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Abstract—Subset selection is an interesting and important topic
in the field of evolutionary multi-objective optimization (EMO).
Especially, in an EMO algorithm with an unbounded external
archive, subset selection is an essential post-processing procedure
to select a pre-specified number of solutions as the final result. In
this paper, we discuss the efficiency of greedy subset selection for
the hypervolume, IGD and IGD+ indicators. Greedy algorithms
usually efficiently handle subset selection. However, when a large
number of solutions are given (e.g., subset selection from tens of
thousands of solutions in an unbounded external archive), they
often become time-consuming. Our idea is to use the submodular
property, which is known for the hypervolume indicator, to
improve their efficiency. First, we prove that the IGD and IGD+
indicators are also submodular. Next, based on the submodular
property, we propose an efficient greedy inclusion algorithm for
each indicator. Then, we demonstrate through computational
experiments that the proposed algorithms are much faster than
the standard greedy subset selection algorithms.

Index Terms—Evolutionary multi-objective optimization, evo-
lutionary many-objective optimization, subset selection, perfor-
mance indicators, submodularity.

I. INTRODUCTION

EVOLUTIONARY multi-objective optimization (EMO)
algorithms aim to optimize m potentially conflicting

objectives concurrently. To compare solutions, we usually
use the Pareto-dominance relation [1]. In a multi-objective
minimization problem with m objectives fi(x), i = 1, 2, ...,m,
solution a dominates solution b (i.e., a ≺ b) if and only if ∀i ∈
{1, 2, . . . ,m}, fi(a) ≤ fi(b) and ∃j ∈ {1, 2, . . . ,m}, fj(a) <
fj(b). Its weaker version is defined by only the first con-
dition: a weakly dominates b (i.e., a � b) if and only if
∀i ∈ {1, 2, . . . ,m}, fi(a) ≤ fi(b). This relation includes the
case where a and b are exactly the same in the m-dimensional
objective space (i.e., fi(a) = fi(b) for i = 1, 2, ...,m).

A solution that is not dominated by any other feasible
solutions of a multi-objective problem is called a Pareto
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optimal solution. A Pareto front of the multi-objective problem
is the set that contains the corresponding objective values of
all Pareto optimal solutions. If no solution in a solution set is
dominated by any other solutions, the solution set is referred
to as a non-dominated solution set.

The Pareto dominance relation has been extended to the
dominance relation between two sets [2]: A solution set A
dominates solution set B if and only if ∀b ∈ B, ∃a ∈ A,
such that a ≺ b. A better relation [2] is defined using the
weak Pareto dominance relation between two non-dominated
solution sets A and B as follows: A is better than B if and
only if ∀b ∈ B, ∃a ∈ A, a � b and A 6= B.

Since the number of Pareto optimal solutions can be very
large for combinatorial optimization problems and infinity
for continuous optimization problems, subset selection is an
essential topic in the EMO field. It is involved in many phases
of EMO algorithms. (i) In each generation, we need to select
a pre-specified number of solutions from the current and
offspring populations for the next generation. (ii) After the
execution of EMO algorithms, the final population is usually
presented to the decision-maker. However, if the decision-
maker does not want to examine all solutions in the final
population, we need to choose only a small number of rep-
resentative solutions for the decision-makers. (iii) Since many
good solutions are discarded during the execution of EMO
algorithms [3], we can use an unbounded external archive
(UEA) to store all non-dominated solutions examined during
the execution of EMO algorithms. In this case, a pre-specified
number of solutions are selected from a large number of non-
dominated solutions in the archive.

Formally, a subset selection problem can be defined as
follows:

Definition 1 (Subset Selection Problem). Given an n-point
set V ⊂ Rm, a performance indicator g : 2|V | → R and a
positive integer k (k < n), maximize g(S) subject to S ⊂ V
and |S| ≤ k.

Many subset selection algorithms have been proposed. They
can be classified into the following three categories: (i) exhaus-
tive search algorithms, (ii) evolutionary algorithms, and (iii)
greedy algorithms. Exhaustive search algorithms search for
the optimal solution subset. The performance indicator value
of the optimal solution subset is always called OPT. Since the
subset selection problem is NP-hard [4], [5], it is impractical to
find the optimal solution subset unless the candidate solution
set is small. In practice, evolutionary algorithms and greedy
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algorithms are usually used.
Greedy algorithms can be further divided into greedy inclu-

sion algorithms and greedy removal algorithms. The greedy in-
clusion algorithms select solutions from V one by one. In each
iteration, the solution that leads to the largest improvement of
the performance indicator g is selected until the required num-
ber of solutions are selected. If the performance indicator is
submodular, the obtained solution set can achieve a (1−1/e)-
approximation (e is the natural constant) to the optimal subset
[6]. This means that the ratio of the performance indicator
value of the obtained solution set to the performance indicator
value of the optimal solution set is not less than (1 − 1/e).
In contrast to greedy inclusion algorithms, greedy removal
algorithms discard one solution with the least improvement of
the performance indicator g in each iteration. Although greedy
removal algorithms are widely used and have shown good
performance [7], currently there is no theoretical guarantee
for their approximation accuracy.

When the required set size k is close to the size of V (i.e.,
when the number of solutions to be removed is small), greedy
removal algorithms are faster than greedy inclusion algorithms.
However, when k is relatively small in comparison with the
size of V , greedy removal algorithms are not efficient since
they need to remove a large number of solutions.

Evolutionary algorithms have also been applied to subset
selection problems [8], [9]. An arbitrary subset of V can be
encoded as a binary string b of length |V |. In the string, a one
“1” indicates the inclusion of the corresponding solution in the
subset and a zero “0” indicates the exclusion of the solution.
A population of subsets (i.e., binary strings) is improved by
an evolutionary algorithm. If the performance indicator g is
submodular, some algorithms such as POSS [8] have also been
proved to be (1− 1/e)-approximation algorithms.

Subset selection can use different selection criteria (i.e.,
different solution set evaluation criteria). From this point
of view, subset selection algorithms can be categorized as
distance-based subset selection [10]–[12], clustering-based
subset selection [11], hypervolume subset selection [13]–[16],
IGD subset selection [17], IGD+ subset selection [17], and ε-
indicator subset selection [14], [18]. Some of these indicators
require a large computation load. For example, the calculation
of the hypervolume indicator is #P-hard with respect to the
number of objectives [19].

Selecting the best solution from all the evaluated solutions
as the final solution is a standard choice in single-objective
optimization. The best solution is usually stored and updated
during the execution of a single-objective algorithm. However,
in multi-objective optimization, it is not easy to store the best
solution set since the quality of each solution is relatively
measured based on its relation with other solutions. It is
possible that the same solution is evaluated as the best in one
generation and the worst in another generation. Experimental
results in [20] show that some good solutions can be discarded
during the evolution process (thus the final solution set is not
the best solution set). Therefore, recently, subset selection from
all the evaluated solutions has been used in some studies to
find better solution sets than the final population [3], [10],
[12], [17], [21]–[24]. The selected solution sets usually have

better indicator values than the final population.
Although subset selection from all the evaluated solutions

is effective, it is time-consuming. When an EMO algorithm
is applied to a many-objective problem, a huge number of
non-dominated solutions are usually included in the evaluated
solutions. That is, the size of the candidate solution set for
subset selection is huge. For example, the size of the UEA
obtained by NSGA-II on the nine-objective car cab design
problem [25] after 200 generations is around 20,000. In this
case, subset selection needs long computation time even when
greedy algorithms are used. The focus of this paper is to
decrease the computation time of greedy subset selection
algorithms, which improves the usefulness and applicability
of EMO algorithms in real-world scenarios by efficiently
selecting better solution sets than the final population.

