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Multitask Shape Optimization Using a 3-D Point
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Thiago Rios , Member, IEEE, Bas van Stein, Thomas Bäck , Senior Member, IEEE,
Bernhard Sendhoff , Senior Member, IEEE, and Stefan Menzel

Abstract—The choice of design representations, as of search
operators, is central to the performance of evolutionary
optimization algorithms, in particular, for multitask problems.
The multitask approach pushes further the parallelization
aspect of these algorithms by solving simultaneously multiple
optimization tasks using a single population. During the search,
the operators implicitly transfer knowledge between solutions to
the offspring, taking advantage of potential synergies between
problems to drive the solutions to optimality. Nevertheless, in
order to operate on the individuals, the design space of each
task has to be mapped to a common search space, which is
challenging in engineering cases without clear semantic overlap
between parameters. Here, we apply a 3-D point cloud autoen-
coder to map the representations from the Cartesian to a unified
design representation: the latent space of the autoencoder. The
transfer of latent space features between design representations
allows the reconstruction of shapes with interpolated charac-
teristics and maintenance of common parts, which potentially
improves the performance of the designs in one or more tasks
during the optimization. Compared to traditional representations
for shape optimization, such as free-form deformation, the latent
representation enables more representative design modifications,
while keeping the baseline characteristics of the learned classes
of objects. We demonstrate the efficiency of our approach in
an optimization scenario where we minimize the aerodynamic
drag of two different car shapes with common underbodies for
cost-efficient vehicle platform design.

Index Terms—Automotive engineering, commonality,
evolutionary multitask optimization, point cloud autoencoder.

I. INTRODUCTION

CHALLENGING engineering optimization problems often
comprise computationally expensive objective functions,

for which the derivatives are mostly unavailable. Evolutionary
algorithms (EAs) tackle some of these challenges by searching

Manuscript received December 15, 2020; revised April 1, 2021; accepted
May 20, 2021. Date of publication June 3, 2021; date of current version
March 31, 2022. This work was supported by the European Union’s Horizon
2020 Research and Innovation Programme under Grant 766186 (ECOLE).
(Corresponding author: Thiago Rios.)

Thiago Rios, Bernhard Sendhoff, and Stefan Menzel are with
the Honda Research Institute Europe, 63073 Offenbach, Germany
(e-mail: thiago.rios@honda-ri.de; bernhard.sendhoff@honda-ri.de;
stefan.menzel@honda-ri.de).

Bas van Stein and Thomas Bäck are with the Department of
Computer Science, Leiden Institute of Advanced Computer Science,
2333 CA Leiden, The Netherlands (e-mail: b.van.stein@liacs.leidenuniv.nl;
t.h.w.baeck@liacs.leidenuniv.nl).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TEVC.2021.3086308.

Digital Object Identifier 10.1109/TEVC.2021.3086308

for solutions in a nature-inspired and parallelized way with-
out the need of mathematically formulated objective functions
or even derivatives. Thereby, they improve the feasibility of
design exploration in complex and multimodal optimization
landscapes.

Multifactorial EAs (MFEAs) exploit the intrinsic parallelism
of EAs further by tackling multiple tasks with a single popula-
tion of designs. The potential benefits of MFEAs are twofold.
First, the algorithms reduce the computational effort by evalu-
ating each solution only on one of the several tasks, which
yields a task-dependent fitness metric. Second, the multi-
task approach leverages synergies between tasks by randomly
assigning tasks in the population. As a result, solutions that
perform well on several tasks in different generations have
a selective advantage, and the information about these solu-
tions is transferred to other individuals. This is different from
multiobjective optimization, where every solution is evaluated
on all tasks in every generation [1]. However, in order to
perform different tasks sequentially and to allow information
transfer, it is important for MFEAs to represent the solutions
in a way that is suitable for all tasks in the set.

In principle, defining a unified representation for the designs
requires neither prior information on the similarity between
tasks nor a clear semantic overlap between the different
task-specific design spaces. Nevertheless, it is intuitive that
only specific matches between task-specific parameters might
favor the synergies between tasks. In particular for geomet-
ric design optimization in complex, real-world applications,
identifying the representations that enable task synergies
when mapped to the unified search space is challenging [2].
Hence, a more generic, yet systematic, approach to automati-
cally identify geometric design features and map task-specific
representations to a unified search space is currently not avail-
able. However, it has significant potential to improve the
performance of MFEAs.

Recently, geometric deep learning algorithms have been
applied to non-Euclidean (unstructured) data representations,
such as voxels, graphs, and 3-D point clouds [3]–[5], showing
impressive performance in shape classification, reconstruction,
and segmentation tasks. Particularly, for engineering shape
design, autoencoder networks can learn compact design rep-
resentations of computer-aided engineering (CAE) models by
compressing the data through a bottleneck layer. The obtained
low-dimensional feature space, the so-called latent represen-
tation, allows a designer to perform shape operations and
generate a diverse set of shapes, not necessarily observed in
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Fig. 1. Proposed workflow of a multitask optimization using the latent space
of an autoencoder as unified search space.

the training data [6]–[8]. Furthermore, since these autoencoder
networks typically learn exclusively from geometric data, the
latent representations are domain independent and only carry
the bias intrinsic to the geometric data generation. Therefore,
the design space learned by the autoencoder network unifies
the representation of a set of shapes, which might belong
to different semantic classes, and potentially enhances the
transfer of knowledge between problems in different domains.

