for obtaining better performance
than using their panmictic implementations. In contrast, the
panmictic IB-MOEAs are restricted to their own search abili-
ties, i.e., it is not possible for them to keep solutions out of the
scope of their QI preferences. In consequence, when assess-
ing an IB-MOEA with multiple QIs, including its baseline QI,
it is expected that it has a good performance on its baseline
QI (because by design, the IB-MOEA aims to optimize it).
However, regarding the other indicators, it is not very likely

for the IB-MOEA to present a good performance because it
does not fulfill the solutions rewarded by them. Hence, overall
the experimental results show that IMIA looks for a balance
between the preferences of its baseline IB-MOEA, gathering
solutions from different promising regions of the search space,
which results in a more robust performance that its panmictic
baseline IB-MOEAs.

One may argue that SMS-EMOA is also a robust algorithm.
This is partially true due to the following reasons.

1) HV, IGD+, and ε+ systematically reward SMS-EMOA
due to their high correlation of preferences.

2) SMS-EMOA is not able to produce well-diversified
Pareto front approximations regardless of the associated
manifold geometry as shown in Fig. 1.

3) It requires a high computational effort even for MOPs
with 2, 3, and 4 objective functions (we refer the reader
to Section 3 of the supplementary material).

Regarding the last point, Tables 49–53 of the supplementary
material show the speedups that IMIA obtains. Even though
SMS-EMOA is a remarkable well-performing algorithm, its
computational cost is too high in comparison with IMIA and
the remaining IB-MOEAs. For instance, IMIA gets speedups
of up to 189.136× for the DTLZ2 problem with a population
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Fig. 1. Pareto front approximations of the three-objective DTLZ2, DTLZ2−1, DTLZ7, and WFG1 (from top to bottom). The approximation sets correspond
to the median of the hypervolume.

size of 140 individuals (see Table 53 of the supplementary
material) as we increase the number of objective functions
with respect to SMS-EMOA. The advantage of IMIA with
respect to the panmictic SMS-EMOA is the use of a micropop-
ulation as stated by Hernández-Gómez et al. [42]. Hence, this
observation strengthens our claim that IMIA is better than pan-
mictic IB-MOEAs since their high-quality results are obtained
in lower computational time.

In the following, we describe the MOPs on which IMIA sys-
tematically attains a good performance. These claims are based
on the heat maps presented in Section 1 of the supplementary
material. For all the μ values, IMIA always present a robust
performance (being ranked first, second, or third on all the
QIs) on problems DTLZ2−1, DTLZ5−1, DTLZ6, DTLZ6−1,
WFG3−1, WFG4−1, WFG5−1, WFG6−1, WFG7−1, WFG8−1,
and WFG9−1. For μ ≥ 75, IMIA is very good for problems
DTLZ1−1, DTLZ2, DTLZ4−1, and DTLZ7. Under this light,
it is possible to see the superiority of IMIA on the inverted
DTLZ and WFG test instances, due to the combination of
the strengths of its baseline IB-MOEAs. In addition, IMIA
has always a competitive performance for problems WFG4,
WFG6, WFG7, WFG8, and WFG9. For WFG1, WFG2, and
WFG3, IMIA has a good performance as long as μ increases.
Hence, it is possible to see that IMIA is a good optimizer
under MOPs with different search difficulties and Pareto front
shapes. Finally, the heat maps show that IMIA is not a good
option for problems similar to DTLZ3 (which has a highly
multifrontal MOP) and DTLZ7−1. A possible reason for the
bad performance on DTLZ3 is that due to the use of microp-
opulations, the islands get stuck on local optima since there
is not enough genetic material to exploit. In comparison,
the panmictic IB-MOEAs have better performance on this
problem. Concerning DTLZ7−1, we observed that IMIA has

some difficulties to generate all the disconnected regions of the
Pareto front, especially for two objective functions. However,
for DTLZ7 and WFG2, which also have a disconnected Pareto
front, IMIA presents a competitive performance.

C. Pareto-Front-Shape Invariance

A few years ago, Ishibuchi et al. [49] pointed out that
some MOEAs are overspecialized on benchmark problems
whose Pareto front shapes are correlated to the form of a
simplex. In other words, the performance of these MOEAs
depends on the Pareto front geometries. To effectively over-
come this issue, IMIA is designed to take advantage of the
search skills of different IB-MOEAs throughout their coop-
eration. To show that IMIA is a Pareto-front-shape invariant
optimizer, we first need to analyze how its Pareto front approx-
imations are generated. The final approximation set generated
by IMIA is constructed by merging all the subpopulations and
archives of all the islands (see lines 8–16 of Algorithm 1). It is
worth analyzing how each island contributes to the final Pareto
front approximations. The underlying intuition is that the per-
centage of contribution of each island will change depending
on the Pareto front shapes due to the specific preferences of
its baseline QI. Fig. 2 presents the percentage of solutions
contributed by each island for the problems DTLZ2, WFG8,
DTLZ2−1, and WFG8−1 with μ = 140. We should men-
tion that both DTLZ2 and WFG8 have a concave Pareto front
geometry correlated with the shape of a simplex. In contrast,
both DTLZ2−1 and WFG8−1 have a nonsimplex-like convex
Pareto front geometry. From the figure, it is interesting to see
some patterns. For both DTLZ2 and WFG8, it is clear that
as the number of objective functions increases from 2 to 7,
the contribution of solutions of the �p island increases as

Authorized licensed use limited to: Universiteit Leiden. Downloaded on February 23,2022 at 15:46:08 UTC from IEEE Xplore.  Restrictions apply. 



