
This is a repository copy of Fast immune system-inspired hypermutation operators for
combinatorial optimization.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/180891/

Version: Accepted Version

Article:

Corus, D., Oliveto, P.S. and Yazdani, D. (2021) Fast immune system-inspired
hypermutation operators for combinatorial optimization. IEEE Transactions on Evolutionary
Computation, 25 (5). pp. 956-970. ISSN 1089-778X

https://doi.org/10.1109/tevc.2021.3068574

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers
or lists, or reuse of any copyrighted components of this work in other works. Reproduced
in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

1

Fast Immune System Inspired Hypermutation

Operators for Combinatorial Optimisation
Dogan Corus, Pietro S. Oliveto, and Donya Yazdani

Department of Computer Science, University of Sheffield, S1 4DP, UK

d.corus@sheffield.ac.uk, p.oliveto@sheffield.ac.uk, dyazdani1@sheffield.ac.uk

Abstract—Various studies have shown that immune system
inspired hypermutation operators can allow artificial immune
systems (AIS) to be very efficient at escaping local optima of mul-
timodal optimisation problems. However, this efficiency comes at
the expense of considerably slower runtimes during the exploita-
tion phase compared to standard evolutionary algorithms. We
propose modifications to the traditional ‘hypermutations with
mutation potential’ (HMP) that allow them to be efficient at
exploitation as well as maintaining their effective explorative
characteristics. Rather than deterministically evaluating fitness
after each bit-flip of a hypermutation, we sample the fitness func-
tion stochastically with a ‘parabolic’ distribution which allows the
‘stop at first constructive mutation’ (FCM) variant of HMP to
reduce the linear amount of wasted function evaluations when no
improvement is found to a constant. The stochastic distribution
also allows the removal of the FCM mechanism altogether as
originally desired in the design of the HMP operators. We
rigorously prove the effectiveness of the proposed operators for
all the benchmark functions where the performance of HMP is
rigorously understood in the literature and validating the gained
insights to show linear speed-ups for the identification of high
quality approximate solutions to classical NP-Hard problems
from combinatorial optimisation. We then show the superiority
of the HMP operators to the traditional ones in an analysis
of the complete standard Opt-IA AIS, where the stochastic
evaluation scheme allows HMP and ageing operators to work
in harmony. Through a comparative performance study of other
‘fast mutation’ operators from the literature, we conclude that
a power-law distribution for the parabolic evaluation scheme is
the best compromise in black box scenarios where little problem
knowledge is available.

Index Terms—Artificial immune systems, Hypermutation,
Runtime analysis

I. INTRODUCTION

Several artificial immune systems (AISs) inspired by Bur-

net’s clonal selection principle [1] have been developed to

solve optimisation problems. Amongst these, Clonalg [2], the

B-Cell algorithm [3] and Opt-IA [4] are the most popular.

Being inspired by the immune system, a common feature of

these algorithms is that they have particularly high mutation

rates compared to more traditional evolutionary algorithms

(EAs) which, inspired in turn by natural evolution, have

traditionally used considerably lower mutation rates.

For instance, the contiguous somatic hypermutations (CHM)

used by the B-Cell algorithm, choose two random positions in

the genotype of a candidate solution and flip all the bits in

between1. This operation results in a linear number of bits

1A parameter may be used to define the probability that each bit in the
region actually flips.

being flipped on average in a mutation. The hypermutations

with mutation potential (HMP) used by Opt-IA also flip a

linear number of bits. However, it has been proved that their

basic originally proposed static version, where a linear number

of bits are always flipped, cannot optimise efficiently any

function with any polynomial number of optima [5]. On

the other hand, much better performance has been shown in

theory [5] and in practice [4] for the version that evaluates

the fitness after each bit flip in the hypermutation and stops

the process if an improving solution is found (i.e., static HMP

with stop at first constructive mutation (FCM)).

Various studies have shown how these high mutation rates

allow AISs to escape from local optima for which more

traditional randomised search heuristics struggle. Jansen and

Zarges proved for a benchmark function called Concate-

nated Leading Ones Blocks (CLOB) an expected runtime of

O(n2 log n) using CHM versus the exponential time required

by EAs relying on standard bit mutations (SBM) since many

bits need to be flipped simultaneously to make progress [6].

Similar effects have also been shown for instances of the

longest common subsequence [7] and vertex cover [8] com-

binatorial optimisation problems with practical applications,

where CHM efficiently escapes local optima while EAs (with

and without crossover) are trapped for exponential time. Also,

the HMP with FCM of Opt-IA have been proven to be

considerably efficient at escaping local optima such as those of

the multimodal JUMP, CLIFF, and TRAP benchmark functions

that standard EAs find very difficult [5]. Furthermore, their

effectiveness at escaping from local optima has been shown

to guarantee arbitrarily good constant approximations for the

NP-Hard PARTITION problem while RLS and EAs may get

stuck on bad approximations [9].

The efficiency on multimodal problems of these AISs comes

at the expense of being considerably slower than EAs in

the final exploitation phase of the optimisation process when

few bits have to be flipped. For instance, CHM requires

Θ(n2 log n) expected function evaluations to optimise the easy

ONEMAX and LEADINGONES unimodal benchmark func-

tions. Indeed, it has recently been shown that CHM requires at

least Ω(n2) function evaluations to optimise any function since

its expected runtime for its easiest function is Θ(n2) [10].

Another disadvantage of CHM is that it is biased, in the

sense that it behaves differently according to the order in

which the information is encoded in the bit-string. In this

sense, the unbiased HMP operators used by Opt-IA are easier

and more convenient to apply as their performance does not

ar
X

iv
:2

00
9.

00
99

0v
1

 [
cs

.N
E

]
 1

 S
ep

 2
02

0

2

depend on the encoding order of the bit positions. However,

the static HMP operator with FCM has also been proven to

have runtimes of respectively Θ(n2 log n) expected fitness

evaluations for ONEMAX and Θ(n3) for LEADINGONES.

Recently, speed-ups in the exploitation phase have been shown

for the Inversely Proportional HMP variant (INV HMP), that

aims to decrease the mutation rate as the local and global

optima are approached [11]. On one hand, while faster, INV

HMP operators are still asymptotically slower than RLS and

EAs for easy hillclimbing problems such as ONEMAX and

LEADINGONES. On the other hand, the speed-ups at hill-

climbing are achieved at the expense of losing their power at

escaping from local optima via mutation. Since the mutation

rates are lowest on local optima, it is unlikely that the INV

HMP operator can escape quickly via hypermutation.

In this paper, we propose a modification to the static HMP

operator to allow it to be very efficient in the exploitation

phases while maintaining its essential characteristics for es-

caping from local optima. Rather than evaluating the fitness

after each bit flip of a hypermutation as the traditional HMP

with FCM requires, we propose to evaluate the fitness based

on the probability that the mutation will be successful.

The probability of hitting a specific point at Hamming

distance i from the current point (i.e.,
(

n
i

)−1
) decreases expo-

nentially with the Hamming distance for i < n/2 and then it

increases again in the same fashion. Based on this observation,

we evaluate each bit following a parabolic distribution such

that the probability of evaluating the ith bit flip decreases

as i approaches n/2 and then increases again. We call the

resulting operator FCMγ and embed it in an algorithm called

Fast (1 + 1) IAγ .

We rigorously prove that the Fast (1+ 1) IAγ locates local

optima asymptotically as fast as random local search (RLS) for

any function where the expected runtime of RLS can be proven

using the standard artificial fitness levels method (AFL). At

the same time, the operator is still exponentially faster than

EAs for the standard multimodal JUMP, CLIFF, and TRAP

benchmark functions.

We also validate the insights gained from the analysis for

benchmark functions on classical NP-Hard problems from

combinatorial optimisation. We first derive a smaller upper

bound compared to static HMP on the expected runtime

required by the Fast (1 + 1) IAγ to find arbitrarily good

constant approximations to the PARTITION problem. This

result is surprising because the proof requires mutations of

approximately n/2 bits. This is exactly the range of mutations

which is penalised by our proposed distribution. Nevertheless,

the greater exploitative capabilities of the hypermutation oper-

ator lead to a linear factor smaller upper bound on the expected

runtime because the time spent in the hillclimbing phases

dominates the overall expected runtime. Thus, the utility of

our modifications is proven on a problem with many real

world applications. Recall that EAs using SBM may get stuck

on bad 4/3 approximations for exponential time. We also

rigorously prove linear speed-ups for the NP-Hard VERTEX

COVER problem, compared to the static HMP operator. We

show these both for identifying feasible solutions if a node

representation is used for the bit-string, and to identify 2-

approximations if an edge based representation is used.

We then evaluate the performance of the fast hypermuta-

tion operator using the parabolic evaluation distribution in

the context of complete AISs. Indeed hypermutations with

mutation potential are usually applied in conjunction with

ageing operators in the standard Opt-IA AIS [4]. The power of

ageing at escaping local optima has recently been enhanced by

showing how, by accepting inferior solutions when stuck on

local optima, it makes the difference between polynomial and

exponential runtimes for the BALANCE function from dynamic

optimisation [12]. For very difficult instances of CLIFF, where

standard RLS and elitist EAs require exponential time, ageing

even makes RLS asymptotically as fast as any unbiased

mutation based algorithm can be on any function with unique

optimum [13] i.e., by running in O(n lnn) expected time [5].

However, the power of ageing at escaping local optima

is lost when it is used in combination with static HMP. In

particular, the FCM mechanism does not allow the operator to

return solutions of lower quality apart from the complementary

bit-string, thus cancelling the advantages of ageing. Further-

more, the high mutation rates combined with FCM make the

algorithm return to the previous local optimum with very high

probability. We show how these problems are naturally solved

by our newly proposed operators that do not evaluate all bit

flips in a hypermutation. We rigorously prove that the resulting

algorithm, called Opt-IAγ , benefits from the modified operator

showing that it allows the ageing operator to escape from

local optima by accepting the lower quality solutions returned

by the FCMγ operator when it does not find improvements.

However, to achieve this behaviour the evaluation probabilities

after each bit flip have to be set to prohibitively low values

such that the applied operator effectively does not mutate many

bits anymore (i.e. it does not hypermutate; similarly to the

INV HMP of [11] when it is located on the best found local

optimum).

To address this problem, and to further evaluate the general

performance of the proposed fast HMP operator, we perform

a comparative analysis with other ’fast mutation’ operators

that have recently appeared in the evolutionary computation

literature [14]–[16]. The analysis leads to the conclusion that

a parabolic power-law distribution is the best compromise for

the fast hypermutation operator in black box scenarios where

limited problem knowledge is available. Such a distribution

allows a greater balance between large and small mutations.

Hence, local optima may be escaped from, by performing large

or small mutations to new basins of attraction that are either

of better or of worse quality (i.e., due to ageing). We show

that the obtained AISs perform asymptotically either at least as

well, or better, than all the considered algorithms over the large

range of unimodal and multimodal problems considered in this

paper. Due to page restrictions the proofs of the theorems are

presented as supplementary material as well as a self-contained

version of the paper.

II. AISS WITH PROBABILISTIC SAMPLING DISTRIBUTIONS

Hypermutations with mutation potential (HMP) differ from

the standard bit mutations (SBM) used traditionally in evolu-

tionary computation by flipping a linear number of distinct bits

3

1 2 n − 2 nn
2

2
n log n

2
en

1
e

1
2e

1
2 log n

1
log n

Mutation step

E
v
al

u
at

io
n

p
ro

b
ab

il
it

y

Fig. 1: The parabolic evaluation probabilities (1) for γ =
1/ log n and γ = 1/e.

M = cn for a constant 0 < c ≤ 1. It has been shown that in

their basic static version, where they only evaluate the result of

the M bit flips, they are inefficient at optimising any function

with up to a polynomial number of optima [5]. In the stop at

the first constructive mutation (FCM) variant they mutate at

most M = cn distinct bits (i.e., for this reason M is called the

mutation potential). After each of the M bit-flips, they evaluate

the fitness of the constructed solution. If an improvement over

the original solution is found before the M th bit-flip, then

the operator stops and returns the improved solution [4]. This

behaviour prevents the hypermutation operator to waste further

fitness function evaluations if an improvement has already

been found. However, for any realistic objective function, the

number of iterations where there is an improvement constitutes

an asymptotically small fraction of the total runtime. Hence,

the fitness function evaluations saved due to the FCM stopping

the hypermutation have a very small impact on the global

performance of the algorithm. While they have been shown

to be more efficient than SBM to escape from local optima,

this performance comes at the expense of being up to a linear

factor slower at hillclimbing in the exploitative phases of the

optimisation process [5].

Therefore, we propose an alternative HMP operator using

FCM, called FCMγ for simplicity, that only evaluates the

fitness after each bit-flip with some probability. Since setting

the HMP parameter to c = 1 (i.e., M = n) allows the operator

to reach any point in the search space with positive probability,

we will only consider this parameter setting throughout the

paper as was also done in previous theoretical analyses [5],

[17].

We propose the use of the following parabolic probability

distribution depicted in Figure 1. Let pi be the probability

that the solution is evaluated after the ith bit has been flipped.

Then,

pi =











1/e for i = 1 and i = n,

γ/i for 1 < i ≤ n/2,

γ/(n− i) for n/2 < i < n.

(1)

where the parameter γ should be in 0 < γ ≤ 1 (however, any

0 < γ < 1/e is an efficient choice for the results that we will

present).

The lower the value of γ, the fewer the expected fitness

function evaluations that occur in each hypermutation. In

Algorithm 1 Fast (1 + 1) IAγ for maximisation

1: Initialise x u.a.r (uniformly at random).

2: while the termination criterion is not met do

3: create offspring y using FCMγ ;

4: if f(y) ≥ f(x), then x := y;

5: end while

particular, with a sufficiently small value for γ, the number

of wasted evaluations can be dropped to the order of O(1) per

iteration instead of the linear amount wasted by the traditional

operator when improvements are not found. At the same

time, it still flips many bits (i.e., it hypermutates) as desired.

The resulting hypermutation operator is formally defined as

follows.

Definition 1 (FCMγ). The FCMγ operator flips at most n
distinct bits selected uniformly at random. It evaluates the

fitness after the ith bit-flip with probability pi (as defined in

(1)) and remembers the last evaluation. FCMγ stops flipping

bits when it finds an improvement; if no improvement is found,

it will return the last evaluated solution. If no evaluations are

made, the parent will be returned.

In the next section, we will prove the benefits of FCMγ over

the standard HMP with FCM, when incorporated into a (1+1)
framework. We will refer to the algorithm as Fast (1+1) IAγ

to distinguish it from the standard (1 + 1) IA which uses

the traditional HMP operator i.e., that evaluates the fitness

of the constructed solutions deterministically after each bit-

flip of the hypermutation. Similar benefits may also be shown

for population-based AISs but we will refrain to do so since

populations do not lead to improved performance for the

considered benchmark problems. The Fast (1 + 1) IAγ is

formally defined in Algorithm 1. It keeps a single individual in

the population and uses FCMγ to perturb it in every iteration.

If the offspring is not worse than its parent, then it replaces

the parent for the next iteration; otherwise the parent is kept.

Traditional static FCM operators are not suited to be used

in conjunction with ageing operators if the power of the latter

at escaping local optima is to be exploited [5]. While ageing

operators allow to exploit solutions of lower quality to escape

from local optima, the traditional HMP with FCM returns

a solution if it is an improvement or it always returns the

complementary bit string (which is unlikely to be useful very

often). However, this is not true for the above defined FCMγ

variant. If no improvements are found, FCMγ returns the last

evaluated solution, which is not necessarily the complementary

bit string. Hence, the above operator has higher chances of

being effective at escaping from local optima than traditional

HMP with FCM by identifying a variety of new, potentially

promising, basins of attraction. For sufficiently small values

of the parameter γ, only one function evaluation per hyper-

mutation is performed in expectation (although all bits will be

flipped i.e., it hypermutates). Since FCMγ returns the last eval-

uated one, this solution will be returned by the operator as it is

the only one it has encountered. Interestingly, this behaviour is

similar to that of the traditional HMP operator without FCM

4

that also evaluates one point per hypermutation and returns

it. However, while the traditional version has been to proven

to have exponential expected runtime for any function with

any polynomial number of optima [5], we will show in the

following sections that the fast HMP can be very efficient.

