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Abstract—The uncertain capacitated arc routing problem is
an important optimisation problem with many real-world appli-
cations. Genetic programming is considered a promising hyper-
heuristic technique to automatically evolve routing policies that
can make effective real-time decisions in an uncertain environ-
ment. Most existing research on genetic programming hyper-
heuristic for the uncertain capacitated arc routing problem only
focused on the test performance aspect. As a result, the routing
policies evolved by genetic programming are usually too large and
complex, and hard to comprehend. To evolve effective, smaller
and simpler routing policies, this paper proposes a novel genetic
programming approach, which simplifies the routing policies
during the evolutionary process using a niching technique. The
simplified routing policies are stored in an external archive. We
also developed new elitism, parent selection and breeding schemes
for generating offspring from the original population and the
archive. The experimental results show that the newly proposed
approach can achieve significantly better test performance than
the current state-of-the-art genetic programming algorithms for
uncertain capacitated arc routing problem. The evolved routing
policies are smaller, and thus potentially more interpretable.

Index Terms—Capacitated Arc Routing, Genetic Program-
ming, Hyper-Heuristic, Stochastic Optimisation, Program Sim-
plification.

I. INTRODUCTION

CAPACITATED Arc Routing Problem (CARP) [1] is a
classic combinatorial optimisation problem with a num-

ber of real-world applications, such as waste collection [2] and
winter gritting [3]. The main goal of CARP is to serve a set of

Manuscript received XXX; revised XXX and XXX; accepted XXX.
This work is supported by the Marsden Fund of New Zealand Government

under r Contract VUW1509 and Contract VUW1614; in part by by the
Research Institute of Trustworthy Autonomous Systems, the Guangdong
Provincial Key Laboratory (Grant No. 2020B121201001); in part by tthe
Program for Guangdong Introducing Innovative and Enterpreneurial Teams
(Grant No. 2017ZT07X386); and in part by Shenzhen Science and Tech-
nology Program (Grant No. KQTD2016112514355531); and in part by the
Program for University Key Laboratory of Guangdong Province (Grant No.
2017KSYS008). The work of Shaolin Wang was also supported by the
Victoria University of Wellington PhD Scholarship. (Corresponding author:
Shaolin Wang.)

Shaolin Wang, Yi Mei, and Mengjie Zhang are with the Evo-
lutionary Computation Research Group, School of Engineering and
Computer Science, Victoria University of Wellington, Wellington 6140,
New Zealand (e-mail: shaolin.wang@ecs.vuw.ac.nz; yi.mei@ecs.vuw.ac.nz;
mengjie.zhang@ecs.vuw.ac.nz).

Xin Yao is with the Research Institute of Trustworthy Autonomous Sys-
tems, Department of Computer Science and Technology, Southern Univer-
sity of Science and Technology (SUSTech), Shenzhen, China, and CER-
CIA, School of Computer Science, University of Birmingham, UK (e-mail:
xiny@sustc.edu.cn).

Colour versions of one or more of the figures in this article are available
online at XXX.

Digital Object Identifier XXX

edges in a graph using a fleet of vehicles with the minimum
cost. CARP is considered as an arc routing counterpart to
the well-known Vehicle Routing Problem (VRP). It has been
proved to be NP-hard [4] and received much research interest.
Many approaches have been proposed for dealing with CARP
[4]. However, most previous studies assume that the environ-
ment is static, where all the parameters (e.g. task demand,
travel cost) are fixed and known in advance. This is usually
not true in the real world, where the environment is often
uncertain and dynamic. For example, in waste collection, the
amount of waste to be collected is not known in advance and
varies from one day to another.

Uncertain CARP (UCARP) [5]–[7] was proposed to better
reflect the reality. A variety of uncertainties, such as the
stochastic task presence and demand, stochastic edge dead-
heading cost and stochastic travel time, have been considered
[6]. In addition to the NP-hardness inherited from CARP,
the main challenge in UCARP is the route failure caused by
the stochastic task demand. A route failure occurs when the
remaining capacity of the vehicle becomes insufficient to serve
the edge, because the actual demand of an edge that needs to
be served exceeds the vehicle‘s expected demand. Therefore,
the vehicle has to go back to the depot to refill and come back
to finish serving the edge again. A route failure might lead to
a high recourse cost.

Traditional solution optimisation approaches for dynamic
routing problem, such as mathematical programming [1],
genetic algorithm [7], particle swarm optimisation [8] and
Markov decision processes [9], cannot effectively handle the
route failure in UCARP. On one hand, the traditional solution
optimisation approaches try to optimise a solution (i.e. a
solution that performs reasonably well in all possible envi-
ronments) beforehand. It is repaired by the recourse operator
if a route failure occurs. However, the pre-planned solution
is not flexible enough, and cannot be sufficiently changed by
the recourse operator to cope with the dynamic nature of the
route failure situation. In addition, it may induce a large extra
recourse cost in some situations. On the other hand, some
solution optimisation methods [9], [10] aim to re-optimise
the remaining routes when a route failure occurs. Although
this can potentially obtain better solutions, the re-optimisation
process by running the solution optimisation algorithm is
typically too slow to respond in real time.

The routing policy-based approaches [11] are promising
techniques that can effectively handle the uncertain envi-
ronment in UCARP. Unlike traditional solution optimisation
approaches, these approaches do not have to pre-plan any
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solution. On the other hand, they use routing policies to
guide a vehicle to determine which task to serve next as
soon as it becomes idle [11]. A typical manually designed
routing policy is the Path Scanning [12]. However, numerous
factors, such as the objective(s) and the graph topology can
affect the effectiveness of the routing policy [13]. The Genetic
Programming Hyper-heuristic (GPHH) is considered as a
promising technique that can automatically evolve effective
heuristics for dynamic problems [14], such as scheduling
problems [15]–[18] and resource allocation problems [19].
Recently, GPHH has also been successfully applied to UCARP
to evolve effective routing policies automatically [20]–[24].

However, the routing policies evolved by GPHH are usu-
ally too large and complex, which usually leads to poor
interpretability. Evolving small and simple routing policies
(without losing effectiveness) can help end users understand
the evolved routing policies better so that they can use them
confidently and modify them when necessary. Intuitively, the
size (number of nodes) of the routing policy is an essential
factor that can affect the interpretability, and a larger (smaller)
routing policy tends to be harder (easier) to interpret. Usually,
the tree size of the routing policy evolved by GPHH is too
large. The main reason is that GP tends to continuously
increase the size of its individuals, which is known as bloat
[25]–[27]. For bloat control, one can simply limit the tree size
or depth during the GP evolution (e.g., [28], [29]) or design
specific genetic operators to consider both tree size and ef-
fectiveness (e.g., [26], [30], [31]). However, these approaches
cannot balance the two aspects well. Their performance could
be biased by either tree size or effectiveness.

GP simplification is another way to reduce the tree size by
removing redundant materials from GP trees. GP produces
trees that typically contain a large number of redundant
components (subtrees). It is desirable to remove as much
of these redundant materials as possible without sacrificing
the exploration ability of GP. Manual simplification on the
final GP tree has been tried in the past. However, it is more
preferred to simplify GP trees during the search process [32].
Wong and Zhang et al. [33]–[36] have explored the use of
algebraic tree simplification with the hashing technique and
applied it to regression and classification problems. Kinzett
et al. [37] and Song et al. [38] have proposed numerical tree
simplification methods. Both methods are based on the local
effect of a subtree.

The above simplification methods have several limitations.
First, they detect redundant subtrees based on genotypic infor-
mation (e.g. tree structure) rather than phenotypic information
(e.g. behaviour in decision making). Thus, they may fail to de-
tect some implicit redundancies. Second, they need predefined
parameters, i.e. simplification rules and threshold. The final
test performance is highly sensitive to these parameters, and
it is hard to set them properly. To the best of our knowledge,
there is no existing study that implements the simplification
based on the phenotype of GP trees. Also, there is no existing
study that applies GP simplification to GPHH for UCARP to
evolve both effective and simple routing policies.

To simplify a GP tree based on phenotypic behaviour, we
aim to replace a large tree with another smaller tree with the

same phenotypic behaviour. An intuitive approach is to group
the individuals in the population based on their phenotypic
behaviour (each group contains the individuals with the same
behaviour), and simplify all the individuals in each group by
replacing it with the smallest individual in that group. We call
this approach niching simplification, since it is similar to the
niching techniques [39], [40] that divides the individuals in
the population into different groups/niches.

The overall goal of this paper is to propose a novel GPHH
that simplifies the individuals during the evolutionary process
based on their phenotypic behaviour. In this way, we can
obtain both more effective and smaller routing policies, which
can be potentially more interpretable and generalisable. To
achieve this goal, we have the following research objectives:

1) To develop a new niching simplification scheme based
on phenotypic behaviour. Specifically, the individuals
with the same phenotypic behaviour (i.e., fitness in this
study) are grouped into a niche. In each niche, all
the individuals are replaced by the individual with the
smallest size (so-called representative of the niche);

2) To compromise the loss of population diversity due to
the niching simplification, we still keep the original
population, and store the niche representatives in an
external archive;

3) To develop a multi-source breeding mechanism to gen-
erate offspring from the original population and the
representative archive, respectively;

4) To design niching-based elitism and parent selec-
tion schemes for the breeding from the representative
archive;

5) To develop a new GPHH algorithm with Niching
(GPHH-N) that incorporates all the above designed
components.

