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Abstract—Automated construction of deep neural networks
(DNNs) has become a research hot spot nowadays because
DNN’s performance is heavily influenced by its architecture and
parameters, which are highly task-dependent, but it is notori-
ously difficult to find the most appropriate DNN in terms of
architecture and parameters to best solve a given task. In this
work, we provide an insight into the automated DNN construc-
tion process by formulating it into a multilevel multiobjective
large-scale optimization problem with constraints, where the non-
convex, nondifferentiable, and black-box nature of this problem
make evolutionary algorithms (EAs) to stand out as a promising
solver. Then, we give a systematical review of existing evolution-
ary DNN construction techniques from different aspects of this
optimization problem and analyze the pros and cons of using
EA-based methods in each aspect. This work aims to help DNN
researchers to better understand why, where, and how to utilize
EAs for automated DNN construction and meanwhile, help EA
researchers to better understand the task of automated DNN con-
struction so that they may focus more on EA-favored optimization
scenarios to devise more effective techniques.

Index Terms—Automated design of DNNs, deep neural
networks, evolutionary algorithms, optimization.

I. INTRODUCTION

DEEP neural networks (DNNs) are one of the most pow-
erful machine learning techniques nowadays, deriving

the reviving and boom of artificial intelligence in recent
years [1]–[3]. They are characterized by sophisticated task-
oriented models (in the form of networks), which allow the
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most effective feature representation to be learned in a task-
driven manner from the data of various types, such as images,
texts, and time series [4]. The concept of DNNs appeared
in the 1970s. After that, the development of DNNs contin-
ued but did not attract much attention. The starting point
for the boom of DNNs occurred in 2012 when a specific
DNN model named AlexNet, armed with the high computing
horsepower of graphics processing units (GPUs), achieved the
record-breaking classification performance on the ImageNet
dataset [5]. Since then, DNNs have received ever-increasing
attention, leading to the emergence of a new era in machine
learning, namely, deep learning.

DNNs have different types of architectures suitable for deal-
ing with different types of data. For example, convolutional
neural networks (CNNs) are apt at learning features from the
data with certain local structures such as images [4]. Recurrent
neural networks (RNNs) are good at learning the temporal
behavior from sequence data such as time series [4]. For
the same type of DNNs, there also exist various kinds of
models. For example, AlexNet [5], VGG [6], Inception [7],
and ResNet [8] are popular CNN models while LSTM and
GRU are commonly used RNN models [9]. It is well known
that DNN’s performance depends on both model architecture
and model parameters. However, in practice, it poses great
challenges to find the most suitable DNN model in terms
of architecture and parameters to best solve a given task
because it corresponds to solve a highly complex large-scale
optimization problem of nonconvex and black-box nature [10].

The traditional way to address this issue assumes the model
architecture is manually specified and leaves the task of learn-
ing model parameters to be solved by using a selected and
configured model learner. This often leads to the suboptimal
performance due to a lack of sufficient expert knowledge and
human labor to make the best choice from a vast number of
possible model architectures, model learners, and their associ-
ated parameters. Recent years have seen exponentially growing
efforts in both academia and the industry on studying auto-
mated DNN construction techniques that aim to automatically
determine the best-performing model architecture and param-
eters for a given task [10]–[15]. Such techniques commonly
perform search-based optimization about model architecture,
model parameters, and model learners, where optimization of
model parameters is via a model parameters learner, such as
stochastic gradient descent (SGD) and evolutionary algorithms
(EAs) and nested into optimization of the model architecture
via a model architecture learner, such as reinforcement learning
(RL) [11], [12], EAs [13]–[15] and SGD [10].
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EAs [16] are a family of search-based optimization tech-
niques that evolve a population of candidate solutions via
nature-inspired operators to search the optima, which have
shown great competence in tackling challenging optimization
problems. Due to EA’s strong capability in exploring com-
plicated search spaces [13], high flexibility in integrat-
ing problem-solving knowledge [17], and easy-to-parallelize
nature [18]–[20], there is a fast-growing interest in applying
EAs in automated DNN construction, namely, evolutionary
construction of DNNs. Specifically, EAs have been applied
for learning model parameters [21]–[47], designing model
architectures [13], [15], [17], [18], [48]–[68], [68]–[126], and
optimizing model learners [19], [20], [127]–[134].

There exist quite a few survey papers on relevant topics,
focusing on a specific type of optimization problems such as
model architecture optimization (commonly known as “neu-
ral architecture search”) [135]–[137], a specific type of DNN
models such as CNNs [138], or a specific type of optimization
techniques, such as RL [139] and EAs [140], [141]. Different
from the existing survey papers, this work provides a compre-
hensive and systematic review of using EAs to address various
optimization problems involved in the automated DNN con-
struction process based on an insight into this process from
the perspective of optimization. It also includes discussions on
the pros and cons of EA-based techniques compared to non-
EA-based ones in different optimization scenarios. We aim to
help DNN researchers to better understand why, where, and
how to use EAs for automated DNN construction and also
help EA researchers to better understand the task of auto-
mated DNN construction so that they may focus more on
EA-favored optimization scenarios to devise more effective
techniques.

Our major contributions include the following.
1) Define and analyze various optimization problems

involved in the automated DNN construction process,
revealing the motivations of using EAs as the solver.

2) Provide the taxonomy and survey of existing EA-
based techniques in different optimization scenarios
and discuss the pros and cons of EA-based tech-
niques compared to non-EA-based ones in every
scenario.

3) Summarize applications, challenges, and trends regard-
ing the evolutionary DNN construction, where the pub-
licly available datasets and codes used in studies are
reported in a supplementary document, which, to the
best of our knowledge, was never provided in existing
survey works.

The remainder of this article is organized as follows.
Section II provides an insight into automated DNN construc-
tion from the perspective of optimization. Section III intro-
duces several fundamentals of evolutionary DNN construction.
Sections IV–VII review evolutionary DNN construction tech-
niques in different optimization scenarios, including model
parameter optimization, model architecture optimization,
model learner optimization, and miscellaneous. Section VIII
summarizes applications, challenges, and trends about evolu-
tionary DNN construction. Finally, Section IX concludes the
article.

II. INSIGHTS INTO AUTOMATED DNN CONSTRUCTION

Automated DNN construction aims at finding the most
appropriate DNN model architecture and parameters to best
solve a given task, which typically requires dealing with the
following optimization problems.

Model architecture optimization, widely known as the neural
architecture search (NAS), pursues the most appropriate archi-
tecture to solve a given task by optimizing, with respect to a set
of decision variables determined by the representation of the
model architecture, one or more objectives that evaluate model
performance from different aspects, such as accuracy and time
efficiency. This optimization problem typically has a very large
discrete search space due to a wide variety of model architectures.
Also, it has a black-box nature because it usually lacks explicit
mathematical functions that directly formulate the mapping from
architecture to performance. Furthermore, the performance of
a specific model architecture depends on the associated model
parameters. As a result, this optimization problem is inherently
bilevel, where architecture optimization is the upper level task,
and parameter optimization is the lower level task (which is
nested within the upper level task).

Model parameter optimization seeks the best parameters
(i.e., connection weights and biases) for a model with a
prespecified architecture to best solve a given task by optimiz-
ing, with respect to a set of decision variables determined by
the representation of model parameters, an objective that eval-
uates the effectiveness of model parameters based on model’s
performance on training data, the so-called training loss. This
optimization problem typically has a prohibitively large con-
tinuous search space due to the extremely large number of
model parameters. Also, it is highly nonconvex, featuring a
very challenging search landscape full of local optima.

Model (architecure and parameter) learner optimization
targets at finding the most effective learners (intrinsically opti-
mizers) to best solve the above two optimization problems,
respectively. It belongs to the problem of optimizing optimizers,
i.e., searching the best optimizer [together with its best-calibrated
parameters, also known as (a.k.a.) model hyperparameters] to
maximize its performance on solving an optimization problem.
In fact, most of the existing studies on automated DNN construc-
tion did not explicitly consider solving this problem because
it will lead to a multilevel optimization problem, which is sel-
dom feasible to be solved in practice due to the prohibitively
expensive computational cost.

