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Growing and Evolving 3D Prints
Jon McCormack and Camilo Cruz Gambardella

Abstract—Design – especially of physical objects – can be
understood as creative acts solving practical problems. In this
paper we describe a biologically-inspired developmental model
as the basis of a generative form-finding system. Using local
interactions between cells in a two-dimensional environment, then
capturing the state of the system at every time step, complex
three-dimensional (3D) forms can be generated by the system. Un-
like previous systems, our method is capable of directly producing
3D printable objects, eliminating intermediate transformations
and manual manipulation often necessary to ensure the 3D form
is printable. We devise fitness measures for optimising 3D print-
ability and aesthetic complexity and use a Covariance Matrix
Adaptation Evolutionary Strategies algorithm (CMA-ES) to find
3D forms that are both aesthetically interesting and physically
printable using fused deposition modelling printing techniques.
We investigate the system’s capabilities by evolving and 3D
printing objects at different levels of structural consistency, and
assess the quality of the fitness measures presented to explore
the design space of our generative system. We find that by
evolving first for aesthetic complexity, then evolving for structural
consistency until the form is ‘just printable’, gives the best results.

Index Terms—Generative Art, 3D Printing, Aesthetics, Evolu-
tionary Strategies

I. INTRODUCTION

Architects and Designers sit at the intersection of engineer-
ing and art, because designed artefacts provide both practical
solutions to everyday problems and have an aesthetic impact
that shapes the environment in which they operate [1], [2].
Often these two aspects of design (addressing practical prob-
lems and making a cultural impact) are in conflict, typically
due to combining unconnected approaches, such as formal
optimisation and purely intuitive craft. This leads to addressing
the practical and aesthetic considerations separately, often
resulting in poor or disjointed design solutions.

One family of methods that have been in use in the arts
since Aristotle are generative systems: techniques that use
the decomposition, analysis and reorganisation of existing
artefacts to give way to new ones [3]. Amongst them, self-
organising simulation methods, such as cellular automata [4],
developmental models [5], agent-based models [6], [7] and
evolutionary methods [8], [9] have been adopted as a means to
explore creative, aesthetically driven spaces in contemporary
architecture, art and design.

These systems have proven particularly useful in developing
complex, aesthetically novel forms [10]–[12], but with a
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priority on the aesthetic aspects of the object, leaving the
practical aspects to be solved through traditional and largely
human-driven design optimisations. Evolutionary optimisation
methods are often used to solve practical design problems,
but usually come into the process after the aesthetic design
decisions have been made. Typically they address quantifiable
problems, such as the distribution of structural elements [13]
or optimisation of energy consumption [14].

Hence, an exploration into integrated systems capable of
reconciling aesthetic and practical design goals can contribute
significantly to advancing computational design practice.

We present the design of a generative system that incor-
porates methods to simultaneously evaluate both pragmatic
and creative value, seeking to balance the tension between
aesthetics (visual complexity) and practical goals (fabrication).
Our aim is to bring the digital and material qualities of design
into closer harmony, allowing the designer to explore the
aesthetic possibilities of complex generative systems and the
material possibilities of design through digital fabrication.

Our system has its origins in the layering process of additive
manufacturing: synthesising physical objects directly through
the use of 3D printing technologies [15]. Since toolpath
manipulation is the basis of form generation in our system, we
bypass the traditional problem of transforming 3D digital mesh
models into 3D printer toolpath operations using techniques
such as slicing and scaffolding [16] – often a challenging
process that can result in incomplete or failed prints [15] and
which omit certain creative possibilities for printing, such as
control over a single layer of filament deposition. The main
limitation of this approach relates to printability; something we
address through a formalised fitness measure. We then deploy
evolutionary methods that combine practical and aesthetic
fitness measures to allow an efficient exploration of the design
space by automatically rejecting designs that are infeasible to
fabricate or aesthetically poor.

We adopt a “generate and explore” methodology, similar to
the one designers intuitively use. Motivated by the inherent
design complexity of biological systems, and the need to
directly control the 3D printer toolpath, our system employs
a combination of physics and biology simulation to generate
complex 3D forms, then a CMA-ES algorithm for exploration
of the feasible design space. We introduce metrics to evaluate
aesthetic complexity and structural consistency, allowing the
designer to explore the tension between design possibility and
fabrication integrity.

The remainder of this paper is structured as follows: first,
an overview of work related to generative and optimisation
systems in design is provided (Section II). Next, the two
main components of the proposed system – the generative
developmental system (III) and the form-finding exploratory
system (IV) – are outlined. Section V describes the experi-
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mental setup in detail, and quantitative results are presented,
alongside the 3D prints of the grown physical objects evolved
by the system. Section VI reflects on the results produced by
our method, along with suggestions for future development
before concluding (Section VII).

II. RELATED WORK

A. Generative Systems in Art and Design

Generative art has a history that predates computers by
thousands of years [17] and generative techniques have been
well studied as a framework for art and design [18]–[23]. We
limit our examination to computational examples of 3D form
generation using biologically-inspired techniques that directly
relate to the research presented here.

The irruption of computers into design practice and research
has lead to a multitude of generative approaches to design,
ranging from form exploration to structural optimisation. Early
adopters looked at natural processes [24], patterns of organi-
sation and development [25], [26] or formal design grammars
based on shape [27]. More recent forays borrow from advances
in complex systems, artificial life and agent-based models [19].

A notable example of this kind of approach is Accretor, a
project in which Dutch artists Driessens and Verstappen used
a semi-totalistic 3D cellular automaton to generate a range
of diverse form configurations, from regular and ‘boring’,
to highly disordered [28]. Computationally generated forms
were human-selected for 3D printing, searching for what the
authors refer to as in between objects. The criteria used for
categorisation of the outcomes was not disclosed, but was
likely based on the artists’ aesthetic preferences.