From this point of view, with appropriate parameter settings,

FCMγ is a very effective way to perform hypermutations with

mutation potential without FCM as originally desired [4].

We will analyse the FCMγ operator in a complete Opt-IA

that uses cloning, hypermutation and ageing. The modified

Opt-IA algorithm using FCMγ , which we call Fast Opt-IAγ ,

is depicted in Algorithm 2. We will use the hybrid ageing

operator as in [5], [12], which allows the algorithm to escape

from local optima. Hybrid ageing removes candidate solutions

(i.e., b-cells) with probability pdie once they have reached an

age threshold τ . After initialising a population of µ solutions

with age = 0, the algorithm creates dup copies of each

solution in each iteration. These copies are all mutated by

the hypermutation operator, creating a population of mutants

called P (hyp). These mutants inherit the age of their parents

if they do not improve the fitness; otherwise their age is set

to zero. At the next step, all solutions with age ≥ τ will

be removed with probability pdie. If fewer than µ individuals

have survived ageing, then the population is filled up with

new randomly generated individuals. At the selection for

replacement phase, the best µ solutions are chosen to form

the population for the next generation. In Section V, we will

prove the benefits of the Fast Opt-IAγ for all the unimodal and

multimodal benchmark functions for which the performance

of the Opt-IA with traditional static HMP has been proven in

the literature.

As usual in evolutionary computation we will evaluate the

performance of the algorithms by calculating the expected

number of fitness function evaluations until the optimum (or

an approximation for the NP-Hard problems) is identified (i.e.

expected runtime). Hence, we do not specify any termination

criterion for the evolutionary loops of the algorithms.

A. Mathematical Tools for the Analysis

In this section, we introduce the mathematical tools from

the literature which we will use to carry out our analysis.

We will apply the following theorem by Serfling which

provides an upper bound on the probability that the outcome

of a hypergeometrically distributed random variable exceeds

a given value. While the more common Chernoff bounds

could also be used to obtain the same results, we prefer to

use Serfling’s theorem because the hypergeometric distribution

better represents the behaviour of the considered hypermuta-

tion operators on functions of unitation (i.e., functions where

the output depends exclusively on the number of 1-bits in the

bit-string).

Theorem 1 (Serfling [18]). Consider a set C := {c1, . . . , cn}
consisting of n elements, with ci ∈ R where cmin and cmax

are the smallest and largest elements in C respectively. Let

µ̄ := (1/n)
∑n

j=1 ci, be the mean of C. Let 1 ≤ i ≤ k ≤ n
and Xi denote the ith draw without replacement from C and

X̄ := (1/k)
∑k

j=1 Xi the sample mean. For 1 ≤ k ≤ n, and

λ > 0

Pr
{√

k(X̄ − µ̄) ≥ λ
}

≤ exp

(

− 2λ2

(1− f∗
k)(cmax − cmin)2

)

where f∗
k := k−1

n .

Another tool from the literature which is widely used in the

analysis of HMP operators is the following Ballot theorem. It

was first applied by Jansen and Zarges in [19] to bound the

expected runtime of inversely proportional HMP.

Theorem 2 (Ballot Theorem [20]). Suppose that, in a ballot,

candidate P scores p votes and candidate Q scores q votes,

where p > q. The probability that throughout the counting

there are always more votes for P than for Q equals (p −
q)/(p+ q).

Artificial Fitness Levels (AFL) is a standard technique used

in the theory of evolutionary computation to derive upper

bounds on the expected runtime of (1 + 1) evolutionary

algorithms [21]–[23]. AFL divides the search space into m
mutually exclusive partitions A1 · · · , Am such that all the

points in Ai have smaller fitness than any point which belong

to Aj for all j > i. The last partition, Am only includes

the global optimum. If pi is the smallest probability that an

individual belonging to Ai mutates to an individual belonging

to Aj such that i < j, then the expected time to find

the optimum is E(T) ≤ ∑m−1
i=1 1/pi. We will show in the

following section that the results obtained by using AFL

to derive upper bounds on the expected runtime of simpler

randomised local search heuristics can be easily converted into

upper bounds on the expected runtime of the Fast (1+1) IAγ .

Finally, we will apply the standard multiplicative drift

theorem which is widely used in the runtime analysis of

stochastic search heuristics.

Theorem 3 (Multiplicative Drift Theorem [23]–[25]). Let

{Xt}t≥ be a sequence of random values taking the values

in some set S. Let g : S → {0} ∪ R≥1 and assume that

gmax := max{g(x) | x ∈ S} exists. Let T := min{t ≥
0 : g(xt) = 0}. If there exists δ > 0 such that E(g(Xt+1) |
g(Xt)) < (1− δ)g(Xt), then E(T) ≤ 1

δ (1+ ln gmax) and for

every c > 0, Pr(T > 1
δ (ln gmax + c)) ≤ e−c.

III. ARTIFICIAL FITNESS LEVELS FOR FAST

HYPERMUTATIONS

In [5], a mathematical methodology was devised that al-

lows to convert upper bounds on the expected runtime of

randomised local search (RLS) into valid upper bounds on

the expected runtime of the traditional static HMP operators.

In this section, we will extend such methodology so that it

can also be applied to the fast HMP operator introduced in

this paper.

Artificial Fitness Levels (AFL) is a standard technique used

in the theory of evolutionary computation to derive upper

bounds on the expected runtime of (1 + 1) evolutionary

algorithms [21]–[23]. AFL divides the search space into m
mutually exclusive partitions A1 · · · , Am such that all the

5

Algorithm 2 Fast Opt-IAγ for maximisation

1: Initialise P := {x1, ..., xµ}, a population of µ solutions

u.a.r and set xi.age := 0 for i := {1, ...µ};

2: while the termination criterion is not met do

3: for all x ∈ P do

4: set x.age := x.age+ 1;

5: copy xi dup times and add the copies to P (clo);

6: end for

7: for all x ∈ P (clo) do

8: create y using FCMγ ;

9: if f(y) > f(x), then y.age := 0;

10: else y.age := x.age;

11: add y to P (hyp);

12: end for

13: add P (hyp) to P , set P (hyp) := ∅;

14: with probability pdie := 1− 1
(dup+1)·µ , remove any xi ∈

P with xi.age ≥ τ ;

15: if |P | < µ, then add µ−|P | solutions to P with age :=
0 generated u.a.r;

16: else if |P | > µ, then remove |P |−µ solutions with the

lowest fitness from P breaking ties u.a.r;

17: end while

points in Ai have smaller fitness than any point which belong

to Aj for all j > i. The last partition, Am only includes

the global optimum. If pi is the smallest probability that an

individual belonging to Ai mutates to an individual belonging

to Aj such that i < j, then the expected time to find the

optimum is E(T) ≤∑m−1
i=1 1/pi.

RLS flips exactly 1 bit of the current solution to sample

a new search point, compares it with the current solution

and continues with the new one unless it is worse. The

artificial fitness levels method for the traditional static HMP

operator from [5] states that any upper bound on the expected

runtime of RLS proven using the artificial fitness levels

(AFL) method also holds for the (1 + 1) IA multiplied by

an additional factor of n (i.e., the algorithm is at most a

linear factor slower than RLS for problems where the original

upper bound is tight). The result was shown to be tight for

some standard benchmark functions including ONEMAX and

LEADINGONES. We will now extend the methodology to also

hold for the fast HMP operator defined in the previous section

by establishing a relationship between the upper bounds on

the expected runtimes of RLS achieved via AFL and those

of the Fast (1 + 1) IA. However, these upper bounds will

differ only by a factor of O(1 + γ log n) instead of n. Thus,

for values of γ = O(1/ log n), the upper bounds of the two

algorithms are asymptotically the same, and the methodology

will allow to prove a linear speed up for the fast HMP operator

compared to traditional static HMP for the cases where the

AFL methodology from [5] is tight.

We start our analysis by relating the expected number of

fitness function evaluations to the expected number of fast hy-

permutation operations until an optimum is found. The lemma

quantifies the number of expected fitness function evaluations

performed by the two operators in one hypermutation.

Lemma 4. Let T be the random variable denoting the number

of applications of FCMγ with parameter 0 < γ < 1 until

the optimum is found. Then, the expected number of function

evaluations in an FCMγ operation given that no improvement

is found is in the order of Θ(1 + γ log n). Moreover, the

expected number of total function evaluations is at most

O(1 + γ log n) · E[T].

Proof. Let the random variable Xi for i ∈ [T] denote the

number of fitness function evaluations during the ith execution

of a fast hypermutation. Additionally, let the random variable

X ′
i denote the number of fitness function evaluations at the

ith operation assuming that no improvements are found. For

all i it holds that Xi ≤ X ′
i since finding an improvement

can only decrease the number of evaluations. Thus, the total

number of function evaluations E[
∑T

i=1 Xi] can be bounded

above by E[
∑T

i=1 X
′
i] which is equal to E[T] ·E[X ′] due to

Wald’s equation [26] since all X ′
i are identically distributed

and independent from T .

We now write the expected number of fitness function eval-

uations in each operation as the sum of n indicator variables

Yi ∈ {0, 1} for i ∈ [n] denoting whether an evaluation occurs

right after the ith bit mutation. Referring to the probabilities

in (1), we get E[X ′] = E

[

n
∑

i=1

Yi

]

=
n
∑

i=1

Pr{Yi = 1} =

1
e + 1

e + 2
n/2
∑

i=2

γ
i = 2

e + 2γΘ(log n) = Θ(1 + γ log n). The

second statement is obtained by multiplying this amount with

E[T].

In Lemma 4, the evaluation parameter γ appears as a mul-

tiplicative factor in the expected runtime measured in fitness

function evaluations. An intuitive lower bound of Ω(1/ log n)
for γ can be inferred since smaller γ will not decrease the

expected runtime. Nevertheless, in Section V we will provide

an example where a smaller choice of γ reduces E[T] directly.

For the rest of our results though, we will rely on E[T] being

the same as for the traditional HMP with FCM while the

number of wasted fitness function evaluations decreases from

n to O(1 + γ log n).
We now present the main result of this section. The theorem

applies to (1 + 1) frameworks using the FCMγ as hypermu-

tation operator.

Theorem 5. Let E
(

TAFL
A

)

be any upper bound on the

expected runtime of algorithm A established by the artificial

fitness levels method. Then,

E
(

TFCMγ

)

≤ E
(

TAFL
RLS

)

·O(1 + γ log n).

Proof. The upper bound on the expected runtime of RLS to

solve any function obtained by applying AFL is E(TAFL
RLS) ≤

∑m
i=1 1/pi, where pi is s/n when all individuals in level

i have at least s Hamming neighbours which belong to a

higher fitness level. The probability of mutating to one of the

solutions in the first mutation step is the same for FCMγ .

Such a solution will be evaluated with probability 1/e. If a

solution is not found in the first mutation step, then according

to Lemma 4 at most O(1+γ log n) fitness function evaluation

would be wasted. Since the algorithm is elitist and only accepts

6

individuals of equal or better fitness, each level has to be left

only once, independent of whether improvements are achieved

by one or more bit-flips. Hence the claim follows.

Apart from showing the efficiency of the Fast (1 + 1) IAγ ,

the theorem also allows to easily achieve upper bounds on

the expected runtime of the algorithm by just analysing

the simple RLS. For γ = O(1/ log n), Theorem 5 implies

the upper bounds of O(n log n) and O(n2) for classical

benchmark functions ONEMAX(x) =
∑n

i=1 xi and LEADIN-

GONES(x) =
∑n

i=1

∏i
j=1 xj respectively [21]. Both of these

bounds are asymptotically tight since each function’s unary

unbiased black-box complexity is in the same asymptotic

order [13]. These expected runtimes represent linear speed-ups

compared to the (1+1) IA using the static HMP operators from

the literature which have Θ(n2 log n) and Θ(n3) expected

runtimes for ONEMAX and LEADINGONES respectively [5].

Corollary 6. The expected runtime of the Fast (1 +
1) IAγ using FCMγ to optimise ONEMAX(x) :=

∑n
i=1 xi

and LEADINGONES :=
∑n

i=1

∏i
j=1 xj is respectively

Θ(n log n (1 + γ log n)) and Θ(n2 (1 + γ log n)). For γ =
O(1/ log n) these bounds reduce to Θ(n log n) and Θ(n2).

IV. FAST HYPERMUTATIONS FOR STANDARD

MULTIMODAL BENCHMARK FUNCTIONS

In the previous section we showed that linear speed-ups

compared to static HMP are achieved by the Fast (1+1) IAγ

for standard unimodal benchmark functions i.e., the algorithm

is fast at exploitation for hill-climbing problems. In this section

we will show that exponential speed-ups compared to the

standard bit mutation operators used in traditional EAs are

still achieved for standard multimodal benchmark functions

i.e., the Fast HMP operators are also efficient at exploration.

We start by using the mathematical methodology derived in

the previous section to show that the Fast (1+ 1) IAγ is even

faster than static HMP for the deceptive TRAP function which

is identical to ONEMAX except that the optimum is in 0n.

FCMγ samples the complementary bit-string with probability

one if it cannot find any improvements. This behaviour allows

it to be efficient for this deceptive function. Since n bits have

to be flipped to reach the global optimum from the local

optimum, EAs with SBM require exponential runtime with

overwhelming probability (w.o.p.)2 [21]. By evaluating the

sampled bit-strings stochastically, the Fast (1+1) IAγ provides

up to a linear speed-up for small enough γ compared to the

(1 + 1) IA on TRAP as well.

Theorem 7. The expected runtime of the Fast (1+1) IAγ for

TRAP is Θ(n log n (1 + γ log n)).

Proof. According to Corollary 3 in the main document, we

can conclude that the current individual will reach 1n in

O(n log n · (1 + γ log n)) steps in expectation. The global

optimum is found in a single mutation operator with proba-

bility 1/e by evaluating after flipping all bits for which the

number of additional fitness evaluations is O(1 + γ log n)

2In this paper we consider events to occur “with overwhelming probability”
(w.o.p.) meaning that they occur with probability at least 1− 2−Ω(n).

Fig. 2: (a) CLIFFd and (b) JUMPd for n = 50

in expectation. This bound is asymptotically tight since the

function’s unary unbiased black-box complexity is in the same

order as the presented upper bounds [13].

The results of the (1 + 1) IA on JUMPd and CLIFFd

functions [5] can also be adapted to the Fast (1 + 1) IAγ

in a straightforward manner.

Both JUMPd and CLIFFd have the same structure as ONE-

MAX for bit-strings with up to n − d 1-bits and the same

optimum 1n. For solutions with the number of 1-bits between

n− d and n, JUMPd has a reversed ONEMAX slope creating

a gradient towards n − d while CLIFFd has a slope heading

toward 1n, but the fitness values are penalised by an additive

factor d. These functions are illustrated in Fig. 2. Since

hypermutation operators have a higher probability of flipping

multiple bits, the performance of static HMP on the JUMPd

and CLIFFd functions is superior to that of the standard bit

mutations used by traditional EAs [5]. This advantage is

preserved for the Fast (1 + 1) IAγ as shown by the following

theorem.

Theorem 8. The expected runtime of the Fast (1+1) IAγ for

JUMPd and CLIFFd is O
((

n
d

)

· (d/γ) · (1 + γ log n)
)

.

Proof. According to Corollary 3, the time to sample a solution

with n− d 1-bits is at most O (n log n (1 + γ log n)) because

the function behaves as ONEMAX for solutions with less than

n− d 1-bits. The Hamming distance of locally optimal points

to the global optimum is d, thus, the probability of reaching

the global optimum at the dth mutation step is
(

n
d

)−1
while

the probability of evaluating it is γ/d. Using Lemma 4, we

bound the total expected time to optimise JUMP and CLIFF by

E(T) = O
((

n
d

)

· (d/γ) · (1 + γ log n)
)

.