By considering all the above aspects, we formulate auto-
mated DNN construction, provided a training set Dtrn and a
validation set Dval (used to measure the model’s generaliza-
tion performance [10], [17]) for the task to be solved, into
the following multilevel multiobjective optimization problem
defined in (1), shown at the bottom of p. 4. Ma, Mp, Mla,
and Mlp denote the set of decision variables corresponding
to the representations of model architecture, model parame-
ters, model architecture learner, and model parameter learner,
respectively. The constraints applied to each of them at dif-
ferent optimization level are used to define the feasible search
space of decision variables. This optimization problem has
four levels with one to four representing the recursively
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nested upper to lower levels that correspond to model archi-
tecture learner optimization, model architecture optimization,
model parameter learner optimization, and model parameter
optimization, respectively.

Both model architecture learner optimization and model
architecture optimization may have multiple objectives defined
on the validation set Dval, e.g., validation accuracy (gen-
eralization performance estimation) and time efficiency.
Model parameter learner optimization and model parameter
optimization have one objective defined on the training set
Dtrn, which is typically the training loss.

The solution to this optimization problem is a Pareto
optimal set, denoted by P(Ma, Mp, Mla, Mlp), which contains
multiple nondominated solutions.1 Eventually, one of these
nondominated solutions is chosen.

Solving this multilevel multiobjective optimization problem
with constraints is seldom feasible in practice even by using
the most cutting-edge modern computing facilities due to
its large-scale, nonconvex, nondifferentiable (in some cases
of model architecture optimization), and black-box nature.
Accordingly, existing research works have focused on solv-
ing some simplified versions of this problem, e.g., optimizing
model parameters Mp given the fixed model architecture Ma

and model parameter learner Mlp, optimizing model archi-
tecture Ma together with model parameters Mp given fixed
model learners Mla and Mlp, and optimizing model learners
Mla and Mlp inside the model parameter and/or architecture
optimization process. Furthermore, traditional mathematical
optimization techniques such as gradient-descent-based meth-
ods become incompetent to handle this problem due to
its nonconvex, nondifferentiable, and black-box nature. This
fact makes EAs to gain increasing attention and popularity
as a promising solver because of their featured capabil-
ities to solve nonconvex, nondifferentiable, and black-box
optimization problems, as well as the rapid advance in high
performance computing, which mitigates the notorious com-
putational bottleneck of EAs.

This work intends to provide the taxonomy and survey of
the existing evolutionary DNN construction techniques applied
to model parameter optimization (Section IV), model architec-
ture optimization (Section V), and model learner optimization
(Section VI), respectively, which are the simplified versions
of the optimization problem defined in (1). Furthermore,
Section VII discusses miscellaneous relevant to evolutionary
DNN construction, e.g., optimization in terms of objectives
and speedup.

III. OVERVIEW OF EVOLUTIONARY DNN CONSTRUCTION

Evolutionary DNN construction studies the use of EAs
for automated DNN construction. To help better understand
such techniques, we provide an overview of DNNs and EAs
followed by a short introduction to the fundamentals and
motivations of evolutionary DNN construction techniques.

1Considering minimization problems, two candidate solutions x1 and x2,
x1 dominates x2: Oi(x1) ≤ Oi(x2), ∀i∈(1, . . . , m) and Oj(x1) < Oj(x2),
∃j∈(1, . . . , m). When x1 and x2 cannot dominate each other, they are
nondominated solutions.

A. DNNs

DNNs are characterized with the powerful feature represen-
tation learning capability due to their sophisticated hierarchical
architectures, which can extract a hierarchy of feature sets at
different representational levels to address a specific task, such
as classification and regression [4].

Different types of DNN architectures have been designed
to deal with different types of data. For the same type of
architectures, there exist many different types of models. The
deep belief network (DBN) is good at data with independent
features [142]. CNN is designed for data with local structures,
such as images and videos [4]. RNN is apt at sequence data,
such as texts and time series [4]. To configure these models
for use, the number of different types of layers (e.g., fully
connected layers, pooling layers, and convolution layers) and
the parameters in each layer (e.g., the number of neurons in a
layer, kernel size, stride size, and the padding value in pooling
and convolution layers) need to be determined. Also, for some
DNN architectures such as ResNet, topological connections
across layers need to be determined.

Some DNN architectures are designed for special tasks. For
example, stacked autoencoder (SAE) [143] with the symmet-
rical architecture, i.e., encoder and decoder, is designed for
learning feature representations via encoding and decoding,
where the architectures of the encoder and the decoder need
to be designed. Generative adversarial network (GAN) [144],
[206] is designed to produce new plausible data via co-learning
two DNNs, i.e., the generator and the discriminator, which
may have different architectures.

Besides the model architectre, DNN’s performance also
depends on model parameters. Typically, model parameters are
optimized via gradient-based methods, such as SGD, Moment,
Adagrad, and Adam [145]. However, such methods are prone to
get stuck into local optima due to the high nonconvexity of the
loss function they optimize. Furthermore, their performance is
sensitive to theirownparameters (a.k.a.modelhyperparameters),
such as learning rate, batch size, and decay rate.

B. EAs

EAs are the population-based metaheuristic search algo-
rithms inspired by the nature and biology [16]. This article
does not distinguish between EAs and swarms intelligence
algorithms strictly because they typically follow a general
framework composed of initialization I, evaluation E, repro-
duction R, and selection S modules. Specifically, to solve
an optimization problem, a population of candidate solutions
P = {x1, . . . , xN} is initialized at first. Then, each candidate
solution xi is evaluated to calculate its fitness value f . New can-
didate solutions (a.k.a. children) are generated via reproduction
from the candidate solutions chosen from the population based
on fitness elitism (a.k.a. parents). The reproduced candidate
solutions are evaluated to obtain their fitness values. Finally,
a new population is formed by selecting elicit candidate solu-
tions with higher fitness values from the combination of the
reproduced candidate solutions and the old population. This
process is repeated until some termination criteria are met.
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Then, the individual in the population, which has the best fit-
ness value, is selected as the output. A general framework of
EAs is described in Algorithm 1.

Different EAs have been proposed under different natural
or biological inspirations, e.g., genetic algorithm (GA) [60],
genetic programming (GP) [75], evolution strategy (ES) [146],
differential evolution (DE) [92], particle swarm optimization
(PSO) [147], ant colony optimization (ACO) [65], and artificial
bee colony (ABC) [42], which mainly differ in one or more
modules, i.e., I, E, R, and S, in the framework. For initializa-
tion, I is applied to initialize candidate solutions. There are two
commonly used types of initialization methods, i.e., random
initialization [52] and knowledge-based ones [56]. For evalua-
tion, E is applied to calculate the fitness value of the candidate
solution [82]. For reproduction, R is applied to generate new
candidate solutions based on some candidate solutions chosen
from the current population. For example, in GA, recombina-
tion is used to exchange some parts of two candidate solutions
to produce two new ones [52]. In ES, mutation is used to
alter some parts of a candidate solution to a prespecified
degree [148]. In PSO, a candidate solution (a.k.a. particle) is
changed via some position and velocity updating formula [57].
For selection, S is used to select promising candidate solu-
tions to form the new population, typically based on fitness
values. For example, by the tournament selection [72], two
candidate solutions are chosen randomly from the population
and the one with the higher fitness is added to the new pop-
ulation. There are also other selection methods like roulette
wheel selection [59].

C. Evolutionary Construction of DNNs

The evolutionary construction of DNNs applies EAs to
automatically construct DNNs. Given the insights into the
automated DNN construction process, EAs are inherently suit-
able for solving some optimization problems involved in the
process. For example, EAs are well known for the capabil-
ity to solve black-box nonconvex optimization problems [17].
Also, multiobjective EAs (MOEA) have been intensively stud-
ied to deal with multiple conflicting objectives in an effective
way [70], [149]. Moreover, EAs are highly parallelization and
thus may benefit from the rapid advance in high-performance
computing to accelerate computational speed [19], [20].