Similarly, digital artist Andy Lomas’ work Cellular Forms
explores the morphogenetic capabilities of a generative system
based on cellular reproduction [?], [29]. The process begins
with a single spherical cell that progressively subdivides
based on environmental conditions. Lomas used principles
analogous to photosynthesis to generate sophisticated and
diverse biomorphic 3D forms, a number of which were 3D
printed. Initially the materialisation was achieved “manually”
through standard 3D printing slicing and scaffolding, but in
more recent work Lomas has used layer overhang metrics to
automate determination of successful fabrication [30].

B. Evolutionary Methods

Many generative artists and designers (see, e.g. [8], [9],
[31]–[33]) employ evolutionary methods as a search or op-
timisation strategy, often a variant of the Interactive Genetic
Algorithm (IGA) [34]. The IGA is popular for creative appli-
cations because it substitutes formalised fitness measures with
human judgement. It circumvents the difficulty of developing
generalised fitness measures for “subjective” criteria, such as
personal aesthetic judgement or taste, allowing users to move
through a design space, hopefully guiding the evolutionary
search towards specific aesthetic results. However, problems
with the IGA are well known: human evaluation creates a
bottleneck; subjective comparison is only possible for a small
number of individuals (i.e. ă 20); human users become
fatigued after only a few generations; evolving to specific

targets is often difficult or impossible. There have been many
attempts to overcome these problems, for example distributed
evolution with multiple users [35], but distributed techniques
are obliviously incompatible with individual designers or
personal aesthetic preferences. In the basic IGA the role of
the human creative is the equivalent of a “pigeon breeder”,
where the only valid action is selecting from a small set of
individuals. This may be why the method has been more suited
to use by non-experts than design professionals1 [34], [36].

Another way to address problems with the IGA is to
formalise or automate the aesthetic evaluation, freeing the
human user from endless comparative evaluations. Research
communities from both computational aesthetics (CA) and
psychology have proposed numerous theories and measures
of aesthetics [37]. However, a computable, universal aesthetic
measure remains an unsolved open problem [38]. One of
the main barriers is the psychological nature of aesthetic
judgement and experience. Leder et al.’s model of aesthetic
appreciation and judgement describes information-processing
relationships between various components that integrate into
an aesthetic experience and lead to an aesthetic judgement
and aesthetic emotion [39], [40]. The model includes per-
ceptual aesthetic properties, such as symmetry, complexity,
contrast, and grouping, but also social, cognitive, contextual
and emotion components that all contribute to forming an
aesthetic judgement. A key element of Leader’s revised model
[40], is that it recognises the influence of a person’s affec-
tive state on many evaluative components and that aesthetic
judgement and aesthetic emotion co-direct each other. Hence, a
comprehensive computational aesthetic measure must consider
the interaction between cognition and affect, along with prior
knowledge and viewing context of the human observer, making
generalisation extremely difficult.

Neural networks have long been proposed as a way to
automate aesthetic judgement in creative evolutionary systems
[41]. Recent approaches rely on advances in deep learning
to learn individual artistic or stylistic preferences [42], [43].
While these methods have had some success, they require
a large training corpus that has user-defined rankings or
categorisations, which is typically a manual, time-intensive
process.

An important difference in the work introduced here is
that we formalise both aesthetic and practical measures to
assist in design generation, but we do not remove the human
designer completely from the design process. We automate
fitness evaluation but allow the designer to dynamically change
the weighting between aesthetics and practicality to explore
the design space.

C. Generative 3D printing

Researchers have explored applications of generative and
evolutionary systems to solve practical problems related to
3D printing. In [44], the authors use a combination of gen-
erative and evolutionary techniques to produce mechanically

1Some commercial design and music software products and have integrated
IGAs or similar evolutionary methods into design workflows, but in general
the technique has not been adopted professionally.
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functional objects that can be manufactured using a consumer-
grade 3D printer. Similarly, [45] use decomposition of dig-
ital 3D models and evolutionary approaches (CMA-ES and
MOEA) to optimise the manufacturing process by reducing
the use of waste material. Techniques developed in [46]
introduced the use of space-filling curves for 3D printing, as
an efficient alternative to infilling. The method defines a single
line toolpath, minimising material usage. These techniques are
aimed at printing optimisation for pre-existing 3D designs,
the difference in our approach is that we integrate printing
optimisation and aesthetic design as a single process, directly
outputting toolpath instructions (as opposed to geometry) to
the 3D printer.

As discussed in the previous section, recent work by Lo-
mas examined automated methods to eliminate overhangs in
morphogenetic 3D printed forms [30]. He developed a set of
constraints that were built into the form generation system to
prevent growth that would likely result in an unprintable form.

Our method is concerned with maintaining toolpath profile
generation within a usable range via a computable fitness
measure (Figure 1 shows an example). We build a 3D form
through accreted vertical layering, where the major concern
is the physical change between consecutive layers: without
sufficient material in any preceding layer to support the next,
the print will likely fail. This requirement often sits in tension
with our aesthetic requirements that are based on variations
in complexity of the final form. We allow the designer an
exploratory trade-off between design aesthetics and risk of the
form being unprintable.

So while the work we present in the following sections
shares principles with the projects mentioned in this section, it
advances these ideas by combining a generative system with an
evolutionary one to explore a design space where practical and
aesthetic characteristics are considered as equally valuable,
and viable designs emerge through a process where practical
and aesthetic possibilities are co-developed.