For JUMPd and CLIFFd, the superiority of the Fast (1 +
1) IAγ in comparison to the deterministic evaluations scheme

(i.e., the original (1+1) IA) depends on the function parameter

d. If γ = Ω(1/ log n), the Fast (1 + 1) IAγ performs better

when min {d, n− d} = o(n/ log n) while the deterministic

scheme is preferable for larger min {d, n− d}. However, for

small min {d, n− d} the difference between the runtimes can

be as large as a factor of n in favor of the Fast (1 + 1) IAγ ,

while even for the largest min {d, n− d}, the difference is less

than a factor of log n in favor of the deterministic scheme.

Here we should also note that when both d and n− d are in

the order of Ω(n/ log n), the expected time is exponentially

large for both algorithms (albeit considerably smaller than that

of standard EAs) and the log n factor has no realistic effect

7

on the applicability of the algorithm. For these reasons the

Fast (1 + 1) IAγ should be more efficient in practice.

V. FAST OPT-IAγ

In the previous sections we showed how the Fast (1+1) IAγ

achieves linear speed-ups in the exploitation phases com-

pared to the traditional static HMP, while still maintaining

a high quality performance at escaping from local optima

of multimodal functions. In this section we will show how

also the complete Fast Opt-IAγ , which uses a population,

cloning, hypermutations and an ageing operator, can take

considerable advantage from the use of the fast HMP operator.

In particular, we show linear, quasi-linear and exponential

speed-ups compared to bounds on the expected runtime of

the standard Opt-IA known in the literature.

A. Optimal Expected Runtimes for Unimodal functions

We start by analysing the performance of the Fast Opt-IAγ

for standard unimodal benchmark functions, i.e., ONEMAX

and LEADINGONES. Essentially the bounds derived previously

for the Fast (1 + 1) IAγ also apply to the Fast Opt-IAγ by

multiplying them with the population and clone sizes as long

as the parameter τ is set large enough such that ageing does not

trigger with overwhelming probability before the global opti-

mum is identified (i.e., the use of ageing does not make sense

unless local optima are identified first). Hence, for correctly

chosen parameter values, the algorithm can optimise these

unimodal functions in optimal asymptotic expected runtimes.

Theorem 9. Fast Opt-IAγ with parameters µ ≥ 1, dup ≥ 1
and τ = c · n log n for some constant c, optimises ONEMAX

and LEADINGONES in expected O(µ · dup · n log n · (1 +
γ log n)) and O(µ · dup · n2 · (1 + γ log n)) fitness function

evaluations respectively.

Proof. For ONEMAX, we pessimistically assume that only one

individual makes progress and that it only does so in the first

bit flip of the hypermutation. Let i be the number of 0-bits

in the considered individual. Then in at most
∑n

i=1 en/i =
O(n log n) generations it will find the optimum. Taking into

account that in each hypermutation the expected fitness eval-

uations wastage in case of failure is O(1 + γ log n) and that

dup ·µ individuals are hypermutated in each generation, we

get O(µ · dup · n log n · (1 + γ log n)) as an upper bound on

the expected runtime.

We show the upper bound for LEADINGONES with the same

pessimistic assumptions. Since the probability of improving in

the first bit flip of the hypermutation is 1
en , we get a bound of

O(µ ·dup ·n2 ·(1+γ log n)) on the expected number of fitness

function evaluations since at most n improvements have to be

made.

Since for both problems the improvement probability is at

least 1
en in each iteration, the probability that the waiting time

for an improvement is at least n
√
log n is at most e/

√
log n

by Markov’s inequality. Thus, the probability that the best

individual in the population reaches age τ = Θ(n log n) is

at most
√
log n

−Ω(
√
logn)

.

Fig. 3: HIDDENPATH [5]

B. Quasi-linear Speed-Ups when Both Hypermutations and

Ageing are Necessary: HIDDENPATH

In [5], a benchmark function called HIDDENPATH (Fig.

5) was presented where the use of both the ageing and the

hypermutation operators is crucial for finding the optimum in

polynomial time. HIDDENPATH is defined as

HIDDENPATH(x) =






























n− ǫ+
∑n

i=n−4(1−xi)

n if |x|0 = 5 & x 6= 1n−505,

0 if |x|0 < 5 or |x|0 = n,

n− ǫ+ ǫk/ log n if 5 ≤ k ≤ log n+ 1 & x = 1n−k0k,

n if |x|0 = n− 1,

|x|0 otherwise,

where |x|0 and |x|1 respectively denote the number of 0-bits

and 1-bits in a bit-string x. This function provides a gradient

(where the fitness is evaluated by ZEROMAX=
∑n

i=1(1−xi))
to local optima (i.e., solutions with n− 1 0-bits), from which

the hypermutation operator can find another gradient (solutions

with exactly five 0-bits with fitness increasing with more 0-

bits in the rightmost five bit positions). This second gradient

leads to a path which consists of log n − 3 solutions of the

form 1n−k0k for 5 ≤ k ≤ log n+1 and ends up on the global

optimum. This path (called SP) is situated on the opposite

side of the search space (i.e., nearby the complementary bit-

strings of the local optima) so it can easily be reached with

hypermutations. However, the ageing operator is necessary

for the algorithm to accept a worsening; otherwise SP is not

accessible because the second gradient and the SP path have

lower fitness than that of the local optima.

In [5], an upper bound of O(τµn+µn7/2) for the expected

runtime of the traditional Opt-IA for the problem was estab-

lished. The same proof strategy allows us to show an upper

bound smaller by an n/ log n factor for the Fast Opt-IAγ .

The smaller bound is achieved thanks to the speed-up that

the fast HMP operator has in the exploitation phases. The

speed-up is only quasi-linear rather than linear because of the

γ/2 = 1/2 log n probability of evaluating a successful 2-bit

flip on the S5 gradient leading towards the hidden path (i.e.,

hence the extra O(log n) term in the upper bound).

Theorem 10. Fast Opt-IAγ requires O(τµ + µn5/2 log n)
fitness function evaluations in expectation to optimise HID-

DENPATH with µ = O(log n), dup = 1, γ = Ω(1/ log n) ≤
1/(5 lnn) and τ = Ω(n(log n)3).

8

Proof. We follow similar arguments to those of the proof of

Theorem 11 in [5] for the traditional Opt-IA. For simplicity

during the analysis, we call a non-SP point an Si solution

where i is the number of 0-bits. We also pessimistically

assume that until the very end, the global optimum point is

not evaluated.

After initialisation, an Sn−1 solution will be found in

expected O(µn log n) generations by hill-climbing the ZE-

ROMAX part of the function according to Theorem 9. This

individual creates and evaluates another Sn−1 search point

with probability γ/(2n) (i.e., with probability (n− 1)/n a 0-

bit is flipped and then the 1-bit is flipped with probability

1/(n − 1), and the solution will be evaluated with proba-

bility γ/2 after the second bit flip). Hence, after at most

µ · O(n) generations in expectation, the whole population

will consist only of Sn−1 solutions. Considering that the

probability of producing two Sn−1 solutions in one generation

is
(

µ
2

)

·O(γ/n) ·O(γ/n) = O(1/n2), with probability at least

1− o(1) we see at most one new Sn−1 per generation for any

phase length of o(n2) generations. Taking into account that the

probability of creating a new Sn−1 individual is γ/(2n) and

following the proof of Theorem 11 in [5], we can conclude that

in O(µ3·n/γ) generations in expectation, the whole population

reaches the same age while on the local optimum. Using

Markov’s inequality iteratively we can bound the probability

that a population that consists of Sn−1 individuals of the

same age will be observed in at most O(µ3 · n(log n)2)
generations with probability 1 − o(1). Then, after at most τ
generations, with probability (1 − 1/(2µ))2µ−1 · 1/(2µ), one

solution survives and the rest are removed from the population.

In the following generation, while µ− 1 randomly initialised

solutions are added instead of the removed solutions, the

survived solution creates and evaluates an S1 solution with

probability 1/e. If an S1 solution is not created before the

newly generated individuals reach the Sn−1 level, we repeat

the arguments starting from the takeover of the population by

Sn−1 individuals. Since the jump to S1 occurs with probability

1/e, in expectation we repeat the same process at most a

constant number of times and the runtime until the success

has the same asymptotic order as the runtime until the first

attempt, i.e., O(µ3 · n(log n)2) hypermutation operations.

After the S1 individual is added to the population, the hyper-

mutation operator finds an S5 solution from this search point

by flipping at most six bits and evaluating it with probability

at least γ/6, which requires O(log n) attempts in expectation

and in turn implies an expected time until this event occurs

of O(µ3 · n(log n)3). This individual will be added to the

population with its age set to zero if the complementary bit-

string (Sn−1) is not evaluated, which happens with probability

(1 − 1/e). In the same generation the S1 solution dies with

probability 1− 1
2µ due to ageing.

Next, we show that the S5 solutions will take over the

population, and the first point of SP will be found before

any Sn−1 is found. An S5 creates an Sn−5 individual and

an Sn−5 individual creates an S5 individual with constant

probability 1−(1/e) by evaluating complementary bit-strings.

Thus, it takes O(1) generations until the number of S5 and

Sn−5 individuals in the population doubles. Since the total

number of S5 and Sn−5 increases exponentially in expectation,

in O(logµ) = O(log log n) generations the population is

taken over by them. After the take-over, since each Sn−5

solution creates an S5 solution with constant probability, in

the following O(1) generations in expectation each Sn−5

creates an S5 solution which have higher fitness value than

their parents and replace them in the population. Overall, S5

solutions take over the population in O(log log n) generations

in expectation.

For S5, HIDDENPATH has a gradient towards the SP which

favors solutions with more 0-bits in the first (the rightmost)

five bit positions. Every improvement on the gradient takes

O((2/γ) · n2) generations in expectation since it is enough

to flip a precise 1-bit and a precise 0-bit in the worst case.

Considering that there are five different fitness values on

the gradient, in O(5 · 2 · n2/γ) = O(n2/γ) generations in

expectation the first point of the SP will be found. Applying

Markov’s inequality, this time will not exceed O(n5/2/γ) with

probability at least 1− (1/
√
n).

Now we go back to the probability of finding a locally

optimal point before finding an SP point. Due to the symmetry

of the hypermutation operator, the probability of creating an

Sn−1 solution from an S5 solution is identical to the prob-

ability of creating an Sn−1 solution from an Sn−5 solution.

The probability of increasing the number of 0-bits by k given

that the initial number of 1-bits is i and the number of 0-

bits is n − i, is at most (2i/n)k due to the Ballot theorem

since each improvement reinitialises a new ballot game with

higher disadvantage (see the proof of Theorem 12 for a

more detailed argument). Thus, the probability that a local

optimal solution is sampled is O(n−4). The probability that

such an event never happens before finding SP is 1 − o(1).
After finding SP, in O(n log n) generations in expectations

the global optimum will be found at the end of the SP. The

probability of finding any locally optimal point from SP is

at most O(1/n4), hence this event does not happen before

reaching the global optimum with probability 1−o(1). Overall,

the runtime is dominated by O(τ + n5/2/γ) which give us

O((τ + n5/2/γ) · µ(1 + γ log n)) as the expected number of

fitness evaluations. Since Ω(1/ log n) = γ ≤ 1/(5 lnn), the

upper bound reduces to O(τµ+ µn5/2 log n).

C. Exponential Speed-Ups when Traditional Hypermutations

are Detrimental: CLIFFd

HIDDENPATH was originally designed to highlight the be-

haviour of Opt-IA and illustrate its strengths. In particular,

the function is an illustrative example problem where both

hypermutations and ageing are necessary. Indeed, it was shown

that algorithms using either only the HMP operator (without

ageing) or only the ageing operator (e.g., with standard bit

mutation or local search) cannot optimise the function in

polynomial time with very high probability [5].

HIDDENPATH was especially designed to exploit the fact

that HMP operators only stop at the first constructive muta-

tion, hence always return the complementary bit-string with

probability 1 unless some improvement over the parent is

found before. On the other hand, by not returning solutions

9

of lower quality apart from the complementary bit-string,

the static HMP does not allow Opt-IA to take advantage

of the power of ageing at escaping local optima in general,

thus seriously limiting the potential explorative power of the

algorithm. In this subsection we show that the Fast Opt-IAγ ,

with approproate parameter values for γ can escape from local

optima by accepting a variety of solutions of lower quality.

For this purpose, we consider the CLIFFd benchmark func-

tion (defined in the previous section) which is traditionally

used to evaluate the performance of randomised search heuris-

tics at escaping local optima by accepting solutions of lower

quality [27]–[29]. CLIFFd was also used to show the power of

the ageing operator in [5]. RLS and EAs using standard bit

mutation coupled with ageing can escape the local optimum of

CLIFFd by using their small mutation rates to create solutions

at the bottom of the cliff in the same iteration where the rest

of the population dies. This allows both algorithms to optimise

the hardest CLIFFd functions (when the gap between the local

and global optimum is linear, i.e., d = Θ(n)) respectively

in expected runtimes of O(n log n) and O(n1+ǫ log n) for

any arbitrarily small positive constant ǫ. On the other hand,

since static HMP with FCM does not return solutions of lower

quality except for the complementary bit-string, the standard

Opt-IA can only rely on hypermutations alone to escape from

the local optima. Hence, the runtime is exponential in the

distance between the top of the cliff and the global optimum

w.o.p. The following theorem shows how for the hardest

CLIFFd instances, i.e., d = Θ(n), the Fast Opt-IAγ has the

best possible asymptotic expected runtime achievable by unary

unbiased randomised search heuristics for any function with

unique global optimum.

Theorem 11. Fast Opt-IAγ with µ = O(log n), dup =
O(log n), γ = 1/(n log2 n) and τ = Θ(n log n) needs

O(µ · dup · τ · n2

d2 + n log n) fitness function evaluations in

expectation to optimise CLIFF with d ≤ n/4 − ǫ for a small

constant ǫ.

Proof. With γ = 1/(n log2 n), the expected number of fit-

ness function evaluations per iteration, O(1 + γ log n) (see

Lemma 4), would be in the order of Θ(1). On the first

ONEMAX slope, the algorithm improves by the first bit flip

with probability at least d/n = Θ(1) and then evaluates this

solution with probability 1/e = Θ(1). This implies that the

local optimum will be found in O(µ · dup · n log n) fitness

evaluations in expectation after initialisation.

A solution at the local optimum can only improve by finding

the unique globally optimum solution, which requires the

hypermutation to flip precisely d 0-bits in the first d mutation

steps which occurs with probability
(

n
d

)−1
. We pessimistically

assume that this direct jump never happens and assume that

once a solution at the local optimum is added to the population,

it reaches age τ at some iteration t0. We consider the following

chain of events that starts at t0. First a solution with (n−d+1)
1-bits would be added to the population with probability

(1/e · d/n). Then, the locally optimal solutions will die due

to ageing with probability (1 − 1
(dup+1)·µ)

(dup+1)·µ−1 > 1/e
while the post-cliff solution (i.e., solutions with more than

n−d 1-bits) will survive with probability 1
(dup+1)·µ . In the next

iteration, the post-cliff solution will improve the fitness with

probability d/n and hence resets its age to zero. If all of these

events occur consecutively (which happens with probability

Ω(µ·dup·d2/n2)), the algorithm can start climbing the second

ONEMAX slope with local moves (i.e., by considering only the

first mutation steps) which are evaluated with constant prob-

ability. Then, the CLIFF function is optimised in O(n log n)
function evaluations like ONEMAX unless a pre-cliff solution

(i.e., a solution with less than n − d 1-bits) replaces the

current individual. The rest of our analysis will focus on the

probability that a pre-cliff solution is sampled and evaluated

given that the algorithm has a post-cliff solution with age zero

at iteration t0 + 1.