6) To verify the effectiveness of GPHH-N, and analyse the
routing policies evolved by GPHH-N.

Note that the goal of this paper is not to address the
interpretability problems explicitly, although GPHH-N is ex-
pected to evolve smaller and simpler routing policies that are
potentially more interpretable.

II. BACKGROUND

For CARP, there have been various studies considering
different aspects of uncertainties [20], [41]–[43], such as
stochastic task demand, stochastic edge deadheading cost,
stochastic task presence and stochastic edge existence. In this
paper, we focus on the UCARP [5] that considers all four
important uncertainties.

A. Uncertain Capacitated Arc Routing Problem

A UCARP instance can be represented by a connected
undirected graph G(V,E), where V and E indicate the sets of
vertices and edges, respectively. The vertex v0 ∈ V denotes the
depot. Each edge e ∈ E has a positive random deadheading
cost ς̄(e). A fleet of vehicles with a given positive capacity Q
are allocated to serve all the tasks T ⊆ E. Each task t ∈ T
has a positive random demand d̄(t), and a positive serving cost
sc(t). The goal is to minimise the total cost of serving all the
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tasks in T . Several constraints have to be satisfied. First, all
the routes must start and end at v0 ∈ V . Second, each task
t ∈ T must be served exactly once, but it can be traversed
multiple times. Third, the total demand served by each route
(an edge sequence starts and end at the depot) cannot exceed
the capacity of the vehicle.

In UCARP, there are a number of random variables, each
of which can have different samples. Accordingly, a UCARP
instance may contain different samples. In a UCARP instance
sample, each random variable, i.e., the task demand d̄(t) and
deadheading cost ς̄(e), takes a realised value. However, the
realised demand of a task is unknown until it has been served,
and the realised deadheading cost of an edge is unknown in
advance and is revealed during the traversal over the edge.
The nature of the uncertainties of the environment will lead
to two kinds of failures during the serving process.
• Route failure: the actual demand of a task exceeds the

vehicle’s remaining capacity.
• Edge failure: an edge in the route becomes inaccessible

(its deadheading cost becomes infinity).
When a route failure occurs, the vehicle will go back to
the depot to refill and return to the failed task to complete
the remaining service. When an edge failure occurs, the
solution can be repaired by finding a shortest detour under the
current situation using pathfinding algorithms (e.g., Dijkstra’s
algorithm [44]).

A solution to a UCARP instance is represented as S =
(S.M, S.N). S.M = {S.M (1), . . . , S.M (j)} is a set of vertex
sequences, where j is the number of vertex sequences (routes).
S.M (k) = (S.m

(k)
1 , . . . , S.m

(k)
Lk

) stands for the kth route,
where Lk represents the number of vertices in the kth route.
S.N = {S.N (1), . . . , S.N (j)} is a set of continuous vectors,
and S.N (k) = (S.n

(k)
1 , . . . , S.n

(k)
Lk−1) (S.n(k)i ∈ [0, 1]) is

the fraction of demand served along the route S.M (k). The
problem can be formulated as follows.

min Eξ∈Ξ[C(Sξ)], (1)

s.t.

Lk−1∑
i=1

dξ

(
Sξ.m

(k)
i , Sξ.m

(k)
i+1

)
× Sξ.n

(k)
i ≤ Q,∀k = 1, . . . , j,

(2)(
Sξ.m

(k)
i , Sξ.m

(k)
i+1

)
∈ E, (3)(

Sξ.n
(k)
i

)
∈ [0, 1], (4)

Sξ.m
(k)
1 = Sξ.m

(k)
Lk

= v0, ∀k = 1, 2, . . . , j, (5)

j∑
k=1

Lk−1∑
i=1

Sξ.n
(k)
i × Sξ.z

(k)
i (e) = 1, ∀e : dξ(e) > 0, (6)

j∑
k=1

Lk−1∑
i=1

Sξ.n
(k)
i × (1− Sξ.z

(k)
i (e)) = 0, ∀e : dξ(e) = 0, (7)

where Eq. (1) is the objective function. It is used to minimise
the expected total cost C(Sξ) of the solution Sξ over all
samples ξ ∈ Ξ. The total cost of a solution on one sample
ξ is calculated by Eq. (8), where ςξ(u, v) is the realised
deadheading cost between the node u to v in ξ. For any sample
ξ, a feasible solution Sξ is generated by a routing policy which
gradually builds the solution on-the-fly. Eq. (2) is the capacity
constraint, and dξ refers to the realised task demand in ξ. Eqs.

(3) and (4) are the domain constraints of Sξ.M and Sξ.N .
Eq. (5) indicates that all the routes start and end at the depot.
Eq. (6) means that each task is served exactly once (the total
demand fraction served by all vehicles is 1). Sξ.z

(k)
i (e) equals

1 if
(
Sξ.m

(k)
i , Sξ.m

(k)
i+1

)
= e, and 0 otherwise. Sξ.z

(k)
i (e)

indicates whether the edge is a task or not. Eq. (7) ensures
that any non-required edge is not served at all, i.e., its service
fraction is zero everywhere in the solution.

C(Sξ) =

j∑
k=1

Lk−1∑
i=1

(
ςξ(Sξ.m

(k)
i , Sξ.m

(k)
i+1)

)
+
∑
t∈T

(sc(t)− ςξ(t)) (8)

The static CARP is a special case of UCARP, where all
the variables are known in advance. Route failure is the main
extra challenge of UCARP over the static CARP, and it can
lead to large extra recourse cost.

B. Related Work

1) Approaches for Capacitated Arc Routing Problem: Most
existing approaches focus on the static CARP. Golden and
Wong [1] developed an integer linear programming model and
solved CARP using the branch-and-cut algorithm. Belenguer
and Benavent [45] applied a cutting plane algorithm to CARP.
It is guaranteed that the obtained solutions are optimal by using
exact approaches. However, the approach is limited to only a
small number of instances due to the NP-hardness of CARP.
These approaches can become time consuming as the problem
becomes large.

To obtain reasonably good solutions in a limited time budget
and for larger problem instances, constructive heuristics are
applied to CARP [1]. Constructive heuristics generate ap-
proximated solutions from scratch. Although these approaches
cannot guarantee that the obtained solutions are optimal,
they are much cheaper than exact approaches. At the same
time, they can usually provide good enough solutions very
quickly. The path scanning heuristic, augment-merge heuristic,
and Ulusoy’s split heuristic are commonly used constructive
heuristics for CARP [12].

To make an improvement, meta-heuristic approaches have
been used in recent years. A typical meta-heuristic algorithm
starts from one or more solutions, and iteratively improves
them. Thus, meta-heuristic algorithms can usually obtain
promising solutions in a reasonable time budget. Typically,
solutions from meta-heuristic algorithms can be no worse
than constructive heuristics since they can take the solu-
tion from constructive heuristics as their initial solutions.
In addition, they are usually less time consuming than the
exact approaches. Various meta-heuristic algorithms have been
proposed for CARP, such as tabu search [46], [47], genetic
algorithms [48], memetic algorithms [12], [49], [50], and ant
colony optimisation [51]–[53]. Mei et al. [54] and Tang et al.
[55] handle large-scale CARP with decomposition approaches.

To enhance the problem solving for CARP, Feng et al.
[56] utilised Meme learning and selection to transfer useful
structures or latent patterns that are captured from previous
experiences of problem-solving. The captured knowledge was
then applied to enhance future evolutionary search. Comparing
with existing works, the work in [56] can transfer and reuse
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knowledge across problems of different size, structure, or
representation. To make an improvement, Feng et al. [57] pro-
posed a new memetic computing paradigm which contains four
culture-inspired operators, i.e. Learning, Selection, Variation
and Imitation. Comprehensive studies on the widely studied
NP-hard Capacitated Vehicle Routing Problem (CVRP) and
CARP domains have been made. The experimental results
showed the benefits of the proposed faster evolutionary search
approach. Rather than transferring knowledge from the same
problem domain, Feng et al. [58] proposed an evolutionary
memetic computing paradigm that is able to learn and evolve
knowledge memes that traverse two different but related
problem domains, i.e. CVRP and CARP, to speed up the
search efficiency. Experimental results showed that evolution-
ary optimization can benefit from different but related problem
domains. The appropriate choice of knowledge memes is an
essential factor for enhancing the evolutionary search process.

2) Approaches for Uncertain CARP: There are many dif-
ferent types of uncertainties in real-world CARP. Liu et al. [6]
give a comprehensive review on the uncertain factors in CARP,
including stochastic task demand, stochastic edge deadheading
cost, stochastic task presence and stochastic edge existence,
and the corresponding approaches to address them.