EAs have a long history of being applied to design and con-
figure neural networks, dated back to the 1990s [150]. With

Algorithm 1 General Framework of EAs
Input: : The population size N.
Output: : The best-found candidate solution x∗

1: /*Initialization*/
2: P← I{(x1, x2, ..., xN})
3: /*Evaluation*/
4: F← E(P)
5: while termination criteria are not met do
6: /*Reproduction*/
7: C← R({P, F})
8: /*Evaluation*/
9: Fc ← E(C)

10: /*Selection*/
11: {P, F} ← S({P, F}⋃{C, Fc})
12: end while
13: Selecting from P the individual with the best fitness

the renaissance of neural networks in the form of deep learn-
ing, where the starting point is commonly regarded as the
invention of AlexNet in 2012, EAs have been applied to auto-
matically construct DNNs in terms of DNN parameters [151],
DNN architecture [59], and DNN learners [131]. Particularly,
for DNN architecture design (commonly known as NAS),
EAs have demonstrated promising performance [13], [69],
achieving the state-of-the-art accuracy on many benchmark
test problems, e.g., CIFAR-10, CIFAR-100, and ImageNet.

In the following sections, we will review and catego-
rize existing works on the applications of EAs to different
optimization problems involved in automated DNN construc-
tion, as analyzed in Section II. Also, we will discuss the pros
and cons of EA-based techniques compared to non-EA-based
ones when solving different optimization problems.

IV. EVOLUTIONARY DNN CONSTRUCTION: MODEL

PARAMETER OPTIMIZATION

A. Problem Statement

Model parameter optimization, a.k.a. DNN training,
searches the best model parameters M∗p for a DNN with fixed
architecture M†

a to best solve a given task via optimizing, with
respect to (w.r.t.) model parameters Mp, an objective func-
tion L that measures the performance of the model (defined
by M†

a and Mp) on training data Dtrn by using a manually
specified and configured model parameter learner M†

lp. This
optimization problem, simplified from that defined in (1), can

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P(
Ma, Mp, Mla, Mlp

) = arg minMa,Mp,Mla,Mlp

(
O1

Dval

(
Ma, Mp, Mla, Mlp

)
, . . . , Om

Dval

(
Ma, Mp, Mla, Mlp

))

s.t. constrainti(Mla), i = 1, . . . , q
(
Ma, Mp, Mlp

) ∈ arg minM′a,M′p,M′lp

(
O1

Dval

(
M′a, M′p, Mla, M′lp

)
, . . . , Om

Dval

(
M′a, M′p, Mla, M′lp

))

s.t. constrainti
(
M′a

)
, i = 1, . . . , r(

M′p, M′lp
)
= arg minM′′p ,M′′lp LDtrn

(
M′a, M′′lp, M′′p

)

s.t. constrainti
(

M′′lp
)
, i = 1, . . . , t

M′′p = arg minM′′′p
LDtrn

(
M′a, M′′lp, M′′′p

)

s.t. constrainti
(

M′′′p

)
, i = 1, . . . , k

(1)
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be formulated as
{

M∗p = arg minMp
LDtrn

(
Mp;M†

a, M†
lp

)

s.t. constrainti
(
Mp

)
, i = 1, . . . , k.

(2)

It is a large-scale (likely with millions of model parameters)
and highly nonconvex continuous optimization problem.

In the following, we will provide a systematical review of
EA-based methods applied to solve this problem and then dis-
cuss the pros and cons of EA-based methods in comparison
to non-EA-based ones.

B. Taxonomy and Survey of Existing EA-Based Approaches

1) Taxonomy: The existing EA-based approaches for model
parameter optimization mainly differ in the representations of
parameters and the search paradigm of EAs. In this part, we
will categorize these works from two aspects, i.e., solution
representations and search paradigms.

2) Solution Representations: For EAs, the solution is often
represented via a certain encoding scheme. In the following,
we are going to review the commonly used solution represen-
tation schemes under two categories, i.e., direct encoding and
indirect encoding.

1) Direct Encoding: In this scheme, each model parameter
is directly represented as it is. All model parameters
are represented as a vector [29], [33], [40], [43], where
each element in the vector denotes one specific model
parameter.

2) Indirect Encoding: In this scheme, each model parameter
is represented in an encoded form obtained via a cer-
tain mapping [25], [27], [37], [52]. For example, binary
encoding is often used in GA [25], [27], where each
model parameter is represented via a bit string. In [37],
network weights are represented by a set of coefficients,
which are applied to linearly combine some predefined
basis vectors to produce network weights. In [52], the
encoding is via the mean and variance of Gaussian dis-
tribution, and the weights of DNN are sampled from this
distribution.

3) Search Paradigms: Search paradigms refer to the frame-
works of search algorithms. From this view, EA-based
approaches can be divided into two categories, i.e., pure EAs
and hybrid EAs, according to whether gradient-based methods
are incorporated.

Pure EAs merely rely on EA-based approaches to solve the
model parameter optimization problem.

1) Basic Evolution: In this framework, model parameters
are optimized by following the general EA framework
depicted in Algorithm 1 [25]–[30].

2) Cooperative Co-Evolution: In this framework, the model
parameters are decomposed into several groups where
each group is optimized by the EA in a separate but
cooperative way. Finally, the optimal model parameters
found in each group are combined to produce the solu-
tions [21]–[24]. In [22], two approaches were proposed
to decompose model parameters, i.e., synapse based and
neuron based, where groups correspond to the single
connection weight and all connection weights for a neu-
ron, respectively. Model parameters in different groups

Fig. 1. Neuron-based cooperative co-evolution, where the connection weights
for neuron 1 and neuron 2 are partitioned into two separate groups (w1 and
w2) and (w3, w4, and w5). Each group is evolved by the EA separately while
evaluation of any individual in a group’s population is performed in a cooper-
ative way. For example, when evaluating the individual (0.2 and 0.1) from the
group corresponding to neuron 1, it will be combined with the best individual
found so far, i.e., (0.5, 0.3, and 0.4), from the group corresponding to neuron
2, and evaluated as a whole. The combination of the best individuals from
each group forms the final output.

are optimized by EAs separately and when an individual
in a group is to be evaluated, cooperative evaluation is
applied to concatenate this individual with the best indi-
viduals from the other groups for the assembled model
parameters. After optimizing model parameters in all
the groups, the finally obtained model parameters are
typically defined as the combination of the best individ-
uals from each group. An example for the neuron-based
cooperative co-evolution is shown in Fig. 1 for readers
to better understand the framework.

Hybrid EAs define combining EAs with the gradient-based
methods to optimize model parameters. There are three com-
mon frameworks for making hybridization.

1) The first is applying the EA to find the best model
parameters, which are then further optimized by
using the gradient-based method to generate the final
solution [31]–[36].

2) The second is applying the gradient-based method to
first produce sets of model parameters, which are then
used to initialize the population of the EA to let the EA
keep searching for the best model parameters [39], [40].

3) The final is using the EA and the gradient-based method
alternatively where the output of one method servers the
start point for another, and this procedure is iterated until
some stopping criteria are met. Existing works mainly
differ in the order of applying these two methods in
the iterative procedure and the individuals chosen from
being continually optimized by using the gradient-based
method [38], [41]–[43], [47]. For example, in [42], the
EA is applied first, and the top 10% individuals with
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higher fitness in the final population of the EA are fur-
ther optimized by the gradient-based methods. In [38],
the model is trained by using the gradient-based method
until the performance improvement is below a certain
threshold. Then, the EA is applied to further optimize
model parameters. The best solution produced by the
EA will be used as the starting point for applying the
gradient-based method again. This process is repeated
until certain criteria are met.

C. Discussion

Gradient-based methods [145] and EAs [152] are the two
commonly used techniques for model parameter optimization.
The gradient-based method is computationally efficient but
may easily get stuck into inferior local optima due to its local
search nature. The EA may mitigate the issue of getting stuck
into inferior local optima due to its global search nature but
suffer from high computational cost [153].