In this paper, we propose new greedy inclusion algorithms
for the hypervolume, IGD and IGD+ subset selection. The
submodularity [6] of the hypervolume, IGD and IGD+ indi-
cators is the key to make the proposed algorithms efficient
and applicable to large candidate solution sets with many
objectives. Based on the submodularity of these indicators,
we can reduce the unnecessary contribution calculations of
solutions without changing the results (i.e., without changing
the obtained solution sets) of the corresponding greedy subset
selection algorithms. Experimental results show that the pro-
posed idea drastically improves the efficiency of greedy subset
selection from large candidate solution sets of many-objective
problems.

The followings are the main contributions of this paper.

• We explain the submodular property of set functions,
and prove that the IGD and IGD+ indicators have the
submodular property. Based on our proof, the theoretical
approximation ratio of the greedy algorithm based on
each indicator can be obtained.

• By exploiting the submodular property of the three indi-
cators (i.e., hypervolume, IGD, and IGD+), we propose
an efficient greedy inclusion algorithm for subset selec-
tion based on each indicator.

• We demonstrate that the computation time for subset
selection can be significantly decreased by the pro-
posed algorithms through computational experiments on
frequently-used test problems and some real-world prob-
lems.

The remainder of this paper is arranged as follows. In
Section II, we explain hypervolume-based subset selection. In
Section III, we discuss the use of the IGD and IGD+ indicators
for subset selection. In Section IV, we propose an efficient
greedy inclusion algorithm for each indicator. In Section V, the
proposed algorithms are compared with the standard greedy
algorithms. Finally, we conclude this paper in Section V.

This paper is an extended version of our conference paper
[26]. In our conference paper, we proposed an efficient greedy
inclusion algorithm using the submodular property of the
hypervolume indicator. In this paper, we propose efficient
algorithms for the IGD and IGD+ indicators after proving
their submodular property. More experimental results are also
reported in this paper in order to demonstrate the efficiency
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of the proposed submodular property-based algorithms for the
three performance indicators.

II. HYPERVOLUME SUBSET SELECTION

A. Hypervolume indicator and hypervolume contribution

The hypervolume indicator [27]–[29] is a widely used
metric to evaluate the diversity and convergence of a solution
set. It is defined as the size of the objective space which is
covered by a set of non-dominated solutions and bounded by
a reference set R. Formally, the hypervolume of a solution set
S is defined as follows:

HV (S) :=

∫
z∈Rm

As(z)dz, (1)

where m is the number of dimensions and As : Rm → {0, 1}
is the attainment function of S with respect to the reference
set R and can be written as

As(z) =

{
1 if ∃ s ∈ S, r ∈ R : f(s) � z � r,
0 otherwise.

(2)

Calculating the hypervolume of a solution set is a #P-hard
problem [19]. A number of algorithms have been proposed
to quickly calculate the exact hypervolume such as Hyper-
volume by Slicing Objectives (HSO) [30], [31], Hypervolume
by Overmars and Yap (HOY) [32]–[34], and Walking Fish
Group (WFG) [35]. Among those algorithms, WFG has been
generally accepted as the fastest one. The hypervolume con-
tribution is defined based on the hypervolume indicator. The
hypervolume contribution of a solution p to a set S is

HV C(p, S) = HV (S ∪ {p})−HV (S). (3)

Fig. 1 illustrates the hypervolume of a solution set and the
hypervolume contribution of a solution to the solution set in
two dimensions. The grey region is the hypervolume of the
solution set S = {a, b, c, d, e} and the yellow region is the
hypervolume contribution of a solution p to S.

1Minimize  f

a

b

c

d

e

p

r

0

( )HV S

Fig. 1. The hypervolume of the solution set S = {a, b, c, d, e} and the
hypervolume contribution of p to the solution set S for a two-objective
minimization problem.

Note that calculating the hypervolume contribution based
on its definition in (3) requires hypervolume calculation twice,
which is not very efficient. Bringmann and Friedrich [19] and

Bradstreet et al. [36] proposed a new calculation method to re-
duce the amount of calculation. The hypervolume contribution
is calculated as

HV C(p, S) = HV ({p})−HV (S′), (4)

where
S′ = {limit(s, p)|s ∈ S}, (5)

limit((s1, ..., sm), (p1, ..., pm))

= (worse(s1, p1), ..., worse(sm, pm)).
(6)

In this formulation worse (si, pi) takes the larger value
for minimization problems. Compared to the straightforward
calculation method in (3), this method is much more efficient.
The hypervolume of one solution (i.e., HV ({p})) can be
easily calculated. We can also apply the previous mentioned
HSO [30], [31], HOY [32]–[34] and WFG [35] to calculate
the hypervolume of a reduced solution set S′ (i.e., HV (S′)).

Let us take Fig. 2 as an example. Suppose we want to
calculate the hypervolume contribution of solution p to a
solution set S = {a, b, c, d, e}. First, for each solution in
S, we replace each of its objective values with the corre-
sponding value from solution p if the value of p is larger
(i.e., we calculate limit(a, p), ..., limit(e, p)). This leads to
S′ = {a′, b′, c′, d′, e′}. After the replacement, e′ is dominated
by d′. Thus e′ can be removed from S′ since e′ has no
contribution to the hypervolume of S′. Similarly, a′ and b′ can
also be removed from S′. Then, we calculate the hypervolume
of S′ (i.e., the area of the gray region in Fig. 2) and subtract
it from the hypervolume of solution p. The remaining yellow
part is the hypervolume contribution of solution p.

1Minimize  f

a

b

c

d

e

p

r

0

( ')HV S

'a

'd 'e

Fig. 2. Illustration of the efficient hypervolume contribution computation
method.

B. Hypervolume Subset Selection Problem

The hypervolume subset selection problem (HSSP) [13]
uses the hypervolume indicator as the solution selection crite-
ria (i.e., the hypervolume indicator is used as the performance
indicator g in Definition 1). The HSSP aims to select a pre-
specified number of solutions from a given candidate solution
set to maximize the hypervolume of the selected solutions.

For two-objective problems, HSSP can be solved with time
complexity of O(nk+nlogn) [18] and O((n− k)k+nlogn)
[15]. For multi-objective problems with three or more objec-
tives, HSSP is an NP-hard problem [37], it is impractical to
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try to find the exact optimal solution set when the size of
the candidate set is large and/or the dimensionality of the
objective space is high. In practice, some greedy heuristic
algorithms and genetic algorithms are employed to obtain an
approximated optimal solution set.

C. Greedy Hypervolume Subset Selection

Hypervolume greedy inclusion selects solutions from V one
by one. In each iteration, the solution that has the largest
hypervolume contribution to the selected solution set is se-
lected until the required number of solutions are selected. The
pseudocode of greedy inclusion is shown in Algorithm 1. Since
hypervolume is a submodular indicator [38], hypervolume
greedy inclusion algorithms provide a (1−1/e)-approximation
to HSSP [6].

Hypervolume greedy removal algorithms discard one solu-
tion with the least hypervolume contribution to the current
solution set in each iteration. Unlike greedy inclusion, greedy
removal has no approximation guarantee. It can obtain an
arbitrary bad solution subset [39]. However, in practice, it
usually leads to good approximations.

Although the greedy algorithm has polynomial complexity,
it still takes a long computation time when the candidate
set is large or the dimension is high. A lot of algorithms
are proposed to accelerate the naı̈ve greedy algorithm. For
example, to accelerate the hypervolume-based greedy removal
algorithm, Incremental Hypervolume by Slicing Objectives
(IHSO*) [36] and Incremental WFG (IWFG) [40] were pro-
posed to identify the solution with the least hypervolume
contribution quickly. Some experimental results show that
these methods can significantly accelerate greedy removal
algorithms.