In this article, we use and adapt the latent space repre-
sentation of CAE models learned with a 3-D point cloud
autoenoder to define a unified search space for MFEAs in
shape optimization problems (Fig. 1). Our approach com-
prises a preprocessing phase and the multitask optimization
searching in the latent space. In the preprocessing phase, the
autoencoder is trained on a data set of CAE models generated
randomly or taken from previous design optimizations. The
learned latent space is considered as basis for representing
the initial designs for each task. The engineer decides which
variables of each representation (in the latent space) should
be modified during the optimization based on the visualiza-
tion of the latent features, which reveals the mapping between
latent variables and geometric characteristics of the designs.
In the optimization step, the MFEA generates solutions in the
latent space, from which the subspace selected by the designer
is transferred to the representations of the initial design of
the corresponding tasks. Since the optimizer shuffles some
of the task assignments, it allows to share geometric char-
acteristics that evolved to solve particular tasks with other

individuals in the population. By mapping the search space
to the CAE representation, which was originally generated by
the designer, the trained decoder recovers the 3-D point clouds
from the representations in the latent space. The recovered
models are postprocessed and forwarded to downstream tasks,
such as computer simulations, to calculate the performance of
the designs.

The main contribution of our work is the learning-based
(autoencoder) and domain-independent unified search space
for multitask evolutionary optimization of 3-D shapes and
designs. Instead of using a superset of all task-specific rep-
resentations or choosing a task-agnostic representation (e.g.,
binary coding), we propose to learn the features that optimally
describe the available geometric data in order to increase the
synergy between optimization tasks. Furthermore, the trans-
fer of features enables the algorithm to exploit commonalities
between the designs, which can be used to enforce modular-
ity, e.g., to address design constraints from maintenance and
manufacturing. Finally, by learning the representation with the
autoencoder network, it is also possible to include “out of the
box” shapes, i.e., shapes that defy to a certain extent engineer-
ing standards like nature-inspired shapes often do. This opens
up search space opportunities for the MFEA.

The remainder of this article is organized as follows. First,
we review both the work related to multitask optimization
algorithms and to the architecture of the proposed 3-D point
cloud autoencoder in Section II. In Section III, we present
the experimental settings for our analyses, which include
the hyperparameters for training the 3-D point cloud autoen-
coder and the optimization algorithm. Here, we also verify
our implementation using benchmark functions and we com-
pare our results to the literature. In Section IV, we formulate
a vehicle aerodynamic optimization problem as a multitask
optimization with different car shapes. In our experiments, we
enabled the modification of the latent features that mapped the
underbody of the car shapes targeting optimal geometries with
similar underbody structure. Finally, we conclude this article
in Section V by summarizing our main findings and providing
an outlook on future research potentials.

II. RELATED WORK

In this section, we present the work related to multi-
task evolutionary optimization algorithms and geometric deep
learning.

A. Multitask Evolutionary Optimization

Multitask evolutionary optimization is a paradigm that aims
at solving simultaneously multiple self-contained optimization
problems. The concept was introduced in [1] as multifactorial
optimization (MFO), named after the assumption that each task
influences a particular factor in the evolution of the population.
Gupta et al. [1] also defined the following concepts for MFO,
on which they based a proposal of a genetic algorithm (GA)
to tackle multifactorial problems.

Definition 1: The factorial cost � i
j of an individual xi on a

task Tj corresponds to the value of the objective function fj
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evaluated at xi, penalized by the constraint violation terms, if
applicable.

Definition 2: The factorial rank ri
j of xi on a task Tj cor-

responds to the rank of � i
j with respect to the remainder

solutions of task Tj. In case multiple individuals achieve the
same factorial cost, the parity is determined by random tie
breaking.

Definition 3: The scalar fitness of xi is proportional to the
inverse of the best factorial rank of the individual, determined
by ϕi = (minj∈{1,...,K}{ri

j})−1, where K is the number of tasks.
Definition 4: The skill factor τi of an individual is the task,

among all considered in the MFO, on which the individual
achieves the highest rank. Hence, τi = argminj{ri

j}, where j ∈
{1, . . . , K}.

Based on the fitness and skill factor of the individuals,
the GA proposed in [1] generates the offspring population
using assortative mating through simulated binary crossover
(SBX) [9] and vertical cultural transmission. Both methods
enable knowledge transfer between individuals assigned to
different tasks, however, at different levels. When individu-
als with different skill factors are selected to generate the
offspring, a crossover operator in the assortative mating com-
bines these individuals with a given random mating probability
(rmp), defined by the user; otherwise, the individuals are
mutated and each offspring has a single parent. In the vertical
cultural transmission, the skill factor of one of two parents
(chosen randomly) is assigned to the offspring. Hence, if
the fittest individuals of each task carry information that can
improve the performance of the individuals in other tasks,
these mechanisms allow to propagate the respective genes
across the population and improve the convergence behavior.
Gupta et al. [1] evaluated the algorithm on a set of continu-
ous and discrete benchmark functions, and concluded that their
proposal improves the performance in two-task MFOs not only
by spreading the solutions on the landscape but also by evading
obstacles and local optima. These mechanisms for knowledge
transfer were also implemented in other MFEAs [10]–[12].

These techniques for knowledge transfer partially explore
the benefits of sharing information across optimization prob-
lems, since the information is propagated randomly and is
only based on a pair of individuals [13]. Thus, approaches
that reduce the randomness in the transfer of knowledge, as
in [14], and particle swarm optimization algorithms, which
have learning-based mechanisms for sharing information, yield
higher efficiency in knowledge transfer and achieve better
performance in MFOs [15]–[17]. Alternatively, learning from
historical optimization data, if possible, also improves the
quality of knowledge transfer in MFOs either by injection
of preexisting solutions, or by creating surrogate models or
by using structured knowledge learned from past optimization
data [18]–[20].