Three suitable optimization scenarios for EA-based methods
are summarized as follows.

1) EAs are suitable for training DNNs with small size, such
as RNNs and DBNs. For example, in [21]–[24], EAs are
applied to train the RNN, where direct encoding is used
to represent model parameters and the cooperative co-
evolution is used as the search paradigm. Because of the
global search nature of EAs, the models trained by EAs
achieve better performance than the ones trained by the
gradient-based methods.

2) EAs can be combined with the gradient-based methods
to train large-scale DNNs. To deal with a DNN with
millions of parameters the pure EA search paradigm
becomes less competent. In this situation, the hybrid
EA search paradigm becomes promising, where the EA
is combined with the gradient-based method in some
way to train the DNN. The improvements contributed
by EAs can be seen from two aspects: a) EAs can
explore the promising regions in the search space, which
assist the gradient-based method to more effectively
exploit the best solution and b) the global search nature
of EAs can help the gradient-based method to jump out
of inferior local optima.

3) When the exact gradient information of the loss function
is hard to be obtained, EAs can be used to train the DNN.
A typical scenario is in the deep RL (DRL) tasks, where
due to the sparse rewards, exact gradient information
often cannot be obtained to update the policy network’s
model parameters. Therefore, in recent years, EAs have
been applied to train the policy network following the
pure EA search paradigm. From the experiment results
reported in [27]–[30], [45], [154], and [155], the policy
networks trained by EAs have demonstrated promising
performance in various test scenarios.

V. EVOLUTIONARY DNN CONSTRUCTION: MODEL

ARCHITECTURE OPTIMIZATION

A. Problem Statement

Model architecture optimization, a.k.a. NAS, is a bilevel
optimization problem [10], [156], where the lower level task

of model parameter optimization is nested within the upper
level task of model architecture optimization. It may involve
more than one objective functions Oi, i = 1, . . . , m that mea-
sure the performance of the model on validation data Dval

from different aspects, such as accuracy and speed, leading to
multiobjective optimization.

Assuming a manually specified and configured model archi-
tecture learner M†

la and a manually specified and configured
model parameter learner M†

lp are used, this optimization
problem, simplified from that defined in (1), can be formu-
lated as

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

P(
Ma, Mp

) = arg minMa,Mp

×
(

O1
Dval

(
Ma, Mp;M†

la

)
, . . . , Om

Dval

(
Ma, Mp;M†

la

))

s.t. constrainti(Ma), i = 1, . . . , r

Mp = arg minM′p LDtrn

(
Ma, M′p;M†

lp

)

s.t. constrainti
(

M′p
)
, i = 1, . . . , k.

(3)

It is a very challenging bilevel optimization problem where the
upper level architecture optimization is multiobjective, non-
differentiable (in many cases), and black-box while the lower
level parameter optimization is large-scale and nonconvex. The
solution to this problem is a Pareto optimal set P(Ma, Mp)

composed of nondominated solutions. Eventually, one of these
nondominated solutions will be chosen and deployed in use.

In the following, we will provide a systematical review of
EA-based methods applied to solve this problem and then dis-
cuss the pros and cons of EA-based methods in comparison
to non-EA-based ones.

B. Taxonomy and Survey of Existing EA-Based Approaches

1) Taxonomy: Similar to the model parameters
optimization, existing EA-based approaches mainly dif-
fer from the solution representations and search paradigms.
Also, the customized operators are designed to search the
complex model architecture more effectively. Therefore, in
this section, from the three aspects, i.e., solution represen-
tations, search paradigms, and customized search operators,
EA-based approaches for the model architecture optimization
are categorized.

2) Solution Representations: DNNs have a wide variety of
architectures suitable for dealing with the tasks of different
types and complexity. In general, DNN’s architecture is deter-
mined by two factors, i.e., architectural units and topological
patterns that define the connection between different units.
Once these two factors are specified, a certain architecture
is determined. Therefore, existing solution representations in
model architecture optimization are often defined with respect
to these two factors, where the architectural unit and the
topological pattern are encoded as decision variables (in the
representation) in certain ways. Then, some constraints, e.g.,
search ranges, are set for them, to define the search space
within which model architecture optimization is carried out.
Existing architectural units can be categorized into microunits
and macrounits, where the former denotes the basic opera-
tional unit in the model, e.g., a convolutional layer, and the
latter denotes the complex operation unit composed of multiple
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Fig. 2. Solution representation of a simple CNN using the fixed topological
pattern, where the layers from the front to the end of the CNN are encoded via
the type (C: convolutional, P: pooling, and F: fully connected) and parameters
(the kernel size and # of neurons in a layer) of the layer and concatenated
orderly to form a vectorial representation.

basic ones, e.g., a residual block. Existing topological patterns
can be categorized into fixed and nonfixed ones. For the fixed
pattern, once architecture units for a model are specified in an
ordered way, their connections are directly determined. In con-
trast, the connections between architectural units need to be
specified for the nonfixed pattern. In the following, we catego-
rize the solution representations used in existing works about
model architecture optimization according to fixed and non-
fixed topological patterns, where architectural units will be
discussed therein. We do not make categorization for archi-
tectural units because there are too many of them, and the
choice of them for defining the search space is problem depen-
dent and needs to consider the balance between accuracy and
computational time.

Fixed Topological Patterns: The solution representations
following this pattern are merely determined by architectural
units. Fig. 2 illustrates an example solution representation fol-
lowing this pattern, where a simple CNN is represented in the
vectorial form via the concatenation of the representations of
multiple basic architectural units, i.e., convolutional, pooling,
and fully connected layers, and each basic unit is encoded via
its type and parameters such as the kernel size. Sometimes,
a same unit is repeated multiple times and the number of
repeated times can be encoded in the presentation. For such
solution representations, as long as the order of a unit is deter-
mined, i.e., its position in the representation, its connections
to other units are determined.

Many existing DNN architectures can be represented in this
way, e.g., DBNs [142], AlexNet [5], and VGG [6], which
involves different numbers and types of architectural units. For
example, DBNs [49], [157] and SAE [84], [92] can be repre-
sented via a concatenation of the encodings of multiple fully
connected layers, where the encoding is simply the number
of neurons in the layer. For CNNs [18], [51]–[57], [71]–[74],
[80]–[82], [95], [102]–[104], [108]–[110], the encoded param-
eters for a convolutional layer may include the kernel size,
stride size, padding value, etc.

Nonfixed Topological Patterns: The solution representations
following this pattern are determined by both architectural
units and topological patterns. In other words, the connections
between architectural units, e.g., the skip connection [58], [60],
[83], [98], need to be encoded and optimized. The adjacent
matrix [58], [83], [98] has been commonly used to represent
the connections between architectural units, where a matrix
element with the value of 1 denotes the existence of the con-
nection between the two units indexed by the row and column

Fig. 3. Solution representation of a simple CNN of the similar Inception
network type by using the adjacency matrix and adjacency list for representing
its connections, respectively, denoted in red. The adjacency matrix is encoded
for the entire network as a binary vector via serialization, where 0 and 1
represent the nonexistence and existence of a connection. The adjust list is
encoded for each unit as a list of the indices of the units connecting to it.

indices of that matrix element. In most works, the adjacency
matrix is encoded as a binary vector via serialization [59],
[60]. One limitation of using the adjacency matrix is that the
total number of architectural units needs to be prefixed so that
the matrix can be formed. Therefore, it is not suitable for the
cases where the number of architectural units is a decision
variable to be optimized. To address this issue, the adjacent
list [61]–[63], [158] was proposed as a list of units connect-
ing to a specific unit. It allows easily adding or removing units
while considering the connections to them. Fig. 3 illustrates
the solution representation of a simple CNN of the similar
inception network type by using the adjacency matrix and
adjacency list for representing the connections, respectively,
where the representation of the unit follows the way described
in the part of fixed topological patterns.