Many approaches aim to find solutions that can handle all
possible realisations of the random variables. Typically, the
output of these approaches consists of two main components,
a pre-planned solution and a recourse operator. Firstly, the
optimisation algorithm produces a solution based on the pre-
diction of the environment. Then, the solution is executed
while possible failures, such as route failures, could be handled
by the recourse operator. The performance of these approaches
is highly affected by the accuracy of predicting the stochastic
environment and the effectiveness of recourse operators.

Fleury et al. [41] proposed a Memetic Algorithm (MA) that
integrated an accurate approximation of the expected total cost
for CARP with stochastic task demand and concluded that MA
could be easily adapted to handle the stochastic task demand
and obtain better solutions than other simple techniques like
keeping a slack in each vehicle. Babaee Tirkolaee et al. [59]
developed a mix integer programming model to handle the de-
mand uncertainty. They also proposed a hybrid meta-heuristic
approach based on simulated annealing and a constructive
heuristic to obtain good solutions for CARPSD. Wang et al.
[60] adapted a new MA with an integrated fitness function
and a large step-size local search operator to UCARP. The new
MA can find good solutions for UCARP. The integrated fitness
function is used to guide the search direction, and the large
step-size local search operator is used to prevent MA being
trapped in local optima. Wang et al. [61] focused on finding
solutions that can perform well over a set of UCARP instances
and proposed an Estimation of Distribution Algorithm with
Stochastic Local Search (EDASLS). The new EDASLS is
based on The Edge Histogram Based Sampling Algorithm
(EHBSA) [62] and a novel Stochastic Local Search (SLS)
which can effectively handle the uncertainties in UCARP. Re-
cently, Tong et al. [63] proposed a generalised meta-heuristic
framework for UCARP. In addition, Tong et al. [64] also
proposed a hybrid local search framework which can handle

the small dynamic changes in UCARP.
Some other approaches use Genetic Programming Hyper-

Heuristics (GPHH) to evolve routing policies that construct
solutions gradually in real-time. It does not maintain any pre-
planned solution. Weise et al. [65] first proposed a GPHH for
UCARP with a single vehicle and examined its performance.
The results showed that routing policies evolved by GPHH
could outperform manually designed routing policies. Liu et
al. [20] proposed a novel and effective meta-algorithm to
filter irrelevant candidate tasks during the decision-making
process. To better reflect the reality, the model was extended
from a single-vehicle to multi-vehicle version by Mei et
al. [22]. Then the solution can be generated with multiple
vehicles on the road simultaneously. MacLachlan et al. [21]
proposed a novel task filtering method and an effective look-
ahead terminal. Then, MacLachlan et al. [66] examined the
advantage of vehicle collaboration in handling the uncertain
environment. Recently, Ardeh et al. [67] applied transfer learn-
ing to speed up the training process. Liu et al. [68] proposed a
new predictive-reactive approach with Genetic Programming
and cooperative coevolution which evolved a task sequence
and a recourse policy simultaneously. The existing GPHH
approaches managed to obtain effective routing policies for
UCARP. However, the interpretability of the evolved routing
policies has been ignored.

3) GP Tree Size Reduction Approaches: A typical tree-
based GPHH approach blindly generates GP trees by randomly
swapping the subtrees of the parents in crossover and replacing
a subtree with a randomly generated subtree in mutation. GP
search usually leads to large and complex trees that are hard to
interpret without careful control of the tree size. Also, a large
and complex tree tends to be less generalisable [69]. Therefore,
it is essential to reduce the tree size and complexity without
deteriorating the effectiveness.

There have been various studies to reduce tree size during
the GP evolutionary process. The most straightforward way is
to limit the number of nodes of the tree [28], [29]. However,
this strategy has two main limitations. First, it limits the search
space and may weaken the exploration ability of GP, and
thus lead to worse effectiveness. Second, it is nontrivial to
predefine a reasonable limit for the number of nodes [25].
Another commonly used strategy is to penalise large trees
during the selection, known as the parsimony pressure [70].
However, it is hard to set a proper coefficient of the penalty
term without extensive trial and error [26]. Kinzett et al. [30]
point out that it is difficult to obtain a small and effective
solution in some scenarios. The solution could be biased by
either tree size or fitness in GP. Luke et al. [31] review a set of
bloat control methods in GP and compare them with the depth
limiting method on different problems. The authors argue that
linear parsimony pressure [71] performed the best in the cross-
problem comparison, and the double tournament selection [72]
performed the second best. However, the conclusions obtained
in [31] are purely empirical.

GP tree simplification methods are an alternative for tree
size reduction. Hooper et al. [73] utilised the expression sim-
plification to simplify the trees. Their simplification method
employed over 200 simplification rules to simplify an ex-
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pression. To speed up the simplification process, Zhang and
Wong et al. [33]–[36] proposed the use of algebraic tree
simplification with the hashing techniques. However, these
algebraic methods cannot detect all kind of redundancies [74].
It can easily simplify the expression A − A to 0. However,
A + 10−100 cannot be simplified to A directly, although
10−100 does not play any significant role in the final output.
In addition to the algebraic approach, Kinzett [37] and Song
et al. [38] proposed numerical simplification methods. These
methods are based on the local effect of a subtree. Kinzett et al.
[37] removed a node or a subtree if its numerical contribution
is smaller than a predefined threshold. Song et al. [38] replaced
the parent node with its child node if the difference between
their outputs is below a predefined threshold.

In summary, most GP simplification methods can only
detect redundancies based on genotypic information (con-
tribution of the genotypic subtrees) rather than phenotypic
information (output of the whole GP tree). Thus, many redun-
dancies will still exist. Also, they require manually selected
simplification rules or predefined threshold parameter. The
final test performance is highly sensitive to these parameters.
It is hard to set these parameters properly. This paper attempts
to deal with the above issues by proposing a novel GPHH with
phenotypic simplification using niching.

III. THE PROPOSED GPHH-N

A. Overall Framework

The overall framework of GPHH-N is shown in Fig. 1.
Firstly, a population of routing policies (each represented as a
GP tree) is initialised randomly. Then, the routing policies
are evaluated at each generation based on their simulation
performance (total cost). If the stopping criteria are not
reached, the population undergoes the evolutionary process. In
the evolutionary process, routing policies are first simplified by
the niching simplification. Details of the niching simplification
will be given in Section III-D. After that, the smallest tree
in each niche is considered the niche representative and is
stored in a representative archive. The niching elitism and
niching tournament selection are then applied to both the
original population and representative archive to produce
offspring. The niching elitism selects diverse trees for the
next generation. It will be described in Section III-E. The
newly developed niching tournament selection can ensure that
diverse parents are selected from the simplified population.
Details will be discussed in Section III-F. The multi-source
breeding process selects parents from both the original and
simplified populations so that the simplified blocks are not
completely lost. We will describe its details in Section III-G.
The relationship between the population and representative
archive and how the newly proposed operations update them
are shown in Fig. 2.

B. Individual Representation

In this paper, each routing policy is represented as a priority
function. The priority function is a combination of the state
features, such as the cost from the current location to the
candidate task (CFH) and the cost from the candidate task

Fig. 1. The overall Framework of GPHH-N

Fig. 2. The illustration of the offspring generation in GPHH-N.

to the depot (CTD). For example, if the priority function is
“CFH + CTD”, as shown in Fig. 3, the priority function tends
to select tasks that are closer to the current location and also
closer to the depot. The routing policy works as a decision-
maker during the solution construction process. Typically,
each vehicle can only serve one task at a time. The routing
policy will be applied to each unserved task to determine each
unserved task’s priority once a vehicle completes its current
task and is ready to serve the next task. The task with the
best priority value will be served next. The decision process
finishes when all the tasks have been served and the routes
returned as the solution constructed by the routing policy.

C. Fitness Evaluation

Given a routing policy rp, the fitness is defined based on the
average quality (i.e. total cost) of the routes that it generates.
Specifically,

fit(rp) =
1

|S ′|
∑
s∈S′

tc(rp, s), (9)

where S ′ is a set of instance samples, |S ′| is the number
of instance samples. tc(rp, s) stands for the total cost of the
solution obtained by rp on instance sample s. The solution is
constructed based on a simulation process that is commonly
used in UCARP literature [23], [29]. Algorithm 1 shows the
fitness evaluation in GPHH-N.

One can see that each routing policy is applied as a priority
(heuristic) function. When a vehicle is ready (at a decision-
making point), a routing policy is applied to determine which
candidate task to serve next. The quality of each routing policy
can be evaluated by applying it to a set of training samples
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+

CFH CTD

Fig. 3. An example of GP tree.

Algorithm 1: The fitness evaluation in GPHH-N.
Input: Training set Strain, An unevaluated population pop
Output: An evaluated population pop

1 Randomly sample a training subset S′ ⊆ Strain;
// Evaluate pop using S′

2 for each routing policy rp ∈ pop do
// Evaluate rp

3 for each training sample s ∈ S′ do
4 while tasks in queue is not empty do
5 if vehicle is ready then
6 Select which task to serve using rp;
7 end
8 end
9 Get the total cost of the generated solution, i.e. tc(rp, s);

10 end
11 Calculate fit(rp) using Eq. (9);
12 end
13 return evaluated population pop;

S ′. A solution can be constructed using the routing policy on
a training sample s ∈ S ′.