Algorithm 1 Greedy Inclusion Hypervolume Subset Selection
Input: V (A set of non-dominated solutions), k (Solution

subset size)
Output: S (The selected subset from V )
1: if |V | < k then
2: S = V
3: else
4: S = ∅
5: while |S| < k do
6: for each si in V \ S do
7: Calculate the hypervolume contribution of si to S
8: end for
9: p = Solution in V \ S with the largest hypervolume

contribution
10: S = S ∪ {p}
11: end while
12: end if

Hypervolume-based greedy inclusion/removal algorithms
can be accelerated by updating hypervolume contributions
instead of recalculating them in each iteration (i.e., by utilizing
the calculation results in the previous iteration instead of
calculating hypervolume contributions in each iteration inde-
pendently). Guerreiro et al. [16] proposed an algorithm to

update the hypervolume contributions efficiently in three and
four dimensions. Using their algorithm, the time complexity of
hypervolume-based greedy removal in three and four dimen-
sions can be reduced to O(n(n−k)+nlogn) and O(n2(n−k))
respectively.

In a hypervolume-based EMO algorithm called FV-MOEA
proposed by Jiang et al. [41], an efficient hypervolume con-
tribution update method applicable to any dimension was pro-
posed. The main idea of their method is that the hypervolume
contribution of a solution is only associated with a small
number of its neighboring solutions rather than all solutions in
the solution set. Let us suppose that one solution sj have just
been removed from the solution set S, the main process of the
hypervolume contribution update method in [41] is shown in
Algorithm 2.

Algorithm 2 Hypervolume Contribution Update
Input: HV C (The hypervolume contribution of each solu-

tion in S), sj (The newly removed solution)
Output: HV C (The updated hypervolume contribution of

each solution in S)
1: for each sk ∈ S do
2: w = worse(sk, sj)
3: W = {limit(t, w)|t ∈ S}
4: HV C(sk) = HV C(sk) +HV ({w})−HV (W )
5: end for

The worse and limit operations in Algorithm 2 are the
same as those in Section II.A. Let us explain the basic idea
of Algorithm 2 using Fig. 3. When we have a solution set
S = {a, b, c, d, e} in Fig. 3, the hypervolume contribution
of solution c is the blue area. When solution b is removed,
the hypervolume contribution of c is updated as follows.
The worse solution w in line 2 of Algorithm 2 has the
maximum objective values of solutions b and c. In line 3,
firstly the limit operator changes solutions a, d and e to
a′, d′ and e′. Next, the dominated solution e′ is removed.
Then the solution set W = {a′, d′} is obtained. In line 4,
the hypervolume contribution of c is updated by adding the
term HV ({w})−HV (W ) to its original value (i.e., the blue
region in Fig. 3). The added term is the joint hypervolume
contribution of solutions b and c (i.e., the yellow region in
Fig. 3). In this way, the hypervolume contribution of each
solution is updated.

Since the limit process reduces the number of non-
dominated solutions, this updated method greatly improves
the speed of hypervolume-based greedy removal algorithms.
Algorithm 2 in [41] is the fastest known algorithm to update
the hypervolume contribution in any dimension.

III. IGD AND IGD+ SUBSET SELECTION

The Inverted Generational Distance (IGD) indicator [42]
is another widely-used indicator to evaluate solution sets. It
calculates the average Euclidean distance from each reference
point to the nearest solution. Formally, the IGD of a solution
set S with respect to a reference set R can be calculated using
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1Minimize  f

a

b

c

d e

r

0

( )HV W
'a

'd 'e

w

Fig. 3. Illustration of the hypervolume contribution update method in FV-
MOEA. In this figure, it is assumed that point b has just been removed and
the hypervolume contribution of point c is to be updated.

the following formula:

IGD(S,R) =
1

|R|
∑
r∈R

min
s∈S

√√√√ d∑
i=1

(si − ri)2. (7)

The IGD indicator can evaluate the convergence and diver-
sity of a solution set in polynomial time complexity. However,
one of the disadvantages of the IGD indicator is that it is
not Pareto compliant [43]. This means that a solution set A
which dominates another solution set B may have a worse
IGD value than B. The Inverted Generational Distance plus
(IGD+) indicator [43] overcomes this disadvantage. Instead of
using Euclidean distance to calculate the difference between
a solution and a reference point, the IGD+ indicator uses
a different distance called IGD+ distance. It is based on
the dominance relation. The formula to calculate the IGD+
distance between a solution s and a reference point r is as
follows (for minimization problems):

D+(s, r) =

√√√√ m∑
i=1

(max{0, si − ri})2. (8)

Based on the definition of the IGD+ distance, the formula
to calculate the IGD+ value of a solution set S with respect
to a reference set R is:

IGD+(S,R) =
1

|R|
∑
r∈R

min
s∈S

√√√√ m∑
i=1

(max{0, si − ri})2. (9)

Fig. 4 illustrates the calculation of IGD and IGD+ of a
solution set. In this example, the solution set S has three
solutions a, b and c (i.e., red points in the figure). The reference
set R has four points α, β, γ, δ (i.e., blue points in the figure).
To calculate the IGD value of S, firstly, we need to find the
minimum Euclidean distance from each reference point in R
to the solutions in the solution set S. They are shown as black
lines in Fig. 4). Then, the IGD of S is the mean value of
these distances. To calculate IGD+ of S in Fig. 4, we should
calculate the IGD+ distance between each reference point and
each solution. Since solution b is dominated by the reference
point β, bi − βi is large or equal to zero for all objectives.
Therefore, the IGD+ distance from solution β to b is the same

as the Euclidean distance. For solution a and reference point
α, since a2 − α2 is smaller than zero, we only calculate the
positive part (i.e., a1−α1). Thus, the IGD+ distance between
a and α is the green dash line between a and α. In a similar
way, we can obtain the IGD+ distance from each reference
point to each solution and find the minimum IGD+ distance
from each reference point to the solution set S (i.e., green
dash lines in Fig. 4). The IGD+ of S is the mean value of
these distances.

1Minimize  f0

a

b

c









Fig. 4. Illustration of the calculation of IGD and IGD+.

A. IGD/IGD+ Subset Selection Problem

In contrast to hypervolume, the smaller IGD or IGD+ value
indicates a better solution set. Therefore, the IGD subset
selection problem takes the minus IGD of a solution set as
the performance indicator g in Definition 1 while the IGD+
subset selection problem takes the minus IGD+ of a solution
set. Similar to HSSP, it is impractical to obtain the optimal
subset unless the candidate solution set size is small.

Although IGD is a popular indicator to evaluate the per-
formance of an EMO algorithm, the IGD subset selection
problem is seldom studied. The reason is that calculating
the IGD needs a reference point set R. When evaluating an
algorithm on an artificial test problem, we can use the points
on the true PF of the test problem to evaluate the solution set
(since the true PF is known). However, in general, the true PF
of the problem is unknown, which brings difficulties to the
calculation of IGD [44].

One approach is to generate reference points from the
estimated PF as in IGD-based EMO algorithms [45], [46].
Firstly, the extreme points in the current solution set are found.
Next, based on these extreme points, we specify a hyperplane
in the objective space. Then, we uniformly sample reference
points from the hyperplane for IGD/IGD+ calculation.

Another approach is to use the whole candidate solution
set as the reference point set. In EMO algorithms with a
bounded or unbounded external archive, some or all non-
dominated solutions among the evaluated solutions during
their execution are stored externally. In this paper, we assume
such an EMO algorithm, and we use all the stored non-
dominated solutions in the external archive as the reference
point set for IGD/IGD+ calculation. As shown in Table III in
Section V for some real-world problems, tens of thousands
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of non-dominated solutions are found by a single run of an
EMO algorithm. However, it is often unrealistic to show such
a large number of solutions to the decision maker. Thus, subset
selection is used to choose a pre-specified number of solutions.
Subset selection is also needed in performance comparison
of EMO algorithms to compare them using solution sets of
the same size. In the proposed IGD/IGD+ subset selection
algorithms, all the obtained non-dominated solutions (i.e., all
candidate solutions) are used as the reference point set.