For both fixed and nonfixed topological patterns, the archi-
tectural units can be macrounits, which are more commonly
known as cells in existing works. In cell-based solution rep-
resentations [15], [53], [64]–[67], [67]–[69], [71], [79], [159],
the encodings of connections among cells follow the ways
described in the parts of fixed and nonfixed topological pat-
terns. The cell itself can be treated as a “small” DNN model,
which can also be represented in the way following either
fixed or nonfixed topological patterns. This kind of solution
representation may reduce the solution space by simply stack-
ing the same cell in a certain way and merely optimizing
this cell, which has achieved very promising performance on
CIFAR-10 and CIFAR-100 [67]. Fig. 4 illustrates the solution
representation of a simple cell-based CNN.

In addition to solution representations in the vectorial form
as described above, there are other forms of representa-
tions. For example, decision variables can be partitioned into
multiple levels and different levels are optimized in a hierar-
chical and cooperative way [13], [66], [86], [89], [125]. The
tree-structure representations [75]–[77] are commonly used in
model optimization methods based on GP [75], where the
leaf node receives the input data and the other nodes perform
some basic operations, such as convolution, max pooling, and
summation.

3) Search Paradigms: Model architecture optimization
requires evaluating the quality of candidate architectures,
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Fig. 4. Solution representation of a cell-based CNN, which are formed by
stacking m types of cells with each cell, denoted by Cell i (i = 1, . . . , m),
repeating Ni times, where the connections in the cell are encoded via the
adjacent matrix-based representation.

where learning model parameters is typically indispensable
when carrying out evaluation. Therefore, it usually needs
to consider both architectures and parameters during the
model architecture optimization process. Existing EA-based
approaches in this regard often employ EAs for architecture
optimization while using gradient-based methods for param-
eter optimization, differing in the ways to search for the
best architecture. In the following, we describe the commonly
employed search paradigms in existing works about applying
EAs for model architecture optimization.

1) Basic Search Paradigm: This paradigm, as illustrated
in Fig. 5, follows the general framework of EAs in
Algorithm 1 but incorporates a gradient-based parameter
learning process before evaluation. Specifically, a pop-
ulation of candidate model architectures are initialized
at first. Then, model parameters for these architectures
are learned via the gradient-based method on the train-
ing data, followed by evaluating the quality of candidate
architectures on the validation data. After that, repro-
duction is applied to some selected existing candidate
architectures to generate new candidature architectures,
which are trained by using the gradient-based method
and then evaluated. Next, a new population is formed
by selecting elicit candidate architectures from both the
current population and the new candidature architectures
generated from it. This new population will be evolved
by repeating the above steps until certain termination cri-
teria are met. Many existing works [18], [74], [80]–[82]
follow this search paradigm.

2) Incremental Search Paradigm: This paradigm is similar
to the basic search paradigm in terms of the operational
pipeline. The major difference is that it incrementally
constructs the model by gradually adding components
(i.e., different types of layers and connections) to it as
the population evolves [13], [48], [160]. Fig. 6 illustrates
an example of using this search paradigm to construct a
simple CNN via a simple evolutionary strategy [160]. In
this example, the initial population contains one candi-
dature architecture with one convolutional layer. During
reproduction, different adding operators, i.e., adding the

Fig. 5. Basic search paradigm.

Fig. 6. Example of using the incremental search paradigm to construct a
simple CNN via the ES.

convolutional layer, pooling layer, and skip connection,
are applied to incrementally construct the architecture.
Then, the newly generated candidate architectures are
trained and evaluated. Next, the best of them will be
selected to form the new population, which will be
evolved by repeating the above steps until certain ter-
mination criteria are met. Compared to the basic search
paradigm, the incremental one allows searching for part
of the model architecture in different search stages, and
thus, reduces the computational cost [160]. However, it
can only generate the complete architecture at the end
of the search process while the candidate architectures
in the basic search paradigm are always complete during
the entire search process.

3) Cooperative Co-Evolution Paradigm: In this search
paradigm, the model architecture is decomposed
into subcomponents (i.e., macrounits) according to a
“blueprint,” which defines the topological patterns of
subcomponents. It is equivalent to the cell-based solu-
tion representation. Then, the blueprint and its associ-
ated subcomponents are optimized together in a certain
way to search for the optimal model architecture. For
example, in [86] and [87], the model architecture is
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Fig. 7. Example of the decomposition-based search paradigm, where
a population of blueprints and a population of its subcomponents are
co-evolved [86].

decomposed into two parts, i.e., the blueprint and its
subcomponents, which are co-evolved in a cooperative
way to search for the optimal architecture. Specifically, a
population of blueprints and a population of subcompo-
nents are evolved separately. To evaluate the quality of
an individual in either population, a collection of model
architectures is generated by randomly sampling from
both populations and assembling the sampled blueprints
and subcomponents. Then, these model architectures are
trained and evaluated. Next, the quality of those eval-
uated model architectures that contain a blueprint or
subcomponent will be averaged to estimate the quality
of that blueprint or subcomponent. Fig. 7 illustrates this
process.

4) Hypernet-Based Search Paradigm: This search paradigm
typically has two stages, i.e., pretraining and search-
ing stages [14], [83], [161], [162]. In the pretraining
stage, a hypernet that subsumes all possible candidate
model architectures is specified and trained, where the
gradient-based methods with various tricks, such as
single path [83] and random search [162], have been
proposed and used for training. The pretrained hypernet
will be used to guide the subsequent searching stage,
where any search paradigm described previously can
be used to search for the optimal model architecture.
For example, a population of candidate model architec-
tures are sampled from the pretrained hypernet, where
the model parameters of the sampled model architec-
tures are directly inherited from the hypernet. Then,
these sampled architectures are evaluated, where the
parameter learning process before evaluation is omit-
ted. After that, reproduction is applied to some selected
existing candidate architectures to generate new candi-
dature architectures. The newly generated architectures
may directly inherit their model parameters from the
pretrained hypernet and then get evaluated. Next, a new
population is formed by selecting elicit candidate archi-
tectures from both the current population and the newly
generated candidature architectures. This new population

Fig. 8. Example of the hypernet-based search paradigm.

will be evolved by repeating the above steps until cer-
tain termination criteria are met. Fig. 8 illustrates this
example.

5) Multiobjective Optimization: In this search paradigm,
multiple (often conflicting) objectives drive the search
process and evolutionary multiobjective optimization
techniques [163] are often employed to search for a
set of Pareto optimal solutions. Finally, one of these
Pareto optimal solutions will be chosen for deploy-
ment according to practical needs. This search paradigm
can be combined with any of the previously discussed
search paradigms. It becomes more and more com-
monly used in practice, where optimization of model
architecture is subjected to some factors other than accu-
racy, e.g., inference time and energy consumption [15],
[49], [60], [70], [73], [85], [91]–[94], [96], [159]. For
example, in [15], MOEAs are used to optimize model
architectures by considering model accuracy and model
size that is hostable by the hardware on which the
model will be deployed. In [70], both the accuracy
and inference time of the model are considered in
the MOEA to optimize model architectures so that the
obtained optimal architecture may satisfy the practical
requirement on latency.

4) Customized Search Operators: For model architecture
optimization, most of the search operators, e.g., initialization,
evaluation, reproduction, and selection, in EAs can be well
applied to the solution representations described previously.
For example, in [95], the architectures with different layers
are randomly generated as initial candidate solutions. In [95]
and [52], recombination is applied to swap parts of the two
selected models to generate two new architectures. In [13],
mutation is applied to alter the configuration of a layer,
e.g., the kernel size and stride. In [72], architectures with
higher accuracy will be selected into the population of the
next generation. However, merely relying on the basic search
operators in EAs may not be enough due to the nature of
architecture search, e.g., varying length solution representa-
tion, invalid architecture, and model parameter inheritance. In
the following, the customized operators widely used in exist-
ing works about EA-based model architecture optimization are
categorized and described.