We randomly re-sample a subset of training samples for
the fitness evaluation (line 1). Such sample rotation has been
commonly used in other studies [20], [75] to improve the
generalisation of the evolved heuristics.

D. Niching Simplification
The niching simplification method is shown in Algorithm 2.

It firstly places the trees with the same phenotype into the same
niche. Then, each niche identifies the tree with the smallest
tree size (number of nodes in the tree) in the niche as the
niche representative, and replaces all the other trees with this
representative. If there are multiple trees with the smallest tree
size, the first identified tree is chosen as the representative.
In this way, each niche is represented by a tree with the
smallest tree size under the same phenotype. Fig. 4 shows
two trees with the same phenotype but different tree sizes.
Tree A can be hardly simplified to Tree B by the algebraic
or the numerical simplification method. However, Tree A can
be easily simplified to Tree B by the niching simplification
approach.

Note that fitness is used as a high-level phenotypic be-
haviour of a GP individual. This is a specific design for
GPHH for UCARP, since our preliminary study has shown
that many routing policies have different tree structures but
the same fitness value. Although we can use other more
precise phenotypic characterisations such as the structure of
the obtained routes for a given instance, or the phenotypic
vector [76], the fitness-based characterisation is shown to be
effective enough empirically, and is very efficient to compute.

E. Niching Elitism
Elitism is used in GP to avoid losing the previously found

best individuals. In the traditional elitism scheme, we directly

Algorithm 2: The niching simplification.
Input: Original Population pop
Output: Original Population pop, Simplified Population pop′,

Representative Archive archive
1 Initialise archive = ∅ ;
2 for each routing policy rp ∈ pop do
3 inNiche(rp) = false ;
4 end
5 for each routing policy rp ∈ pop do
6 if inNiche(rp) == true then
7 continue ;
8 end
9 Create a new niche = {rp};

10 Set inNiche(rp) = true;
11 for each routing policy rp′ ∈ pop do
12 if fit(rp′) equals to fit(rp) then
13 Add rp′ to niche;
14 Set inNiche(rp′) = true;
15 end
16 end
17 Find out the individual with smallest tree size inds in niche;
18 Add inds to archive;
19 Replace all other individuals in the niche with inds;
20 end
21 return pop, pop′ and archive;

copy the best individuals (e.g. the top 10 individuals in
terms of fitness) from the population to the next generation.
However, this will lead to a significant loss of diversity after
the niching simplification since all the best individuals might
come from the same niche. We propose a niching elitism
scheme to address this issue, which selects the elitists only
from the representative archive to maintain diversity. Firstly,
the archive is sorted based on the fitness value. Then, top
individuals are returned, and they can survive to the next
generation.

F. Niching Tournament Selection

In GP, the parents are typically selected by tournament
selection. In GPHH-N, each niche can contain many individ-
uals with identical (good) fitness, and traditional tournament
selection tends to select identical parents. To avoid such a loss
of diversity, we modified the tournament selection operator.
The new niching tournament selection selects only from the
representative archive so that the parents for crossover are
more likely to be different. We set the probability of selecting a
representative proportional to its niche size using the following
equation,

P (repi) =
Hα
i∑N

i=1H
α
i

, α ∈ [0, 1] (10)

where Hi stands for the number of individuals in nichei,
N refers to the total number of niches. α (0 ≤ α ≤ 1)
is a parameter to control the balance between exploration
and exploitation. When α equals 1, the niching tournament
selection becomes the traditional tournament selection, which
selects parents directly from the simplified population. On the
other hand, when α equals 0, each representative will have
the same probability of selection regardless of the number of
individuals in its niche. A parameter sensitivity analysis on α
will be given in Section IV-C1.
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(b) Tree B
Fig. 4. Two trees with the same fitness but different tree sizes.

G. Multi-source Breeding

The niching simplification process may lead to the loss
of the potential useful building blocks in the large trees. To
compensate for such loss, we design a multi-source breeding
scheme. The multi-source breeding produces offspring from
two sources, i.e. the original population and the representative
archive. Each source is used to produce half of the offspring
population. The pseudocode of the multi-source breeding is
shown in Algorithm 3. We breed offspring from two sources
so that each source will produce half of the population in the
next generation.

Algorithm 3: The multi-source breeding
Input: Original population pop, Representative archive archive,

population size S
Output: New population newpop

1 traditional elitism(pop);
2 while size(newpop) < S/2 do
3 Select parents from pop using

traditional tournament selection;
4 Generate an offspring by applying

(crossover/mutation/reproduction operators);
5 Add the offspring to newpop;
6 end
7 niching elitism(archive);
8 while size(newpop) < S do
9 Select parents from archive using

niching tournament selection;
10 Generate an offspring by applying

(crossover/mutation/reproduction operators);
11 Add the offspring to newpop;
12 end
13 return newpop;

IV. EXPERIMENTAL STUDIES

To verify the effectiveness of the proposed GPHH-N, we
compare it with the baseline GPHH (which evolves routing
policies using GPHH without any simplification methods)
[20], GPHH with the algebraic simplification (GPHH-A) [33].
Bloat control approaches are most commonly used to consider
both test performance and tree size in GP. In this case, we
compare our GPHH-N with three representative bloat control
approaches, i.e. Tarpeian, linear parametric parsimony pressure

Fig. 5. The training and test phases of a GP Run on a UCARP Instance.

(LPPP), double tournament (DT) in the literature [31]. The
comparisons are conducted within the scope of GP approaches.
First, the purpose of the experiments is to verify whether our
new GP algorithm can obtain both effective and small routing
policies. The tree size can only be compared with other GP
approaches. Second, the previous study [66] has already shown
that GPHH is a competitive approach for UCARP, which is
no worse than the state-of-the-art non-GP approaches such as
EDASLS [61].

For each UCARP instance, we randomly generate 500
training samples and 500 test samples by randomly sampling
the stochastic task demands and deadheading costs. The sam-
ples share the same graph topology of the UCARP instance
but different realised values for the stochastic demands and
deadheading costs.

A GP run on a UCARP instance contains training and test
phases. In the training phase, routing policies are trained on
500 training samples. These samples are split into 100 batches,
each containing 5 samples (S ′ in Eq. 9). A different batch is
used for the training in each of the 100 generations. The best
routing policy in the final population is returned as the trained
policy. In the test phase, the trained routing policy is tested on
the 500 test samples. The test performance of a routing policy
on the UCARP instance is defined as the average total cost
over the 500 test samples, calculated as follows.

TestPerf(rp) =
1

|Stest|
∑
s∈Stest

tc(rp, s), (11)

where Stest is the test set, and |Stest| = 500 is the size of the
test set. Fig. 5 shows the training and test phases of one GP
run on one UCARP instance.
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TABLE I
THE TERMINAL SET IN THE EXPERIMENTS.

Terminal Description
CFH cost from the candidate task to the current location
CFD cost from the head node of the task to the depot
CFR1 cost from the closest other route to the candidate task
CTT1 cost from the candidate to its closest remaining task
CTD cost from the depot to the candidate task
CR cost from the depot to the current location

DEM expected demand of the candidate task
DEM1 demand of the closest unserved task to the candidate task

DC deadheading cost of the candidate task
FULL fullness (served demand over capacity) of the vehicle
FRT fraction of unserved tasks
FUT fraction of unassigned tasks
RQ remaining capacity of the vehicle

RQ1 remaining capacity of the closest alternative route
SC cost of serving the candidate task

ERC a random constant value

TABLE II
THE PARAMETER SETTING FOR THE COMPARED APPROACHES.

Parameter Value Parameter Value
Population size 1000 Crossover rate 80%
Generations 100 Mutation rate 15%
Tournament size 7 Reproduction rate 5%
Maximal depth 8 Training sample size (|S′|) 5 each generation
Elitism size 10 Test sample size 500

A. Dataset

In this paper, we use the Ugdb and Uval datasets, which
are commonly used in UCARP literature [20]–[23]. They are
extended from gdb and val which are well known static CARP
datasets. The instances in the gdb dataset are mostly small.
They contain at most 55 tasks that need to be served by at
most 5 vehicles. The val dataset contains instances with the
number of tasks ranging from 34 to 97 by at most 10 vehicles.

For each UCARP instance, the task demand d̄(t) and
traversal cost ς̄(e) are random variables. They are transformed
from the original task demand d(t) and traversal cost ς(e) from
the static CARP instance. The random variables are assumed
to follow the truncated normal distribution [20]–[22].

d̄(t) ∼ N (d(t),
d(t)

5
), ς̄(e) ∼ N (ς(e),

ς

5
). (12)

Any negative sampled task demand is set to 0, and any negative
sampled traversal cost is set to ∞, which means that the arc
becomes inaccessible.

B. Parameter Setting

The function set is set to {+,−,×, /,min,max}, where
the “/” operator returns 1 if divided by 0. The terminal set
is shown in Table I. Table II shows the parameter settings of
the GP algorithms compared in the experiments. The initiali-
sation method of the population for all compared algorithms
is Ramped Half-and-Half. All these parameter settings are
commonly used in the GPHH literature [20], [22], [66], [77]–
[79].