Regardless of the algorithm, the representation is central to
knowledge transfer for design optimization. Gupta et al. [1]
have proposed a unified random-key representation, where
each design variable is encoded as a number z ∈ [0, 1] with
upper and lower bounds of variation. Although the represen-
tation is simple and enables mathematical operations between
designs, the ordering of the variables still requires experience

of the user to detect a semantic overlap between the design
domains. This is often unintuitive in real-world problems.
Consequently, the performance of MFEAs can decrease if the
tasks in the MFO differ in dimensionality and if the optimal
designs are located in different regions of the design space.
Ding et al. [21] have overcome these challenges by proposing
a generalized MFEA (G-MFEA), which shifts and shuffles the
variables of the unified representation. While shifting the vari-
ables allows to place the optimal designs in similar regions
of the design space, which fosters the positive knowledge
transfer, the permutation of the variables allows the algorithm
to transfer the information between different combinations
of variables, which addresses the compatibility between the
features of each task. The approach in [21] focuses on the
interaction between design variables and not on deriving a
representation that leverages synergies between the design
spaces.

If data from previous optimizations are available, it is possi-
ble to learn a representation that is feasible for multiple tasks
and domains. Artificial neural networks (ANNs), in particular,
autoencoders, learn and compress the input data into a low-
dimensional representation that is suitable for optimization
tasks [6], [8], [22]. Feng et al. [23] proposed a one-layer
denoising autoencoder for learning the relation between the
design representations of heterogeneous problems from histor-
ical optimization data. Given a new optimization problem T,
after a predefined number of generations, the autoencoder was
trained to reconstruct the population of T from the population
of a past optimization problem S. If solutions in S had better
fitness than in T, the individuals were included into the popula-
tion of T by utilizing the mapping learned by the autoencoder.
The authors assessed their approach with benchmark functions
and a real-world optimization for polymer composites manu-
facturing with the result that the proposed algorithm reduced
the number of evaluations on average by 61%.

B. 3-D Point Cloud Autoencoders

The representation of 3-D data is not canonical and different
methods have been explored for geometric deep learning appli-
cations [4], [5]. 3-D point clouds are simpler and more efficient
for representing 3-D data than voxels and meshes, since point
clouds are sampled directly from CAE models requiring low
(if any) preprocessing effort and preserve enough geometric
details [24]. Furthermore, the architectures available for learn-
ing on point cloud data do not require topological similarities
between geometries, as for meshes [25], [26], which increase
the range of potential applications for geometric deep learning
in engineering scenarios [27].

Nevertheless, learning on 3-D point cloud data is challeng-
ing, as the representation is invariant against the permutation
of the points and lacks high-level information about the geom-
etry [28]. According to the experiments and taxonomy of the
survey in [24], point-based networks address the permutation
invariance by handling the input data with pointwise opera-
tors and by processing larger-scale features at deeper layers of
the network through global operators, e.g., max-pooling. The
autoencoders in this class comprise a bottleneck layer placed
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Fig. 2. Architecture of the 3-D point cloud autoencoder proposed in [7].

after the global operator to learn a compact representation
of the input data, the so-called latent vector. This layer also
divides the network into two parts: 1) an encoder, which maps
the input data to the latent features and 2) a decoder, which
recovers the Cartesian coordinates of the points to recon-
struct the point cloud shape. Among the point-based networks
available in [7] and [28]–[31], we based our approach on
the autoencoder proposed in [7] (Fig. 2), which achieved
high-quality results in shape generative tasks.

The architecture proposed in [7] comprises five 1-D con-
volutional layers, followed by a max-pooling operator that
extracts the latent representation, and three fully connected
layers to reconstruct the point clouds from the parameters
in the latent space. All the network layers, apart from the
max-pooling and output layers, were activated with rectified
linear units (ReLUs). To assess the performance of the network
as a shape-generative and classification model, the authors
trained the proposed autoencoder and derivations on different
shape classes of ShapeNetCore [32], considering two point-
permutation invariant loss functions: 1) the Chamfer distance
(CD) [33] and 2) Earth mover’s distance (EMD) [34]. Hence,
while the 1-D convolutions in the encoder ensure that latent
features are invariant against the ordering of the points, the
loss functions enable the autoencoder to learn the point clouds
with unknown point correspondence between different shapes.

For the present work, we opted for the architecture utilized
in [27], where the authors modified the activation functions of
the network proposed in [7] to bind the values of the latent and
output spaces. Furthermore, besides reporting similar shape
reconstruction capabilities (Fig. 3), the authors applied the
autoencoder as a shape-generative model in an evolutionary
target shape matching optimization framework in [22]. The
autoencoder achieved comparable performance to a represen-
tation based on a free-form deformation (FFD) lattice [35] for
target shapes, whose geometric features were included in the
training set of the autoencoder. Novel features (i.e., features
not included in the training set) were difficult to be repre-
sented by the autoencoder and to be found by the optimization
algorithm.

Albeit the extrapolation of knowledge is a known challenge
for machine learning algorithms, Rios et al. [27] proposed
a novel feature visualization technique to analyze the fea-
tures learned by the point cloud autoencoder. After training
the network on the car class of ShapeNetCore, the authors
projected the activations of the last convolutional layer onto
the corresponding input 3-D point clouds and showed that the

Fig. 3. Reconstruction of shapes obtained by interpolating the latent rep-
resentations of two car shapes (extreme left and right) obtained with the
autoencoder implemented in [22].

Fig. 4. Visualization of two network features of the last convolutional layer
of the autoencoder for four different shapes. Brighter colors indicate higher
activation values.

latent variables—or the maximum activation values of each
feature—indicate the occupancy of distinct regions in the input
space (Fig. 4). Furthermore, by reconstructing point clouds
after transferring variables between shape representations in
the latent space, the authors showed that the decoder changed
the distribution of points in space according to the peaks of
activations that were visualized on the point clouds. If the set
of latent variables after the transfer of features represented a
combination of occupied regions in the input space that was
frequently observed in the data set, the decoder could recon-
struct feasible 3-D shapes with mixed geometric characteristics
of the original shapes. Hence, the transfer of latent features
is a potential method to exploit common geometric charac-
teristics between a set of shapes. Furthermore, it can transfer
shape characteristics that potentially increase the fitness of the
designs in an MFO problem.