1) Customized Recombination: The basic recombination
operator assumes the solution representations of two
parents have an equal length. However, it is typi-
cal that EA’s population used for model architecture
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optimization contains individuals of various lengths,
denoting architectures of various sizes. Therefore, many
existing works [52], [54]–[57], [80], [82], [95], [96]
have designed customized recombination operators that
can handle varying length solution representations. For
example, in [57] and [52], only the layers with the same
positions in the two parents can be swapped. In [54], the
cutting point is randomly selected in each of the two par-
ents and then the right parts of two cutting points are
swapped. Some quality control methods can be applied
to the recombination operator to improve its effective-
ness. For example, in [55], the cutting points are only
allowed to be inserted into the predefined positions to
prevent invalid architectures from being generated.

2) Customized Mutation: The basic mutation operator is
used to alter the values of select decision variables
within their feasible ranges, e.g., changing the kernel
size. To enable search for architectures of different sizes,
many existing works [13], [48], [52], [55], [56], [67],
[80], [97] have designed customized mutation operators
that can change the size of the architecture by adding
or removing its parts (encoded as decision variables).
For example, the mutation operator was used in [13] to
insert/remove convolution layers and skip connections
into/from the parent architecture. In [55], the mutation
operator was used to replicate a specific layer. Some
quality control methods can be applied to the muta-
tion operator to improve its effectiveness. For example,
in [48] and [97], if a new architecture generated by the
mutation operator performs worse than its parent(s), the
added or removed components will be revoked.

3) Repairment: When a new architecture is generated via
recombination and/or mutation, it may be invalid, and
thus, needs to be discarded or repaired. For example,
when a new convolutional layer is added into an existing
architecture, its input and/or output might be inconsis-
tent with the output of the preceding and/or the input
of the succeeding layers, resulting in an invalid new
architecture [72]. The repairment operator is designed
to modify an invalid architecture to make it become
valid. For the previous example, it can be used to adjust
the input and/or output of the newly added convolu-
tional layer [72]. Invalid architectures may have different
kinds and degrees of invalidity due to different ways
to generate them, leading to various repairment oper-
ators. Notably, repairment operators allow designing
more flexible search operators without having to strictly
consider the validity of their outputs.

4) Inheritance: During search, any newly generated archi-
tecture (child) typically reserves part of its architecture
from its parent(s). In addition, the model parameters
in the reserved part of its architecture may also be
inherited from its parent(s). For example, when two
selected parents exchange parts of their architecture
during recombination, both the architecture and its asso-
ciated model parameters will be swapped [46], [97],
[125]. When a selected parent undergoes mutation to
generate a child, the child will inherit the unmutated part

of the architecture as well as its associated parameters
from its parent [48]. Model parameter inherence may
prevent training newly generated models from scratch
and thus, reduce computational costs [125].

Among the above-discussed customized search operators,
both recombination and mutation intend to generate new
architectures based upon the old ones. In comparison, recom-
bination typically leads to significant architectural changes
from parents to children and thus, suits exploration of
innovative architectures that may result in much improved
performance [98]. Mutation typically leads to incremental
changes to the old architecture and thus, suits exploitation
of existing architectures. Furthermore, recombination is more
heavily dependent on the encoding scheme and the repairment
operator. Therefore, mutation is more widely used in existing
works [13], [48], [67], [68].

C. Discussion

In addition to EA-based approaches, RL-based [11], [12],
[158], [164], [166], [167] and gradient-based [10], [145],
[165] ones have also been widely used for model architecture
optimization.

RL-based approaches typically follow the incremental
search paradigm, where the policy used for incremental
architecture generation is designed and learned via feed-
back (rewards) to gradually search for the best architecture.
Similar to EA-based ones, RL-based approaches also have
a vast architecture search space and require time-consuming
parameter learning, leading to demanding computational costs.
Furthermore, they typically employ a certain policy network
(DNN), which involves many hyperparameters and is not easy
to train. Moreover, although the two types of approaches
can be both applied to multiobjective scenarios, RL-based
ones usually need to first convert the multiobjective problem
to the single-objective one in some ways [166], [167], and
thus, cannot produce the Pareto optimal set as EA-based
approaches do.

In recent years, gradient-based approaches have been
proposed, aiming to reduce computational costs, where
model architecture optimization is formulated as a continu-
ous optimization problem. For example, the DARTs approach
proposed in [10] relaxes the discrete architecture search space
to a continuous one, by mixing possible candidate opera-
tions, so that the architecture can be optimized via gradient
descent in an efficient way. In comparison to EA-based ones,
such approaches are much more efficient, but they are less
component to explore novel architectures because all possi-
ble architectures that could be found need to be manually
predefined via the solution representation.

EA-based approaches have been notorious for their high
computational costs. For example, it may take about 3000
GPU days to find a desirable architecture [13]. In recent years,
many computational speedup strategies have been proposed
from the perspectives of algorithmic design and computing
power, which will be discussed in Section VII. They allow EA-
based approaches to achieve satisfactory performance at much
reduced computation costs like several GPU days [15], [83]. In
addition, EA-based approaches can easily and effectively deal
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with various constraints and multiple objectives, and inherently
allow model ensemble due to its population-based nature to
achieve better generalization [49], [101].

VI. EVOLUTIONARY DNN CONSTRUCTION: MODEL

LEARNER OPTIMIZATION

A. Problem Statement

Model architecture and parameter learner optimization seeks
the most effective learners (intrinsically optimizers), aiming to
best solve model architecture optimization and model param-
eter optimization problems, respectively. Specifically, model
architecture learner optimization searches the best architecture
learner (including its best-calibrated parameters, a.k.a. model
hyperparameters) by optimizing, w.r.t. architecture learner’s
representation Mla, the performance of the learner on solv-
ing the model architecture optimization problem defined in
Section V. This is equivalent to the optimization problem
defined in (1), which is prohibitively challenging. Model
parameter learner optimization searches the best parameter
learner (including its best-calibrated parameters) by opti-
mizing, w.r.t. parameter learner’s representation Mlp, the
performance of the learner on solving the problem of model
parameter optimization for a DNN model with fixed archi-
tecture M†

a . It can be formulated as the following bilevel
optimization problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
M∗lp, M∗p

)
= arg minMlp,Mp

LDtrn
(
Mlp, Mp;M†

a

)

s.t. constrainti
(
Mlp

)
, i = 1, . . . , t

Mp = arg minM′p LDtrn

(
M′p, Mlp;M†

a

)

s.t. constrainti
(

M′p
)
, i = 1, . . . , k.

(4)

Most of the existing studies did not consider model archi-
tecture learner optimization due to its expensive computational
cost. In the following, we will focus on model parameter
learner optimization and provide a review of EA-based meth-
ods applied to solve it, and then discuss the pros and cons of
EA-based methods in comparison to non-EA-based ones.

B. Taxonomy and Survey

In model parameter learner optimization, the learners used
for model parameter optimization, e.g., gradient-based meth-
ods, are optimized in terms of both its types and parameters.
The decision variables involved in such an optimization
problem are often not many and may take either discrete
(for types) or continuous (for parameters) values. Also, there
exists no explicit mathematical formulation of the objec-
tive function of decision variables in such an optimization
problem. Therefore, EAs are a good choice for solving this
problem, where direct encoding is often used for solution
representations.

EAs have been applied to optimize the parameters of
gradient-based methods [19], [20], [132]. For example,
in [132], they are applied to optimize the learning rate,
momentum, and batch size for the gradient-based approach
Adam. EAs have also been used to both choose the most
appropriate learner and search the best parameters for the

learner. For example, in [131], ES is applied to select the
learner from Adam and Adadelta and optimize the parame-
ters of the chosen learner. In some works, optimization of
learner’s parameters is integrated with the model architec-
ture optimization process [51], [53], [55], [127]–[130], [133],
[134], [168], [169]. For example, in [127], the EA is applied to
design a VGG model, where the parameters of a prespecified
model parameter learner are encoded together with the model
architecture for solution representations.