For the compared bloat control methods, the parameters are
set according to the literature [31]. The simplification rules for
GPHH-A are set according to the literature [33].

TABLE III
THE WIN-DRAW-LOSE TABLE FOR THE PAIRWISE COMPARISONS

BETWEEN DIFFERENT α VALUES IN TERMS OF TEST PERFORMANCE.

Approach GPHH-N-1.0 GPHH-N-0.5 GPHH-N-0.0
GPHH-N-1.0 0-29-28 1-20-36
GPHH-N-0.5 28-29-0 2-50-5
GPHH-N-0.0 36-20-1 5-50-2

TABLE IV
THE WIN-DRAW-LOSE TABLE FOR THE PAIRWISE COMPARISONS

BETWEEN DIFFERENT α VALUES IN TERMS OF TREE SIZE.

Approach GPHH-N-1.0 GPHH-N-0.5 GPHH-N-0.0
GPHH-N-1.0 57-0-0 57-0-0
GPHH-N-0.5 0-0-57 55-0-2
GPHH-N-0.0 0-0-57 2-0-55

We use Evolutionary Computation Java (ECJ) package [80]
to implement all the algorithms. For each UCARP instance,
each compared algorithm is run 30 times independently (each
run trains a routing policy on the 500 training samples, and
then test it on the 500 test samples).

C. Results and Discussions

We compared the algorithms using the Wilcoxon rank sum
test with the significance level of 0.05. In the tables, “+”, “-
” or “=” next to each compared algorithm indicates that the
compared algorithm performed statistically significantly better
than, worse than, or comparable to GPHH-N.

1) Parameter Sensitive analysis on α: The parameter α
is important in balancing exploration and exploitation in the
niching tournament selection. To set the α value, we compared
the GPHH-N with 3 different α values, i.e. 0, 0.5 and 1.

Tables III and IV show the results of the pairwise com-
parison among GPHH-N-0.0, GPHH-N-0.5 and GPHH-N-
1.0. Each entry is represented in the Win-Draw-Lose format.
Win (Lose) indicates the number of instances where the row
approach performs significantly better (worse) than the column
approach. Draw indicates the number of instances where the
two approaches show no significant difference. Table III shows
the results in terms of the test performance, and Table IV
shows the results in terms of the tree size. From Table III, we
can see that both GPHH-N-0.0 and GPHH-N-0.5 achieved the
best test performance among the compared algorithms. From
Table IV, GPHH-N-0.5 achieved significantly smaller tree size
than GPHH-N-0.0. Overall, GPHH-N-0.5 is the best in terms
of the test performance and the tree size.

Fig. 6 shows the scatter plot of GPHH-N with different
α values on a representative instance Uval2B. Each shape
represents the mean tree size and test performance of the 30
independent runs. We can see that GPHH-N-0.5 and GPHH-
N-0.0 achieved much better test performance than GPHH-N-
1.0. In addition, GPHH-N-0.5 obtained a much smaller tree
size than GPHH-N-0.0. Therefore, α = 0.5 is used in the
subsequent experiments.

2) Test Performance: Tables V and VI show the mean
and standard deviation for the test performance over the 30
independent runs on Ugdb and Uval instances.
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TABLE V
THE MEAN AND STANDARD DEVIATION FOR TEST PERFORMANCE OF COMPARED APPROACHES ON THE UGDB INSTANCES OF 30 RUNS.

Instance GPHH GPHH-A Tarpeian DT LPPP GPHH-N
Ugdb1 351.25(14.66)(-) 352.1(12.22)(-) 360.34(15.85)(-) 359.03(24.37)(-) 360.89(8.73)(-) 344.12(6.23)
Ugdb2 367.73(4.77)(=) 369.51(12.19)(=) 374.35(9.26)(-) 369.88(6.38)(-) 383.72(10.26)(-) 367.49(13.31)
Ugdb3 307.03(2.87)(=) 306.35(3.1)(=) 308.69(2.55)(=) 307.03(4.3)(=) 312.42(5.27)(-) 307.63(3.64)
Ugdb4 324.9(6.42)(=) 321.95(3.08)(+) 325.91(3.15)(-) 322.87(4.33)(=) 329.18(10.06)(-) 323.43(4.13)
Ugdb5 422.17(6.09)(=) 426.57(15.3)(=) 429.59(8.93)(-) 425.49(9.32)(-) 450.11(14.66)(-) 422.22(13.32)
Ugdb6 344.3(8.37)(-) 344.9(9.11)(-) 359.26(7.17)(-) 342.51(6.46)(-) 362.24(0.0)(-) 337.6(5.27)
Ugdb7 353.24(4.41)(-) 352.58(3.67)(=) 359.59(0.68)(-) 354.95(4.05)(-) 359.85(0.0)(-) 351.68(4.68)
Ugdb8 430.79(8.16)(-) 436.28(37.62)(-) 439.64(11.37)(-) 427.71(7.06)(=) 451.64(13.39)(-) 425.96(5.95)
Ugdb9 389.02(9.86)(-) 387.8(9.17)(-) 397.22(10.41)(-) 392.48(14.55)(-) 408.01(13.95)(-) 380.47(10.02)
Ugdb10 293.0(7.22)(=) 293.75(7.29)(=) 298.22(5.56)(-) 293.79(7.58)(=) 298.7(2.09)(-) 291.47(7.01)
Ugdb11 433.32(8.52)(-) 435.88(6.31)(-) 446.76(7.19)(-) 437.03(6.03)(-) 446.48(4.31)(-) 429.82(11.32)
Ugdb12 604.8(17.36)(=) 606.66(15.48)(=) 618.57(13.27)(-) 604.82(18.0)(=) 622.06(15.8)(-) 604.19(13.94)
Ugdb13 577.11(8.53)(=) 580.12(9.02)(=) 586.62(8.97)(-) 578.01(6.93)(=) 599.42(15.69)(-) 574.93(7.15)
Ugdb14 107.02(1.31)(=) 110.24(12.68)(=) 108.25(1.59)(-) 107.75(2.58)(=) 117.81(2.88)(-) 106.8(1.27)
Ugdb15 58.34(0.81)(=) 58.26(0.19)(-) 58.26(0.24)(-) 58.27(0.41)(=) 62.01(0.0)(-) 58.11(0.09)
Ugdb16 134.52(0.55)(=) 134.64(0.09)(=) 134.51(0.07)(+) 134.61(0.11)(=) 134.47(0.0)(+) 134.91(1.92)
Ugdb17 91.47(1.9)(-) 91.08(0.12)(+) 91.23(0.09)(=) 91.18(0.46)(+) 93.82(0.48)(-) 91.29(0.35)
Ugdb18 167.49(1.77)(-) 167.62(3.06)(-) 168.81(2.19)(-) 168.18(5.61)(-) 180.78(5.52)(-) 166.06(0.92)
Ugdb19 63.29(1.61)(=) 64.16(1.47)(=) 63.95(1.61)(=) 63.66(1.56)(=) 67.81(1.07)(-) 63.63(1.41)
Ugdb20 127.09(1.57)(=) 127.19(1.53)(=) 128.85(2.05)(-) 128.0(4.57)(=) 137.31(0.0)(-) 126.67(2.16)
Ugdb21 164.74(2.27)(-) 167.54(17.58)(-) 166.29(2.96)(-) 165.35(2.82)(-) 181.52(5.49)(-) 163.25(1.58)
Ugdb22 210.11(2.22)(-) 209.26(1.38)(=) 211.01(3.61)(-) 209.28(1.69)(=) 221.46(2.44)(-) 209.09(1.94)
Ugdb23 250.62(2.98)(-) 251.07(4.16)(-) 251.66(2.49)(-) 249.52(1.86)(-) 258.34(6.08)(-) 247.73(2.13)
Average 285.80 286.76 290.76 286.58 297.39 283.85

TABLE VI
THE MEAN AND STANDARD DEVIATION FOR TEST PERFORMANCE OF COMPARED APPROACHES ON THE UVAL INSTANCES OF 30 RUNS.