III. FORM GENERATION MODEL

Our model consists of two main components: (i) a gener-
ative developmental system for form generation (described in
this section), and (ii) an exploratory evolutionary system for
form finding (described in Section IV). The source code imple-
mentation of our model is available on-line [?]. The generative
developmental system uses a physically-based, biologically-
inspired model that simulates the development of an organic
form via morphogenesis. The model has a series of encoded
parameters (the genotype, see Section III-B) that affect the
form’s developmental process and hence, the resultant form.2

The exploratory system allows efficient searching through the
design space of this developmental system. Through the use
of a weighted, multi-objective fitness function, the exploratory
system aims to search for forms that are both aesthetically
interesting and directly printable using FDM 3D printing.

Our generative developmental system is based on Differ-
ential Growth (DG) in two dimensions [47]. The motivations

2Other factors, such as the simulated developmental environment also play
an important role, we discuss this further in Sections III-A and III-F.

Fig. 1. A 3D printed form grown using the system described in this paper

for using this system include its ability to coherently generate
complex forms through development and the 2D constraint
allows us to conveniently layer each developmental cycle
directly as a 3D print layer. We use the metaphor of cells
connected in a sequence to form an “organism”. Cells seek
to acquire energy from the environment in order to grow
and reproduce. Organisms may also divide into two or more
separate entities as part of their development. We capture this
developmental process over time and translate it directly to 3D
printer toolpath instructions, building a finished print a series
of stacked layers (Figure 1), without recourse to intermediate
representations or the need for extraneous scaffolding or
support structures often needed in 3D printing.

Biology serves as the inspiration in the form generation
process, because nature is a rich source of design ideas,
capable of generative complexity and functional diversity [48].
However, it is important to emphasise that the model is not
meant to inform biology or be physically or biologically
faithful – biology is the inspiration but design is the goal.

A. Developmental System

Development in our system occurs in discrete, fixed
timesteps (t0, t1, . . . tn, with ti`1 ´ ti “ ∆t) in a physi-
cally simulated two-dimensional, viscous medium of uniform
density (the environment). Capturing the system state at each
timestep is an important part of the form generation process
(detailed in Section III-H).

We define an organism (O) as a series of connected cells
C1 . . . Cn. A cell, Ci “ pv,m, εq P R2ˆR`ˆR`, where v P R2

is the cell’s vertex (location), m P R` the cell’s mass and
ε P R` the cell’s energy. Each cell is connected in sequence
by edges, e1 . . . en, where ei “ xvi, vi`1y for 1 ď i ă n and
en “ xvn, v1y, ensuring closed loops. Edges use a simulated
tension and compression spring to help maintain separation of
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their connected cells, and also to prevent them from moving
too far apart. Physical attributes of both the cells and edges
determine the growth and change in shape over time.3 The
full set of organisms generated over time ă t0 . . . tn ą is
called a colony, Yn. The colony is the unit of selection in the
evolutionary component of our system.

B. Genetic Parameters

A colony shares a genome, G P R5 with the following
alleles:
‚ Metabolic rate (η) determines a cell’s capacity to trans-

form resources into energy, i.e. how efficiently a cell con-
verts acquired nutrients into usable energy (Section III-F).
Cells that metabolise more efficiently also consume more
energy, and vice-versa.

‚ Cell drag coefficient (ν) represents the surface drag of a
cell per unit area. Low drag allows the cell to move more
quickly but makes stable configurations more difficult to
achieve.

‚ Energy capacity (εmax) defines a cell’s capacity to store
energy. Greater capacity increases cell mass, increas-
ing the amount of energy required for movement and
metabolism.

‚ Edge spring coefficient (k) determines edge stiffness of
the springs between cells (see Section III-A). High (ě 1)
coefficients give stiff connections, resulting in organisms
that appear rigid. Lower coefficients allow cells to move
more freely, giving way to organisms that move more
fluidly. The disadvantage of low spring coefficient is
that connections tend to be longer, which makes the
transmission of energy between cells less effective, as
more energy is lost in transmission. Very low coefficients
make it difficult for cells to move effectively to locate
nutrients, as they tend to overshoot the source.

‚ An Energy ratio (ρ) controls the proportionate size of
new organisms after the splitting process occurs.

Together these genetic parameters determine the final 3D
form generated by the development process. We next discuss
the physical aspects of the model.

C. Physical Simulation

To help maintain cell and organism separation, cells exert
a repulsive (Fr) force on every other cell within a specified
radius from the cell’s centre, rr (Figure 2). The repulsion force
between two cells Ci and Cj is applied according to:

Fr “

#

kr
`

´1{d2i,j ` 1{r2r
˘

if di,j ď rr

0 otherwise
(1)

where di,j is the distance between the centres of Ci and Cj and
kr a constant used to control the relative amount of repulsive
force. Additionally, spring forces also act on connected cells
based on Hooke’s law: Fs “ ´ksδ, where ks is the spring
coefficient and δ is the compression (-ive) or expansion (+ive)

3Our system was inspired by Anders Hoff’s differential line algorithm:
https://inconvergent.net/generative/differential-line
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Fig. 2. Cells connected by edges with springs: forces shown acting on a
single cell. Fi`1 represents the sum of forces excerpted on cell Ci by its
neighbouring cell Ci`1 and the spring that connects them ei, Fi´1 represents
the sum of the force excerpted on Ci by neighbouring cell Ci´1 and their
connecting spring ei´1, and Fs represents the sum of repulsion forces by all
the other cells in the system closer than rr to Ci

distance of the spring over its rest length, leit (Figure 2). Rest
length is a dynamic property of an edge, ei, dependent on
cell energy and explained in the next section. Cells can also
instigate motion towards a positive nutrient gradient using
internal forces, this is detailed in Section III-F. A cell’s mass
is proportional to its energy (Section III-D). At each timestep,
the total forces on each cell are summed and the cell moves
as a result of the cumulative forces acting on it.