If the current solution is a post-cliff solution, then the

final bit-string sampled by the hypermutation operator has a

worse fitness level than the current individual. The probability

that FCMγ evaluates at least one solution between mutation

steps two and n − 1 (event Env), is bounded from above

by
i=2
∑

n−1
γ/i < 2γ · log n = 2/(n log n). We consider the

O(n log n) generations until a post-cliff solution with age zero

reaches the global optimum. The probability that event Env
never occurs in any iteration until the optimum is found is at

least (1− 2/(n log n))O(n logn) = e−O(1) = Ω(1), a constant

probability. Thus, every time we create a post-cliff solution

with age zero, there is at least a constant probability that

the global optimum is reached before any solution that is not

sampled at the first or the last mutation step gets evaluated. The

first mutation step cannot yield a pre-cliff solution, and the last

mutation step cannot yield a solution with better fitness value.

Thus, with a constant probability the post-cliff solution finds

the optimum. If it fails to do so (i.e., a pre-cliff solution takes

over as the current solution or a safe solution is not obtained at

iteration t0 +1), then in at most O(n log n) iterations another

chance to create a post-cliff solution comes up and the process

is repeated. In expectation, O(µ ·dup ·n2/d2) number of trials

will be necessary until the optimum is found and since each

trial takes O(n log n) fitness function evaluations, our claim

follows.

Note that the above result requires the parameter γ to be in

the order of Θ(1/(n log2 n)), while Lemma 4 implies that any

γ = ω(1/ log n) does not decrease the expected number of fit-

ness function evaluations per hypermutation below the asymp-

totic order of Θ(1) (i.e., the algorithm does not waste more

than a constant number of evaluations in each hypermutation).

Nevertheless, the smaller γ = 1/(n log2 n) is necessary for

the algorithm to escape from the local optima efficiently. In

particular, it allows the algorithm to only evaluate the first

and/or the last bit flip until the optimum is found with high

enough probability. This in turn allows the Fast Opt-IAγ to

climb up the second slope before jumping back to the local

optima via larger mutations. The following theorem rigorously

proves that a very small choice for γ in this case is necessary

(i.e., γ = Ω(1/ log n) leads to exponential expected runtime).

Theorem 12. At least 2Ω(n) fitness function evaluations in

expectation are executed before the Fast Opt-IAγ with γ =
Ω(1/ log n) finds the optimum of CLIFFd for d = (1− c)n/4,

10

where c is a constant 0 < c < 1, independent of the values of

µ, dup and τ .

Proof. Consider a current solution with more than n− d (i.e.,

post-cliff) and fewer than n − d + 2
√
n 1-bits. We show

that w.o.p., FCMγ will yield a solution with less than n − d
(i.e., pre-cliff) and more than n − 2d + 2

√
n 1-bits before

the initial individual is mutated into a solution with more

than n − d + 2
√
n 1-bits. This observation will imply that

a pre-cliff solution with better fitness will replace the post-

cliff solution before the post-cliff solution is mutated into a

globally optimal solution. We will then show that it is also

exponentially unlikely that any pre-cliff solution mutates into

a solution with more than n− d+
√
n 1-bits to complete our

proof.

We first provide a lower bound on the probability that FCMγ

with post-cliff input solution x yields a pre-cliff solution with

higher fitness value than x. We start by determining the earliest

mutation step rmin, where a pre-cliff solution with worse

fitness than x can be sampled. For any post-cliff solution

x, CLIFFd(x) = ONEMAX(x) − d + (1/2), and any pre-

cliff solution y with ONEMAX(x) − d + 1 1-bits, it holds

that CLIFFd(y) > CLIFFd(x). We obtain the rough bound of

rmin ≥ d − 2
√
n by considering the worst-case event that

FCMγ picks d 1-bits to flip consecutively. Let ℓ(x) denote the

number of extra 1-bits a post-cliff solution has in comparison

to a locally optimal solution (i.e, ONEMAX(x) = n−d+ℓ(x)).
Now, we use Serfling’s bound (Theorem 1) to show that with

a constant probability FCMγ will find a pre-cliff solution

before 3ℓ(x) mutation steps and it will keep sampling pre-

cliff solutions until rmin.

For the input bit-string of FCMγ , x, let the multiset of

weights C := {ci|i ∈ [n]} be defined as ci := (−1)xi (i.e.,

ci = −1 when xi = 1, and ci = 1 when xi = 0). Thus,

for a permutation π of bit-flips over [n], the number of 1-

bits after the kth mutation step is ONEMAX(x) +
∑k

j=1 cπj

since flipping the position i implies that the number of 1-bits

changes by ci.

Let µ̄ := (1/n)
∑n

j=1 ci be the population mean of C and

X̄ := (1/3ℓ(x))
∑3ℓ(x)

j=1 cπj the sample mean. Since the CLIFF

parameter d is less than n/4,

µ̄ ≤ (1/n) ((−3n/4) + (n/4)) = −1/2.

In order to have a solution with at least n − d + 1 1-bits at

mutation step 3ℓ(x), the following must hold:

3ℓ(x)X̄ ≥ −ℓ(x) ⇐⇒ X̄ ≥ −1

3

=⇒ X̄ − µ̄ ≥ −1

3
+

1

2
=

1

6
⇐⇒

√

3ℓ(x)
(

X̄ − µ̄
)

≥
√

3ℓ(x)

6
.

The probability that a pre-cliff solution will not be found

in mutation step 3ℓ(x) follows from Theorem 1, with sample

mean X̄ , population mean µ̄, sample size 3ℓ(x), population

size n, cmin = −1 and cmax = 1.

Pr

{

√

3ℓ(x)
(

X̄ − µ̄
)

≥
√

3ℓ(x)

6

}

≤ exp











−
2

(√
3ℓ(x)

6

)2

(

1−
(

3ℓ(x)−1
n

))

(1− (−1))2











≤ e−Ω(ℓ(x)).

Thus, with probability (1− e−Ω(ℓ(x))), we will sample the

first pre-cliff solution after 3ℓ(x) mutation steps. We focus our

attention on post-cliff solutions with 1 ≤ ℓ(x) ≤ 2
√
n and can

conclude that for such solutions the above probability is in the

order of Ω(1). Since the number of 0-bits changes by one in

every mutation step, the event of finding a solution with at

most n − d bits implies that at some point a solution with

exactly n− d 1-bits has been sampled. Let k0 ≤ 3ℓ(x) be the

mutation step where a locally optimum solution is found for

the first time. Due to the Ballot theorem the probability that

a solution with more than n− d 1-bits is sampled after k0 is

at most 2d/n ≤ 1/2. So, with probability at least 1/2, FCMγ

will keep sampling pre-cliff solutions until rmin ≤ d−2
√
n =

Ω(n). We will now consider the probability that at least one of

the solutions sampled between k0 and rmin is evaluated. Since

the evaluation decisions are taken independently from each

other, the probability that none of the solutions are evaluated

is
rmin
∏

i=k0

(

1− γ

i

)

≤
rmin
∏

i=3ℓ(x)

(

1− γ

i

)

≤
rmin
∏

i=6
√
n

(

1− γ

i

)

≤
rmin
∏

i=6
√
n

(

1− 1

(c1 log n)i

)

,

for some constant c1 since γ = Ω(1/ log n). We will separate

this product into ⌊log (rmin/6
√
n)⌋ smaller products and show

that each smaller product can be bounded from above by

e−1/(2c1 log). The first subset contains the factors with indices

i ∈ {(rmin/2)+1, . . . , rmin}, the second set i ∈ {(rmin/4)+
1, . . . , rmin/2} and jth set (for any j ∈ [⌊log (rmin/6

√
n)⌋])

i ∈ {rmin2
−j + 1, . . . , rmin2

−j+1}. If some indices are not

covered by these sets due to the floor operator, we will ignore

them since they can only make the final product smaller.

Note that we assume any logarithm’s base is two unless it

is specified otherwise.

⌊log (rmin/6
√
n)⌋

∏

j=1

rmin2
−j+1

∏

i=rmin2−j+1

(

1− 1

(c1 log n)i

)

≤
⌊log (rmin/6

√
n)⌋

∏

j=1

(

1− 2j−1

(c1 log n)rmin

)rmin2
−j

≤
⌊log (rmin/6

√
n)⌋

∏

j=1

e−1/(2c1 logn)

≤ e−⌊log (rmin/6
√
n)⌋/(2c1 logn) = e−Ω(1),

where in the second line we made use of the inequality

(1 − cn−1)n ≤ e−c and in the final line our previous

11

observation that rmin = Ω(n). This implies that at least one

of the sampled pre-cliff individuals will be evaluated at least

with constant probability. At this point we have established

that a pre-cliff solution will be added to the population with

constant probability if the initial post-cliff solution x has a

distance between
√
n and 2

√
n to the local optima.

Due to the operator stopping at the first constructive muta-

tion the number of 1s in a pre-cliff solution cannot be improved

by more than one in a single hypermutation operation. This

implies that it is exponentially unlikely that a pre-cliff solution

is mutated into a solution with more than n− d+
√
n 1-bits.

Moreover, the fitness value of any post-cliff solution cannot

be improved by more than one either. Thus, it takes at least

Ω(
√
n) hypermutations until a post-cliff solution has more

than n− d+2
√
n 1-bits. Since we established that a pre-cliff

solution is evaluated with constant probability at each iteration,

we can conclude that at least one such individual is sampled

in Ω(
√
n) iterations with overwhelmingly high probability.

Since the Fast Opt-IAγ cannot follow the post-cliff gradient

to the optimum with overwhelmingly high probability, it relies

on making the jump from local optima to global optima. Given

an initial solution with y ∈ {(n/3), . . . , n− d+ 2
√
n} 1-bits,

the probability of jumping to the unique global optimum is

2Ω(−n) as well, thus our claim follows.

While the low parameter value allows the algorithm to

escape from local optima as proven in Theorem 11, with

such γ-values the hypermutation is in essence switched off,

i.e., with high probability the algorithm only evaluates the

first bit flip and the last one, with the latter being unlikely

to be useful very often. We will address the problem again

in Section VII, when discussing the best possible fitness

evaluation distribution for the fast HMP operator for general

purpose optimisation.

VI. FAST HYPERMUTATIONS FOR COMBINATORIAL

OPTIMISATION

In the previous sections we used standard benchmark func-

tions from the literature to show the speed-ups that can be

achieved in the exploitation phases with the fast HMP operator

while still maintaining excellent exploration capabilities at

escaping local optima. In this section we will validate the

gained insights using classical problems from combinatorial

optimisation for which the performance of the traditional EAs

and AISs is known in the literature.

In the following section we analyse the performance of

the Fast (1 + 1) IAγ for the NP-Hard PARTITION problem.

Static HMP operators allow AISs to efficiently find arbitrarily

good constant approximations for the problem [9]. This is

achieved by escaping local optima of low quality by flipping

approximately half of the bits. Given that the parabolic dis-

tribution of the fast HMP operator decreases the probability

of evaluating solutions as the n/2th bit flip is approached, it

wouldn’t be surprising if the Fast (1+1) IAγ was to struggle

on this problem. Nevertheless, we will present the remarkable

result that a linear factor smaller upper bound on the expected

runtime can be achieved by the algorithm compared to the

static HMP even in this apparently unfavourable scenario.

This result shows that the insights gained from the analysis

of HIDDENPATH, that overall speed-ups may be achieved for

multimodal problems by emphasising the exploitation strength

may also appear in classical NP-Hard problems with numerous

real-world applications.

In Section VI-B, we turn to the VERTEX COVER problem.

We will rigorously prove linear speed-ups of the Fast (1 +
1) IAγ to identify feasible solutions to the problem compared

to static HMP using a node-based representation, and for iden-

tifying 2-approximations for any instance of the problem using

an edge-based representation. Thus, the analysis confirms the

greater exploitative capabilities of the Fast HMP operators.

At the end of each subsection we will also argue how the

results also hold for the population based Fast Opt-IAγ using

ageing.

A. PARTITION

PARTITION, or NUMBER PARTITIONING, is a simple

makespan scheduling problem where the goal is to schedule

n different jobs with processing times p1 ≥ p2 ≥ · · · ≥ pn on

two identical machines in a way that the load of the fullest

machine is minimized. It is considered to be one of the six

basic NP-complete problems [30] which arises in many real

world applications such as allocation tasks in industry and in

information processing systems [31], [32]. It is known that

the (1 + 1) EA and RLS get stuck on approximately 4/3

approximation ratios on worst-case instances of the problem.

However, they can find a (1 + ǫ) approximation for any

ǫ = Θ(1) if an appropriate restart strategy that depends on

the chosen ǫ is put in place [33]. On the other hand the

(1+1) IA, by using static HMP can escape the local optima

where EAs and RLS get stuck, thus solving the worst-case

instance in expected O(n2) time. As a result it finds arbitrarily

good approximations with an expected runtime that is only

exponential in ǫ, i.e., it can efficiently identify arbitrarily small

constant (1+ ǫ) approximations in every run in expected time

O(n3) [9]. In the following two subsections we use the same

proof techniques used in [9] to prove that the Fast (1+1) IAγ

optimises the worst-case instance for EAs in expected time

O(n log n) and identifies a (1+ ǫ) approximation in expected

time O(n2), thus providing upper bounds that are respectively

a quasi-linear and linear factors smaller than those derived for

the traditional static HMP operator.

First we adapt a result from [9] regarding the expected

number of generations required by the Fast (1 + 1) IAγ to

identify a local optimum from a non-locally optimal solution.

In the rest of this section we use the term local optimum to

refer to solutions with a makespan that cannot be improved by

moving one single job from one machine to the other. More-

over, let ℓ1, ℓ2, · · · ℓL denote the local optima of a PARTITION

instance where L is the total number of local optima and for

any i ∈ L, f(ℓi) ≥ f(ℓi+1).

Lemma 13 (Adapted from Lemma 2 in [9]). Let x ∈ {0, 1}n
be a non-locally optimal solution to a partition instance such

that f(ℓi) > f(x) ≥ f(ℓi+1) for some i ∈ [L − 1]. Then,

the Fast (1 + 1) IAγ with current solution x samples a

12

Fig. 4: Worst-case approximation PARTITION instance, Wǫ,

for EAs [33].

solution y such that f(y) ≤ f(ℓi+1) in at most 2en2 expected

generations.

The proof is essentially identical to that of [9]. The main

difference is that the Fast (1+1) IAγ evaluates a solution after

the first bit with probability 1/e, rather than with probability 1
as in static HMP. Thus, the resulting additional multiplicative

factor of e in the expected runtime.

1) EA’s Worst-Case Instance Class: The worst-case in-

stance Wǫ for the (1 + 1) EA is depicted in Figure 4. It

consists of two large jobs p1 and p2 each with processing times

(1/3− ǫ/4), and n− 2 small jobs, p3, p4, . . . , pn, each with a

processing time of (1/3 + ǫ/2)/(n− 2). The total processing

time is normalised between 0 and 1, and the global optima,

consisting of one large job and half of the small jobs on each

machine, have a makespan of 1/2. It has been shown that with

constant probability the (1+1) EA and RLS take nΩ(n) fitness

function evaluations to find a solution better than (4/3 − ǫ)
approximation for Wǫ [33].

The Fast (1 + 1) IA using static HMP has been proved

to be able to efficiently optimise the instance in O(n2)
expected runtime [9]. The following theorem shows how the

Fast (1 + 1) IAγ can optimise it in O(n log n) expected

function evaluations if it uses any parameter value γ =
Ω(1/ log n). The speed-up is simply due to the fewer function

evaluations wasted in the exploitation phases (i.e., it hillclimbs

up to the local optima in O(n log n) expected evaluations

rather than O(n2). While it is a logarithmic factor slower at

escaping from the local optima, this burden does not increase

the overall asymptotic order.