Finally, the surface reconstruction on 3-D point clouds
remains a challenge for embedding the autoencoder in auto-
mated optimization pipelines as a shape-generative model.
The available remeshing techniques require manual tuning
and postprocessing [36], which is prohibitive for automatic
optimization pipelines. Novel ANN-based methods still can
only be applied to topologically simple meshes and the com-
putational cost is also still high [37], [38]. Rios et al. [39]
proposed to morph optimal FFD-based prototypical meshes
to resemble the point clouds based on a search in the latent
space. The approach circumvents the limitations of mesh
topology, however, morphing the prototypes requires a second
optimization loop, which increases the optimization costs. The
shrink wrapping technique [40], [41] generates only water-
tight genus-01 meshes, but requires lower computational costs
and automation effort, and thus, we implemented the method
for generating meshes on the point clouds. Furthermore, as

1The genus of a shape is the maximum number of cuts along a nonin-
tersecting closing curve defined on the manifold. For example, a sphere has
genus-0 while a torus has genus-1.
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TABLE I
ARCHITECTURE OF OUR 3-D POINT CLOUD AUTOENCODER

in [6], the shrink wrapping organizes the point clouds accord-
ing to the allocation of the vertices in the mesh. This allows us
to modify the loss function for the decoder to learn the point
ordering, easing the mesh reconstruction.

III. METHODS

In this section, we present the architecture, training, and
application of the 3-D point cloud autoencoder utilized in
our experiments, as well as our implementation of the MFEA
adapted from [1]. We also present the experiments that veri-
fied our implementation using benchmark functions. Finally,
we perform a preliminary MFO with the proposed geometric
representation in order to assess the feasibility of our approach.

A. Learning on 3-D Point Cloud Data

The architecture of the 3-D point cloud autoencoder used in
the experiments follows the implementation in [27] (Table I).
The encoder comprises five 1-D convolutional layers, where
the first four layers are activated with ReLUs and the last
layer with a hyperbolic tangent function. Since 1-D convo-
lutions handle the points individually, the size of the point
cloud is preserved through the convolutional layers and each
activated output depends exclusively on the coordinates of the
corresponding input point. Following the convolutional lay-
ers, a max-pooling operator over the obtained features yields
a latent representation Z ∈ [−1, 1]L, where L is the number
of latent features. To recover the Cartesian coordinates of the
points from the latent space, the decoder comprises three fully
connected layers: the first two activated with ReLU and the
last with a sigmoid function.

We verified the architecture by comparing the reconstruction
losses with the ones published in [7]. The data set comprises
3-D point clouds with 2048 points sampled from the car class
of ShapeNetCore [32] and split into 90%/10% for training
and testing the networks, respectively. We defined L = 128
and optimized the network’s weights using the Adam opti-
mizer [42], which only requires the first-order gradients of
the loss function and adapts individual learning rates for the
parameters based on estimates of the moments of the gradient.
Hence, while being memory efficient, the algorithm handles
high-dimensional models with sparse gradients and nonsta-
tionary settings better than conventional algorithms such as
gradient descent [42]. We trained the networks with the learn-
ing rate η = 5.00E−04 and the momenta β1 = 0.9 and

Fig. 5. Intermediate meshes obtained with the implemented shrink wrapping
algorithm applied to a car shape sampled from the ShapeNetCore data set.
The target point cloud is represented with red spheres in the first row.

β2 = 0.99. Finally, we used the CD [33] between the input
and output point clouds Si, So ⊆ R as the loss function

CD =
∑

pi∈Si

min
po∈So
‖pi − po‖22 +

∑

po∈So

min
pi∈Si
‖pi − po‖22. (1)

Here, pi and po are points in the input and output point
clouds, respectively. For these settings and considering a con-
fidence interval of 95%, the obtained losses on the test data
were CD = (3.03±0.07)E−04 and CDR = (4.00±0.06)E−04
for our autoencoder and the architecture implemented in [7],
respectively. Hence, we considered our model verified with
performance comparable to the state of the art.

In the following experiments, we replace the random sam-
pling of point clouds with a uniform probability by a shrink
wrapping meshing algorithm based on [43]. Our motivation
was to simplify the surface reconstruction on the point clouds
generated by the autoencoder, so that the shapes could be
directly used in engineering simulations, e.g., computational
fluid dynamics (CFDs). Typically, a shrink wrapping algorithm
has three steps: 1) initial coarse mesh generation; 2) shrinking;
and 3) surface smoothing. We used as initial mesh a rectangu-
lar box, which was meshed with 6146 vertices and triangular
elements, with faces tangential to the extremes of the target
shape. In the shrinking phase, the vertices of the initial mesh
are iteratively displaced toward the nearest points in the target
shape. Hence, for the iteration t+ 1, a vertex pi of the initial
mesh is updated according to the following equation:

pt+1
i = pt

i + α
(
pn − pt

i

)
(2)

where pn is the nearest point in the shape of interest and α ∈
(0, 1) is the step size. In our implementation, we considered
α = 0.5 as recommended in [43].

In the last step, the meshes are smoothed for relaxing the
shrink-wrapped surface to obtain a more uniform distribu-
tion of points. For our experiments, we opted for a Laplacian
smoothing algorithm as proposed in [44]. We generated the
data set for our experiments sampling 3500 shapes from the
car class of ShapeNetCore, considering ten and six iterations,
which we determined experimentally, as termination criteria
(Fig. 5).