FALCÓN-CARDONA et al.: ON EFFECT OF COOPERATION OF INDICATOR-BASED MULTIOBJECTIVE EVOLUTIONARY ALGORITHMS 691

Fig. 2. Percentage of solutions contributed by each island to the final approximation sets with μ = 140. Different composition patterns are formed according
to the Pareto front shape. (a) DTLZ2. (b) WFG8. (c) DTLZ2−1. (d) WFG8−1.

well while the contribution of the HV, IGD+, and ε+ islands
decreases and the contribution of the R2 island varies a little
without being significant. In contrast, for both DTLZ2−1 and
WFG8−1, the contribution of the R2 island is the dominant
as the dimension of the objective space increases while the
impact of the �p island is relatively constant and the decrease
of the contribution of the HV, IGD+, and ε+ islands is more
significant. These contribution patterns are also exhibited for
different μ values. In general, we found that for groups of
test problems, sharing similar Pareto front shapes, a specific
contribution pattern appeared (the complete results are avail-
able at http://computacion.cs.cinvestav.mx/∼jfalcon/IMIA/).
The existence of a contribution pattern for similar problems
and the difference of contributions when the Pareto front shape
changes is a clear insight into the efficacy of each island
on specific problems and how IMIA can compensate for the
weaknesses of an IB-MOEA with the strengths of others.
Additionally, this is the main reason for the Pareto-front-shape
invariance of IMIA.

To support the above-mentioned results, it is necessary to
analyze the indicator results of IMIA when it is compared
with panmictic IB-MOEAs and state-of-the-art MOEAs. First,
Table IV shows that for all the population sizes, IMIA is the
best-ranked algorithm for R2 and �p (which are convergence-
diversity indicators) and, more importantly, it is the best
algorithm for Riesz s-energy and SPD, which are diversity
QIs. These indicator values exhibit the superiority of IMIA
to produce Pareto front approximations with high diversity.
Fig. 1 compares the approximation sets generated by IMIA
and the panmictic IB-MOEAs, where IMIA generates the best
ones regardless of the geometry of the manifold.

Table V presents the statistical ranks obtained by IMIA and
the selected state-of-the-art MOEAs. These comparisons are
based on test problems with 2–7 objective functions. The com-
plete comparison is available in Section 2 of the supplementary
material. The statistical ranks show that IMIA obtains once
again the first place in the comparison regarding �p, Es, and
SPD, and the second place with respect to R2. This is a direct
consequence of its generation of well-diversified Pareto fronts.
On the other hand, Two_Arch2 is the best for R2 and ε+ and
it achieves the second place for HV, IGD+, �p, and SPD. The
obtention of the first place on ε+ is expected since Two_Arch2
optimizes this QI and its good performance on the other men-
tioned QIs is due to the interaction between its subpopulations.
SPEA2+SDE is the third-best algorithm. This MOEA is the
best ranked for HV and IGD+ and the second best for ε+,
which is explained by the use of the SDE method that shifts the
position of solutions using the d+ distance of IGD+. IMIA out-
performed the remaining MOEAs, i.e., AR-MOEA, GrEA, and
SRA. The wide variety of problems employed in the compari-
son showed that the adaptation method for the weight vectors
of AR-MOEA cannot perfectly match the shape of the under-
lying Pareto front, which causes the loss of some portions of it
(see Fig. 3). For both GrEA and SRA, their poor performance
is due to the loss of some parts of the Pareto fronts. Fig. 3
compares some five- and seven-objective approximation sets
produced by IMIA and the state-of-the-art MOEAs for prob-
lems DTLZ2, DTLZ2−1, WFG9, and WFG−1. It is clear that
both IMIA and Two_Arch2 are the only algorithms that com-
pletely cover all the Pareto fronts, having a high diversity
degree. For DTLZ2−1, AR-MOEA, SPEA2+SDE, and SRA
are not able to cover all the Pareto front. Hence, this supports
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Fig. 3. Pareto front approximations of the five-objective DTLZ2 and DTLZ2−1 and the seven-objective WFG9 and WFG9−1 (from top to bottom). The
approximation sets correspond to the hypervolume median.

TABLE V
MEAN RELATED TO THE STATISTICAL RANKS OF THE COMPARISON BETWEEN IMIA AND THE STATE-OF-THE-ART MOEAS. A SYMBOL # IS PLACED

WHEN IMIA’S RANK IS SIGNIFICANTLY BETTER THAN THE OTHER MOEAS BASED ON A ONE-TAILED WILCOXON TEST, USING A SIGNIFICANCE

LEVEL OF α = 0.05. THE TWO BEST VALUES ARE SHOWN IN GRAY SCALE, WHERE THE DARKER TONE CORRESPONDS TO THE BEST VALUE. THE

SUBINDEX IS THE RANK OF EACH MOEA

our claim that one of the clear advantages of IMIA is its invari-
ance with respect to the Pareto front shape and the generation
of approximation sets with high coverage and diversity.