The following are two advantages of IGD and IGD+ subset
selection over hypervolume subset selection: (i) When the
number of dimensions is large, calculating hypervolume is
very time-consuming since hypervolume calculation is #P-
hard in the number of objectives [19]. However, the increase
in the computation load for IGD and IGD+ is linear with
respect to the number of objectives. (ii) The behavior of
the hypervolume indicator is difficult to explain. Choosing
different reference points can result in totally different optimal
distributions [47]. The optimal distribution of solutions on PFs
with different shapes can have a significant difference. Besides,
the hypervolume optimal µ distributions in three or higher
dimensions are still unknown. In contrast to hypervolume, IGD
and IGD+ subset selection can be formulated as a problem to
minimize the expected loss function [17]. From this point of
view, IGD subset selection and IGD+ subset selection have a
clear meaning for the decision-maker.

B. IGD/IGD+ Subset Selection Algorithms

Similar to HSSP, we can use greedy inclusion algorithms,
greedy removal algorithms and evolutionary algorithms to find
an approximate solution to the IGD and IGD+ subset selection
problems. In greedy algorithms, we always need to calculate
the IGD improvement of a solution a to the current solution
set S with respect to the reference set R. According to the
definition of IGD, the IGD improvement of solution a to S
can be calculated by IGD(S,R)–IGD(S∪{a}, R). However,
this is not efficient since IGD improvement calculation needs
to calculate IGD twice. The time complexity of IGD improve-
ment calculation is O(m|S||R|) for an m-objective problem
with a candidate solution set S and a reference point set R.

In this paper, we use a more efficient calculation method.
When calculating IGD of a solution set, we also use an array
D to store the distance from each reference point to the nearest
solution in the solution set S. When we want to calculate the
IGD improvement of a new solution a to S, we only need
to calculate the distance from each reference point to a and
store them in a new distance array D′. Then, we compare each
item in D and D′. If the item in D′ is smaller than D, we
replace the item in D with the corresponding item in D′. The
new IGD of the solution set S ∪ {a} is the average value of
each item in the new array D. Finally, we subtract the new
IGD from the original IGD to obtain the IGD improvement.
The proposed method can reduce the complexity of IGD
improvement calculation to O(m|R|), which can significantly
decrease the computation time.

The details of the IGD greedy inclusion algorithm with the
proposed efficient IGD improvement calculation are shown in

Algorithm 3. In this algorithm, mean(·) calculates the mean
value of each item in an array and min(·, ·) takes the smaller
one between two items that have the same index in the two
arrays. Algorithm 3 is for IGD subset selection. It can be easily

Algorithm 3 Greedy Inclusion IGD Subset Selection
Input: V (A set of non-dominated solutions), k (Solution

subset size)
Output: S (The selected subset from V )
1: if |V | < k then
2: S = V
3: else
4: S = ∅
5: smin = Solution in V \S with the smallest IGD(si, V )
6: S = S ∪ {smin}
7: D = Euclidean distance from each reference point to

smin

8: while |S| < k do
9: for each si in V \ S do

10: D′ = Euclidean distance from each reference point
to si

11: ci = mean(D)−mean(min(D,D′))
12: end for
13: p = Solution in V \ S with the largest ci
14: D′ = Euclidean distance from each reference point

to p
15: D = min(D,D′)
16: S = S ∪ {p}
17: end while
18: end if

changed to the algorithm for IGD+ subset selection by replac-
ing the Euclidean distance with the IGD+ distance. Besides,
we can also use the efficient IGD improvement calculation
method in IGD and IGD+ greedy removal algorithms.

IV. THE PROPOSED LAZY GREEDY ALGORITHMS

A. Submodularity of Indicators

The core idea of the proposed algorithms is to exploit
the submodular property of the hypervolume, IGD and IGD+
indicators. Submodular function is a kind of set function that
satisfies diminishing returns property. Formally, the definition
of a submodular function is as follows [6].

Definition 2 (Submodular Function). A real-valued function
z(V) defined on the set of all subsets of V that satisfies
z(S1 ∪ {p})− z(S1) ≤ z(S2 ∪ {p})− z(S2), S2 ⊂ S1 ⊂ V,
p ∈ V − S1 is called a submodular set function.

Note that the submodular property is different from the non-
decreasing property of set functions. To further illustrate the
difference between them, we show three types of set functions
in Fig. 5. The hypervolume indicator is similar to z2, which
is non-decreasing (i.e., HV (Y ) ≥ HV (X), if X ⊆ Y ) and
submodular (i.e., HV C(p,X) ≥ HV C(p, Y ), if X ⊆ Y ).
z1 is submodular but it is not non-decreasing. z3 is non-
decreasing but it is non-submodular.
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Fig. 5. Illustration of three types of set functions.

TABLE I
SUMMARY OF NOTATIONS

Notation Description

A,B,X Solution sets
R Reference set
x, y Solutions that do not belong to A
i Index of the reference point in the reference set
I1, I2 Sets of reference point indexes whose closest distance

to the solution set are changed after adding x and y,
respectively

∆dxi , ∆dyi Change of the closest distance between reference point
i and the solution set by adding x and y, respectively

The hypervolume indicator has been proved to be non-
decreasing submodular [38]. Now, we show that the minus
IGD indicator and the minus IGD+ indicator are both non-
decreasing submodular. The minus here means to take the
opposite number of the indicator value.

Theorem 1. The minus IGD indicator is non-decreasing
submodular.

Proof: Let us consider a solution set A, a reference set
R and two solutions x and y such that x /∈ A and y /∈ A.
By adding a solution x to A, the nearest distance from some
reference point to A will be changed. Let us denote the set
of indexes of these points as I1, and the difference between
the original distance and the new distance as ∆dxi , i ∈ I1.
Similarly, by adding a solution y, the set of indexes of
reference points whose nearest distance are changed is denoted
as I2, and the corresponding distance differences are denoted
as ∆dyi , i ∈ I2. The notations used in the proof are summaries
in Table 1.

According to the definition of IGD, IGD(A ∪ {x}) =
IGD(A)− 1

|R|
∑

i∈I1 ∆dxi . Since ∆dxi is larger than zero, the
IGD indicator is non-increasing. Therefore, the minus IGD
indicator is non-decreasing.

Similarly, by adding a solution y to a solution set A∪{x},

IGD(A ∪ {x} ∪ {y}) =IGD(A)− 1

|R|
∑

i∈I1\(I1∩I2)

∆dxi

− 1

|R|
∑

i∈I2\(I1∩I2)

∆dyi

− 1

|R|
∑

i∈(I1∩I2)

max{∆dxi ,∆d
y
i }.

In
1

|R|
∑

i∈I1\(I1∩I2)

∆dxi +
1

|R|
∑

i∈I2\(I1∩I2)

∆dyi

+
1

|R|
∑

i∈(I1∩I2)

max{∆dxi ,∆d
y
i },

if i ∈ (I1 ∩ I2), only the larger one between ∆dxi and ∆dyi
will be added while in

∑
i∈I1 ∆dxi +

∑
i∈I2 ∆dyi all ∆dxi and

∆dyi will be added together.
Hence,

1

|R|
∑

i∈I1\(I1∩I2)

∆dxi +
1

|R|
∑

i∈I2\(I1∩I2)

∆dyi

+
1

|R|
∑

i∈(I1∩I2)

max{∆dxi ,∆d
y
i } ≤

∑
i∈I1

∆dxi +
∑
i∈I2

∆dyi .

− IGD(A ∪ {y})− (−IGD(A)) =
1

|R|
∑
i∈I2

∆dyi .

IGD(A ∪ {x} ∪ {y})− (−IGD(A ∪ {x}))

=
1

|R|
∑

i∈I1\(I1∩I2)

∆dxi +
1

|R|
∑

i∈I2\(I1∩I2)

∆dyi

+
1

|R|
∑

i∈(I1∩I2)

max{∆dxi ,∆d
y
i } −

1

|R|
∑
i∈I2

∆dxi

≤ 1

|R|
∑
i∈I1

∆dxi +
1

|R|
∑
i∈I2

∆dyi −
1

|R|
∑
i∈I1

∆dxi

=
1

|R|
∑
i∈I2

∆dyi .