D. Energy Model

Each cell, Ci, has an energy, ε, representing the metabolised
energy currently stored in that cell. Cells are created with
a default energy, εinit, and may accumulate, diffuse and
loose energy as the organism develops. The maximum en-
ergy a cell can accumulate (εmax) is genetically determined
(Section III-B). Let E : cell, t Ñ R be a function that
returns the energy level of a given cell Ci at time t, and
E : Organism, t Ñ R “

řn
i“1EpCO

i , tq a function that
returns the total energy for all cells in O at time t. The overall
change in energy for a cell at each timestep is given by:

EpCi, t` 1q “ EpCi, tq ´ E `D `N (2)

Where E represents internal energy loss, D energy diffused
and N energy metabolised. The energy loss per timestep E is
calculated as:

E “ c1 ` η ¨ pεmax ` c2
FN

ν2
q, (3)

where c1 is a ‘cost of living’ constant, η is the cell’s metabolic
rate, εmax is its energy capacity (Section III-B), c2 a constant
and FN the internal movement force (explained further in
Section III-F).

A diffusion process (D) occurs at each timestep, whereby
energy from cells with higher energy is diffused to those neigh-
bours with lower energy. For example, if EpCiq ą EpCi`1q

then:
DpCi`1, tq “ χ ¨ EpCi, tq ´ pω ¨ dq and

DpCi, tq “ ´χ ¨ EpCi, tq,
(4)

https://inconvergent.net/generative/differential-line
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Fig. 3. Cellular division: (a) Cell ci has reached εmax so will divide. (b) ci
has divided into two new cells, ci and ci`1. The rest lengths of the springs
at each edge are set proportional to the cell’s energy, causing the new cells to
push apart until they reach equilibrium (c). The dotted circles represent the
energy level of each cell.

where χ is the diffusion rate, ω is the loss of energy per
unit distance (both constants), and d is the length of the edge
connecting Ci and Ci`1. This diffusion process ‘evens out’ the
energy distribution of the organism over time, helping cells
that can’t directly acquire energy to survive. An organism
grows and develops through the accumulation of energy ac-
quired by cells from nutrients in its environment, N (detailed
in Section III-F).

Energy determines how a cell changes, according to the
following condition-action rules:

if EpCiq “ 0 then Die

if EpCiq ě εmax then Divide

The Die action occurs when a cell’s energy level becomes
0. The cell and its leading edge are deleted from the organism
and the previous cell’s edge (ei) connected to the successor
cell. The rest length of connecting springs is determined
proportional to the sum of the energies of the cells at each
end of the edge:

lei9
a

EpCiq ` EpCi`1q (5)

At least three cells are required to maintain a closed loop,
so if less than three cells remain the organism is deleted. The
rest length of a spring connecting two cells changes according
to the energy of the cells, as per (5). So the more energy the
longer the rest length, which has the effect of pushing high
energy cells further apart. The logic is based on a metaphor
of metabolised growth. Growth increases the length of edges,
effectively causing the organism to encompass a larger area,
increasing its mass and surface area, which in turn impacts on
the cell’s dynamics.

When a cell’s energy equals or exceeds εmax the Divide
action is initiated, which causes the cell to divide, spawning a
new cell (Figure 3). This new cell receives half of the energy
of its parent, and both cells share the same location at the
start of the process. A new spring is created to connect the
cells. The spring’s rest length is determined by the energy
of the two connecting cells (5). The rest length causes energy
minimisation in the system, pushing new cells apart until their
connecting edges’ rest lengths are achieved.

In biology, organisms acquire energy for growth through,
e.g., photosynthesis or the digestion and metabolism of nutri-

C
max

C
split

F
attr

F
attr

a.

C
max

C
split

b.

C
max

2r
C
split

c. d.

Fig. 4. Stages of organism splitting. a) Cmax and Csplit are defined.
b) Attraction forces between Cmax and Csplit are applied. c) Distance
between Cmax and Csplit reaches splitting threshold (2rr) d) Organism splits,
producing two separate and independent organisms

ents. We experimented with a number of different scenarios,
finding the nutrient metabolism model the most expressive
in terms of model form variation. This model in detailed in
Section III-F.

E. Organism Division

At each timestep, the combined energy of all an organism’s
cells is calculated using EpO, tq. If this total exceeds a
threshold, εo “ 10 ¨ εinit, division occurs, with the original
organism splitting into two. The division process proceeds in
several steps (see Figure 4):

1) the cell with the highest energy is found
(i.e. max

1ďiďn
EpCi, tq), let this cell be Cmax;

2) beginning at Cmax the organism is traversed along the
leading (clockwise) edge, summing the energy of the
next cell, EpCmax`1q;

3) the process continues until the ratio of summed energy
to total energy (EpO, tq) equals ρ, let this cell be Csplit;

4) An attractive force, Fattr, is applied between Cmax and
Csplit until the distance between their centres is ď 2rr;

5) the cells Cmax and Csplit are duplicated and the leading
edges of each are connected to the incoming and leading
edges of their respective neighbour cells (see Figure 4).

6) the organism has split into two separate organisms and
development of each now continues independently.

Through these processes of cellular and organism growth,
the system develops over time. Of course, growth requires
energy, so we next outline the metabolic energy model.

F. Metabolic Model

To provide energy to the growing cells we implemented
a simple nutrient and metabolism model. We place a fixed
number (nS) of nutrition sources, S1 . . . Sns , with uniform
random distribution within the 2D simulation environment.4

4Note that the overall size of the environment is determined by the 3D
printer’s build plate area, see Section V-A1.
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Each nutrient source has a fixed production rate, αSi
, mea-

sured in nutritional units per timestep, ∆t, and a production
capacity of βSi nutritional units.