C. Discussion

In existing works, the model architecture learner is typically
prespecified instead of being optimized due to the practi-
cally prohibitive computational cost, even higher than that of
NAS, for solving the model architecture learner optimization
problem. As for model parameter learner optimization, it is a
black-box, mixed-variable optimization problem as discussed
previously. Bayesian optimization (BO) and EAs, as the two
most representative derivative-free optimization methods, have
been applied to solve it. Among them, BO does not rely
on heavy trial-and-error exploration but is less effective for
handling mixed decision variables and constraints. In con-
trast, EAs are more suitable for solving the mixed-variable
optimization problem with constraints [131], [168]. Although
EAs are very time consuming, many computational speedup
strategies have been proposed in recent years from the per-
spectives of both algorithmic design and computing power,
which will be discussed in Section VII. They allow EA-
based approaches to achieve satisfactory performance at much
reduced computation costs [19], [20], [134].

VII. EVOLUTIONARY DNN CONSTRUCTION:
MISCELLANEOUS

In addition to the three major optimization problems dis-
cussed in the previous sections, this section describes how
EAs are applied to solve other optimization tasks involved in
the automatic DNN construction process. Furthermore, exist-
ing works about two key factors relevant to optimization, i.e.,
speedup and objectives, are summarized.

A. Other Optimization Tasks

Besides model parameter, architecture, and learner
optimization, evolutionary DNN construction involves some
other optimization tasks. For example, in [170], the EA is
used in the data preprocessing step to select more useful
features for the input images to improve the performance of
the DNN on edge detection. Furthermore, a DNN may employ
different loss functions, leading to different performance. The
loss function used by a DNN is typically designed or specified
according to human expertise instead of in a problem-driven
way. To address this issue, EAs have been applied to optimize
DNN’s loss functions [171]–[173], [206], [208]. For example,
in [171], the EA is applied to optimize the misclassification
cost to improve DNN’s performance for solving imbalanced
classification problems. In [173], a specific loss function is
designed by the EA to speed up model parameter optimization
via fewer training steps to achieve higher accuracy. In [208],
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the EA is applied to optimize the loss function to make policy
learning in RL suitable for the dynamic environment.

B. Optimization Speed-Up

Most optimization problems involved in automated DNN
construction are computationally demanding, mainly due to
the vast and complex search spaces for DNN architecture and
parameters. Existing works aiming at optimization speedup
can be categorized from the aspects of software and hardware,
which are described below in terms of algorithm design and
computation power, respectively.

1) Algorithm Design: From the viewpoint of the algorithm
design, the commonly used speed-up techniques in literature
are as follows.

1) Parameter Sharing: This kind of techniques is often
used in transfer learning [64], [174]–[176], which uses
the knowledge (i.e., model parameters) learned from
solving one task to help solve another problem. For
EA-based approaches, through the inheriting operator
described in Section V, the offspring model can inherit
model parameters from its parents. The inherited model
parameters can be used as a warm start to prevent the
offspring model from being trained from scratch [13],
[125], [177]. Besides the inheriting operator, a more
general parameter-sharing technique is the hypernet
framework [14], [15], [83], [161], [162]. Specifically,
a hypernet, which subsumes all the candidate model
architectures in the search space, is trained first. Then,
subnetworks sampled from the hypernet will inherit
its model parameters, and these models can be eval-
uated directly. As a result, the time cost is reduced
significantly.

2) Training Cost Reduction: Early stopping is a widely
used strategy to reduce the training cost. For exam-
ple, in [88], the number of training epochs is set as
5 for each candidate models to reduce training time.
Another commonly used strategy is to first perform
model optimization on a small dataset at the expense
of the small cost, and then refine the obtained model on
a large dataset. It can much save the computational cost
compared to directly performing model optimization
on the large dataset. For example, in [10] and [67],
the model architecture is first optimized on CIFRA-10,
and then, the obtained best architecture is applied with
possible further refinement on ImageNet. This kind of
speed-up techniques may sacrifice performance to some
degree because the model optimized in this way is often
suboptimal.

3) Performance Prediction: Predicting the performance of
a DNN may help speed up model architecture and/or
parameter optimization. For example, different machine
learning models [102], [160], [178] have been used to
predict the performance of a model under training to
determine whether the model still deserves to be further
trained [103]. In recent years, proxy models have been
proposed to learn a mapping from model architecture
to model performance [126], [179], [180]. As such, the
huge computational burden of parameter learning for a

specific model architecture can be avoided to reduce the
computational cost in NAS.

4) Cell-Based Framework: Many existing works search for
the entire DNN at once, which is often computationally
demanding due to the very large size of the DNN. The
cell-based framework is used to speed up the construc-
tion of DNNs. In this framework, a DNN is supposed
to be composed, in a certain pattern, of multiple small
components with the same architectures, the so-called
cell [64], [104]. As a result, the automated construc-
tion of an entire DNN is transformed to optimize a cell
in a much reduced search space, leading to significant
computational speedup.

2) Computation Power: Taking advantage of the available
computational resources is also an effective way to speed up
optimization. A straightforward method is applying the free
or cheap resources, such as the cloud [181] and volunteer
computers [182]. But these resources are often limited, and
considering the security of private information, access to these
available computational resources is also constrained.

Parallel computation is an effective way to take the most
advantages of the computational resources [20], [105], [183].
EAs as the population-based methods are nature for the par-
allel framework. Recently, in [20], an asynchronous parallel
framework is proposed upon two parts, i.e., the controller and
the workers. The controller is responsible for search operators
to produce offspring and update the population. The work-
ers are applied to train and evaluate these individuals, which
require a considerable amount of compute resources. When a
worker finishes the training and evaluation of one individual,
it will send back the fitness and receive a new model from the
controller. Meanwhile, the controller will update the global
information and population according to the information it
has received. Compared with the parallel process, in the asyn-
chronous parallel framework, the devices can continually deal
with the population rather than keep pace with each other,
improving the efficiency of limited compute resources.

C. Optimization Objectives

Accuracy is the most intuitive optimization objective for the
evolutionary construction of DNNs. In addition, there are other
objectives that need to be considered in practical applications.
This section will discuss these other objectives studied in the
literature.

1) Inference Time: It measures the time required for the
input propagating forwards through the network to pro-
duce the output, which is a crucial factor to be consid-
ered in real-time applications such as velocity prediction
in autopilot [184]. This measurement is relevant to the
model architecture and the computing device that the
model is deployed [70], [97].

2) Computational Complexity: It estimates the computing
speed of an algorithm in terms of the number of floating-
point operations (FLOPs) [70], [94] or multiply adds
operators [73], [159].

3) Space Complexity: It measures the amount of work-
ing storage required by an algorithm, and can
be roughly estimated via the number of model
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parameters [15], [94], the number of connections, or the
sparsity of the model [92]. This measurement is related
to the overfitting and underfitting of the model.

4) Energy Consumption: It measures the average energy
consumption for the model to make inference on the
input data, which can be roughly estimated via the peak
power, average power, and the running time of CUDA
kernel functions [167], [184]. This measurement is vital
for the scenarios where the construction of DNNs is for
devices with the limited energy capacity such as mobile
phones.

VIII. APPLICATIONS, CHALLENGES, AND TRENDS

A. Applications

Evolutionary DNN construction approaches, as elaborated
in Section IV–VII, have demonstrated successes in various
applications. In the following, we summarize these applica-
tions from three dimensions, i.e., data types, application fields,
and deployment scenarios.

Data Types: Evolutionary DNN construction approaches
have been applied to various data types, such as images [13],
[59], [108], [109], speech [128], [133], [148], and
texts [15], [110]. In particular, tremendous research effort
has been devoted to solving the image classification problem.
Specifically, CIFAR-10, CIFAR-100, and ImageNet are the
three most commonly used benchmark image datasets in the
study of evolutionary DNN construction for image classifica-
tion. On CIFAR-10, the DNN model constructed by the EA
achieved the test error of 2.5% [15], outperforming the main-
stream handcrafted models, such as ResNet-50, VGG, and
DenseNet. On CIFAR-100 and ImageNet, the DNN models
constructed by EAs have achieved competitive performance in
comparison to handcrafted DNN models [13], [15]. Besides
image classification, the DNN models designed by EAs have
demonstrated great successes in object identification [17],
[185], speech recognition [128], and emotion recognition [40].