Therefore, −IGD(A ∪ {y}) − (−IGD(A)) ≥ IGD(A ∪
{x} ∪ {y})− (−IGD(A ∪ {x})).

Then, by mathematical induction, we can obtain that
−IGD(A ∪ {y})− (−IGD(A)) ≥ IGD(A ∪X ∪ {y})−

(−IGD(A ∪X)),where X is a solution set and X ∩ A = ∅.
If we let B = A ∪ X , the above formula can be rewritten
as −IGD(A ∪ {y}) − (−IGD(A)) ≥ IGD(B ∪ {y}) −
(−IGD(B)), A ⊂ B, which is the same as the definition of
the submodular function. Hence, the minus IGD indicator is
non-decreasing submodular.

Theorem 2. The minus IGD+ indicator is non-decreasing
submodular.

Proof: We can prove that the minus IGD+ indicator is also
non-decreasing submodular in the same manner as the proof
for the submodularity of IGD indicator. The only difference is
to replace the Euclidean distance with the IGD+ distance.

B. Algorithm Proposal

In each iteration of the hypervolume greedy inclusion algo-
rithm, we only need to identify the solution with the largest
hypervolume contribution. However, we usually calculate the
hypervolume contributions of all solutions. Since the calcula-
tion of the contribution of each solution is time-consuming,
such an algorithm is not efficient.
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As discussed in the last subsection, the hypervolume indi-
cator is non-decreasing submodular. This property can help
us avoid unnecessary calculations. The submodular property
of the hypervolume indicator means that the hypervolume
contribution of a solution to the selected solution subset S
never increases as the number of solutions in S increases
in a greedy inclusion manner. Hence, instead of recomputing
the hypervolume contribution of every candidate solution in
each iteration, we can utilize the following lazy evaluation
mechanism.

We use a list C to store the candidate (i.e., unselected)
solutions and their tentative HVC (hypervolume contribution)
values. The tentative HVC value of each solution is initialized
with its hypervolume (i.e., its hypervolume contribution when
no solution is selected). The tentative HVC value of each
solution is the upper bound of its true hypervolume contri-
bution. For finding the solution with the largest hypervolume
contribution from the list, we pick the most promising so-
lution with the largest tentative HVC value and recalculate
its hypervolume contribution to the current solution subset S.
If the recalculated hypervolume contribution of this solution
is still the largest in the list, we do not have to calculate
the hypervolume contributions of the other solutions. This is
because the hypervolume contribution of each solution never
increases through the execution of greedy inclusion. In this
case (i.e., if the recalculated hypervolume contribution of
the most promising solution is still the largest in the list),
we move this solution from the list to the selected solution
subset S. If the recalculated hypervolume contribution of this
solution is not the largest in the list, its tentative HVC value is
updated with the recalculated value. Then the most promising
solution with the largest tentative HVC value in the list is
examined (i.e., its hypervolume contribution is recalculated).
This procedure is iterated until the recalculated hypervolume
contribution is the largest in the list.

In many cases, the recalculation of the hypervolume contri-
bution of each solution results in the same value as or slightly
smaller value than its tentative HVC value in the list since
the inclusion of a single solution to the solution subset S
changes the hypervolume contributions of only its neighbors
in the objective space. Thus, the solution with the largest
hypervolume contribution is often found without examining
all solutions in the list. By applying this lazy evaluation
mechanism, we can avoid a lot of unnecessary calculations in
hypervolume-based greedy inclusion algorithms. The details
of the proposed lazy greedy inclusion hypervolume subset
selection (LGI-HSS) algorithm are shown in Algorithm 4.

For the IGD and IGD+ indicators, the same idea can be
used. Since the submodularity of the IGD and IGD+ indicators
has been proved in section IV.A, we can obtain that the IGD
(IGD+) improvement of a solution to the selected solution
set S will never increase. Thus, we do not need to calculate
other solutions if the recalculated IGD (IGD+) improvement
of a solution is the largest among all tentative IGD (IGD+)
improvement values. Besides, to accelerate the IGD (IGD+)
improvement calculation, we use our proposal for the standard
IGD greedy inclusion in Section III. An array D is used to
store the distance from each reference point to the nearest

Algorithm 4 Lazy Greedy Inclusion Hypervolume Subset
Selection (LGI-HSS)
Input: V (A set of non-dominated solutions), k (Solution

subset size)
Output: S (The selected subset from V )
1: if |V | < k then
2: S = V
3: else
4: S = ∅, C = ∅
5: for each si in V do
6: Insert (si, HV ({si})) into C
7: end for
8: while |S| < k do
9: while C 6= ∅ do

10: cmax = Solution with the largest HVC in C
11: Update the HVC of cmax to S
12: if cmax has the largest HVC in C then
13: S = S ∪ {cmax}
14: C = C \ {cmax}
15: break
16: end if
17: end while
18: end while
19: end if

solution in the solution set S. The details of the lazy greedy
inclusion IGD subset selection algorithm (LGI-IGDSS) is
shown in Algorithm 5. It can be changed to the algorithm for
the IGD+ indicator (LGI-IGD+SS) by using the IGD+ distance
instead of the Euclidean distance to calculate the distances
between each reference point and each solution.

Note that we need to find the solution with the largest
hypervolume contribution in Algorithm 4 and the largest IGD
(IGD+) improvement in Algorithm 5. The priority queue
implemented by the maximum heap is used to accelerate the
procedure.

The proposed algorithms only need one parameter k, which
is the solution subset size. This parameter is needed in all
subset selection algorithms. That is, the proposed algorithms
do not need any additional parameter.

The idea of the lazy evaluation was proposed by Minoux
[48] to accelerate the greedy algorithm for maximizing sub-
modular functions. Then, it was applied to some specific areas
such as influence maximization problems [49] and network
monitoring [50]. Minoux [48] proved that if the function is
submodular and the greedy solution is unique, the solution
produced by the lazy greedy algorithm and the original
greedy algorithm is identical. Since the hypervolume, IGD
and IGD+ indicators are submodular, the proposed algorithms
(i.e., Algorithm 4 and Algorithm 5) find the same subsets as
the corresponding original greedy inclusion algorithms if the
greedy solutions are unique.

C. An Illustrative Example

Let us explain the proposed algorithm using a simple exam-
ple. Fig. 6 shows the changes of the hypervolume contribution
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Algorithm 5 Lazy Greedy Inclusion IGD Subset Selection
(LGI-IGDSS)
Input: V (A set of non-dominated solutions), k (Solution

subset size)
Output: S (The selected subset from V )
1: if |V | < k then
2: S = V
3: else
4: S = ∅, C = ∅
5: smin = Solution in V \S with the smallest

IGD({si}, V )
6: S = S ∪ {smin}
7: D′ = Distance from each reference point to smin

8: for each si in V \ S do
9: Insert (si, IGD({smin}, R)− IGD({smin, si}, R))

into C
10: end for
11: while |S| < k do
12: while C 6= ∅ do
13: cmax = Solution with the largest IGD improvement

in C
14: Distance from each reference point to cmax

15: Update the IGD improvement of cmax to
mean(D′)−mean(min(D′, D))

16: if cmax has the largest IGD improvement in C
then

17: S = S ∪ {cmax}
18: C = C \ {cmax}
19: D = Distance from each reference point to cmax

20: D = min(D′, D)
21: break
22: end if
23: end while
24: end while
25: end if

in the list C. The value in the parentheses is the stored HVC
value of each solution to the selected subset. For illustration
purposes, the solutions in the list are sorted by the stored
HVC values. However, in the actual implementation of the
algorithm, the sorting is not necessarily needed (especially
when the number of candidate solutions is huge). This is
because our algorithm only needs to find the most promising
candidate solution with the largest HVC value in the list. Fig.
6 (i) shows the initial list C including five solutions a, b, c,
d and e. The current solution subset is empty. In Fig. 6 (i),
solution a has the largest HVC value. Since the initial HVC
value of each solution is the true hypervolume contribution to
the current empty solution subset S, no recalculation is needed.
Solution a is moved from the list to the solution subset.