B. Visualization and Transfer of Autoencoder Features

We analyzed the features learned by the autoencoder in
the latent layer following the proposal in [27]. This tech-
nique allows us to select which latent features to optimize
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Fig. 6. Features learned in the last convolutional layer projected onto the
corresponding 3-D point cloud, sampled from the data set.

for each task, thereby constraining the regions to be modified
and fostering common design characteristics in the population.
To demonstrate the application of the visualization technique,
we trained the 3-D point cloud autoencoder with L = 10,
using the same algorithm and hyperparameters as presented
in Section III-A (data set sampled with the shrink wrapping
algorithm), to ease the analysis and comparison of latent fea-
tures. Since the point clouds were ordered, we changed the
loss function from CD to the mean-squared distance (MSD)
between corresponding points in the input and output point
clouds, defined as

MSD = 1

N

N∑

i=1

∥∥pi,i − po,i
∥∥2

2 (3)

where pi,i and po,i are the ith points of the input and out-
put point clouds, respectively. For completeness, the network
achieved CD = (1.39± 0.05)E−04, which is within the same
order of magnitude as in the previous analyses. Despite the
changes in the data set and loss function, the features obtained
at the last convolutional layer (Fig. 6) have similar patterns of
activations as the results reported in [27].

Based on the visualization of the features, we observed
that F4 and F9 represent the rearmost region of the car
shape, similar to a rear spoiler. By transferring these features
to the representation of a different shape, one generates a
crossover design, which includes the spoiler as a “module”
but preserves the remaining characteristics of the initial shape
(Fig. 7). Compared to alternative data-driven representations,
the proposed autoencoder represents and operates on more
localized regions of the shapes, which is a potential advantage
in highly nonlinear optimization problems [45].

Hence, in an MFO scenario, where the mixing of tasks has
resulted in overlapping sets of latent features, the offspring
generated from parents with different skill factors combine
geometric characteristics of designs that potentially excel in
different tasks. Additionally, common geometric characteris-
tics between the designs can be achieved without the explicit
definition of constraints.

C. Multifactorial Optimization Algorithm

For the optimization experiments, we adapted the MFEA
proposed in [1] to our framework (Algorithm 1).

We assumed that each task Tj, j = (1, . . . , K) has an ini-
tial design S0

j with a corresponding latent representation Z0
j

Fig. 7. Workflow for identifying and transferring latent features between
shape representations. In the mid column, plots of F4 and F7 and regions
with values above average are highlighted in red. On the right column, the
distance between points is with respect to the initial shape (top) and target
shape, before and after the transfer (bottom).

Algorithm 1 Pseudocode of the GA Used in the Multitask
Optimization Experiments
Require: Trained autoencoder (E , D), rmp, λ

1: INITIALIZATION
2: for Each task Tj, j = (1, . . . , K) do
3: Calculate the latent representation of the initial design

Sj using the trained encoder: Z0
j = E(Sj)

4: Mutate λ/K times the initial solution Z0
j and append to

the population P
5: Assign the skill factor of Z0

j to each offspring Zi: τi = j
6: end for
7: for Each individual in pi, i = (1, . . . , λ) do
8: Transfer the features in Z′j, from Zi to Z0

j , where j = τi,
generating a temporary individual Z0∗

j
9: Reconstruct the shape Si in the Cartesian space using

the trained decoder: Si = D(Z0∗
j )

10: Evalaute the design Si for the task τi and calculate �i

11: end for
12: ITERATIONS
13: while (termination criteria are not achieved) do
14: Calculate the factorial rank ri and the scalar fitness ϕi

of the individuals
15: Select individuals to generate the population in the next

iteration
16: Perform assortative mating and generate offspring C
17: Assign τi through vertical cultural transmission algo-

rithm
18: for Each individual in ci, i = (1, . . . , λ) do
19: Transfer the features in Z′j, from Zi to Z0

j , where
j = τi, generating a temporary individual Z0∗

j
20: Reconstruct the shape Si in the Cartesian space using

the trained decoder: Si = D(Z0∗
j )

21: Evalaute the design Si for the task τi and calculate
�i

22: end for
23: end while

obtained with a trained autoencoder AE(E,D). We also con-
sider that the designer selects a set of latent features Z′j ⊆ Z
for each task, which, during the optimization, is transferred
from the MFEA solutions to the initial representation Z0

j and
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Algorithm 2 Pseudo-Code of the Assortative Mating
Mechanism
Require: Parents (pa, pb), rmp

1: Generate a random number rand ∈ [0, 1]
2: if (τa = τb) or (rand < rmp) then
3: Parents pa and pb crossover, generating two offspring

individuals ca and cb

4: else
5: Parent pa is mutated, generating an offspring ca

6: Parent pb is mutated, generating an offspring cb

7: end if

Algorithm 3 Pseudocode of the Vertical Cultural Transmission
Mechanism
Require: Offspring ci

if ci has two parents then
Generate a random number rand ∈ [0, 1]
if (rand < 0.5) then

ci imitates pa: τi ← τa

else
ci imitates pb: τi ← τb

end if
else

ci imitates its single parent
end if

forwarded to the decoder D to recover the 3-D representations
in the Cartesian space.

In the initialization step, we modified the algorithm to gen-
erate the population P with individuals Zi, i = (1, λ) by
mutating λ/K times each initial solution Z0

j . For each off-
spring Zi, the algorithm assigns τi = j, where j is the task of
the design Z0

j that originated the individual Zi. Our assump-
tion is that if each solution Sj was designed to solve the task
Tj, the mutations of Sj potentially solve Tj better than the other
tasks. Hence, we can reduce the computational effort in the
initial generation by evaluating each individual for a single
task. The algorithms for assortative mating (Algorithm 2) and
vertical cultural transmission (Algorithm 3) were maintained
as proposed in [1].