Theorem 14. The Fast (1 + 1) IAγ optimises Wǫ in O(nγ +
n log n) expected fitness function evaluations.

Proof. We follow the proof of Theorem 4 in [9]. For any non-

optimal solution, either there is a linear number of small jobs

on the fuller machine that can be moved to the emptier one,

or the number of small jobs on each machine differ from the

optimal configuration (i.e., half and half) by a linear factor

(Property 1.3 in [9]). For the first case, the probability that

the FCMγ operator flips a small job as the first bit-flip and

evaluates the improvement is is
Ω(n)
n · 1

e . If this happens,

then the hypermutation stops. Since there are at most O(n)
different makespan values for the instance class (Property 1.1

in [9]), the total expected number of improving hypermutation

operations in these cases is at most O(n). For the second

case, the proof in [9] uses that at some point during the

hypermutation the small jobs are split evenly between the

two machines. When this happens, there is at least a constant

probability Ω(1) that the two large jobs are on separate

machines. The probability that the Fast (1 + 1) IAγ will

evaluate such an optimal solution when sampled is at least

2γ/n. Hence, an optimal solution is sampled at most O(n/γ)
times in expectation before it is evaluated.

Overall, the total number of generations before a global

optimum is identified is O(n+n/γ). Taking into account the

fitness function evaluations wasted in each generation, i.e., at

most O(1+ γ log n) according to Lemma 4 , we get an upper

bound of O(1 + γ log n)(n+ n/γ) = O(nγ + n log n).

2) Worst-Case Approximation Ratio: We now prove the

main result of this subsection.

Theorem 15. The Fast (1 + 1) IAγ finds a (1 +
ǫ) approximation for any instance of PARTITION in
[

2en2 · (22/ǫ + 1) + (ǫ(2/ǫ)+1)−1(1− ǫ)−2e322/ǫ n
2γ

]

· (1 +

γ log n) expected fitness function evaluations for any ǫ =
ω(1/

√
n).

Proof. The proof follows that of Theorem 6 in [9]. We denote

the current solution with Xt and assume the algorithm stops

as soon as it finds a (1 + ǫ) approximation.

By Lemma 13 we know that any non-locally optimal search

point finds a makespan that is at least as good as the next

local optimum in at most 2en2 generations in expectation by

just improving in the first bit flip and evaluating the solution

with probability 1/e. As the number of local optima with

differing fitness which are not (1+ǫ) approximations is at most

22/ǫ (Property 2.4 in [9]), the expected number of generations

where Xt /∈ L is at most 2en2 · (22/ǫ + 1).
For

∑n
i=s+1 pi ≥ 1

2

∑n
i=1 pi, any local optimum is a (1+ǫ)

approximation (Property 2.3 in [9]). Therefore, we calculate

the expected number of generations spent with Xt ∈ L
before a (1 + ǫ) approximation is identified, assuming that
∑n

i=s+1 pi <
1
2

∑n
i=1 pi.

According to the proof of Theorem 6 in [9], if the above

assumption on the weights of the large jobs is in place, then the

probability that in one hypermutation a (1+ ǫ) approximation

is sampled from any search point Xt ∈ L is at least
(ǫ−ǫ2)2/ǫ

e ·
ǫ ≥ ǫ(2/ǫ)+1(1−ǫ)2

e3 unless an improvement is found before. If

sampled, it is evaluated by the Fast (1+1) IAγ with probability

at least γ
n/2 .

Recall that there are at most 22/ǫ distinct makespan values

amongst local optima that are not (1 + ǫ) approximations.

Hence, the expected number of iterations spent on local optima

is at most (ǫ(2/ǫ)+1)−1(1− ǫ)−2e322/ǫ n
2γ .

By taking into account the expected number of wasted

evaluations is each generation, the total expected runtime is at

most
[

2en2 · (22/ǫ + 1) + (ǫ(2/ǫ)+1)−1(1− ǫ)−2e322/ǫ n
2γ

]

·
(1 + γ log n).

For γ = 1/ log n, as recommended herein for the Fast (1+
1) IAγ , the expected runtime is dominated by the term

2en222/ǫ. Hence the upper bound is a linear factor smaller

than that of the (1+1) IA using traditional static HMP. We

remark that even though the Fast (1+ 1) IAγ is a logarithmic

factor slower at escaping from the local optima, a speed-up

13

is still achieved because the dominating term is due to the

expected time to hill-climb up to the local optima, a task at

which the FCMγ operator is considerably faster. Hence, this

advantage dominates even in the PARTITION scenario where

flipping approximately n/2 bits is essential to escape local

optima via mutation and detrimental to the Fast (1 + 1) IAγ .

We remark that the complete Fast Opt-IAγ can also solve

the worst-case instance to optimality and identify the ap-

proximation ratios by either using the ageing operator to

restart the search process when trapped on local optima

(with optimisation time O(n2) [9]) or by escaping them via

hypermutation. Hence, the Fast Opt-IAγ can take advantage

of both hypermutations and ageing to efficiently overcome the

local optima of PARTITION.

B. VERTEX COVER

In this section we will use the NP-Hard VERTEX COVER

problem to rigorously prove that the Fast (1 + 1) IAγ can

take advantage of the FCMγ operator to achieve consider-

able speed-ups compared to static HMP on another classic

problem from combinatorial optimisation with numerous real-

world applications [34] in, e.g., classification methods [35],

computational biology [36], and electrical engineering [37],

[38].

Given an undirected graph G = (V,E), the VERTEX

COVER problem asks to find a minimal subset of vertices,

V ′ ⊆ V , such that every edge e ∈ E is adjacent to one of the

vertices in V ′. Any set of vertices such that all edges in the

graph are adjacent to at least one vertex in the set is a feasible

solution and is called a cover. The aim of the problem is to

identify the cover of minimal size (i.e., the minimum vertex

cover). While the problem is NP-Hard, hence no algorithm is

expected to be able to efficiently identify the optimum of every

instance, we will show that the (1+1) IA using the traditional

HMP operator is particularly slow at identifying any cover

and how the Fast HMP operators speed-up the algorithm by a

linear factor when node-based representations are used. In the

next subsection, we will prove the same linear speed-up for

identifying 2-approximations when edge-based representations

are employed.

1) Node-Based Representation: We will use the commonly

applied fitness function over node-based representations [39]–

[41]. Candidate solutions are bit-strings of length |V | = n,

where each bit xi is associated to a node in the graph and is

set to 1 if the vertex i is included in the cover set, and to 0
otherwise. The fitness of a candidate solution is,

fv(x) =

n
∑

i=1



xi + n(1− xi)

n
∑

j=1

(1− xj)ei,j



 ,

where ei,j takes value 1 if there is an edge connection

between vertex i and vertex j in the graph G. This fitness

function sums the number of vertices in the cover (the first

term) and gives a large penalty to the number of uncovered

edges (the second term).

It is well-known that both the (1+1) EA and RLS can find

feasible covers in expected time Θ(n log n). The following

theorem shows that the (1 + 1) IA using the traditional static

HMP operator is a linear factor slower.

Theorem 16. The expected time until the (1 + 1) IA finds a

vertex cover using the node-based representation and fv is

Θ(n2 log n).

Proof. To prove the upper bound, we use multiplicative drift

proof idea of Theorem 1 in [41] for the (1+ 1) EA and RLS.

In particular, we will perform a drift analysis on the number

of uncovered edges in the current solution.

Let k denote the number of vertices that are incident to

at least one uncovered edge and u be the total number of

uncovered edges. The optimisation goal is to find the expected

time until the number of uncovered edges is u = 0.

Looking at only the first bit-flip, the probability of improve-

ment is at least k/n and each accepted offspring decreases the

number of uncovered edges by u/k in expectation. The reason

is that, on average, each of the k vertices are connected to

u/k uncovered edges in expectation, hence, at the end of each

improving step, the expected number of uncovered edges is

at most ut+1 := (ut − k
nkut) = (ut − 1

nut) = ut(1 − 1
n).

Hence, the drift i.e., the expected decrease of the number if

uncovered edges in one step, is δ := 1/n. Now, we can use

the multiplicative drift theorem (i.e., Theorem 3) to compute

the expected time until all the edges are covered (i.e., u = 0).

Assuming g to be the number of uncovered edges, gmax is

n(n− 1)/2 for a complete graph. Hence, we get an expected

runtime of E(T) ≤ 1
δ (1 + ln(n · (n − 1)/2) ≤ O(n log n) to

cover all edges. By pessimistically assuming that in the case

of a failure at improving in the first mutation step, n fitness

function evaluations are wasted, the overall expected runtime

is O(n2 log n).
To prove a lower bound on the expected time to find a cover,

we assume that the given graph is complete (i.e., the number

of edges is n(n−1)/2). The size of a cover for such a graph is

n−1. By Chernoff bounds, we know that w.o.p. the initialised

solution includes at most 2n/3 vertices (i.e., the number of 1-

bits). To compute the expected time until all n−1 vertices are

selected, we use the Ballot theorem. Considering the number

of 0-bits as i = q and the number of 1-bits as n− i = p, the

probability of an improvement is at most 1−(p−q)/(p+q) =
1 − (n − 2i)/n = 2i/n by the Ballot theorem (Theorem 2).

Since the operator stops at the first constructive mutation, it is

necessary that at least n/3 improving hypermutations occur.

Hence, the expected runtime for the cover to be identified is

at least
∑n/3

i=1(
n
2i · 1 + (n

2i − 1) · n) = Ω(n2 log n) where the

second term takes into account that in the generations where

an improvement is not identified n fitness function evaluations

are wasted.

We now prove that the Fast (1 + 1) IAγ is a linear factor

faster.

Theorem 17. The expected time until the Fast (1 + 1) IAγ

finds a vertex cover using the node-based representation and

fv is Θ(n log n · (1 + γ log n)).

Proof. The proof of both upper and lower bounds is similar

to that of Theorem 16. We start with the upper bound first.

14

For the Fast (1 + 1) IAγ , the probability of improvement in

the first bit-flip is k/(ne) which does not change the runtime

asymptotically. However, in case of failure at improving the

fitness, the Fast (1 + 1) IAγ wastes at most O(1 + γ log n)
fitness function evaluations in expectation. This yields an

expected runtime of E(T) = O((1 + γ log n) · n lnn).
Regarding the lower bound, the proof is identical to that

of Theorem 16 except that the expected wastage when failing

to find an improvement is Ω(1 + γ log n), which makes the

expected runtime larger than
∑n/3

i=1(
n
2i · 1 + (n

2i − 1) · (1 +
γ log n)) = Ω(n log n · (1 + γ log n)).

2) Edge-Based Representation: It is well understood that

using the node-based representation of the previous subsection,

RLS and EAs may get stuck on arbitrarily bad approximations

for the VERTEX COVER problem [40], [41]. In [42], it was

shown that 2-approximations may be guaranteed by these

algorithms if an edge-based representation is employed, such

that if an edge is selected, then both its endpoints are included

in the cover. For the approximation to be guaranteed, it is

necessary to give a large penalty to adjacent edges, i.e., the

fitness decreases considerably if adjacent edges are deselected.

Given a graph G = (V,E) with |V | = n and |E| = m and

an edge-based representation where solutions are bit-strings of

length m, the fitness function is,

fe(x) = fv(x) + (|V |+ 1) · (m+ 1)

· |{(e, e′) ∈ E(x)× E(x)|e 6= e′, e ∩ e′ 6= ∅}|.
We will now prove that while with this representation the

(1+1) IA with traditional static HMP requires super-quadratic

expected runtime in the number of edges to find a 2- approx-

imation in the worst-case, the Fast (1 + 1) IAγ guarantees 2-

approximations in expected time O(m logm) for any instance

of the problem.

Theorem 18. Using the edge-based representation and fitness

function fe, the (1 + 1) IA has an expected runtime of

Ω(m2 logm) to find a 2-approximation for vertex cover. The

Fast (1+1) IAγ finds a 2-approximation within O((m logm) ·
(1 + γ logm)) expected fitness function evaluations.

Proof. For the first statement we consider a star graph with

|V | = n and |E| = m = n+1. All nodes but one are connected

to the central one with exactly one edge. We follow the proof

idea for the lower bound of Theorem 16. By Chernoff bounds,

w.o.p. the algorithm is initialised with at least m/3 selected

edges and they all have to be deselected except for one since

all the edges are adjacent. Only then will the resulting cover

be a 2-approximation. By the Ballot theorem, given that i
edges still need to be deselected, the probability that by the

end of a hypermutation an improvement is found is 2i/m.

The statement follows by considering that in the m/(2i) − 1
expected generations where no improvement occurs, m fitness

evaluations will be wasted, and by summing these evaluations

up for the 1 < i < m/3 necessary improvements due to

stopping after each constructive mutation.

The proof of the upper bound follows directly the proof for

RLS and the (1+1) EA of Theorem 11 in [42]. Two ONEMAX-

like phases suffice to guarantee that a 2-approximation is

found: the first one removes all the adjacent edges, thus

removing the largest penalty term completely, and the sec-

ond one adds any edges connecting uncovered nodes, thus

removing the penalty term of fv . Since by Corollary 3 the

Fast (1 + 1) IAγ optimises ONEMAX in expected time

O(m logm) · (1 + γ logm), and two such phases suffice, the

proof is concluded.

As long as the ageing parameter τ is set to be asymptotically

larger than the expected waiting time of the improvement with

smallest probability, all the results proven for VERTEX COVER

can easily been shown to also hold for the Fast Opt-IAγ by

multiplying the upper bounds with the population and clone

sizes.

VII. OPTIMAL PROBABILITY DISTRIBUTIONS

In the following subsection we compare the advantages and

disadvantages of our proposed fast HMP operators to other

’fast mutation’ operators from the literature. In the subsequent

subsection we draw on the gained insights to provide the best

parameter settings for the fast HMP operators for black box

scenarios where limited problem knowledge is available.

A. Comparison with Fast Evolutionary Algorithms

While high mutation rates are typical of an immune system

response, they do not occur naturally in Darwinian evolu-

tionary processes. Indeed, low mutation rates are essential in

traditional generational evolutionary and genetic algorithms

to avoid exponential runtimes on any function of practical

interest [43]. However, increasing evidence is mounting that

higher mutation rates than standard are beneficial to steady-

state GAs both for exploitation (i.e., hillclimbing) [44], [45]

and exploration (i.e., escaping from local optima) [46]. These

high mutation rates are possibile by taking advantage of the

artificially introduced elitism in steady-state EAs [47]. Such

insights have recently been exploited in the evolutionary com-

putation community in the design of so-called fast EAs that

use heavy tailed mutation operators to allow a larger number

of bit flips more often than the standard bit mutations (SBM)

traditionally used in EAs and GAs. By using higher mutation

rates, fast EAs can provably escape from local optima more

efficiently than the traditional SBM. Since these analogies

are very similar to the insights gained in this paper, and in

previous works regarding AISs, in this section we compare

the performance of the fast HMP operator to those of the fast

EAs.

Two heavy tailed mutation-based EAs for discrete opti-

misation have been recently introduced. In the first one,

which we call Fast (1+1) EAβ , the tail of the probability

distribution follows a power law [14] (i.e., the probability that

larger number of bits flip decreases slower than in SBM). In

the second one, which we call Fast (1+1) EAUNIF, the tail

is uniformly distributed [16]. To illustrate their advantages

over SBM at escaping from local optima, these works have

naturally used the JUMPd function, just like traditionally for

AISs and in this paper. Thus, we will start by comparing their

performance versus that of the Fast (1 + 1) IAγ for JUMPd.

15

We begin with the latter algorithm, as the analysis of the

former will motivate the optimal settings for the hypermutation

distribution that we will present in the next subsection for

typical black box scenarios where minimal problem knowledge

is assumed.

1) Uniform Heavy Tailed Mutations [16]: The Fast

(1+1) EAUNIF uses the following distribution:

pi =

{

p for i = 1,

(1− p)/(n− 1) for 1 < i ≤ n.
(2)

where pi is the probability that i bits flip and p = Θ(1) is a

constant, e.g., 1/e.