Application Fields: The automated DNN construction opens
the door for researchers and engineers from different fields and
with little expertise and experience in DNNs to better utilize
the DNN to resolve the problems arising in their fields. For
example, in biomedical engineering, EAs have been applied
to design DNNs for disease diagnosis [81], [116]–[119], pro-
tein structure prediction [186], and sleep study [187]. In
mechanical engineering, EAs have been used to design DNNs
for failure detection [114], [115], robot control [188], and
remaining useful life prediction [49]. In addition, evolutionary
DNN construction has been applied to gamma-ray detec-
tion [110], traffic flow prediction [189], and electricity price
forecasting [79].

Deployment Scenarios: With the advancement of IoT and
5G, more and more devices, e.g., smartphones, vehicles, and
drones, have benefited from various DNN-powered applica-
tions. The DNNs deployed on such devices typically need
to carefully consider model size and complexity to meet
real-world constraints on computational latency, energy con-
sumption, etc. This poses extra challenges to evolutionary
DNN construction approaches, e.g., to solve a multiobjective,

instead of single-objective, optimization problem. For exam-
ple, EAs have been applied for model compression so that
the compressed model can work well on the device without
suffering from computational resource and memory storage
issues [73], [184], [190], [207]. Also, MOEAs have been
applied to design the DNN by considering multiple conflicting
objectives (e.g., model size and accuracy) at the same time,
and then users can select, from the finally obtained Pareto
optimal set, the most suitable model according to the hardware
environment in practice [70], [97], [107].

B. Challenges

Evolutionary DNN construction has achieved great suc-
cesses, but also come with some unsolved challenges to be
further addressed. In the following, some key challenges are
summarized and discussed.

Tradeoff Between Optimization Cost and Model
Performance: Evolutionary DNN construction approaches
typically have high computational costs. In recent years, many
speedup strategies have been proposed from the perspectives
of both algorithmic design and computing power, as discussed
in Section VII. However, they may impose some side effects
on model performance. For example, when the search space
is purposely limited, the chance of finding novel architectures
becomes small. The one-short design paradigm cannot avoid
unreliable model ranking, which may lead to undesirable
design outcomes. Performance prediction approaches may
wrongly discard promising candidate models due to the inac-
curacy of predictive models, leading to undesirable results.
As such, making a good tradeoff between optimization cost
and model performance remains a challenge to be further
studied.

Effectiveness of Model Architecture Optimization Methods:
Recent studies revealed that many mainstream optimization
methods do not differ much from random search in their
performance of solving the model architecture optimization
problem [191]–[194]. On some tasks, random search even
outperforms the others. Therefore, it becomes necessary to
comprehensively and systematically evaluate and compare
existing model architecture optimization methods, aiming to
reveal its suitable and unsuitable application scenarios. This
endeavor is more important than keeping proposing new but
less understood methods.

More Challenging Tasks: In existing works, many DNN
models constructed by EAs are based on the datasets of small
size, e.g., MNIST and CIFAR-10, because of low computa-
tional costs. These constructed models may achieve nearly
perfect accuracy of 99% and 97% on MNIST and CIFAR-
10, respectively, due to the low difficulty of these tasks. As
a result, further improvement becomes more technically diffi-
cult but less practically useful. On the other hand, when the
same approach is applied to construct the DNN on large-scale
datasets, such as ImageNet and CIFAR-100, its computational
cost may become prohibitively high. Furthermore, there is
no guarantee that the effectiveness of the approach demon-
strated on the small-scale dataset can be retained on the
large-scale dataset. As a result, datasets of small size but
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high difficulty are demanded. Also, the performance sensi-
tivity of an approach to the size of its used dataset should be
investigated.

Model Architecture Learner: The effectiveness of model
architecture optimization depends upon the employed
optimization method, a.k.a. model architecture learner. To seek
the best performance of model architecture optimization, it
is an intuitive to think of finding the best model architecture
learner, e.g., finding the most suitable population size and max-
imum generation number for EA-based learners. However, as
discussed in Section VI, this task corresponds to a multilevel
optimization problem, which is computationally prohibitive,
much higher than model architecture optimization per se. This
big challenge calls for further investigations.

C. Trends

In this part, some popular research trends in the evolutionary
DNN construction are discussed.

Benchmark Platform for Model Comparison and
Development: Existing works usually involve compari-
son of different evolutionary DNN construction methods.
However, these compared methods often have distinct search
spaces and thus, their intrinsic capabilities for DNN construc-
tion are different, i.e., the best model obtained by one method
can never be found by another method. To address this issue,
a special benchmark for NAS, named Nas-bench-101, was
proposed in [195], where all possible DNN architectures with
respect to a prespecified search space for solving a specific
task, i.e., image classification on CIFAR-10, are fully trained
in advance. When methods are compared on this benchmark,
they can employ the same search space to guarantee fairness
of comparison. Furthermore, there is no need to invoke the
time-consuming parameter learning process during architec-
ture optimization because all candidate architectures have
been pretrained. Therefore, this kind of benchmarks removes
the computational bottleneck and allows the researchers to
be able to focus on designing and developing more effective
optimization methods. However, one benchmark merely
corresponds to a certain search space and a certain task,
which cannot cover problems at various difficulty levels.
To deal with this issue, more and more benchmarks of
different search spaces and tasks being solved have been
proposed, e.g., Nas-bench-201 [196], NASBench-301 [197],
TransNAS-Bench-101 [198], and HW-NASBench [199].

Design of Architecture Search Space: The intrinsic capa-
bility of an evolutionary DNN construction method heavily
depends on the search space, which is often manu-
ally specified. Recently, there emerges a growing interest
in automatically designing the search space of model
architecture [200]–[202]. On the one hand, a simpler search
space may facilitate the optimization process carried out
therein. For example, in [201], by fitting a linear function
between decision variables, the size of the search space is
reduced, leading to better search results. On the other hand, a
more powerful search space that contains more effective archi-
tectures therein may inherently boost the effectiveness of the
optimization process carried out therein. For example, in [202],
EAs are applied to design the search space automatically. In

this work, the search space itself is formulated as the candi-
date solution which is evolved by the EA, where the quality
of a specific search space is estimated via the average quality
of DNNs sampled from it. The best search space eventually
found by the EA is expected to allow any optimization method
performed therein to produce high-quality models.

Handling Insufficient Annotated Data: Evolutionary DNN
construction typically requires a fairly large amount of anno-
tated data to enable the optimization process, e.g., the training
set for model parameter optimization and the validation set
for model architecture optimization. However, in practice,
the amount of available annotated data is often limited. It
poses challenges to many existing works. Furthermore, the
unannotated data are usually available but not well utilized.
Recent years have seen many works on addressing these issues,
e.g., the metalearning [203], unsupervised [204], and self-
supervised [205] NAS techniques, which have demonstrated
very promising results and deserve further investigations.

IX. CONCLUSION

In this work, we formulated automated DNN construction
into a multilevel multiobjective optimization problem with
constraints, analyzed this problem to gain deep insights, and
provided a comprehensive review of EA-based approaches to
solving this problem, mainly from the aspects of model param-
eter optimization, model architecture optimization, and model
learner optimization. Furthermore, we discussed the pros and
cons of EA-based approaches in comparison with other com-
monly used approaches in different optimization scenarios as
well as two essential factors in optimization, i.e., compu-
tational speedup and optimization objectives. Moreover, we
summarized the applications, challenges, and trends in this
area of study. As discussed in Section I, this work is different
from existing survey works. It aims to help DNN researchers
to better understand why, where, and how to use EAs for
automated DNN construction and also help EA researchers
to better understand the task of automated DNN construction
so that they may focus more on EA-favored optimization sce-
narios to devise more effective techniques. Furthermore, we
summarized the publicly available datasets and code used in
relevant studies and provided them in the online supplementary
document.
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