We verified our implementation using four benchmark func-
tions: 1) Sphere; 2) Rastrigin; 3) Ackley; and 4) Rosenbrock
in different combinations. We considered the domain xi ∈
[−50, 50]20, where the features were linearly mapped to
the unified search space [−1, 1]20, emulating the operations
performed by the autoencoder.

Regarding the hyperparameters, we set the population size
as λ = 100, the maximum number of generations to 300,
and the spread factor of the SBX algorithm to βSBX =
10. Also, we optimized the functions considering rmp =
(0.0, 0.3, 0.5, 0.7, 1.0) to assess the effect of increasing the
variety introduced by the algorithm into the population through
assortative mating. For each case, we performed the opti-
mizations for 30 different sets of initial solutions. We also
optimized the functions individually, considering the same
conditions and with a GA initialized with the same hyper-
parameters.

Fig. 8. Factorial cost of the fittest individuals per generation obtained for
different function combinations and baseline experiment for the Rastrigin
function.

Fig. 9. Factorial cost of the fittest individuals per generation organized
according to the rmp values of each experiment using the Rastrigin function.

By analyzing the factorial cost �(x) of the sets containing
the fittest individuals in each generation, we observed that for
different function combinations (Fig. 8), the MFEA acceler-
ated the convergence and improved the quality of the solutions.
The largest improvement was achieved for the Rastrigin func-
tion, from (2.37E−01±7.98E−03) to (3.80E−02±3.02E−03)

in the last generation (95% confidence interval), which is simi-
lar to the results reported in [1]. Also, the variance of the facto-
rial costs obtained for the Rosenbrock function increased with
the MFEA approach, varying from (3.34E−05 ± 6.98E−06)

for the baseline experiments to (4.92E−05 ± 1.14E−05) for
the MFEA. This has also been observed in [21], where the
authors claim that the MFEA performance decreases when
the different tasks have solutions in very different locations of
the quality landscape.

In a second verification, we analyzed the same results with
respect to the rmp values (Fig. 9). We observed that the cases
with intermediate rmp values converged faster and achieved
lower values of �(x). In line with the discussion in [1], rmp=0
prohibited knowledge transfer between individuals; hence, dur-
ing the optimization, the population lost diversity and the
optimizer had more difficulty to overcome local minima. When
rmp = 1, the algorithm combined pairs of shapes regardless
of their cultural traits (τi), which excessively increased the
diversity of the population and slowed down the optimization.



RIOS et al.: MULTITASK SHAPE OPTIMIZATION USING 3-D POINT CLOUD AUTOENCODER AS UNIFIED REPRESENTATION 213

Fig. 10. Visualization of the maximum activations for the selected features
for each shape and regions with highest combined activations highlighted in
red.

In summary, the performance as well as the properties of
the algorithm are what we expected from the literature. To fur-
ther verify the performance also for the design optimization
domain, we run a low-cost shape optimization where the
representation is learned with the 3-D point cloud autoencoder.

D. Low-Cost Shape Optimization Experiment

In this section, we test the MFEA framework for shape
design optimization problems, i.e., the optimization of two
car shapes: 1) a truck (S1) and 2) a sedan (S2), for which we
minimize the volume. We defined the factorial cost as follows:

�(Zi) = V(Si)+ ρMSD
(
Si, Si,N

)
(4)

where V(Si) is the volume of the shape Si. Shape Si,N is the
shape in the data set with the closest representation in the latent
space to the representation of Si, and ρ is the penalty fac-
tor. The penalty term in �(Zi) drives the optimizer to regions
with higher density of learned shapes, which avoids the recon-
struction of noisy point clouds and shapes without geometric
characteristics of cars. Based on preliminary experiments, we
defined ρ = 0.75.

For optimizing the shapes, we selected the set of features
Z′1 = ((1, 6, 7), 2, 5, 8) and Z′2 = ((1, 6, 7), 0, 2, 3, 4, 5, 8, 9),
where the first three map to regions in the underbody of the
car shapes (Fig. 10). Our motivation was that while the sedan
shape allows more freedom in the design of the shape, in the
optimization of the truck, we constrained the modifications
to the region of the passenger cabin to preserve volume for
transporting material.

We configured the MFEA to optimize the shapes with
population size λ = 15 and for at most 30 generations
to set a computational budget that is realistic for scenarios
using more complex simulations as described in the next sec-
tion. We defined the rmp as 0.3, which achieved the best
compromise between convergence speed and fitness of the
optimized individuals in the previous experiments. Finally, we
set ρ = 7.5 and we performed the optimization for 30 different
initializations for statistical analysis.

In our first analysis, we compared the convergence behav-
ior with respect to the baseline experiments (Fig. 11). We
observed that the MFEA accelerated the optimization of
the truck, improving the normalized volume of the optimal
shape from (8.46 ± 0.02)E−1 to (4.96 ± 0.06)E−1. In the
optimization of the sedan, the results with the MFEA were
slightly worse, yet with volumes within 95% confidence

Fig. 11. Fitness of the best individuals per generation.

interval of the baseline results: (3.11 ± 0.54)E−2 achieved
with the baseline and (4.90± 0.93)E−2 with the MFEA.

In order to evaluate the results, we analyzed how the latent
features evolved during the optimizations (Fig. 12). In a first
step, we calculated the Euclidean distance in the latent space
between the fittest individuals assigned to S1 and S2 at each
generation. We observed that the distance decreases over the
generations in the MFEA framework, which is in line with the
working principle of the MFEA and feature transfer results.
In a second step, we projected the representations of the
optimal designs into a 2-D space using uniform manifold
approximation and projection for dimensionality reduction
(UMAP) [46], [47]. We observed that the MFEA displaced the
truck designs toward the sedan designs, which lay in a sim-
ilar region in both optimizations with MFEA and GA. Since
the sedan had an initial volume smaller than the truck, we
concluded that by assigning sedan designs to the task of the
truck, the algorithm generated offspring of the truck design
with characteristics closer to the sedan design, thus acceler-
ating the optimization. The opposite condition, however, had
a negative impact on the sedan task, and thus, we could not
observe any improvement in the optimization of the sedan.