In Fig. 6 (ii), solution b has the largest HVC value in the list
after solution a is moved. Thus, the hypervolume contribution
of b is to be recalculated. We assume that the recalculated
HVC value is 4 as shown in Fig. 6 (iii).

Fig. 6 (iii) shows the list after the recalculation. Since the
updated HVC value of b is not the largest, we need to choose
solution e with the largest HVC value in the list and recalculate

its hypervolume contribution. We assume that the recalculated
HVC value is 6 as shown in Fig. 6 (iv).

Fig. 6 (iv) shows the list after the recalculation. Since the
recalculated HVC value is still the largest in the list, solution
e is moved from the list to the solution subset.

Fig. 6 (v) shows the list after the removal of e. Solution c
with the largest HVC value is examined.

In this example, for choosing the second solution from
the remaining four candidates (b, c, d and e), we evaluate
the hypervolume contributions of only the two solutions (b
and e). In the standard greedy inclusion algorithm, all four
candidates are examined. In this manner, the proposed algo-
rithm decreases the computation time of the standard greedy
inclusion algorithm.

(i)

(ii)

(v)

(iv)

(iii)

(10)a (9)b (8)e (6)c (5)d

(9)b (8)e (6)c (5)d

(4)b(8)e (6)c (5)d

(4)b(6)e (6)c (5)d

(4)b(6)c (5)d

Fig. 6. Illustration of the proposed algorithm. The values in the parentheses
are the stored tentative HVC values.

V. EXPERIMENTS

A. Algorithms Used in Computational Experiments

The proposed lazy greedy inclusion hypervolume subset
selection algorithm LGI-HSS is compared with the following
two algorithms:

1) Standard greedy inclusion hypervolume subset selection
(GI-HSS): This is the greedy inclusion algorithm described in
Section II.C. When calculating the hypervolume contribution,
the efficient method described in Section II.A is employed.

2) Greedy inclusion hypervolume subset selection with hy-
pervolume contribution updating (UGI-HSS): The hypervol-
ume contribution updating method proposed in FV-MOEA
[41] (Algorithm 2) is used. Since Algorithm 2 is for greedy
removal, it is changed for greedy inclusion here. It is the
fastest known greedy inclusion algorithm applicable to any
dimension.

The proposed lazy greedy inclusion IGD subset selection
algorithm LGI-IGDSS is compared with the standard greedy
inclusion algorithm GI-IGDSS with the efficient IGD im-
provement evaluation method in Section III.B. The proposed
lazy greedy inclusion IGD+ subset selection algorithm LGI-
IGD+SS is compared with the standard greedy inclusion
algorithm GI-IGD+SS with the efficient IGD+ improvement
evaluation method in Section III.B.

Our main focus is the selection of a solution subset from
an unbounded external archive. Since the number of solutions
to be selected is much smaller than the number of candidate
solutions: k � n = |V | in HSSP, greedy removal is not
efficient. Hence, greedy removal algorithms (e.g., those with
IHSO* [36] and IWFG [40]) are not compared in this paper.
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B. Test Problems and Candidate Solution Sets

To examine the performance of the above-mentioned subset
selection algorithms, we use the following four representative
test problems with different Pareto front shapes:

(i) DTLZ2 [51] with a triangular concave (spherical) Pareto
front.

(ii) Inverted DTLZ2 (I-DTLZ2 [52]) with an inverted trian-
gular concave (spherical) Pareto front.

(iii) DTLZ1 [51] with a triangular linear Pareto front.
(iv) DTLZ7 [51] with a disconnected Pareto front.
For each test problem, we use three problem instances with

five, eight and ten objectives (i.e., solution subset selection
is performed in five-, eight- and ten-dimensional objective
spaces). Candidate solution sets are generated by sampling
solutions from the Pareto front of each problem instance.
Four different settings of the candidate solution set size are
examined: 5000, 10000, 15000 and 20000 solutions. First we
uniformly sample 100,000 solutions from the Pareto front of
each problem instance. In each run of a solution subset selec-
tion algorithm, a pre-specified number of candidate solutions
(i.e., 5000, 10000, 15000 or 20000 solutions) are randomly
selected from the generated 100,000 solutions. Computational
experiments are performed 11 times for each setting of the
candidate solution set size for each problem instance by each
subset selection algorithm. The number of solutions to be
selected is specified as 100. Thus, our problem is to select
100 solutions from 5000, 10000, 15000 and 20000 candidate
solutions to maximize the hypervolume value, and to minimize
the IGD and IGD+ values of the selected 100 solutions.

C. Experimental Settings

In each hypervolume subset selection algorithm, the ref-
erence point for hypervolume (contribution) calculation is
specified as (1.1, 1.1, ..., 1.1) for all test problems independent
of the number of objectives. We use the WFG algorithm1

[35] for hypervolume calculation in each subset selection
algorithm with the hypervolume indicator. All subset selection
algorithms are coded by MatlabR2018a. The computation time
of each run is measured on an Intel Core i7-8700K CPU with
16GB of RAM, running in Windows 10.

D. Comparison of Hypervolume Subset Selection Algorithms

The average run time of each hypervolume subset selection
algorithm on each test problem is summarized in Table II (in
the columns labelled as GI-HSS, UGI-HSS and LGI-HSS).
Since the subset obtained by three algorithms on the same
data set are the same (i.e., the proposed algorithm does not
change the performance), we only show the run time of each
algorithm.

Compared with the standard GI-HSS algorithm, we can see
that our LGI-HSS algorithm can reduce the computation time
by 91% to 99%. That is, the computation time of our LGI-HSS
is only 1-9% of that of GI-HSS. By the increase in the number
of objectives (i.e., by the increase in the dimensionality of the

1The code of the WFG algorithm is available from
http://www.wfg.csse.uwa.edu.au/hypervolume/#code.

objective space), the advantage of LGI-HSS over the other
two algorithms becomes larger. Among the four test problems
in Table II, all the three algorithms are fast on the I-DTLZ2
problem and slow on the DTLZ2 and DTLZ1 problems.

Even when we compare our LGI-HSS algorithm with the
fastest known greedy inclusion algorithm UGI-HSS, LGI-HSS
is also faster. On DTLZ2 and I-DTLZ2, when the number of
objectives is not very large (i.e., five-objective problems), the
difference in the average computation time between the two
algorithms is not large (the LGI-HSS average computation
time is 41-67% of that of UGI-HSS). When the number of
objectives is larger (i.e., eight-objective and ten-objective prob-
lems), the difference in the average computation time between
the two algorithms becomes larger (i.e., LGI-HSS needs only
6-25% of the UGI-HSS computation time). On DTLZ7, LGI-
HSS needs only 4-24% of the UGI-HSS computation time.
On DTLZ1, the difference between LGI-HSS and UGI-HSS is
small: LGI-HSS needs 36-88% of the UGI-HSS computation
time. The reason for the small difference is that each candidate
solution on the linear Pareto front of DTLZ1 has a similar
hypervolume contribution value. As a result, recalculation
is frequently performed in our LGI-HSS. On the contrary,
there exist large differences among hypervolume contribution
values of candidate solutions on the nonlinear Pareto fronts of
DTLZ2, I-DTLZ2 and DTLZ7. This leads to a less frequent
update of their hypervolume contribution values (i.e., high
efficiency of LGI-HSS).