This operator has a very similar behaviour to the original

static HMP operator with FCM since over n fitness function

evaluations both operators evaluate the same expected number

of solutions at Hamming distance k (for any k 6= 1) except

for a factor of (1− p).

Just like the (1+1) IA and the Fast (1 + 1) IAγ , the Fast

(1+1) EAUNIF can easily explore the opposite side of the search

space and can even obtain polynomial expected runtimes if the

jump size is in the order of n−O(1). However, just like for

the traditional HMP operator, the drawback of this approach

is that it is slower than the Fast (1 + 1) IAγ for jump sizes

d < n/ log n and d > n − n/ log n. The intuition is that the

Fast (1+1) EAUNIF assigns a constant probability p only to 1-bit

flips while assigning a probability in the order of Ω(1/n) to all

others. Hence, similarly to the traditional static HMP operator,

a solution at the correct distance d to the parent is only

sampled once every n fitness function evaluations resulting

in the same asymptotic performance for all possible d > 2.

In particular, while for small and large d (where efficient

performance is achievable), the detriment in performance is as

large as a factor of n, for other values of d, the difference of

performance is in favour of the Fast (1+1) EAUNIF by at most a

factor of Θ(log n). This, however, has no realistic influence on

the applicability of the algorithm, since the expected runtime

to perform such jumps is exponential in the problem size

in any case. Hence, the superiority of the Fast (1 + 1) IAγ

at escaping local optima, while both algorithms display the

same hillclimbing performance (i.e., they both flip and evaluate

exactly one bit with constant probability p = Θ(1)).

2) Power Law Heavy Tailed Mutations [14]: The

(1+1) EAβ uses a heavy tailed standard bit mutation operator

(i.e., it flips each bit with probability χ/n). The mutation rate

χ is sampled in each step with probability,

p(χ) =
χ−β

∑n/2
i=1 i

−β

where the parameter β is assumed to be a constant strictly

greater than 1 to ensure that the sum
∑n/2

i=1 i
−β is in the order

of O(1).

The optimal expected runtime for JUMPd is nn

dd(n−d)n−d ,

which is achieved by using the optimal mutation rate d/n
which can only be applied if the jump size d is known in

advance. Naturally, in a black-box scenario this parameter

of the problem is not known to the algorithm. The above

mutation operator was explicitly designed to have an adequate

compromised performance over all possible values of d.

The Fast (1+1) EAβ has an expected runtime of Θ
(

dβ
(

n
d

))

on the JUMPd function which differs from the best possible

expected runtime by at most a factor of Θ(dβ−0.5). The

Fast (1 + 1) IAγ evaluates a solution at Hamming distance

d with probability γ/d in each hypermutation, and wastes

the remaining Θ(γ log n) expected evaluations, resulting in an

expected waiting time of Θ(d log n
(

n
d

)

). Thus, the Fast (1 +
1) IAγ has an extra Θ(log n) factor in its runtime for constant

jump sizes. In particular, since the Fast (1+1) EAβ uses a

power law distribution, for any jump of size d = Θ(1), the

probability that the operator picks the mutation rate d/n which

gives the highest improvement probability is in the order of

d−β = Θ(1) when d = Θ(1).

However, the algorithm struggles with larger jump sizes

compared to the Fast (1 + 1) IAγ . This is particularly critical

for very large jumps i.e., d = n−O(1), where the Fast (1 +
1) IAγ has polynomial expected runtime O(d log n

(

n
n−d

)

)
while the Fast (1+1) EAβ has exponential runtime because

it flips bits with probability at most χ/n = 1/2 by design (as

a larger mutation rate was deemed unnecessary in the original

work). If the cap on the maximum mutation rate is removed

(as was recently considered in [15]), the resulting operator can

also achieve polynomial expected runtimes for extremely large

jump sizes. However, due to the power law distribution, the

probability of flipping n−O(1) bits is in the order of O(n−β)
which results in a polynomially slower expected performance

to that of the Fast (1 + 1) IAγ . This is due to the symmetric

sampling distribution of the FCMγ operator around n/2 that

allows considerably larger probabilities of evaluating offspring

at distance n−O(1).

Overall, the Fast (1 + 1) IAγ is asymptotically faster at

escaping from local optima for all super-logarithmic jump

sizes and is at most a Θ(log n) factor slower for small constant

jumps. In the next subsection we will show how to reduce the

logarithmic factor in the Fast (1 + 1) IAγ to just a constant

while maintaining its advantage in the settings where it has

better performance.

Nevertheless, we now show that the Fast (1+1) EAβ can

still be very efficient in practice at escaping from local optima

with large basins of attraction. In particular, just like the

Fast (1 + 1) IAγ , it has an O(n2) expected runtime to find

arbitrarily good constant approximations for the PARTITION

problem considered in Section VI-A.

Theorem 19. The Fast (1+1) EAβ finds a (1+ǫ) approxima-

tion for any PARTITION instance in 2(Cβ
n/2)en

2 · (22/ǫ+1)+

(Cβ
n/2)(n(ǫ− ǫ2))β · ǫ · (ǫ− ǫ2)−2/ǫ expected fitness function

evaluations. (for any ǫ = ω(1/
√
n)).

Proof. We can adapt Lemma 13 to the Fast (1 + 1) EAβ

by modifying the expected runtime between local optima to

reflect the probability of flipping exactly 1-bits. The corre-

sponding expected runtime between local optima for Fast

(1 + 1) EAβ would be at most 2(Cβ
n/2)en

2 since it flips a

single bit with probability at least 1/(Cβ
n/2e).

Thus, the expected time that the Fast (1 + 1) EAβ spends

16

where Xt /∈ L is 2Cβ
n/2en

2 · (22/ǫ + 1). Now, we will bound

from below the probability that the Fast (1+ 1) EAβ finds an

approximation in time t given that Xt ∈ L. Similarly to the

proof of Theorem 15, we will refer to Property 2.2 in [9] and

establish that if Xt ∈ L then the fuller machine has no small

jobs assigned to it unless it is already a (1+ǫ) approximation.

With probability Cβ
n/2(n(ǫ− ǫ2))−β the Fast (1+1) EAβ will

apply standard bit mutation with mutation rate ǫ − ǫ2. Using

the same notation of Theorem 15 and assuming ǫ < 1/2,

with probability at least Cβ
n/2(n(ǫ−ǫ2))−β(ǫ−ǫ2)2/ǫ all large

jobs will be assigned according to their configuration in H .

Since all small jobs are on the same machine in the parent

solution and each bit is flipped with probability ǫ − ǫ2, the

expected total weight transferred from the emptier machine

to the fuller machine is at most
(ǫ−ǫ2)·W

2 . The rest of the

analysis is identical except for the part where we consider

the possibility that, even though a successful hypermutation is

bound to happen, a prior improvement prevents the n(ǫ− ǫ2)
bit-flips to occur. This scenario does not take place for the

Fast (1+1) EAβ because all mutating bits flip simultaneously,

thus with probability Cβ
n/2(n(ǫ− ǫ2))−β(ǫ− ǫ2)2/ǫ · ǫ an ap-

proximation is obtained and we do not have to pessimistically

repeat this argument for all x ∈ L as we have to for the

Fast (1 + 1) IA.

Even though the Fast (1+1) EAβ is slower at jumping over

large basins of attraction, its expected runtime for PARTITION

is dominated by the expected time spent in the hillclimbing

phases. Indeed the bounds on the expected runtimes during

exploitation of the Fast (1+ 1) EAβ and the Fast (1+ 1) IAγ

are asymptotically the same (i.e., they differ in the former

having an extra Cβ
n/2 = Θ(1) factor and the latter an extra

factor of O(1 + γ log n) which is O(1) for γ = 1/ log n).

Concerning the terms related to the expected times to escape

from local optima, the Fast (1+1) IAγ has an asymptotically

smaller term of 22/ǫ · n
γ compared to the (n(ǫ − ǫ2))β term

for some constant β > 1 for the Fast (1+1) EAβ . We should

note here that the 22/ǫ factor (i.e., exponential in 1/ǫ) may

appear to possibly make a crucial difference for small constant

approximations in practice. However, on one hand, this is

likely to be overly pessimistic since it assumes that whenever

the hypermutation is about to find an approximation, another

improvement prevents it from flipping the necessary number

of bits. On the other hand, the exponential factor nevertheless

appears for both algorithms in the dominating term related to

the hillclimbing phases.

We now highlight a huge advantage of the Fast (1+1) EAβ

over the fast HMP operators when escaping local optima

in conjunction with ageing by accepting solutions of lower

quality. In Section V we proved that the Fast Opt-IAγ op-

timises the Cliffd function efficiently, if the parameter γ of

the FCMγ is set to extremely small values in the order of

Θ(γ = 1/n log2 n) (Theorem 11). As a result the algorithm

very rarely evaluates solutions where more than one bit is

flipped i.e., it essentially does not hypermutate anymore. The

following theorem shows how the Fast (1 + 1) EAβ can

optimise the function efficiently while still mutating many

bits very often i.e., it hypermutates. The result comes at the

expense of slightly increasing the power law parameter to a

constant β > 2 and at the expense of a square root term in the

upper bound of the expected runtime instead of the logarithmic

term that appears in the expected runtime of the Fast Opt-IAγ

with small γ. Nevertheless, although not optimal for JUMPd,

with such a parameter setting the algorithm is only a constant

factor slower for the JUMPd instances for which it is very

efficient (i.e., d = Θ(1)).

Theorem 20. The Fast (1 + 1) EAβ with hybrid ageing

parameter τ = Ω(n log n) and β ≥ 2 + ǫ needs O(τ · n3/2)
fitness function evaluations in expectation to optimise CLIFF

with any linear d ≤ n(1/4 − c) for any arbitrarily small

positive constants ǫ and c.

Proof. The process until the cliff point is sampled for the first

time is identical to the previously analysed algorithms with

ageing. We will now consider the probability that the Fast

(1 + 1) EAβ applies a mutation with size at least k while

it is k ahead of the cliff point, i.e., it has d − k 0-bits. In

particular we will consider the probability that this mutation

occurs before an improvement is found for each k. We will

then divide the runtime into two cases according to whether

d − k is in the order of o(n) or Ω(n). For the Ω(n) regime,

we will establish the probability of decreasing the number of

0-bits from d − k to d − 2k to obtain a lower bound on the

probability of leaving the Ω(n) regime by doubling the current

best solution’s distance to the cliff edge log n times. Finally,

we will bound the conditional improvement probability with

the assumption d− k = o(n).
We first focus on the the power law distribution of the

mutation size m,

Pr{m ≥ k} =

n
∑

i=k

i−β/Cβ
n

≤ 1

Cβ
n

∫ n

k−1

x−β · dx =
x1−β

1− β
|nk−1

≤ 1

β − 1

(

(k − 1)1−β − n1−β
)

≤ (k − 1)1−β

β − 1

We now consider the conditional probability that for the

current solution x with d−k = Ω(n) 0-bits to apply a mutation

with size larger than k before it improves. The improvement

probability is at least d−k

n·Cβ
n
=: pk = Ω(1) and for k > 1, the

conditional probability of improving before a large mutation

is:

pk

pk + (k−1)1−β

β−1

= 1−
(k−1)1−β

β−1

pk + (k−1)1−β

β−1

≥ 1− (k − 1)1−β

pk · (β − 1)

We will now consider probability that there will be k improve-

ments starting from a current

solution with d − k 0-bits, but first we need to show that

the above conditional probability is increasing with k.

17

(

1− (i)1−β

pi+1 · (β − 1)

)

−
(

1− (i− 1)1−β

pi · (β − 1)

)

=
(i− 1)1−β

pi · (β − 1)
− (i)1−β

pi+1 · (β − 1)

=
n · Cβ

n

β − 1
·
(

(i− 1)1−β

d− i
− (i)1−β

d− i− 1

)

Since the
n·Cβ

n

β−1 term is positive, we are only interested in the

sign of the remaining part being positive.

0 ≤
(

(i− 1)1−β

d− i
− (i)1−β

d− i− 1

)

i1−β

d− i− 1
≤ (i− 1)1−β

d− i
i1−β

(i− 1)1−β
≤ d− i− 1

d− i
(

i− 1

i

)β−1

≤ d− i− 1

d− i
(

1− 1

i

)β−1

≤ 1− 1

d− i
(

1− 1

i

)(β−1)· ii
≤
(

1− 1

d− i

)
d−i
d−i

e−
β−1

i ≤ e−
1

d−i

β − 1

i
≥ 1

d− i

β ≥ 1 +
i

d− i
.

Thus, for k = o(n) and β ≥ 1 + ǫ for an arbitrarily small

constant ǫ, the conditional probability of improving before

flipping at least k bits increases with k. The probability that

there will be k improvements starting from a current solution

with d− k 0-bits is therefore at least
(

1− (i−1)1−β

pk·(β−1)

)k

≥ 1/e

for β > 2 − logk pk (We can exclude any constant number

of first steps which improves successfully with probability

Ω(1) while allowing − logk pk to be arbitrarily small.). Thus,

for d − k = o(n) we double the current improvement

with respect to the cliff edge before losing our current best

solution with probability 1/e. Since we cannot double our

improvement more than log (n/4) times before d− k = o(n),
with probability at least (1/e)log (n/4) = Ω(n−3/2) we obtain

a solution with d− k = o(n).
For d− k = o(n), the conditional probability of improving

before losing progress is: 1− (k−1)1−β

pk·(β−1) = 1−O(n1−β) and for

β > 2 the algorithm climbs the OneMax slope in O(n log n)
iterations without losing progress with probability at least

1 − o(1). The only subconstant success probability after the

process leaves the Cliff edge is Ω(n−3/2), thus the expected

time can be bounded by O(τ · n3/2).

B. Power-Law Hypermutations

In the previous subsection we highlighted two advantages

of the power law heavy tailed mutation operator of the Fast

(1 + 1) EAβ over the fast HMP operator introduced in this

paper. Firstly, the former operator jumps out of local optima

with small basins of attraction faster by a logarithmic factor

at the expense of being slower for larger basins of attraction.

Secondly, it allows to escape local optima together with ageing

by accepting solutions of lower fitness while still keeping quite

high mutation rates i.e., the Fast Opt-IAγ has to reduce it to at

most that of SBM. These advantages are due to the capability

of the power-law distribution of balancing well the number of

large and small mutations. In this subsection we will identify

an “optimal” evaluation distribution for the fast HMP operator

such that it can take advantage from the balancing capabilities

of the power-law distribution while keeping its own advantages

when larger basins of attraction have to be overcome.

In particular, considering the power-law distribution’s poor

performance for JUMPd functions with gap sizes of d =

Ω(log
1

β−1 n), and especially for d = n(1 − o(1)), we keep

the symmetry of the fast HMP operator around n/2 bit flips,

but increase and decrease the evaluation probabilities away

and to n/2 following a power-law. Just like in the Opt-IA

literature, we will present variants with and without FCM and

call the power-law HMPs FCMβ and HMPβ , and the resulting

algorithms Fast (1+1) IAβ and Fast Opt IAβ respectively,

according to whether they use populations and ageing or not

(we will see that the performance of FCMβ and that of HMPβ

are approximately equivalent so we intentionally do not state

whether the Fast (1+1) IAβ uses one operator or the other as it

does not affect the results we present i.e., either can be used).

Recall that the parameter β of the Fast (1 + 1) EAβ is

assumed to be a constant strictly greater than 1 to ensure

that the sum
∑n/2

i=1 i
−β is in the order of O(1). Thus, any

particular mutation rate χ has a probability of being picked

in the order of Θ(χ−β). Notice that if we were to set the

parameter to β = 1, the power-law mutation operator would

have a very similar behaviour to that of the Fast (1 + 1) IAγ .

In particular, the resulting operator would pick a mutation rate

χ with probability 1/(χ lnn).