Nutrients are emitted from a source at rate αSi
until the

total nutrient production from the source Si reaches βSi
. Once

a source’s production is exhausted, it is replaced by a new
source, Sj at a new random location in the environment. The
constants αSi and βSi are assigned from a normal distribution
at the instantiating of Si.

Emitted nutrients diffuse uniformly from the source location
into the environment. Let the concentration of nutrients at a
particular location in the environment be Npx, yq, then the
diffusion of nutrients is given by:

9N “ γ2∇2N ´ cN “ γ

ˆ

B2N

Bx2
`
B2N

By2

˙

´ cN (6)

9N is the time derivative of N , γ is a global constant that
controls the rate of diffusion and ∇2N is the Laplacian of N
and cN is a constant decay rate, representing nutrient loss
to the environment. In practice we use a two dimensional
array of discrete samples mapped over the environment and
approximate 9N using finite difference methods.

Cells are able to perceive the presence of nutrients if they
are within a fixed distance from the cell. When a cell senses
nutrients it excerpts a force, FN , in the direction of maximum
positive gradient of nutrient. The magnitude of the force is
proportional to EpCq and exerting this force depletes a cell’s
energy at a rate 9FN (see Section III-D).

G. Model Analysis

To analyse the contribution of each model component
described in this section, we turned off components and
generated 100 individuals with random seeding for each. Table
I gives quantitative results of each component of the model.
The table shows the normalised standard deviations relative
to the full model, with σP and σC the standard deviation of
printability and complexity fitness measures (Section IV-A),
σV volume and σD volume variation. Values are shown with
the energy model (Section III-D), organism division (Section
III-E), metabolism (Section III-F) and physical simulation
(Section III-C) ablated. Removing these model features gen-
erally results in significantly less variation in the diversity that
the system is capable of generating.

σP σC σV σD

full model 1.0 1.0 1.0 1.0
no energy 0.637489 1.25948 0.724754 1.10708
no division 0.47171 1.18837 0.523708 0.851265

no meta 0.0 0.144783 0.0193064 0.018196
no physics 0.005308 0.384408 0.101377 0.281548

TABLE I
NORMALISED STANDARD DEVIATIONS FOR MODEL COMPONENTS.

H. Simulation into Form

To turn our simulation into form we work within a set of
physical constraints defined by 3D printing. The objective is

to make this process as efficient as possible by directly con-
trolling the deposition of physical material from the simulation
without processing intermediate 3D geometric representations.
To generate a 3D form that can directly control the 3D printer,
we output the simulation geometry to the printer at each
timestep, ti. This is achieved by converting the simulation
geometry directly into G-code,5 i.e. there is no intermediate 3D
representation as would normally be required when printing
3D objects. The G-code required to print in extrusion-based
printers represents a series of movements between coordinates
with instructions to control the volume of material extrusion
when moving. As the simulation effectively consists of a series
of connected lines, we use this information to directly drive
the 3D print head in 2D, allowing the printer to deposit a
layer of thin filament that represents organisms’ shapes under
simulation at each time step.

As shown in Figure 5, successive layers are added on top of
previous ones, turning a set of developing 2D polygons into
a 3D object. The coherence of the developmental sequence
ensures a degree of continuity between successive layers. The
final object represents the developmental history of the 2D
organism over a fixed number of time steps. The height of
each layer was usually set to 0.2mm and run for 500 time
steps during testing, producing an object up to 10cm in height.
One limitation is the maximum height that the 3D printer is
capable of printing, in the case of our experiments this was
20cm or 1,000 timesteps.

This method also has another important constraint if the
form is to be successfully printed: each 2D layer cannot
differ from the previous layer too significantly, otherwise the
print will fail (known as layer coherence). This is due to the
extruded filament not being able to attach to the layer below
and hence sagging or entangling the print head (see Figure
5d), resulting in a failed print.

There are a number of possible ways to address this prob-
lem: a simple method would be to reduce the magnitude of
the timestep ∆t, effectively slowing down the development
of the organism to reduce the possibility of unacceptable
changes between layers. However this typically results in
limited change overall and thus produces objects of little
aesthetic interest.

A better alternative is to optimise the parameters that
determine the organism’s development so it grows in a way
that produces aesthetically interesting but printable 3D forms.
We discuss this strategy next.

IV. EVOLUTIONARY FORM-FINDING

We now describe the form-finding component of our system.
We use an evolutionary approach, based on the CMA-ES
algorithm [49], to explore the generative capabilities of the
simulation model described in the previous section. For this we
introduce two distinct fitness measures that look at potentially
conflicting characteristics of generated objects: structural con-
sistency, which attempts to measure the viability of the form

5G-code, also known as RS-274 is a widely used programming language
for computer numerical control of computer aided manufacturing tools.
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a b c d
Fig. 5. Example 3D printed objects generated during the development phase of our system, where a) is a detail of the object shown in Figure 1 – an object
that developed as a single organism, b) and c) show fully printed objects that exhibit some aesthetic diversity, and d) shows an organism that failed to print.

to be successfully 3D printed, and formal complexity, which
in this case is used as a proxy of aesthetic appeal [37], [50].

We use evolution as a method of assisted exploration of the
design space, rather than as a fully automated optimisation
system. In any complex generative design system, there is no
single best solution, rather a range of interesting or acceptable
designs that are considered by the human designer. So our
aim is to find the most promising regions of the design space
effectively, but give the human designer an overall say in
which designs are to be selected.