From the three columns by HSS in Table I, we can also
observe that the average computation time of each algorithm
did not severely increase with the increase in the number of
objectives (i.e., with the increase in the dimensionality of the
objective space) for DTLZ7 and I-DTLZ2. In some cases, the
average computation time decreased with the increase in the
number of objectives. The reasons are as follows. Firstly, the
WFG algorithm is used in the three algorithms to calculate the
hypervolume contribution of each solution. The computation
time of hypervolume contribution does not increase severely as
the number of objectives increases. Besides, the total number
of solution evaluations needed for LGI-HSS will decrease on
some problems as the number of objectives increases. This
is because the difference in the hypervolume contribution
values of the candidate solutions increases with the number
of objectives, which leads to the decrease in the number
of updates of the hypervolume contribution value of each
solution.

E. Comparison of IGD/IGD+ Subset Selection Algorithms

As can be observed from the last four columns of Table
II, the proposed LGI-IGDSS and LGI-IGD+SS are much
faster than the standard greedy algorithms (i.e., GI-IGDSS and
GI-IGD+SS). Compared with the GI-IGDSS algorithm, our
LGI-IGDSS algorithm needs only 6-10% computation time.
Compared with the GI-IGD+SS algorithm, our LGI-IGD+SS
algorithm needs only 6-9% computation time.

Different from the hypervolume subset selection algorithms,
the computation time of the IGD and IGD+ subset selection
algorithms does not have a large difference among different
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TABLE II
AVERAGE COMPUTATION TIME (IN SECONDS) ON DIFFERENT PROBLEMS OVER 11 RUNS. THE BEST RESULTS ARE HIGHLIGHTED BY BOLD.

Problem Candidate Solutions GI-HSS UGI-HSS LGI-HSS GI-IGDSS LGI-IGDSS GI-IGD+SS LGI-IGD+SS

Five-Objective DTLZ2

5,000 46.9 10.7 4.3 54.9 4.5 246.2 20.9
10,000 100.2 21.5 8.9 137.5 10.6 980.5 81.8
15,000 164.7 31.2 14.5 248.2 18.6 2197.5 179.8
20,000 243.2 40.7 21.1 398.5 29.1 3866.0 311.6

Eight-Objective DTLZ2

5,000 413.8 75.4 18.8 53.4 4.6 253.4 19.5
10,000 726.0 132.7 32.5 149.2 12.0 1015.4 74.4
15,000 1015.2 188.3 47.3 284.7 21.8 2294.9 165.7
20,000 1251.2 245.6 61.3 1440.1 102.8 4088.7 292.4

Ten-Objective DTLZ2

5,000 3521.7 540.6 138.1 55.8 5.1 263.9 20.1
10,000 5569.6 830.8 217.4 159.0 14.2 1054.7 76.8
15,000 7646.2 1277.6 291.8 995.2 83.0 2356.0 171.4
20,000 9116.0 1552.1 357.5 1665.6 124.5 4175.9 297.2

Five-Objective I-DTLZ2

5,000 35.7 4.1 1.8 52.7 4.3 247.3 18.2
10,000 82.7 8.2 4.0 137.9 10.7 979.5 71.1
15,000 140.4 12.0 6.9 245.9 18.3 2190.2 155.0
20,000 219.8 15.5 10.4 410.4 30.5 3890.5 276.7

Eight-Objective I-DTLZ2

5,000 46.0 5.4 0.8 59.0 5.0 255.7 17.1
10,000 108.5 11.2 1.7 158.9 12.7 1017.6 65.7
15,000 190.2 18.7 2.9 302.3 22.8 2302.6 145.5
20,000 283.8 24.3 4.2 1649.3 115.3 4070.0 254.5

Ten-Objective I-DTLZ2

5,000 43.9 8.4 0.5 55.7 5.2 263.4 17.9
10,000 108.2 14.9 1.2 157.5 14.1 1047.2 67.3
15,000 195.5 22.0 2.2 991.2 82.7 2353.0 148.9
20,000 304.1 33.9 3.3 1669.7 135.9 4162.9 272.8

Five -Objective DTLZ1

5,000 48.6 17.9 6.5 49.3 3.9 249.8 18.2
10,000 108.3 35.6 14.7 131.0 9.6 985.1 70.8
15,000 179.4 53.7 24.4 247.5 17.6 2202.8 154.3
20,000 262.8 70.9 36.2 392.4 27.5 3886.7 270.3

Eight-Objective DTLZ1

5,000 362.8 61.6 35.7 53.9 4.2 255.9 16.2
10,000 777.6 133.9 79.4 151.5 10.9 1016.0 61.6
15,000 1239.6 201.7 126.3 277.9 19.4 2282.9 134.4
20,000 1690.3 285.8 175.5 1435.8 92.1 4070.5 238.6

Ten-Objective DTLZ1

5,000 2436.2 278.5 228.2 55.6 4.3 262.5 16.0
10,000 5455.5 623.8 505.4 158.0 12.2 1045.2 65.9
15,000 8504.7 1038.3 809.7 995.7 69.3 2342.7 141.7
20,000 11552.2 1343.0 1176.0 1679.3 118.9 4144.4 260.1

Five-Objective DTLZ7

5,000 40.1 13.0 2.4 48.5 4.3 247.7 20.1
10,000 91.9 25.8 5.5 131.5 11.1 978.8 76.5
15,000 155.2 40.4 9.0 245.9 20.2 2198.2 172.0
20,000 228.5 56.7 13.3 392.7 31.8 4067.4 320.4

Eight-Objective DTLZ7

5,000 52.8 26.5 1.5 52.6 4.9 269.5 19.3
10,000 122.5 48.9 3.3 147.1 13.1 1108.5 69.5
15,000 208.7 73.6 5.6 289.1 24.5 2281.5 152.0
20,000 314.7 97.4 8.4 1439.8 114.9 4046.7 269.6

Ten-Objective DTLZ7

5,000 57.9 27.6 1.1 55.6 5.4 262.7 22.8
10,000 136.3 55.2 2.5 159.0 14.8 1041.5 90.0
15,000 237.2 82.3 4.3 985.3 84.2 2343.5 202.9
20,000 361.7 110.9 6.5 1715.5 143.5 4144.0 362.3

problems. One interesting observation is that the computation
time of LGI-IGD+SS does not increase with the number of
objectives whereas that of LGI-IGDSS clearly increases with
the number of objectives. This is because the difference in the
IGD+ contribution values of the candidate solutions increases
with the number of objectives, which leads to the decrease
in the number of updates of the IGD+ contribution value of
each solution. However, the difference in the IGD contribution
values of the candidate solutions does not clearly increase with
the number of objectives. This observation suggests that the
IGD+ indicator is more similar to the hypervolume indicator
than the IGD indicator, which was suggested by the optimal
distributions of solutions for each indicator [53].

F. Number of Solution Evaluations

To further examine the effectiveness of the proposed LGI-
HSS, we monitor the number of solution evaluations (i.e.,
contribution calculations) to select each solution used by GI-
HSS and LGI-HSS. In GI-HSS, all the remaining solutions
need to be re-evaluated during each iteration. For example,
when the candidate solution set size is 10,000, 10,000−(i−1)
solutions are examined to select the i-th solution in GI-
HSS. However, LGI-HSS can choose the same i-th solution
by evaluating only a small number of solutions. In Fig. 7,
we show the number of examined solutions to choose each
solution (i.e., the i-th solution for i = 1, 2, ..., 100) in a single
run of LGI-HSS on the eight-objective DTLZ2 and I-DTLZ2
problems where the candidate solution size is 10,000. The
single run with the median computation time among 11 runs
on each problem is selected in Fig. 7. For comparison, the
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results by GI-HSS are also shown, which is the line specified
by 10,000−(i − 1). For selecting the first solution, both
algorithms examine all the given 10,000 solutions. After that,
the proposed LGI-HSS algorithm can significantly decrease
the number of solution evaluations. On the eight-objective
DTLZ2 problem, the number of solution evaluations decreases
with fluctuation as the number of selected solutions increases.
On the eight-objective I-DTLZ2 problem, the average number
of solution evaluations needed to select each solution is much
smaller than that on the eight-objective DTLZ2 problem. This
difference is the reason for the difference in the results in Table
II for these two problems.