Instance GPHH GPHH-A Tarpeian DT LPPP GPHH-N
Uval1A 175.43(2.73)(=) 176.47(3.33)(-) 180.75(2.32)(-) 176.51(6.15)(=) 188.73(6.65)(-) 174.37(1.71)
Uval1B 184.2(2.73)(=) 183.87(1.46)(=) 185.65(2.44)(-) 183.74(1.3)(=) 190.04(3.09)(-) 183.69(1.29)
Uval1C 311.93(10.22)(-) 313.69(10.77)(-) 318.29(5.53)(-) 314.01(9.08)(-) 328.39(5.82)(-) 306.5(12.67)
Uval2A 228.68(1.7)(=) 229.37(3.36)(=) 230.97(3.46)(=) 229.06(2.77)(=) 237.65(4.18)(-) 229.25(2.48)
Uval2B 276.49(4.06)(-) 277.95(4.12)(-) 279.74(5.18)(-) 278.63(3.25)(-) 293.33(15.04)(-) 274.2(3.36)
Uval2C 593.34(23.87)(-) 592.11(16.74)(-) 618.37(26.69)(-) 593.6(22.97)(-) 615.61(14.72)(-) 585.09(32.83)
Uval3A 82.18(1.47)(=) 82.44(1.32)(=) 82.36(0.91)(-) 83.63(4.19)(=) 88.37(2.15)(-) 81.97(0.66)
Uval3B 96.04(2.22)(-) 97.13(2.39)(-) 100.0(3.71)(-) 95.91(1.7)(-) 101.36(0.67)(-) 94.09(1.45)
Uval3C 176.45(7.56)(-) 176.18(5.65)(-) 177.49(7.76)(-) 175.66(5.63)(-) 191.54(14.79)(-) 171.31(4.22)
Uval4A 420.29(9.25)(-) 419.32(6.39)(-) 426.99(18.41)(-) 418.89(6.68)(-) 430.38(9.0)(-) 415.05(3.25)
Uval4B 440.85(5.92)(-) 440.07(5.77)(=) 449.25(12.83)(-) 441.81(7.28)(-) 452.09(10.8)(-) 437.64(4.84)
Uval4C 490.73(12.69)(-) 487.45(10.77)(-) 496.52(11.98)(-) 488.95(12.07)(-) 502.05(11.07)(-) 481.42(7.47)
Uval4D 699.52(32.49)(-) 699.17(41.57)(-) 723.26(32.38)(-) 694.53(30.51)(-) 726.66(39.43)(-) 679.62(24.65)
Uval5A 440.36(3.98)(-) 441.58(4.16)(-) 444.51(4.6)(-) 439.69(5.3)(=) 450.26(4.75)(-) 437.46(4.75)
Uval5B 469.81(5.51)(-) 469.55(5.51)(-) 477.66(12.84)(-) 473.99(20.39)(-) 480.97(11.09)(-) 465.81(4.25)
Uval5C 513.04(5.46)(-) 514.82(8.29)(-) 518.32(7.1)(-) 514.65(7.88)(-) 531.0(12.04)(-) 508.33(4.32)
Uval5D 723.04(14.21)(=) 725.36(27.47)(=) 750.36(24.91)(-) 724.44(16.5)(=) 749.13(25.04)(-) 720.0(14.98)
Uval6A 229.0(2.36)(=) 230.67(10.98)(=) 229.39(2.19)(-) 228.69(2.95)(=) 232.31(5.11)(-) 228.36(2.89)
Uval6B 257.32(3.71)(=) 257.53(4.5)(=) 259.23(3.15)(-) 256.1(3.5)(=) 266.56(9.88)(-) 255.71(4.6)
Uval6C 400.99(11.4)(-) 403.55(12.32)(-) 422.21(22.31)(-) 402.19(11.42)(-) 428.03(23.79)(-) 395.1(8.26)
Uval7A 289.74(15.08)(=) 294.17(20.28)(-) 289.73(5.6)(-) 288.03(9.94)(=) 298.57(6.06)(-) 287.14(10.39)
Uval7B 293.51(8.59)(=) 298.33(20.17)(-) 297.86(8.31)(-) 293.96(6.33)(-) 308.95(9.0)(-) 289.62(5.3)
Uval7C 405.06(6.32)(=) 404.95(8.67)(=) 415.7(18.46)(-) 405.42(8.09)(=) 414.11(11.49)(-) 402.77(5.21)
Uval8A 398.75(8.67)(-) 400.7(18.68)(-) 398.24(2.34)(-) 397.08(1.84)(-) 404.15(4.65)(-) 396.17(4.7)
Uval8B 426.22(6.28)(-) 425.1(5.71)(-) 432.02(10.94)(-) 425.21(6.16)(-) 437.98(6.99)(-) 421.27(4.98)
Uval8C 664.62(19.93)(-) 662.56(18.46)(-) 682.25(15.4)(-) 657.38(14.87)(=) 688.07(15.69)(-) 651.12(18.18)
Uval9A 333.75(3.75)(-) 335.02(6.79)(-) 336.69(3.47)(-) 333.52(2.04)(-) 342.35(6.31)(-) 330.88(2.36)
Uval9B 348.89(4.77)(-) 349.08(4.68)(-) 351.79(4.28)(-) 349.35(4.07)(-) 356.58(5.8)(-) 345.14(4.46)
Uval9C 363.89(6.27)(-) 364.33(4.45)(-) 369.69(6.37)(-) 361.15(4.06)(=) 373.94(5.01)(-) 360.36(5.16)
Uval9D 476.86(10.82)(-) 475.31(9.89)(=) 486.36(18.25)(-) 478.3(12.22)(-) 491.21(9.41)(-) 469.8(12.01)
Uval10A 439.33(4.74)(=) 441.52(19.54)(-) 441.37(4.74)(-) 438.55(3.63)(=) 458.51(20.73)(-) 436.58(1.09)
Uval10B 458.65(7.58)(-) 459.46(5.03)(-) 461.27(4.45)(-) 458.54(4.98)(-) 471.01(17.59)(-) 453.76(4.0)
Uval10C 479.37(6.92)(-) 478.5(6.38)(-) 482.29(6.73)(-) 478.85(5.93)(-) 485.69(10.49)(-) 474.86(6.0)
Uval10D 622.17(16.77)(=) 619.15(6.68)(=) 623.39(23.78)(=) 619.56(7.05)(=) 628.2(10.06)(-) 620.74(15.32)
Average 388.54 389.01 395.29 388.22 401.29 384.27

On the Ugdb dataset, we can see that GPHH-N significantly
outperformed all the compared algorithms. It performed signif-
icantly better than GPHH on 11 out of 23 instances and never
performed worse than GPHH. Besides, GPHH-N significantly

outperformed GPHH-A on 9 out of 23 instances while was
defeated by GPHH-A on only 2 instances. GPHH-N performed
significantly better than Tarpeian on 19 out of 23 instances
and slightly worse on only 1 instance. GPHH-N was defeated
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TABLE VII
THE MEAN AND STANDARD DEVIATION FOR TREE SIZE OF ROUTING POLICIES OF THE COMPARED ALGORITHMS ON UGDB INSTANCES OF 30 RUNS.

Instance GPHH GPHH-A Tarpeian DT LPPP GPHH-N
Ugdb1 83.0(21.64)(-) 74.8(19.29)(-) 21.4(12.68)(+) 83.2(25.28)(-) 7.47(3.14)(+) 50.0(16.13)
Ugdb2 88.2(23.16)(-) 62.87(14.11)(-) 24.13(10.46)(+) 81.67(21.61)(-) 8.67(3.45)(+) 51.33(20.92)
Ugdb3 69.13(23.69)(-) 63.67(19.22)(-) 18.8(10.18)(+) 73.93(25.56)(-) 6.53(1.25)(+) 34.13(17.46)
Ugdb4 66.0(28.63)(-) 65.6(30.39)(-) 16.27(7.6)(+) 64.8(21.08)(-) 8.47(3.86)(+) 45.2(16.53)
Ugdb5 80.6(19.27)(-) 70.13(20.0)(-) 25.13(11.31)(+) 91.87(23.2)(-) 7.0(3.06)(+) 49.47(23.74)
Ugdb6 66.13(16.19)(-) 57.67(18.81)(-) 8.8(19.42)(+) 72.47(24.81)(-) 1.0(0.0)(+) 41.73(17.74)
Ugdb7 43.4(17.63)(-) 35.07(20.06)(=) 2.13(2.81)(+) 44.13(17.97)(-) 1.0(0.0)(+) 32.73(14.35)
Ugdb8 62.33(19.67)(=) 65.33(16.77)(=) 26.27(15.83)(+) 79.8(27.69)(-) 8.27(4.15)(+) 65.0(21.69)
Ugdb9 66.53(21.91)(=) 67.4(20.17)(=) 24.27(16.46)(+) 68.2(18.71)(=) 8.4(3.9)(+) 69.27(20.43)
Ugdb10 64.6(21.4)(-) 60.87(20.74)(-) 14.4(13.52)(+) 63.13(22.69)(-) 5.13(0.51)(+) 29.93(18.77)
Ugdb11 51.27(31.21)(=) 54.6(17.94)(-) 8.73(12.02)(+) 54.53(18.23)(-) 1.73(2.32)(+) 38.67(15.1)
Ugdb12 75.0(20.6)(-) 66.33(17.07)(-) 25.13(11.87)(+) 85.53(28.04)(-) 14.0(4.54)(+) 48.47(17.08)
Ugdb13 69.4(22.05)(-) 66.0(19.76)(-) 17.13(6.39)(+) 64.07(20.08)(=) 8.47(2.97)(+) 54.27(20.55)
Ugdb14 80.4(26.39)(-) 62.13(16.87)(-) 20.33(9.6)(+) 75.53(22.11)(-) 1.53(1.38)(+) 42.53(24.73)
Ugdb15 96.0(30.83)(-) 71.07(32.92)(-) 21.07(12.3)(=) 91.33(39.31)(-) 1.0(0.0)(+) 22.8(16.04)
Ugdb16 19.0(17.62)(=) 10.27(5.52)(=) 2.67(4.07)(+) 28.0(14.86)(-) 1.0(0.0)(+) 20.6(22.37)
Ugdb17 85.73(35.77)(-) 55.67(20.89)(-) 10.87(18.69)(+) 80.47(41.31)(-) 1.07(0.37)(+) 31.53(36.35)
Ugdb18 80.07(29.18)(-) 75.4(25.14)(-) 25.0(13.54)(+) 92.87(36.2)(-) 5.33(2.58)(+) 47.2(23.31)
Ugdb19 71.8(27.87)(-) 71.87(33.84)(-) 16.27(14.05)(+) 74.33(31.86)(-) 1.4(0.81)(+) 26.47(17.58)
Ugdb20 78.93(28.74)(-) 63.53(20.6)(-) 19.8(14.16)(+) 85.53(31.95)(-) 1.0(0.0)(+) 41.27(19.22)
Ugdb21 81.07(32.49)(-) 67.53(19.86)(-) 20.6(9.53)(+) 79.8(31.31)(-) 2.73(2.77)(+) 53.6(25.61)
Ugdb22 80.87(26.72)(-) 67.33(15.09)(-) 23.07(9.24)(+) 78.87(22.34)(-) 1.4(1.22)(+) 55.47(17.49)
Ugdb23 81.33(28.09)(=) 71.13(20.14)(=) 24.73(12.65)(+) 81.2(20.73)(=) 5.4(2.54)(+) 73.2(26.88)
Average 71.33 62.01 18.13 73.70 4.70 44.56