The use of two different fitness measures allows us to
investigate the tension between the practical (structural consis-
tency) and aesthetic (formal complexity) aspects of a designed
artefact that designers traditionally face through their creative
process. By dynamically changing fitness weights, properties
of the object, such as regularity, fragmentation, texture and
form tectonics emerge from the evolution of the system, rather
than being determined through design operations, opening the
possibility of unexpected and surprising design outcomes.

A. Fitness functions

As discussed, we calculate fitness for 3D printability (P )
and aesthetic complexity (C). In our model these two criteria
are often in tension: highly complex objects may not be
printable and highly printable objects may not be interesting.
Hence a possible design goal would be to generate objects that
can be successfully printed yet are as complex as possible,
understanding complexity as an approximation of aesthetic
appeal.

1) Structural Consistency: We base the structural consis-
tency (printability) measure of generated 3D objects on the
constraints of Fused Deposition Modelling (FDM) (see Section
III-H) – a commonly available method for 3D printing [15].
We aim to print objects using a single strand of plastic filament
with no additional supports as a way to minimise the amount
of material waste from printing and to reduce post processing
after the model is printed (e.g. removal of support structures).
However, for this to be feasible two conditions must be met:
(i) the smallest diameter (Imin) of the convex hull of all
organisms cannot be smaller than a threshold T (determined
empirically) and (ii) each layer of material has to be physically
supported by the layer that precedes it.

a. b.

θ

L
2

L
2

L
1

d

L
1

c

Fig. 6. Layer support: (a) Axonometric projection showing stacked layers of
filament (L1, L2), extruded from the print head, with open end faces. The
angle of overhang (θ) is measured between the vertical axis a layer and the
line connecting the centre points of that layer and the one immediately above.
This angle should not exceed 45˝ (b) Top down projection of the centre axis
of segments of filament.

To account for the diameter constraint we assign a diameter
factor (If ) to each organism in an object based on the
following conditions:

If “

#

1 if Imin ě T

Imin{T otherwise
(7)

where Imin is the smallest diameter of the convex hull of
an organism, calculated using the rolling calipers method [51].

In order to determine if a layer is supported we consider
the recommendation of the 3D printer manufacturer, which
indicates that for material to be supported the overhang be-
tween layers should not exceed 45 degrees (Figure 6a). We use
this principle to calculate a support score (S) for the vertices
and midpoint of every edge in the object using the following
equation:

S “

$

’

’

&

’

’

%

1 if d ď h

2´ d
h if h ă d ď 2h

0 otherwise

(8)

where d is the distance between the 2D projections of the
vertex being assessed and the edge closest to it in the layer
below (see Figure 6b), and h is the height of the layer.

We then use the support score of vertices and edge mid-
points, in conjunction with If of the organism to calculate
the ratio of the edge that is supported (Sr) as follows:

Sr “ If ¨ ppSsp ` 2pSmpq ` Sepq{4q (9)
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where Ssp, Smp, Sep are the support scores for the start
point, mid point and end point of the edge, respectively.

Finally, the overall printability for the colony, PY P r0, 1s,
is the normalised measure that the form can be successfully
printed, calculated using the following equation:

PY “

řn
i“1 Sri ¨ li
řn

i“1 li
(10)

where n is the total number of edges in an object, Sri is the
support score of edge i and li is its length.

2) Formal Complexity: We employed two separate metrics
to evaluate the complexity of a candidate form: convexity and
the quartile coefficient of dispersion of angles between con-
secutive edges. Each measure is calculated for every organism
in the colony at each time step.

Convexity, X , is calculated as the ratio between the perime-
ter of the convex hull of a shape and its total perimeter, i.e.

X “
LpHpOtqq

LpOtq
, (11)

where L : Organism Ñ R “
řOt |ei| is a function

that returns the perimeter length of O at time t, and H :
OrganismÑ R a function that returns the perimeter length
of the convex hull of O. A completely convex shape will yield
a convexity score of 1. Conversely, a shape with a ‘rougher’
surface will yield a lower score.

The quartile coefficient of dispersion of angles is calculated
as follows:

D “
Q3 ´Q1

Q3 `Q1
(12)

where Q1 and Q3 are the first and third quartiles of the sorted
array of all angles between consecutive edges pei, ei`1q in the
3D shape. A low dispersion score indicates a lack of diversity
of angles, which translates into a regular shape.

To calculate overall formal complexity of a colony, CY ,
we use a weighted sum: CY “ aXY ` p1 ´ aqDY , where a
is the normalised relative weighting. Similarly, overall fitness
is the weighted sum of PY and CY . We experimented with
different weights and changing weights during an evolutionary
run, described in Section V.

B. Evolution strategy

We used an implementation of the covariance matrix adap-
tation evolution strategy (CMA-ES) [49], because it is well
suited to work with low-dimensional floating point vectors
as genomes, directly matching the genetic encoding of our
system. Additionally, its adaptive capabilities enable us to
purposefully explore a fitness landscape that, as revealed by
our preliminary studies, is far from unimodal. Lastly, it allows
us to work with variable weight fitness functions during a
single evolutionary run.

C. Model Design Space

To better understand the design space of our form generation
model we generated a number of individual forms to examine
the range and diversity of possible forms. Fixed aspects built
into the model constrain the overall size and basic structure
of any possible form. These constraints include the build area
of the 3D printer and the underlying stacked 2D, line-based
geometry used to generate toolpah movements. Nevertheless
the range of possible forms possible is quite diverse. A
dataset of 2,500 generated forms is available for the interested
reader to examine [52]. We generated 9,950 uniform random
initialised forms and measured their PY and CY fitness values.
The mean PY was 0.946 with σ “ 0.175. Mean CY was 0.105
with σ “ 0.1. This indicates that the majority of forms are
highly printable but aesthetically uninteresting. Hence we turn
to evolution to find highly complex yet printable forms.