In the same manner as in Fig. 7, we show the results by
GI-IGDSS and LGI-IGDSS in Fig. 8, and the results by GI-
IGD+SS and LGI-IGD+SS in Fig. 9. We can observe from
these two figures that the number of solution evaluations
needed to select the first 50 solutions is much larger than
that for the remaining 50 solutions. We can also see that the
difference in the results on the two problems in these two
figures is much smaller than that in Fig. 7. This is the reason
why similar results were obtained for all problems by LGI-
IGDSS and LGI-IGD+SS.

Fig. 7. The number of solution evaluations to select each solution used by
GI-HSS and LGI-HSS.

Fig. 8. The number of solution evaluations to select each solution used by
GI-IGDSS and LGI-IGDSS.

Fig. 9. The number of solution evaluations to select each solution used by
GI-IGD+SS and LGI-IGD+SS.

In the worst case, the number of solution evaluations in
the proposed algorithms is the same as the standard greedy
algorithms (i.e., the worst time complexity of the proposed
algorithms is the same as that of the standard greedy al-
gorithms). However, as shown in Figs. 7-9, the number of
actually evaluated solutions is much smaller than the worst-
case upper bound (which is shown by the dotted green line in
each figure).

In order to examine the effect of the number of objectives
on the efficiency of the proposed algorithm, we show exper-
imental results by the proposed three algorithms on the five-
objective and ten-objective I-DTLZ2 problems in Figs. 10-12.
As in Figs. 7-9, a single run with the median computation time
is selected for each algorithm on each test problem. In Fig. 10
by LGI-HSS, much fewer solutions are examined for the ten-
objective problem than the five-objective problem. As a result,
the average computation time on the ten-objective I-DTLZ2
problem by LGI-HSS in Table I was shorter than that on the
five-objective I-DTLZ2 problem. In Fig. 11 by LGI-IGDSS,
the difference in the number of solution evaluations between
the two problems is not so large if compared with Fig. 10. As a
result, the average computation time by LGI-IGDSS increased
with the increase in the number of objectives in Table II. The
results by LGI-IGD+SS in Fig. 12 are between Fig. 10 and
Fig. 11.

G. Size of Candidate Solution Sets

In the previous subsection, 100 solutions were selected
from 5000-20000 solutions of test problems with five to ten
objectives. Our algorithms are proposed for choosing a pre-
specified number of solutions from an unbounded external
archive. In order to show the size of the subset selection
problem in this scenario, we monitor the number of non-
dominated solutions among all the examined solutions by
an EMO algorithm on the four test problems with eight
objectives. As an EMO algorithm, we use NSGA-II [54] and
NSGA-III [25]. The default parameter settings in [54] are
used in the algorithms (e.g., the population size is specified as
156). The number of non-dominated solutions is counted at the
200th, 400th, 600th, 800th and 1000th generations. Average
results over 11 runs are shown in Fig. 13. From these figures,
we can see that hundreds of thousands of non-dominated
solutions can be obtained by EMO algorithms for many-
objective problems. This observation supports the necessity
of highly-efficient subset selection algorithms.

H. Performance on real-world solution sets

We examine the performance of the three HSS algorithms on
four real-world problems (i.e., car side impact design problem
[55], conceptual marine design problem [56], water resource
planning problem [57] and car cab design problem [25]). We
apply NSGA-II [54] and NSGA-III [25] with an unbounded
external archive to each problem. The population size is
specified as 220 for the four-objective problems, 182 for the
six-objective problem, and 210 for the nice-objective problem.
After the 200th generation of each algorithm, non-dominated
solutions in the archive are used as candidate solution sets.
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Fig. 10. The number of solution evaluations to select each solution used by
LGI-HSS on five-objective and ten-objective I-DTLZ2 problems.

Fig. 11. The number of solution evaluations to select each solution used by
LGI-IGDSS on five-objective and ten-objective I-DTLZ2 problems.

In this manner, we generate eight candidate solution sets.
Then, each hypervolume-based subset selection algorithm is
applied to each candidate solution set to select 100 solutions.
This experiment is iterated 11 time. The average size of the
candidate solution sets and the average computation time of
each subset selection algorithm are shown in Table III.

We can see from Table III that the proposed algorithms
always achieve the best results (i.e., the shortest average
computation time) for all the eight settings. Especially when
the number of objectives is large (e.g., the nine-objective
car cab design problem), the proposed algorithm can signif-
icantly decrease the computation time for subset selection.
This is consistent with the experimental results on artificially
generated solution sets. Similar significant improvement by
the proposed algorithms in the computation time is also
observed for subset selection based on the IGD and IGD+
indicators whereas they are not included due to the paper
length limitation.

Fig. 12. The number of solution evaluations to select each solution used by
LGI-IGD+SS on five-objective and ten-objective I-DTLZ2 problems.

(a) NSGA-II.

(b) NSGA-III.

Fig. 13. The average number of non-dominated solutions among all the
examined solutions at each generation.

TABLE III
AVERAGE COMPUTATION TIME (IN SECONDS) ON REAL-WORLD

SOLUTION SETS OVER 11 RUNS. THE BEST RESULTS ARE HIGHLIGHTED
BY BOLD.

Solution Set Size # Obj. GI-
HSS

UGI-
HSS

LGI-
HSS

NSGA-II on the car side
impact design problem

10913 4 84.0 10.2 7.0

NSGA-III on the car side
impact design problem

11453 4 92.7 13.0 8.3

NSGA-II on the conceptual
marine design problem

8549 4 62.4 6.1 4.8

NSGA-III on the concep-
tual marine design problem

10328 4 81.6 8.0 6.5

NSGA-II on the water re-
source planning problem

12284 6 117.3 22.1 9.8

NSGA-III on the water re-
source planning problem

19985 6 238.1 38.3 23.2

NSGA-II on the car cab de-
sign problem

22196 9 412.5 81.5 15.3

NSGA-III on the car cab
design problem

23958 9 516.3 97.6 21.4

VI. CONCLUDING REMARKS

In this paper, we proposed efficient greedy inclusion al-
gorithms to select a small number of solutions from a large
candidate solution set for hypervolume maximization, and IGD
and IGD+ minimization. The proposed algorithms are based
on the submodular property of the three indicators. The core
idea of these algorithms is to use the submodular property
to avoid unnecessary contribution calculations. The proposed
lazy greedy algorithm finds the same solution subset as the
standard greedy inclusion algorithm for each indicator since
our algorithm does not change the basic framework of greedy
inclusion. Our experimental results on the four test problems
(DTLZ1, DTLZ2, DTLZ7 and Inverted DTLZ2) with five,
eight and ten objectives showed that the proposed three greedy
algorithms are much faster than the standard greedy inclusion
algorithms. Besides, the proposed LGI-HSS is much faster
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than the state-of-the-art fast greedy inclusion algorithm.
Our experimental results clearly showed that the proposed

idea can drastically decrease the computation time (e.g., to 6-
9% of the computation time by the standard greedy inclusion
algorithm for IGD+). The proposed idea is applicable to
any performance indicator with the submodular property such
as hypervolume, IGD and IGD+. However, when we use
hypervolume approximation instead of exact calculation, the
calculated hypervolume indicator is not strictly submodular.
One interesting future research topic is to apply the proposed
idea to approximate hypervolume subset selection algorithms
in order to examine the quality of obtained subsets by lazy
approximate algorithms. Another interesting research direction
is to accelerate the proposed algorithms by further explore
the special properties of these indicators. Besides, in distance-
based greedy subset selection [11], the distance of each
candidate solution to the selected set does not increase by
the addition of a new solution to the selected solution set.
Thus, using similar lazy idea to reduce the number of distance
calculations is also a promising future work.

The source code of the proposed lazy greedy
subset selection algorithms is available from
https://github.com/weiyuchen1999/LGISS.
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