Similarly, FCMγ with γ = 1 evaluates a solution with

Hamming distance k 6= 1 away from the parent with prob-

ability 1/k and every call of the operator evaluates roughly

lnn solutions in expectation. Thus, when compared over

Θ(log n) consecutive fitness function evaluations, the expected

number of offspring k bits away from their parent are in

the same asymptotic order. However, the parameter γ of

the Fast (1 + 1) IAγ scales the frequency of evaluations

at Hamming distance k by the same multiplicative factor

for all k, while the parameter β of the Fast (1 + 1) EAβ

controls the emphasis on the smaller mutations. In particular,

for k ∈ {2, . . . , n
2 − 1} changing β changes the conditional

probability of flipping k bits given that either k or k+1 bits are

flipped, while changing γ still conserves the ratio of sampled

solutions with distance k and k + 1.

These considerations lead us to believe that the ideal sym-

metric distribution for the HMP operator is a power-law one,

where we move the probability mass further towards ω(1) bit

18

β=1.05β=1.5βS=1.05βS=1.5
SBM

Uniform

0 1 n/2 n

1

H
n
1.05

1

H
n
1.5

1

C
n
1.05

1ⅇ
1

C
n
1.5

1-
1ⅇ

n-1

Fig. 5: The probability of flipping exactly k bits for the

extended heavy-tailed mutation operator of Fast (1+1) EAβ

(red and blue) and the symmetric heavy tailed mutation

operator of Fast (1+1) IAβ (green and orange) for different

β values. The SBM used by standard EAs (purple) and the

uniform heavy tailed mutation of Fast (1+1) EAUNIF [16] with

p = 1/e (yellow) are added for comparison. The input size is

set to n = 14 for visualisation.

flips, compared to the Fast (1 + 1) EAβ :

pi :=
(min{i+ 1, n− i+ 1})−β

∑n
k=0(min{k + 1, n− k + 1})−β

.

Here the parameter should be set such that β ≥ 1.

With β = 1, the probability distribution for i > 1 is

identical to that of FCMγ for the parameter value we have

used throughout the paper i.e., γ = 1/ log n. Notice that for

β = 0 the probability that i bits flip is uniformly distributed at

random i.e., the operator becomes very similar to that of the

(1+1) EAUNIF. We have discussed why this is an inconvenient

distribution in the previous section. Note that the original

heavy-tailed mutation operator first picks the mutation rate

with which each bit position is flipped independently. Since

we directly pick the number of bit-positions to be flipped,

we assign a positive probability to not flipping any bits.

This allows the operator to copy the best individuals and

plays a critical role in the performance of population based

algorithms [43]–[46], [48].

The operator behaviours, with and without FCM, are similar

but not identical. While the HMPβ operator evaluates exactly

one new offspring per operation, the number of evaluated

solutions per hypermutation of the FCM variant, FCMβ , is

randomly distributed with expectation 1 (i.e., more than one

evaluation - or zero - may occur in one hypermutation: the

behaviour is exactly the same as in Definition 1 but using the

power law distribution). A comparison between the power-

law distributions of the mutation operators of the (1+1) EAβ ,

the symmetric ones of the (1+1) IAβ , the (1+1) IAUNIF and

the traditional SBM are shown in Figure 5. Note that for the

(1+1) EAβ we have extended the probability distribution range

from [14] to n and considered the variant which flips exactly

k ∈ [n] bits after the mutation size is determined (similarly to

what has been considered in [15]) rather than independently

flipping all bit positions with probability k/n.

Figure 6 shows a comparison of the expected runtimes of

the (1+1) IAβ and the (1+1) EAβ to escape from local optima

with different basins of attraction. Without loss of generality

Fig. 6: A description of the performance comparison of the

Fast (1+1) IAβ and the Fast (1+1) EAβ at escaping from a

local optimum placed on the hypercube at 0n w.l.o.g. The

global optima (and basins of attraction of any fitness quality)

are located in example positions. For both algorithms the

same β > 1 holds for all regions except for the darkest

red area. For the latter area, the Fast (1+1) IAβ uses the

best possible parameter value β = 1. For equal β > 1, the

Fast (1+1) IAβ would be a constant factor slower than the

Fast (1+1) EAβ . For both parameter setting cases, the Fast

(1+1) EAβ asymptotically outperforms the Fast (1+1) IAβ in

the shaded area only.

we assume that the local optimum is located at the 0n bit-string

(i.e., the red dot). Let us denote with y ∈ {0, 1}n the unique

global optimum which has a higher fitness value than x and

k := HD(x, y). The black dots represent different potential

positions in the search space for the global optimum. The

circles around the potential global optima represent basins of

attraction which may or may not have higher fitness than the

local optimum. These are nevertheless reachable via ageing

by accepting lower quality solutions (as we have shown for

HIDDENPATH and CLIFF).

Regardless of the mutation operator employed by the al-

gorithm, the probability that x is mutated into y is at most
(

n
k

)−1
since for an unbiased mutation operator all individuals

with distance k to the parent have an equal probability to be

sampled and
(

n
k

)

is the number of individuals with Hamming

distance k to x. Note here that the binomial coefficients

satisfy
(

n
k

)

=
(

n
n−k

)

for all k ≤ n. Thus, if both k and

n − k are in the order of ω(1), the mutation probability is

superpolynomially small and the jump from x to y has a

superpolynomial expected time (i.e., the shades of red areas in

the figure). Even if we relax our scenario such that the solution

y has a basin of attraction of a constant size, i.e., all individuals

z ∈ {0, 1}n with HD(y, z) < d for some constant d lead to y
by hillclimbing, the expected time to escape the local optima

would still be super-polynomially large. For this reason we

modify the distribution over [n] ∪ {0} used to determine how

many bits the heavy-tailed mutation operator will flip. We shift

the probability mass from the middle to the extremities (i.e.,

from around n/2 to near 0 and n): away from mutation sizes

where a polynomial expected time is not possible.

Overall, for any k = Θ(1) the heavy-tailed mutation

operator in [14] is only faster by a constant factor than the

19

newly suggested power-law symmetric operators at escaping

the local optimum. Only for k = O(log
1

β−1 n) (i.e., the shaded

area in the figure), it is slightly asymptotically faster where

both operators have super-polynomial expected runtime. On

the other hand, for all other distances of the basin of attraction

of the global optimum, the symmetric power-law mutation

operator is faster. In particular, the heavy-tailed operator is a

polynomial factor slower than the symmetric one when n− k
is in the order of o(n), including for n − k = O(1) where

the expected runtimes of the operators are polynomial. Hence,

for ranges of k where a polynomial expected waiting time

is possible, the heavy-tailed operator of the (1+1) EAβ is

either faster by only a constant factor than the symmetric one

(i.e., when k is constant) or slower by a polynomial factor

(i.e., when n − k is a constant). We point out that if in the

“super-polynomial space” (i.e., the red areas in the figure) the

basins of attraction were large enough to allow for polynomial

expected waiting times, then the Fast (1+1) IAβ would still be

faster than the Fast (1 + 1) EAβ except for basins that fall

into the diagonally shaded area.

Compared to the Fast (1 + 1) IAγ , the Fast (1+1) IAβ is

faster for all jump sizes for appropriate parameter settings

(i.e., β = 1 for k < log
1

β−1 n and β > 1 otherwise) at

the expense of being a constant factor slower at hillclimbing

for the suggested values of β (i.e., close to β = 1). In

particular, the (1+1) IAβ is a logarithmic factor faster than

the Fast (1+1) IAγ for jumps in the “polynomial space” (i.e.,

the green areas in the figure).

Naturally, the described above scenario also includes the

behaviour on the JUMP function. The behaviour of the FCMβ

operator for escaping local optima combined with ageing,

by accepting solutions of inferior fitness, requires a more

precise analysis. Theorem 20 regarding the (1+1) EAβ with

ageing for CLIFFd relies on the distribution over the mutation

rate to monotonically decrease. Since the distribution of the

symmetric operator starts increasing for mutation sizes larger

than n/2, the result does not transfer directly the (1+1) IAβ . In

particular, large mutation rates may lead the algorithm to jump

back to the local optima once it has escaped. Since the previous

results hold for gap sizes d ≤ (1− c)n/4 for any constant c,
we will show that bit flips in the order of n(1 − o(1)) only

produce solutions with smaller fitness than those observed on

the second slope of the function, i.e., solutions with more than

n − d 1-bits. Hence the operator is efficient for the function

class coupled with ageing. The following theorem shows that

FCMβ (or HMPβ) are better suited than FCMγ to be used in

the complete Opt-IA since they have high mutation rates (i.e.,

they hypermutate) and work well in harmony with ageing, as

originally desired in the design of the Opt-IA.

Theorem 21. The Fast (1+1) IAβ with hybrid ageing param-

eter τ = Ω(n log n) and β ≥ 2 + ǫ needs O(τ · n3/2) fitness

function evaluations in expectation to optimise CLIFFd with

any linear d ≤ n(1/4 − c) for any arbitrarily small positive

constants c and ǫ.

Proof. The process until the cliff point is sampled for the

first time is identical to the previously analysed algorithms

with ageing. We will now establish that, given that the parent

solution has less than n − d 1-bits, a mutation of size

n(1 − o(1)) yields an improvement with exponentially small

probability. Let j be the number of 0-bits in the parent solution

x0 of the FCMβ operator and X be the number of 0-bits that

has been flipped to a 1-bit up to and including the kth bit-flip,

which is geometrically distributed with expectation k·j
n . The

number of 0-bits in the solution sampled after the kth bit-flip,

xk, is therefore, j+k−2X . For the xk to have a better fitness

value than x0, j+k−2X has to be either between d and d+j
or smaller than j.

j + k − 2X ≤ d+ j

k − d

2
≤ X

k − d

2
− k · j

n
≤ X − k · j

n
n · (k − d)− 2 · k · j

n
≤ X − E[X]

For n · (k − d)− 2 · k · j > 0,

Pr

{

X − E[X] ≥ n(k − d)− 2 · k · j
n

}

≤ exp

(

− (n(k − d)− 2 · k · j)2
n

)

We will next bound the expression n · (k− d)− 2 · k · j, using

our assumptions k = n(1− o(1)) and j < d < n
4 − c · n.

n · (k − d)− 2 · k · j >
> n ·

(

k − n

4
+ c · n

)

− 2 · k ·
(n

4
− c · n

)

> n ·
(

n (1− o (1))− n

4
+ c · n

)

− 2 · n (1− o (1)) ·
(n

4
− c · n

)

>
3n2

4
− n2

2
(1− o(1)) >

n2

4
(1− o(1)).

Thus, starting from a solution with less than d 0-bits any

mutation of size in the order of k = n(1 − o(1)) has an

exponentially small probability of yielding a solution with

better fitness.

The rest of the proof follows the proof of Theorem 20.

Given that β > 2 + ǫ, in the O(n log n) generations required

to climb the second slope, we never observe a mutation size

in the order of Ω(n) \ n(1− o(1)) with probability 1− o(1).
The probability of losing progress while the number of 0-

bits in the cliff solution is in the order of n(1 − o(1)), i.e.

when it is close to the edge of the cliff follows the same

steps as in the proof of Theorem 20 since the probability of

improving and the probability of flipping k < n/2 are both

divided by 2(1−o(1)) due to the symmetric distribution, which

implies that the conditional probability of improving before

losing progress stays the same.

The performance of the (1+1) IAβ on the other functions

analysed in the previous sections is straightforward to bound.

20

For the PARTITION problem the expected runtime differs by

at most a constant factor from that of the Fast (1+ 1) EAβ if

both algorithms use the same β parameter.

Theorem 22. Let Sβ
n :=

∑n
i=0(min (i+ 1, n− i+ 1))−β .

Then, the Fast (1+1) IAβ finds a (1+ǫ) approximation for any

PARTITION instance in 2(Sβ
n)en

2 · (22/ǫ+1)+(Sβ
n)

−1(n(ǫ−
ǫ2))β · ǫ · (ǫ − ǫ2)−2/ǫ expected fitness function evaluations.

(for any ǫ = ω(1/
√
n)).

Proof. The proof is identical to that of Theorem 19 except

for the probability of implementing a single bit-flip, which

is at least (Sβ
n)

−1e−1 for the (1+1) IAβ and the minimum

probability of flipping k bits for any k ∈ [n] ∪ {0} which is

(Sβ
n)

−1n−β .

Thus, the expected runtime of the (1+1) IAβ is in the order

of O(n2) for 1 < β ≤ 2. For ONEMAX and LEADINGONES,

its expected runtime asymptotically matches the best possible

achievable by unbiased unary randomised search heuristics

due to the constant probability of flipping a single bit for any

constant β > 1. If coupled with ageing, a logarithmic factor

may be shaved off from the upper bound on the expected

runtime of the the (1+1) IAβ for the HIDDENPATH function

compared to that of the Fast Opt-IAγ . This is due to the

higher probability of the (1+1) IAβ of performing 2-bit flips

on the slope leading to the hidden path. The only advantage of

FCMγ over the symmetric power law operator appears for the

CLIFFd function which the former can optimise in expected

O(n log n) fitness evaluations if is used with ageing, while we

could only bound the expected runtime for the (1+1) IAβ by

O(τ ·n3/2). Recall that for the O(n log n) bound, a very small

γ value is required, effectively reducing the hypermutation

operator FCMγ to perform single bit flips most of the time.

A similar behaviour may be achieved by the (1+1) IAβ by

increasing its parameter value to β = Ω(log n). However the

same drawbacks as for the (1+1) IAγ would be obtained i.e.,

the algorithm would rarely flip more than one bit.

Apart for CLIFFd, where its upper bound matches that

of the Fast (1 + 1) EAβ , the new symmetric heavy-tailed

operator performs asymptotically better, or at least as well

as all the alternative operators discussed in this paper while

allowing a more robust behaviour for escaping from the local

optima of the JUMP function compared to the Fast Opt-IAγ .

A summary of the performance of all the considered operators

and algorithms is provided in Table I.

VIII. CONCLUSION

Due to recent analyses of increasingly realistic evolution-

ary algorithms, higher mutation rates than previously rec-

ommended, or than those used as a rule of thumb, are

gaining significant interest in the evolutionary computation

community [14], [44], [46], [50].

Such high mutation rates are naturally present in artificial

immune systems. However, previous work has highlighted

serious drawbacks of the hypermutation operators traditionally

used in the AIS field. Firstly, while they allow to escape

from local optima faster than the standard bit mutations

(SBM) used by evolutionary algorithms, they do so at the

expense of often being a linear factor slower at hillclimbing

in the exploitation phases of the search [5], [6], [8]. Sec-

ondly, the ‘hypermutations with mutation potential’ (HMP)

operators used in Opt-IA cancel out the power of the ageing

operator to escape from local optima by accepting solutions

of lower quality. We have presented an alternative HMP

operator, FCMγ , that provably removes these drawbacks and

we have rigorously shown, for several significant benchmark

problems from the literature and for classical problems from

combinatorial optimisation, that it maintains the exploration

characteristics of the traditional operators while outperforming

them by up to linear factor speed-ups in the exploitation

phases. These speed-ups at hillclimbing allow them to quickly

provide feasible solutions, and high quality approximations

for the NP-Hard PARTITION and VERTEX COVER problems

a linear factor faster than the HMP operators traditionally

used in the literature. A careful comparison with other fast

mutation operators from the literature confirms the validity of

our proposed fast hypermutation operators.

The main modification that allows to achieve the presented

improvements over the standard static HMP with FCM is to

sample the solution after the ith bit-flip stochastically rather

than deterministically with probability one. Importantly, by

using a symmetric power-law distribution, we have also shown

how it is possible to avoid using the FCM mechanism alto-

gether and just evaluate one search point per hypermutation.

This was probably the originally desired behaviour for the

hypermutation operator of Opt-IA. However, the standard

static HMP is inefficient for any function with up to a

polynomial number of optima without the use of FCM [5].