TABLE VIII
THE MEAN AND STANDARD DEVIATION FOR TREE SIZE OF ROUTING POLICIES OF THE COMPARED ALGORITHMS ON UVAL INSTANCES OF 30 RUNS.

Instance GPHH GPHH-A Tarpeian DT LPPP GPHH-N
Uval1A 68.2(24.45)(-) 66.0(26.61)(-) 11.33(6.1)(+) 77.47(27.33)(-) 3.73(2.55)(+) 29.0(19.81)
Uval1B 67.0(20.1)(-) 58.8(15.63)(-) 18.73(9.26)(=) 67.6(22.71)(-) 6.53(2.21)(+) 23.2(10.11)
Uval1C 69.13(20.58)(=) 65.27(25.22)(=) 24.4(12.68)(+) 82.67(29.53)(=) 8.4(3.45)(+) 69.73(14.58)
Uval2A 73.07(29.08)(-) 69.67(21.98)(-) 19.87(8.27)(=) 76.4(29.6)(-) 7.53(1.66)(+) 31.27(27.17)
Uval2B 73.2(23.7)(-) 72.67(22.92)(-) 19.67(9.93)(+) 76.27(30.29)(-) 6.93(4.05)(+) 33.67(23.4)
Uval2C 81.73(31.01)(=) 64.2(24.4)(=) 23.0(11.72)(+) 68.67(20.69)(=) 13.33(6.06)(+) 72.2(19.26)
Uval3A 72.2(25.59)(-) 65.6(22.63)(-) 27.6(12.87)(+) 77.33(24.2)(-) 5.6(1.19)(+) 36.73(15.87)
Uval3B 68.87(32.24)(-) 67.13(25.94)(-) 11.87(8.92)(+) 72.47(19.43)(-) 3.13(0.51)(+) 41.07(19.93)
Uval3C 75.6(19.26)(-) 69.67(17.05)(=) 27.13(12.94)(+) 84.67(36.86)(-) 8.0(3.35)(+) 63.6(18.07)
Uval4A 68.27(22.76)(-) 68.33(22.54)(-) 22.27(11.54)(+) 76.73(25.47)(-) 8.13(2.45)(+) 47.2(16.13)
Uval4B 72.53(20.41)(-) 60.93(19.11)(=) 25.67(13.97)(+) 70.6(20.15)(-) 11.47(3.95)(+) 54.33(19.05)
Uval4C 68.8(19.02)(=) 66.87(21.05)(=) 26.6(10.54)(+) 77.2(23.41)(-) 12.6(3.12)(+) 64.33(19.84)
Uval4D 66.8(22.98)(=) 66.6(19.79)(=) 29.2(12.65)(+) 70.67(23.35)(=) 16.8(8.78)(+) 70.4(18.52)
Uval5A 68.33(20.16)(-) 68.4(20.92)(-) 21.87(10.14)(+) 68.53(19.31)(-) 6.87(2.4)(+) 40.47(16.47)
Uval5B 84.8(33.43)(-) 70.07(23.32)(-) 28.27(14.21)(+) 80.53(29.0)(-) 10.4(3.57)(+) 52.67(17.61)
Uval5C 63.67(18.48)(-) 60.67(24.65)(-) 21.07(10.3)(+) 64.8(21.97)(-) 11.0(4.39)(+) 46.87(17.08)
Uval5D 70.93(20.65)(=) 64.8(19.2)(=) 19.73(9.73)(+) 72.6(23.76)(=) 12.47(5.12)(+) 66.33(15.85)
Uval6A 77.87(25.58)(-) 73.87(28.8)(-) 23.47(11.79)(+) 74.33(24.76)(-) 9.53(3.6)(+) 39.87(14.09)
Uval6B 74.27(23.92)(-) 62.0(18.58)(-) 22.8(10.28)(+) 71.6(17.94)(-) 9.67(3.8)(+) 47.13(17.4)
Uval6C 66.67(21.32)(=) 63.93(19.06)(=) 26.27(12.54)(+) 74.07(20.5)(-) 9.73(6.23)(+) 63.67(16.71)
Uval7A 73.07(25.02)(-) 67.4(22.51)(-) 27.27(16.71)(+) 76.93(17.78)(-) 10.13(2.91)(+) 40.07(22.85)
Uval7B 74.6(22.3)(-) 66.87(22.17)(-) 22.0(8.55)(+) 80.07(25.13)(-) 10.33(4.28)(+) 37.67(15.57)
Uval7C 73.67(21.13)(=) 64.6(15.24)(=) 25.53(10.94)(+) 75.47(21.46)(-) 14.4(5.07)(+) 63.8(23.58)
Uval8A 70.07(18.06)(-) 65.13(18.99)(-) 24.87(21.78)(+) 66.6(18.44)(-) 7.47(1.87)(+) 43.33(17.63)
Uval8B 68.33(22.62)(-) 63.13(20.36)(-) 18.4(12.87)(+) 66.33(20.56)(-) 7.0(3.28)(+) 45.87(15.9)
Uval8C 73.6(18.66)(-) 68.53(19.25)(=) 27.73(14.53)(+) 71.2(21.27)(=) 14.93(4.65)(+) 62.07(16.31)
Uval9A 68.67(19.55)(-) 70.33(21.3)(-) 22.2(10.99)(+) 69.47(22.59)(-) 8.27(3.3)(+) 48.67(20.53)
Uval9B 60.4(17.84)(=) 64.67(20.89)(=) 25.33(12.55)(+) 69.2(21.97)(-) 7.87(2.27)(+) 53.8(21.86)
Uval9C 69.2(30.56)(=) 55.73(15.96)(=) 24.33(14.18)(+) 84.13(29.38)(-) 8.2(3.18)(+) 61.0(17.9)
Uval9D 80.73(30.09)(-) 76.2(22.81)(-) 29.33(12.95)(+) 77.8(24.92)(-) 14.87(3.48)(+) 62.07(15.83)
Uval10A 62.73(18.84)(-) 58.0(19.28)(-) 22.13(12.39)(+) 62.13(23.1)(-) 5.87(3.14)(+) 38.2(19.19)
Uval10B 70.87(21.73)(-) 60.73(21.42)(=) 21.73(11.71)(+) 68.4(22.21)(-) 8.73(4.06)(+) 56.27(20.32)
Uval10C 65.73(18.13)(-) 63.2(17.34)(=) 26.27(12.64)(+) 70.4(18.58)(-) 8.53(2.81)(+) 55.07(15.14)
Uval10D 67.8(20.45)(=) 66.07(22.53)(=) 31.27(14.69)(+) 77.4(21.98)(-) 16.33(4.4)(+) 63.93(21.05)
Average 70.93 65.77 23.51 73.55 9.55 50.76

by DT on only 1 instance. However, it outperformed DT on
10 out of 23 instances. GPHH-N outperformed LPPP on all
the instances except Ugdb16. On average, GPHH-N (283.85)
performed the best among all the compared approaches on the

Ugdb dataset.

The same pattern can be observed for the Uval dataset.
GPHH-N significantly outperformed GPHH on 22 out of 34 in-
stances while never performed worse. GPHH-N outperformed
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Fig. 6. Scatter plot of GPHH-N with different α value on Uval2B

GPHH-A on 24 instances while showed comparable results
on the remaining 10 instances. GPHH-N beat Tarpeian on
32 out of 34 instances but never showed significantly worse
test performance. GPHH-N also significantly outperformed
DT on 20 out of 34 instances and showed comparable test
performance on the other instances. GPHH-N beat LPPP on
all the instances. The average test performance of GPHH-N
(384.27) is better than all the other approaches.

3) Tree Size: Tables VII and VIII show the mean and
standard deviation for the tree size of routing policies of the
compared algorithms on Ugdb and Uval instances.