D. Parallel Performance

In this section, we analyze in depth the overall computa-
tional time of IMIA and the computational time during which
each island is executed. Due to the high amount of data gen-
erated from this study, the complete results are available at
http://computacion.cs.cinvestav.mx/∼jfalcon/IMIA/.

IMIA is a parallel MOEA where islands (IB-MOEAs) are
executed simultaneously, and every fmig iterations they com-
municate with each other following a synchronous scheme. A
critical factor related to the execution time of IMIA is the size
of the subpopulations on each island. Fig. 4 compares the exe-
cution time of IMIA when solving the DTLZ2 problem with
2–7 objective functions and total population sizes of 50 and

140 individuals, which implies subpopulations of 10 and 28
individuals on each island, respectively. In Fig. 4(a), related
to 50 individuals, the execution time follows a linear behavior
while in Fig. 4(c) a nonlinear behavior is shown for 140 indi-
viduals. This is a consequence of the subpopulation size and
the cost of the HV island. The boxplots in Fig. 4(b) and (d)
show for how much time is each island executed. For 140
individuals and as we increase the dimensionality of objective
space, the HV island controls the execution time of IMIA,
while the execution time of the remaining IB-MOEAs is very
low. In contrast, for 50 individuals, the execution times of all
the islands are similar regardless of the number of objective
functions. However, from the results in Section V-B, we know
that the performance of IMIA increases as the population size
does. Consequently, there is a tradeoff between execution time
and performance.

An important point to emphasize is the idle times on each
island. Since the HV island controls the overall execution time
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Fig. 4. Comparison of execution time when varying the dimensionality of
the objective space and the population size for DTLZ2. (a) Execution time
with a population size of 50 individuals. (b) Overall execution time of IMIA
and each island with a population size of 50 individuals. (c) Execution time
with a population size of 140 individuals. (d) Overall execution time of IMIA
and each island with a population size of 140 individuals.

of IMIA, as we increase the population size and the number of
objective functions, the remaining islands have too much idle
time due to the synchronous migration [see Fig. 4(b) and (d)].

TABLE VI
MEAN RELATED TO THE STATISTICAL RANKS OF THE COMPARISON

BETWEEN IMIA AND CMIB-MOEA. A SYMBOL # IS PLACED WHEN

IMIA’S RANK IS SIGNIFICANTLY BETTER THAN CMIB-MOEA BASED

ON A ONE-TAILED WILCOXON TEST, USING A SIGNIFICANCE LEVEL OF

α = 0.05. THE BEST VALUE IS SHOWN IN GRAY SCALE

In a future improvement of IMIA, an asynchronous migration
scheme could be considered to tackle this issue. However, from
the parallel MOEAs, we know that there is also a tradeoff
between performance quality and the communication scheme
adopted.

E. Comparing IMIA With cMIB-MOEA

This section is devoted to briefly show that IMIA is better
than cMIB-MOEA. In a similar fashion to IMIA, cMIB-
MOEA is set to use five islands based on HV, R2, IGD+,
ε+, and �p, adopting micropopulations of size μ/5, where
μ = 140 and it uses the same nmig and fmig values. We com-
pared both algorithms using the DTLZ, DTLZ−1, WFG, and
WFG−1 test suites with 2–7 objective functions. We employed
HV, R2, IGD−1, ε+, �p, Es, and SPD to compare the per-
formances. The parameters settings stated in Table II are
utilized for the experimentation. Due to the large amount of
data, Table VI shows the statistical ranks obtained by both
algorithms. Similar to the comparisons between IMIA and
the panmictic IB-MOEAs and the state-of-the-art MOEAs,
IMIA is the best algorithm regarding R2, �p, Es, and SPD.
As stated before, this implies that IMIA generates Pareto
front approximations with higher diversity in comparison with
cMIB-MOEA.

VI. CONCLUSION AND FUTURE WORK

In this article, we analyzed the cooperation of multiple
IB-MOEAs as the key idea to generate an optimizer with a
robust performance. Our proposed approach, called IMIA, is
an island-based MOEA in which multiple IB-MOEAs, using
micropopulations, cooperate to combine their search prefer-
ences for producing high-quality Pareto front approximations.
Our experimental results based on a plethora of MOPs with
different search difficulties and Pareto front geometries showed
that IMIA has a more robust performance than the panmic-
tic versions of its baseline IB-MOEAs. Furthermore, due to
the Pareto front shape invariance of IMIA, our proposal is
able to generate approximation sets with higher diversity in
comparison with several state-of-the-art MOEAs specifically
designed to tackle MOPs with irregular Pareto front geome-
tries. As part of our future work, we aim to study the impact of
the migration parameters and the connection topology of the
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islands. Finally, we aim to design an asynchronous migration
mechanism that allows IMIA to reduce the idle times in its
islands.
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