V. EXPERIMENT SETTINGS AND RESULTS

In this section we present a series of experiments running
the CMA-ES on the generative system to evolve suitable
designs. The two approaches we explored consider a) evolving
generated colonies using different fitness weights, and b)
altering weights at different points in an evolutionary run.

A. Initial parameters for the generation of organisms

The evolution of 3D printable objects using our generative
developmental system is based on the progressive transfor-
mation of the five alleles in the genome of an organism
(η, ν, εmax, k, ρ). We defined the remaining parameters of the
system as follows:

1) Environment: The environment is defined as a 2D plane
that corresponds to 3D printer’s build plate dimensions. We
used a resolution of 600 ˆ 600 units (0.35mm/unit) giving
sufficient detail for intricate shapes and motifs balanced with
reasonable processing times. The placement and diffusion of
nutrients in the environment is discreetised into 15ˆ 15 tiles,
with number of sources nS “ 5, αSi “ 0.1, i P r1..5s
and βSi “ URNDp5, 10q, where URNDpa, bq Ñ R returns
a uniformly distributed pseudo-random number in the range
ra, bq (refer Section III-F).

2) Colonies: The colony Y is the unit of selection in
the evolutionary component of our system, i.e. we evolve
populations of colonies. Each colony Yn generated by the evo-
lutionary system is initialised with a single circular organism
with its centroid at the centre of the build plate, a radius of 100
units and initial energy, εinit “ 5, for each cell. The number
of initial cells in the organism is set to 2πr{2ε, where r is the
initial organism radius (100). The repulsion radius, rr for the
cells is set to 3 and the cost of living c1 “ 10´3. Additionally,
the diffusion rate is set to χ “ 0.1 and loss of energy per unit
distance ω “ 10ˆ 5´2 (refer Section III-D).

B. Parameters for the evolutionary processes

A hyperparamerter search was conducted to determine the
CMA-ES values for λ, µ and the standard deviation for initial
sampling σi, with λ “ 40, µ “ 2 and σi “ 0.1 found to
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offer the best trade-off between search efficiency and compute
resources. The remaining parameters, maximum iterations g
and step size (learning rate) σ used different values for each
experiment. For the initial experiments, g “ 250 and σ “
10´3.

C. Experiments and Results

Our first experiments tested the ability of the system to
find designs using a weighted sum of the fitness measures
PY and CY . Figure 7 shows the results averaged over 30
runs, with each run using a new random seed for the environ-
ment (Section V-A1) – designed to eliminate environmental
dependencies when evaluating the overall ES performance.
Figure 7a, shows the results using equal weighting. As can
be seen, the printability quickly optimises while there is a
modest increase in complexity. Visually examining the fittest
individuals at each generation revealed that once the system
had found a highly printable form, it was difficult to escape
the basic structure of that form to find more complex objects
that remain as printable.

We experimented with increasing the weighting of CY , and
ultimately found that maximising the weighting gave the most
interesting design results (Figure 7b). In this case, evolution
was better able to optimise complexity without the additional
constraint of printability, confirming what is often intuitive to
experienced human designers: that practical constraints often
limit the overall complexity a form can achieve.

Figure 8 shows example outcomes when evolving colonies
optimising for complexity and illustrates the consequences of a
low printability score. The two images on the left (a) show the
digital rendering and 3D printed versions of a form with CY “

0.417 and PY “ 0.695, resulting in a failed print. The images
on the right (b) show an object with higher complexity (CY “

0.516) and printability (PY “ 1.0), which prints successfully.
In the second set of experiments, we attempted to improve

the printability of specific objects generated in the previous
stage while preserving their physical complexity. The rationale
for this is to “tame” an interesting design back to just being
printable while trying to preserve its complexity. To do so
we selected visually interesting individuals (high CY ) with
low PY measures from the first set of evolutionary runs,
and used them as reference individuals when sampling the
initial population. The seed for the environment was carried
over from the seed individual’s initial evolution, to ensure
an identical form. For these runs the number of maximum
iterations was set to g “ 400, the initial standard deviation
to σi “ 10´4 and the learning rate to σ “ 10´6, favouring
local search around the initial form. Figure 9 shows how
CMA-ES managed to improve PY . Figure 10 shows example
initial and final objects. It is possible to observe that while
both objects are different, they maintain similarities in overall
shape and complexity – especially in the lower section. A
closer inspection of the finished products reveals deficiencies
in the quality of the initial print, that are corrected in the final
outcome.

VI. ANALYSIS AND DISCUSSION

The results demonstrate that our generative developmental
system can be effective for producing objects with a diverse
range of physical characteristics and unique aesthetic proper-
ties.

A. Fitness Measures

The two new fitness measures we introduced (Section IV-A)
were designed to evaluate the opposing tensions of structural
consistency (printability) and formal complexity (aesthetics).
We empirically tested and tuned these measures on hundreds
of simulations and many dozens of physical prints to arrive
with the final formulations presented.

Using a continuous measure of printability allows the de-
signer to decide how much they are willing to risk a print
failing in order to create a specific aesthetic form. Empirically
testing our measure on dozens of actual 3D prints showed it
to be a reliable indicator of how well a form will print, with
a measure of 1 being effectively ‘perfect’ (always printable
without flaws) and values ą 0.9 having very slight, occasional
flaws but are always fully printable. Values below 0.8 have
noticeable flaws but are generally still fully printable, whereas
those below 0.7 will often fail to fully print at all (Figure 8a).
Having a reliable measure such as this is important. Complex
3D prints can take many hours (or even days in extreme cases)
to print and require significant quantities of print material.
Both time and material are wasted on a failed print. Knowing
that a form will successfully print eliminates this problem.