In a further analysis, we reconstructed the mean optimal
shapes obtained with each algorithm. The MFEA yielded
shapes with similar windshield geometry, which was a region
covered by both sets of latent features selected for the
optimization of the shapes. Furthermore, we observed that the
mean truck shape yielded by the MFEA was smaller than by
the GA, and both algorithms resulted in similar sedan shapes,
which is in line with the numerical results.

In summary, we conclude that the representation learned by
the proposed autoencoder is suitable as a unified representa-
tion for MFO problems. The autoencoder learned transferrable
geometric features, which combined with the knowledge trans-
fer mechanisms of the MFEA yielded optimized shapes with
shared geometric features. Having verified the algorithm on
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Fig. 12. Euclidean distance between the fittest designs of each task obtained
at each generation (top), 2-D projection of the data set and optimal designs
for the optimizations with GA and MFEA (bottom left), and reconstruction
of the mean optimal shapes (bottom right).

Fig. 13. Visualization of the features selected for the modifying the shapes
during the optimization. The points with combined activation higher than the
average of the point cloud were highlighted in red.

benchmark tests and a simplified design optimization task, we
test its performance on a practical and more realistic vehicle
shape aerodynamic optimization problem in the next section.

IV. MULTITASK VEHICLE AERODYNAMIC DRAG

OPTIMIZATION

The optimization of a vehicle shape to reduce the aero-
dynamic drag is a common problem in vehicle design. At
the same time, to increase efficiency in manufacturing and
maintenance, it is beneficial if vehicles share platforms and
use common modules. Therefore, in this section, we apply
the proposed MFEA method to a multitask vehicle shape
optimization problem where we target both, optimal shapes
with regard to drag minimization and sharing of a similar
underbody structure.

A. Experimental Settings

For this set of experiments, we retrained the 3-D point
cloud autoencoder on the same data set with L = 20 and
the settings discussed in Section III-A to refine the regions
learned by the autoencoder in the latent space. After train-
ing, the mean CD calculated on the test data was CD =
(1.15 ± 0.04)E−04, which is comparable to the quality of
the previous configuration.

Fig. 14. Normalized drag force of the fittest designs of each generation for
all optimization scenarios.

Fig. 15. Visualization of fittest designs embedded in a 2-D space from the
latent features for comparing the regions in the latent space occupied by the
designs in different optimization scenarios.

We selected three vehicle shapes for the multitask
optimization: 1) a pick-up truck (S1); 2) a sedan (S2); and
3) a hatchback (S3). Our motivation was that the shapes have
fundamentally different styles, and thus, we could observe in
the optimized shapes how the geometric features were merged
to reduce the aerodynamic drag. Based on the visualization of
the latent features, we selected the sets of features Z′1, Z′2,
and Z′3 for modifying the shapes S1, S2, and S3 during the
optimization, respectively, each having five features in com-
mon that represent the region in the underbody of the car
shapes (Fig. 13).

We evaluated the performance of the designs with CFD sim-
ulations using OpenFOAM.2 The point clouds generated by

2https://www.openfoam.com/
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Fig. 16. Analysis of the similarity between optimal shapes obtained in different scenarios. The colormap indicates the distance between the nearest points
in the compared shapes.

the autoencoder were converted to polygonal meshes using
the shrink wrapping algorithm and embedded in a large vir-
tual fluid domain for the simulation. We used the boundary
conditions for a vehicle driving on a free road at 110 km/h
and considered symmetry of the shapes with respect to the
xy-plane to reduce the computational effort. We defined the
factorial cost analogously to the low-cost shape optimization
problem. We replaced the shape volume in (4) by the aero-
dynamic drag force, calculated by the CFD simulation. The
penalty factor was chosen to be ρ = 75, since the aerody-
namic drag values are two orders of magnitude greater than
the volume of the shapes obtained in the previous optimization,
and thus, the effects of the penalization would be similar.

Since the computational effort is considerably higher than
required for computing the volume of the shapes, we reduced
the population size to λ = 15 and the maximum number of
generations to 20. We maintained rmp = 0.3, however, we
reduced the SBX spread factor to βSBX = 7.5 in order to avoid
abrupt feature modifications, which could yield low-quality
point cloud reconstructions. We implemented the workflow on
a cluster consisting of machines with 2 Westmere 4 Core Xeon
E5620 clocked at 2.4 GHz, which allowed us to solve each
CFD simulation in parallel with 16 processors each. With this
set up, each generation took up to 75 min and a complete
optimization took on average 23h.

Finally, we optimized the shapes considering the follow-
ing scenarios: the pairs (S1, S2), (S2, S3), and (S1, S3) and
the three shapes simultaneously (S1, S2, S3). For assessing
the performance of the optimization, we also optimized the
shapes individually utilizing a GA with identical settings.
Furthermore, we performed a single optimization for each
scenario due to computational budget constraints.

B. Results and Discussion

First, we verified the convergence behavior (Fig. 14), where
we observed that in most of the cases, the MFEA approach
improved the fitness of the individuals. The largest improve-
ments with respect to the baseline optimization were achieved
in the pairwise optimizations, where the drag force of the
shapes (S1-S2) and (S2-S3) was reduced by (24.11, 38.95)%
and (2.41, 22.39)%, respectively. In the optimization with
three shapes, apart from S1, none of the shapes improved in
performance with respect to the baseline. A potential justifi-
cation for this behavior is that shapes S1 and S3 have similar
performance, yet considerably worse than S2, which has a
smaller projected frontal area and thus, better aerodynamic

performance [48]. Hence, the features that potentially drive the
population to better fitness were stored in the minority of the
population and the chances of negative transfer of knowledge
was higher than in the pairwise optimizations. This conclusion
is also in line with the optimization results of the pair (S1-
S3), which yielded a slower convergence behavior and optimal
designs with (−1.74,+0.23)% of variation with respect to the
baseline optimizations.