Furthermore, the power-law distribution allows the fast HMP

operators to work in harmony with ageing to escape from

local optima by accepting solutions of inferior quality. This

behaviour was not possible with the original static HMP, thus

considerably limiting the power of the Opt-IA algorithm where

both operators are employed.

We point out that while the presented operators naturally fit

within AISs, there is no reason to believe that they should not

also be effective if employed within any randomised search

heuristic, including EAs.

Since the optimal values for the distribution parameters γ
and β are different in the exploitation and the exploration

phases, future work may consider an adaptation of the pa-

rameters to automatically allow them to increase and decrease

throughout the run [51]–[53]. Furthermore, the performance of

the proposed operators should be evaluated experimentally for

classical combinatorial optimisation problems, complementing

the theoretical analyses of the worst-case performance, and for

real-world applications.

REFERENCES

[1] F. M. Burnet. The Clonal Selection Theory of Acquired Immunity.
Cambridge University Press, 1959.

[2] L. N. de Castro and F. J. Von Zuben. Learning and optimization using
the clonal selection principle. IEEE Trans. Evol. Comp., 6(3):239–251,
2002.

[3] J. Kelsey and J. Timmis. Immune inspired somatic contiguous hyper-
mutation for function optimisation. In Proc. of GECCO 2003, pages
207–218, 2003.

21

TABLE I: Expected runtimes of the standard (1+1) EA versus various hypermutation based algorithms. The best asymptotic

expected runtimes for each problem are in bold font.
∗: The asymptotic expected runtimes for obtaining a (1 + ǫ) approximation for any constant ǫ.
∗∗: The expected time to find a feasible vertex cover using the node based representation.
∗∗∗: The expected time to find a 2-approximation for vertex cover using the edge representation on a graph with m edges.
† : Holds only for gap sizes in the order of Ω(n) and at most n(14 − ǫ) for some constant ǫ > 0.
‡: The expected runtime is obtained for dup = 1 and γ = Ω(1/ log n).
§: Optimal runtime obtained when γ = 1/(n log2 n). The same expected runtime can be obtained by the β-algorithms for

β = Ω(log n).
§§: The expected runtime for the variant of the algorithm which implements hybrid ageing.

Function (1+1) EA (1 + 1) IA Fast (1 + 1) IAγ Opt-IA

ONEMAX Θ(n logn) [49] Θ(n2 logn) [5] Θ(n logn (1 + γ logn)) O
(

µ · dup · n2 logn
)

LEADINGONES Θ(n2) [49] Θ(n3) [5] Θ
(

n2 (1 + γ logn)
)

O
(

µ · dup · n3
)

TRAP Θ(nn) [49] Θ(n2 logn) [5] Θ(n logn (1 + γ logn)) O
(

µ · dup · n2 logn
)

JUMPd>1 Θ(nd) [49] O(n
(n
d

)

) [5] O
(

(min {d, n− d}/γ) · (1 + γ logn) ·
(n
d

))

O
(

µ · dup · n ·
(n
d

))

CLIFFd>1 Θ(nd) [28] O(n
(n
d

)

) [5] O
(

(d/γ) · (1 + γ logn) ·
(n
d

))

O(n ·
(n
d

)

)

HIDDENPATH nΩ(n) [5] nΩ(logn) [5] nΩ(logn) O(τµn+ µn7/2)‡ [5]

PARTITION∗ nΩ(n) [33] O(n3) [9] O(n2 · (1 + γ logn)) O(µ · dup · n3)
VERTEX COVER

∗∗ Θ(n logn) [42] Θ(n2 logn) Θ(n logn (1 + γ logn)) O(µ · dup · n2 logn)
VERTEX COVER

∗∗∗ Θ(m logm) [42] Θ(m2 logm) Θ(m logm (1 + γ logm)) O(µ · dup ·m2 logm)

Function Fast Opt-IAγ Fast (1 + 1) EAβ Fast (1+1) IAβ

ONEMAX O (µ · dup · n logn(1 + γ · logn)) O(n logn) O(n logn)

LEADINGONES O
(

µ · dup · n2(1 + γ · logn)
)

O(n2) O(n2)

TRAP O (µ · dup · n logn(1 + γ · logn)) O(nβ) O(n logn)

JUMPd>1 O
(

µ · dup · (min {d, n− d}/γ) · (1 + γ logn) ·
(n
d

))

O(dβ
(n
d

)

) O
(

(min {d, n − d})β
(n
d

)

)

CLIFFd>1 O
(

µ·dup·τ ·n2

d2
+ n logn

)§

O(τ · n3/2)†§§. O(τ · n3/2)†§§.

HIDDENPATH O(τµn+ µn5/2 logn)‡ O(τn + n5/2)§§ O(τn + n5/2)§§

PARTITION∗ O(µ · dup · n2(1 + γ logn)) O(n2) O(n2)

VERTEX COVER
∗∗ Θ(µ · dup · n logn(1 + γ logn)) O(n logn) Θ(n logn)

VERTEX COVER
∗∗∗ O(µ · dup · m logm(1 + γ logm)) Θ(m logm) Θ(m logm)

[4] V. Cutello, G. Nicosia, M. Pavone, and J. Timmis. An immune algorithm
for protein structure prediction on lattice models. IEEE Trans. Evol.

Comp., 11(1):101–117, 2007.

[5] D. Corus, P. S. Oliveto, and D. Yazdani. When hypermutations and
ageing enable artificial immune systems to outperform evolutionary
algorithms. Theor. Comp. Sci., 2019. In press.

[6] T. Jansen and C. Zarges. Analyzing different variants of immune inspired
somatic contiguous hypermutations. Theor. Comp. Sci., 412(6):517 –
533, 2011.

[7] T. Jansen and C. Zarges. Computing longest common subsequences
with the B-Cell Algorithm. In Proc. of ICARIS 2012, pages 111–124,
2012.

[8] T. Jansen, P. S. Oliveto, and C. Zarges. On the analysis of the immune-
inspired B-Cell algorithm for the vertex cover problem. In Proc. of

ICARIS 2011, pages 117–131, 2011.

[9] D. Corus, P. S. Oliveto, and D. Yazdani. Artificial immune systems can
find arbitrarily good approximations for the NP-hard number partitioning
problem. Artificial Intelligence, 247:180–196, 2019.

[10] D. Corus, J. He, T. Jansen, P. S. Oliveto, D. Sudholt, and C. Zarges.
On easiest functions for mutation operators in bio-inspired optimisation.
Algorithmica, 78(2):714–740, 2016.

[11] D. Corus, P. Simone Oliveto, and D. Yazdani. On inversely proportional
hypermutations with mutation potential. In Proc. of GECCO 2019, pages
215–223, 2019.

[12] P. S. Oliveto and D. Sudholt. On the runtime analysis of stochastic
ageing mechanisms. In Proc. of GECCO 2014, pages 113–120, 2014.

[13] P. K. Lehre and C. Witt. Black-box search by unbiased variation.
Algorithmica, 64(4):623–642, Dec 2012.

[14] B. Doerr, H. P Le, R. Makhmara, and T. D. Nguyen. Fast genetic
algorithms. In Proc. of GECCO 2017, pages 777–784, 2017.

[15] T. Friedrich, A. Göbel, F. Quinzan, and M. Wagner. Heavy-tailed
mutation operators in single-objective combinatorial optimization. In
Proc. of PPSN XV, pages 134–145, 2018.

[16] T. Friedrich, F. Quinzan, and M. Wagner. Escaping large deceptive
basins of attraction with heavy-tailed mutation operators. In Proc. of

GECCO 2018, pages 293–300, 2018.

[17] D. Corus, P. S. Oliveto, and D. Yazdani. On the runtime analysis of
the Opt-IA artificial immune system. In Proc. of GECCO 2017, pages
83–90, 2017.

[18] R. J. Serfling. Probability inequalities for the sum in sampling without
replacement. The Annals of Statistics, pages 39–48, 1974.

[19] T. Jansen and C. Zarges. Variation in artificial immune systems:
Hypermutations with mutation potential. In Proc. of ICARIS 2011, pages
132–145, 2011.

[20] W. Feller. An Introduction to Probability Theory and Its Applications.
John Wiley & Sons, 1968.

[21] P S. Oliveto and X. Yao. Runtime analysis of evolutionary algorithms
for discrete optimisation. In Theory of Randomized Search Heuristics:

Foundations and Recent Developments, chapter 2, pages 21–52. World
Scientific, 2011.

[22] T. Jansen. Analyzing Evolutionary Algorithms: The Computer Science

Perspective. Springer, 2013.

[23] P. K. Lehre and P. S. Oliveto. Theoretical analysis of stochastic search
algorithms. In Mauricio G.C. Resende, Rafael Marti, and Panos M.
Pardalos, editors, Handbook of Heuristics, pages 849–884. Springer,
2018.

[24] B. Doerr, D. Johannsen, and C. Winzen. Multiplicative drift analysis.
Algorithmica, 64(4):673–697, 2012.

[25] J. Lengler. Drift analysis. In B. Doerr and F. Neumann, editors, Theory

of Randomized Search Heuristics in Discrete Search Spaces, chapter 2,
pages 89–126. Springer, 2019.

22

[26] M. Mitzenmacher and E. Upfal. Probability and Computing: Random-

ized Algorithms and Probabilistic Analysis. Cambridge University Press,
2005.

[27] J. Jägersküpper and T. Storch. When the plus strategy outperforms the
comma strategy and when not. In Proc. of FOCI 2007, pages 25–32,
2007.

[28] T. Paixão, J. Pérez Heredia, D. Sudholt, and B. Trubenová. Towards
a runtime comparison of natural and artificial evolution. Algorithmica,
78(2):681–713, 2017.

[29] A. Lissovoi, P. S. Oliveto, and J. A. Warwicker. On the time complexity
of algorithm selection hyper-heuristics for multimodal optimisation. In
Proc. of AAAI 2019, pages 2322–2329, 2019.

[30] M. R Garey and D. S. Johnson. Computers and Intractability: A Guide

to the Theory of NP-Completeness. W. H. Freeman, 1979.

[31] M. Pinedo. Scheduling: theory, algorithms, and systems. Prentice-Hall,
5th edition, 2016.

[32] B. Hayes. The easiest hard problem. American Scientist, 90:113–117,
2002.

[33] C. Witt. Worst-case and average-case approximations by simple ran-
domized search heuristics. In Proc. of STACS 2005, pages 44–56, 2005.

[34] M. R. FellowsLars, J. ke, A. I. Kiraly, F. A. Rosamond, and M. Weller.
What is known about vertex cover kernelization? In Adventures Between

Lower Bounds and Higher Altitudes, pages 330–356. springer, 2018.

[35] L. Gottlieb, A. Kontorovich, and R. Krauthgame. Efficient classification
for metric data. IEEE Trans. Info. Theor., 60:5750–5759, 2014.

[36] T. M. K. Cheng, Y. Lu, M. Vendruscolo, and T. L. Blundell. Pre-
diction by graph theoretic measures of structural effects in proteins
arising from non-synonymous single nucleotide polymorphisms. PLoS

Computational Biolog, 4(7):1–9, 2008.

[37] J. Cong and M. L. Smith. A parallel bottom-up clustering algorithm
with applications to circuit partitioning in vlsi design. In Proceedings

of the 30th International Design Automation Conference, pages 755–
760, 1993.

[38] I. Hamzaoglu and J. H. Patel. Test set compaction algorithms for com-
binational circuits. In Proceedings of the 1998 IEEE/ACM International

Conference on Computer-Aided Design, pages 283–289, 1998.

[39] S. Khuri and T. Bäck. An evolutionary heuristic for the minimum vertex
cover problem. In KI-94 Workshops (Extended abstracts), pages 86–90,
1994.

[40] P. S. Oliveto, J. He, and X. Yao. Analysis of the (1 + 1) EA for
finding approximate solutions to vertex cover problems. IEEE Trans.

Evol. Comp., 13(5):1006–1029, 2009.

[41] T. Friedrich, J. He, N. Hebbinghaus, F. Neumann, and C Witt. Approxi-
mating covering problems by randomized search heuristics using multi-
objective models. Evolutionary Computation, 18(4):617–633, 2010.

[42] T. Jansen, P. S Oliveto, and C. Zarges. Approximating vertex cover using
edge-based representations. In Proc. of FOGA 2013, pages 87–96, 2013.

[43] D. Corus, D. Dang, A. V. Eremeev, and P. K. Lehre. Level-based analysis
of genetic algorithms and other search processes. IEEE Trans. Evol.

Comp., 22(5):707–719, 2017.

[44] D Corus and P.S. Oliveto. Standard steady state genetic algorithms can
hillclimb faster than mutation-only evolutionary algorithms. IEEE Trans.

Evol. Comp., 22(5):720–732, 2017.

[45] D. Corus and P. S. Oliveto. On the benefits of populations on the
exploitation speed of standard steady-state genetic algorithms. In Proc.

of GECCO 2019, pages 1452–1460, 2019.

[46] D. Dang, T. Friedrich, T. Kötzing, M. S. Krejca, P. K. Lehre, P. S.
Oliveto, D. Sudholt, and A. M. Sutton. Escaping local optima using
crossover with emergent diversity. IEEE Trans. Evol. Comp., 22(3):484–
497, 2018.

[47] D. Whitley. The genitor algorithm and selection pressure: why rank-
based allocation of reproductive trials is best. In Proc. of ICGA 1989,
pages 116–121, 1989.

[48] C. Witt. Runtime Analysis of the (µ+1) EA on Simple Pseudo-Boolean
Functions. Evolutionary Computation, 14(1):65–86, 2006.

[49] S. Droste, T. Jansen, and I. Wegener. On the analysis of the (1+ 1)
evolutionary algorithm. Theor. Comp. Sci., 276(1-2):51–81, 2002.

[50] P. S. Oliveto, P. K. Lehre, and F. Neumann. Theoretical analysis of
rank-based mutation-combining exploration and exploitation. In Proc.

of CEC 2009, pages 1455–1462, 2009.

[51] B. Doerr, A. Lissovoi, P. S. Oliveto, and J. A. Warwicker. On the runtime
analysis of selection hyper-heuristics with adaptive learning periods. In
Proc. of GECCO 2018, page 10151022, 2018.

[52] B. Doerr and C. Doerr. Optimal static and self-adjusting parameter
choices for the (1+ (λ, λ)) genetic algorithm. Algorithmica, 80:1658–
1709, 2018.

[53] A. Lissovoi, P. S. Oliveto, and J. A. Warwicker. How the duration of
the learning period affects the performance of random gradient selection
hyper-heuristics. In Proc. of AAAI 2020 (To appear), pages –, 2020.

PLACE
PHOTO
HERE

Michael Shell Biography text here.

John Doe Biography text here.

Jane Doe Biography text here.

	I Introduction
	II AISs with Probabilistic Sampling Distributions
	II-A Mathematical Tools for the Analysis

	III Artificial Fitness Levels for Fast Hypermutations
	IV Fast Hypermutations for Standard Multimodal Benchmark Functions
	V Fast Opt-IA
	V-A Optimal Expected Runtimes for Unimodal functions
	V-B Quasi-linear Speed-Ups when Both Hypermutations and Ageing are Necessary: HiddenPath
	V-C Exponential Speed-Ups when Traditional Hypermutations are Detrimental: Cliffd

	VI Fast Hypermutations for Combinatorial Optimisation
	VI-A Partition
	VI-A1 EA's Worst-Case Instance Class
	VI-A2 Worst-Case Approximation Ratio

	VI-B Vertex Cover
	VI-B1 Node-Based Representation
	VI-B2 Edge-Based Representation

	VII Optimal Probability Distributions
	VII-A Comparison with Fast Evolutionary Algorithms
	VII-A1 Uniform Heavy Tailed Mutations FQWGECCO18
	VII-A2 Power Law Heavy Tailed Mutations Doerretal2017

	VII-B Power-Law Hypermutations

	VIII Conclusion
	References
	Biographies
	Michael Shell
	John Doe
	Jane Doe