In Table VII, we can see that GPHH-N can evolve much
smaller routing policies than GPHH on 18 out of 23 instances
on the Ugdb dataset. GPHH-N can also obtain smaller routing
policies than GPHH-A on 18 out of 23 instances. In Table VIII,
the results are consistent with that in Table VII. GPHH-N can
evolve much smaller routing policies than GPHH on 24 out of
34 instances on the Uval dataset. It can evolve much smaller
routing policies than GPHH-A on 19 out of 34 instances.

Note that Tarpeian and LPPP achieved much smaller routing
policies on both datasets. However, their test performance is
much worse than GPHH-N in most instances. The tree size
of routing policies evolved by DT is comparable with that
in GPHH on both datasets. This is because DT firstly selects
the parents based on the fitness and then considers the tree
size. Thus, if all the good individuals selected from the first
tournament selection are large, there is no chance to select
small individuals in the second tournament selection process.
Overall, GPHH-N performed well on the tree size, which is
expected, as it can effectively remove redundant components
in GP trees.

4) Test Performance vs Tree Size: To show the results more
clearly, we also plot the results in a scatter map, where the x-
axis is mean test performance on 30 independent runs and the
y-axis is the mean tree size. Fig. 7 shows the scatter plot on
Ugdb1 and Uval2B. Each compared algorithm is represented
as a single dot with a specific shape in each figure.

From Fig. 7, we can see that GPHH-N dominates all
the other methods except Tarpeian and LPPP, which achieve
smaller tree size but much worse test performance. Consider
that the test performance is relatively more important than the

TABLE IX
THE MEAN TRAINING TIME (SECONDS) OF THE COMPARED ALGORITHMS

ON UGDB AND UVAL DATASETS.

Dataset GPHH GPHH-A GPHH-N
Ugdb (Average) 1027.86 901.05 863.07
Uval (Average) 7794.32 7385.92 7178.14

TABLE X
THE WIN-DRAW-LOSE TABLE FOR THE CONTROLLED EXPERIMENTS
BETWEEN THE COMPARED ALGORITHMS AND GPHH-N IN TERMS OF

TEST PERFORMANCE.

v.s. no niching
elitism

v.s. no multi-
source breed-
ing

v.s. no niching
tournament
selection

W-D-L 1-55-1 15-42-0 28-29-0

tree size, we can see that GPNN-N is better than all the other
compared algorithms.

5) Training Time: Table IX shows the mean training time of
GPHH, GPHH-A and GPHH-N on Ugdb and Uval instances.
As expected, both GPHH-A and GPHH-N can significantly
reduce the training time on most instances. This is mainly
because the simplification operation can remove the redundant
components. The simplified routing policies need less time to
be evaluated. We can see that GPHH-N can further reduce
training time comparing with GPHH-A. This is mainly be-
cause GPHH-N can remove more redundant components than
GPHH-A and makes evolved trees smaller.

Overall, we can see obvious advantage of GPHH-N over
GPHH, GPHH-A and the compared bloat control methods.
GPHH-N can obtain better and smaller routing policies in a
shorter training time.

V. FURTHER ANALYSIS

A. Effect of Each Component

It has been shown that GPHH-N can evolve both better and
smaller routing policies. There are four main components in
GPHH-N. They are the niching simplification (Section III-D),
niching elitism scheme (Section III-E), niching tournament
selection (Section III-F) and multi-source breeding (Section
III-G). In order to verify the effectiveness of each component
of GPHH-N, we designed some controlled experiments. Due
to the page limit, we will present the experimental results in
the Win-Draw-Lose format. Win (Lose) indicates that GPHH-
N can significantly perform better (worse) than the compared
algorithm. Draw indicates that GPHH-N can achieve compa-
rable results with the compared algorithm. Table X shows the
results in terms of test performance and Table XI shows the
results in terms of the tree size of the evolved routing policies.

From Table X, one can see that the niching tournament
selection made the most contribution to GPHH-N in terms
of test performance. The test performance decreases on 28
out of 57 instances when niching tournament selection is not
used (using traditional tournament selection on the simplified
population instead). The multi-source breeding method can
make some contributions. The niching elitism does not play a
major role in improving the test performance.
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(a) Ugdb1 (b) Uval2B
Fig. 7. Scatter map of compared approaches on representative instances.

TABLE XI
THE WIN-DRAW-LOSE TABLE FOR THE CONTROLLED EXPERIMENTS
BETWEEN THE COMPARED ALGORITHMS AND GPHH-N IN TERMS OF

TREE SIZE.

v.s. no niching
elitism

v.s. no multi-
source breed-
ing

v.s no niching
tournament
selection

W-D-L 33-0-24 42-0-15 0-0-57

Fig. 8. Scatter map of controlled experiment on a representative instance
Uval2B

From Table XI, one can observe that the niching tournament
selection tends to increase the tree size. The niching tourna-
ment selection can improve the diversity of the parent selection
process and lead to better test performance. However, it will
also increase the tree size.

Fig. 8 shows the scatter plot of the GPHH-N with and
without different components. We can see that all the three
components are important in terms of test performance. We
can see that the dot of GPHH-N without niching tournament
selection is located at the bottom right area of the plot. This
indicates that niching tournament selection can improve the
test performance at the cost of larger tree size.

B. Semantic Analysis of Evolved Policies

To gain further understanding of the behaviour of the routing
policies, a representative routing policy is selected. Eqs. (13)
– (16) show a selected policy evolved by GPHH-N for the
Ugdb19 instance. The policy has a promising test performance
(63.39, while the mean test performance of GPHH-N is 63.63).
In addition, it has 21 nodes, which is much smaller than the
routing policies evolved by other algorithms with the similar
test performance.

RP = S1 + max(S2, S3) (13)

where
S1 = 2DEM + CFH − CTD (14)

S2 = DEM + CFH − CTD (15)

S3 = FUT +RQ−max(CFR1, CTT1) (16)

To make it easier to understand, we can also transform RP
to the following IF-ELSE format rule set.

if S2 ≥ S3 then
RP = 3DEM + 2CFH − 2CTD

else
if CFR1 > CTT1 then
RP = 2DEM+CFH−CTD+FUT+RQ−CFR1

else
RP = 2DEM+CFH−CTD+FUT+RQ−CTT1

end if
end if
We can identify the following patterns and interpretations

from the above rule set.
• When S2 ≥ S3, the RP becomes RP = 3DEM +

2CFH − 2CTD. There are two possible cases for S2 ≥
S3 to happen:

– S2 is large. This indicates that all the remaining
tasks have large demand, far away from the current
location of the vehicle and close to the depot;

– S3 is small. This indicates that there are not many
remaining tasks, the vehicle is almost full, and all
the remaining tasks have a large CFR1 and CTT1
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(they are far away from the other vehicles and each
other);

In these two cases, RP prefers the tasks with small
demands, close to the current location of the vehicle and
far away from the depot.

• Otherwise, S2 < S3 indicates that the remaining tasks can
have small demands, are close to the current location of
the vehicle, and far away from the depot, and the vehicle
is relatively empty. It also has two possible cases:

– CFR1 > CTT1, this indicates that the task is close
to some other tasks, but far away from other vehicles.
In this case, in addition to small demands, close
to the current location of the vehicle and far away
from the depot, RP also prefers the tasks with larger
CFR1, i.e. farther away from other vehicles;

– CFR1 < CTT1, this indicates the task is far away
from other tasks, but can be close to some other
vehicles. In this case, in addition to small demands,
close to the current location of the vehicle and far
away from the depot, RP also prefers the tasks with
larger CTT1, i.e. far away from other tasks. In other
words, RP prefers the isolated tasks towards the
beginning of the routes.

VI. CONCLUSIONS AND FUTURE WORK

The goal of this work was to evolve both effective and
smaller/simpler routing policies for UCARP. This goal has
been successfully achieved by the newly proposed novel
GPHH with a simplification approach using a niching tech-
nique (GPHH-N). GPHH-N was examined and compared with
the basic GPHH approach without simplification (GPHH), the
basic GPHH approach with algebraic simplification (GPHH-
A) and three representative bloat control methods on 57
UCARP instances. The results suggest that GPHH-N can
outperform all the compared approaches in terms of test per-
formance. GPHH-N can also outperform GPHH and GPHH-
A in terms of tree size and training time. We also analysed
the effect of the newly proposed components by a set of
controlled experiments. The results showed that all the three
new components could contribute to evolve smaller and bet-
ter routing policies. The niching tournament selection and
multi-source breeding components are more effective than
the niching elitism component. Overall, GPHH-N can obtain
better test performance and smaller and potentially more
interpretable routing policies than the current state-of-the-art
GPHH approach.

In the future, we will consider combining our approach
with other simplification approaches. In addition, we will
consider some other ways that can improve the interpretability
of evolved routing policies, such as Genetic programming
visualisation techniques and grammar-based Genetic Program-
ming. GPHH-N was developed for UCARP. However, it could
also be extended to evolve effective and simple heuristics
for other dynamic and uncertain problems such as dynamic
job shop scheduling by changing the fitness evaluation and
phenotypic characterisation for niching if necessary. We will
extend GPHH-N to other problems in our future work.
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