In order to analyze the evolution of the designs, we embed-
ded the latent space into a 2-D representation using UMAP and
visualized the fittest individuals for different optimization sce-
narios (Fig. 15). Similar to the optimization with the low-cost
geometric function, the MFEA drove the designs toward the
fittest solution among the tasks, which in these scenarios were
the shapes close to the sedan design. When the difference in
performance was not significant (scenario S1-S3), the designs
remained in similar regions in the latent space. When mea-
suring the Euclidean distances in the latent space between the
optimal designs, the largest differences to the baseline cases
were observed for the scenario S1-S2-S3, where the distances
of the optimal pairs [(S1,S2), (S2,S3), (S1,S3)] changed from
(1.74, 1.78 0.58) to (1.28, 1.09, 0.58).

We confirmed our interpretations of the results by recon-
structing and measuring the similarity between the optimal
shapes (Fig. 16). Although the inital underbody structures were
similar, it was particularly clear in comparisons using S2 and
S3 that the transfer of features caused by the MFEA increased
the similarity between the regions in the bottom and rear of
the car shapes, adding the typical shape of the sedan to the
hatchback. Similarly, the optimizer considerably changed the
front of the pick-up toward the sedan geometry. The region
in the back of the pick-up, which was not covered by the set
Z′1, remained nearly identical to the initial shape. Therefore,
we conclude that the representation learned in the latent space
of the autoencoder can be used as a unified design represen-
tation for engineering multitask shape optimization problems.
The algorithm improved the performance compared to single-
task optimization with similar parameterization. Furthermore,
the transfer of features within the MFO fosters commonalities
between the shapes, which can be beneficial for manufacturing
and maintenance efficiency.

V. CONCLUSION

Multitask evolutionary optimization algorithms solve simul-
taneously multiple self-contained tasks. However, mapping the
different task design spaces to a unified representation is a
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key challenge for design exploration. In shape optimization
problems, finding a unified, yet practical representation is
challenging. In this article, we proposed an MFEA frame-
work utilizing the latent space learned by a 3-D point cloud
autoencoder to balance the conditions of universality and
practicability. Since the autoencoder learns exclusively on
geometric data, the network yields a domain-independent rep-
resentation and maps the designs directly from the unified
space to the CAE representation in the Cartesian space.

In a simplified car shape optimization problem, we showed
that the transfer of latent features between representations
yields designs with interpolated characteristics, which in an
MFO allows to increase the diversity in the set of individuals
with the same skill factor and to foster common geomet-
ric characteristics between designs. Finally, we applied the
MFEA for shape optimization to a real-world inspired multi-
task vehicle optimization problem, where we minimized the
aerodynamic drag of three car shapes in four MFO sce-
narios. Additionally, our framework enables the transfer of
latent features that represented the underbody of the car
shapes, such that the optimal designs would share a nearly
identical platform, a characteristic that is known to poten-
tially increase manufacturing and maintenance efficiency. Our
proposed framework outperformed single-task optimizations in
both aerodynamic drag minimization and in platform sharing.
In our future research, we aim at improving the knowledge
transfer and exploration capabilities of the autoencoder by,
e.g., including domain adaptation techniques [49] to the MFEA
framework.

REFERENCES

[1] A. Gupta, Y.-S. Ong, and L. Feng, “Multifactorial evolution: Toward
evolutionary multitasking,” IEEE Trans. Evol. Comput., vol. 20, no. 3,
pp. 343–357, Jun. 2016.

[2] S. N. Skinner and H. Zare-Behtash, “State-of-the-art in aerodynamic
shape optimisation methods,” Appl. Soft Comput., vol. 62, pp. 933–962,
Jan. 2018.

[3] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst,
“Geometric deep learning: Going beyond Euclidean data,” IEEE Signal
Proces. Mag., vol. 34, no. 4, pp. 18–42, Jul. 2017.

[4] A. Ioannidou, E. Chatzilari, S. Nikolopoulos, and I. Kompatsiaris, “Deep
learning advances in computer vision with 3D data,” ACM Comput.
Surveys, vol. 50, no. 2, pp. 1–38, 2017.

[5] T. Friedrich, N. Aulig, and S. Menzel, “On the potential and challenges
of neural style transfer for three-dimensional shape data,” in Proc. Int.
Conf. Eng. Optim., 2019, pp. 581–592.

[6] N. Umetani, “Exploring generative 3D shapes using autoencoder
networks,” in Proc. SIGGRAPH Asia Techn. Briefs, 2017, pp. 1–4.

[7] P. Achlioptas, O. Diamanti, I. Mitliagkas, and L. Guibas, “Learning
representations and generative models for 3D point clouds,” in Proc.
35th Int. Conf. Mach. Learn. (ICML), vol. 80, 2018, pp. 40–49.

[8] S. Saha, S. Menzel, L. L. Minku, X. Yao, B. Sendhoff, and P. Wollstadt,
“Quantifying the generative capabilities of variational autoencoders for
3D car point clouds,” in Proc. IEEE Symp. Comput. Intell. (SSCI),
Canberra, ACT, Australia, 2020, pp. 1469–1477.

[9] K. Deb and R. B. Agrawal, “Simulated binary crossover for continuous
search space,” Complex Syst., vol. 9, no. 2, pp. 1–34, 1994.
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