Our complexity measure was developed as a quantifiable
proxy for visual aesthetics. This intuition is based on past
findings that associate complexity with aesthetics [37], [50].
As we discussed in Section II-B, human aesthetic judgement
depends on many factors beyond the visual or structural
appearance of objects. Hence it is difficult to objectively
evaluate the effectiveness of our measure in absolute terms,
beyond our observations as practising designers that objects
with higher complexity measures seem more interesting to us.

However, an additional study using a dataset of 2,500 forms
[52] confirmed that our formal complexity measure has a high
correlation to visual complexity. We evaluated the Pearson
correlation between CY and the 2D image visual complexity
measure described in [53], achieving a correlation of 0.774
with p ă 10´2 [54]. Hence we believe we can claim our
measure is comparable with other leading measures of visual
complexity for the forms generated by our system.

B. Evolution

Adjusting the weights of the components of the fitness
function over evolutionary runs and the learning rate to find
and refine complex objects proved to be viable technique for
the exploration of the useful design space produced by the
generative system.

By observing the evolution of the fittest individual in the
population, when the system is set to optimise for complexity,
the CMA-ES approach is capable of finding fitter individuals
over time. However, without taking into account the print-
ability, some complex designs will fail to successfully print.
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a b

Fig. 7. Evolutionary runs showing the mean printability (PY ), complexity (CY ) and overall fitness for the best individual at every generation averaged over
30 runs. The shaded components show the variance. In a) the system was set to optimise PY and CY equally, and in b) only CY .

Fig. 8. Side by side comparison of digital rendering and 3D printed versions of two generated forms. For (a) CY “ 0.417 and PY “ 0.695, resulting in a
failed print. For (b) CY “ 0.516 and PY “ 1.0, giving a fully printable form.

Fig. 9. Evolutionary run initialised with an individual selected for its
complexity and aesthetic interest. This individual is used as reference point to
sample the initial population of an evolutionary process aimed at maximising
PY .

a b

Fig. 10. Initial (a) and final form (b) evolved to optimise PY .

Reducing the learning rate favours localised search, in which
characteristics of the objects being generated are preserved,
but their printability increases significantly.

Comparing the evolutionary trajectories of the populations
evolved with differently weighted fitness functions, two main
observations can be made. Firstly, it is not possible to draw
an absolute correlation between complexity and printability, as
can be seen in Figure 7(b). However, Figure 7(a) shows that
by weighting printability and complexity equally, the search
for more complex objects is less effective. This is most likely
due to the nature of the fitness landscape, which has a large
number of forms with high PY but medium to low CY scores.

In light of the results obtained, the flexibility shown by
the generative system, and the capability of the CMA-ES
strategy to improve the fitness of generated objects over time,
we foresee two main avenues to continue our exploration.
First, the revision and adjustment of the method that measures
complexity seems to be paramount, as some formal aspects
of the generated objects that have a significant impact on
printability, as well as on their perceived complexity, such as
the repeated division of organisms – which results in branching
3D objects – are not sufficiently reflected in complexity scores.

Second, using the adaptive capabilities of CMA-ES, it
should be possible to dynamically vary fitness and learning
weights as a way to explore the design space interactively.
Compute times to generate populations remains the barrier to
doing this in real time, so greater efficiencies in our generative
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model need to be implemented.
Given this could be considered a multi-objective optimi-

sation problem, it is reasonable to ask why MOEA methods
such as NSGA-II [55] were not used in our system. While the
MOEA approach is more flexible in its ability to allow wider
candidate solutions with diverse features to be evolved at the
same time, crossover is capable of capturing diversity more
consistently when performed on larger (higher dimension)
feature vectors. Conversely the CMA-ES approach works
well with low-dimensional genome vectors, and requires a
much smaller population size, which leads to faster execution,
especially when it finds a good solution. Given the significant
processing time to grow a colony into a final form, we opted
for this efficiency, hoping for more interactive explorations
of the design space through many short evolutionary runs.
Future work could certainly look into the use of MOEA as
an alternative to CMA-ES.

VII. CONCLUSION

In this paper we have described a system that explores
a design space to find 3D forms with high practical and
aesthetic fitness. The system was developed in two stages:
First, a generative developmental system was devised that
is capable of generating a diverse range of 3D forms via
the manipulation of a low-dimensional parameter vector; and
second, an evolutionary algorithm that incorporates printability
and aesthetic fitness measures was used to explore the design
space produced by the generative system.

We tested the system by evolving populations of generated
3D objects suitable for 3D printing. The primary goal was to
find candidates that were both printable and aesthetically com-
plex. However, this exploration also provided insight into the
characteristics of the design space itself, via the comparative
analysis of the generated objects.

The results show that the evolution strategy used provides
a reliable search mechanism for the exploration of design
space, as long as the fitness functions accurately represent
the design objectives being pursued. Being able to dynami-
cally adjust the weights between practical (printability) and
aesthetic (visual complexity) goals as the evolution progresses
opens the possibility of a designer-guided exploration of the
design space. In contrast to algorithms such as the IGA,
we automate both aesthetic and practical optimisation goals,
removing the designer from selecting the fittest individual at
every generation. Instead, after evolving for specific criteria,
the designer can then shift the weighting of fitness criteria
and learning rate for selected high fitness individuals, then
using the evolutionary system to maintain one evolved trait
(e.g. Complexity) while improving the other (Printability).
This form of guided evolutionary search allows the designer
to focus on selection of individuals at specific points in the
overall process, leaving evolution to do the optimisation via
formalised fitness measures.
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