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Abstract—Real-world multiobjective optimization problems
usually involve conflicting objectives that change over time, which
requires the optimization algorithms to quickly track the Pareto
optimal front (POF) when the environment changes. In recent
years, evolutionary algorithms based on prediction models have
been considered promising. However, most existing approaches
only make predictions based on the linear correlation between
a finite number of optimal solutions in two or three previous
environments. These incomplete information extraction strategies
may lead to low prediction accuracy in some instances. In this
paper, a novel prediction algorithm based on incremental support
vector machine (ISVM) is proposed, called ISVM-DMOEA. We
treat the solving of dynamic multiobjective optimization problems
(DMOPs) as an online learning process, using the continuously
obtained optimal solution to update an incremental support
vector machine without discarding the solution information at
earlier time. ISVM is then used to filter random solutions and
generate an initial population for the next moment. To overcome
the obstacle of insufficient training samples, a synthetic minority
oversampling strategy is implemented before the training of
ISVM. The advantage of this approach is that the nonlinear
correlation between solutions can be explored online by ISVM,
and the information contained in all historical optimal solutions
can be exploited to a greater extent. The experimental results and
comparison with chosen state-of-the-art algorithms demonstrate
that the proposed algorithm can effectively tackle dynamic
multiobjective optimization problems.

Index Terms—Evolutionary algorithm, multiobjective opti-
mization, prediction model, oversampling, incremental support
vector machine.

I. INTRODUCTION

DYNAMIC multiobjective optimization problems, which
refer to a class of optimization problems involving

multiple conflicting objectives and the objective functions or
constraints change over time, are very common in urban traffic
control, power system scheduling, investment management,
data mining and other industrial applications [1]–[3]. For ex-
ample, in the optimization schedule of multi-reservoirs system
for a large-scale hydropower station, engineers need to mini-
mize irrigation water shortage and maximize power generation
under the constraints of maintaining water balance and average
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power generation rate [4]. Another convincing example is the
emergency supplies allocation after a sudden disaster [5]: the
total distance traveled and allocation time of supply trucks are
taken as optimization objectives, with the demand or urgency
of each disaster-stricken area and the maximum load of supply
trucks comprehensively considered. It is clear that dynamic
multiobjective optimization problems are widespread in real-
world and play a very important role. However, solving the
DMOPs still remains a big challenge due to its constant change
in time or environment [6]. Therefore, the research of dynamic
multiobjective optimization algorithms (DMOAs) is of great
importance in both theoretical front and practical use.

In recent years, evolutionary algorithms have been widely
used in solving dynamic multiobjective optimization problems
[7]. Evolutionary algorithm usually starts from an initial
population, and gradually select the optimal solution in each
iteration by specific rules, which in turn efficiently solve
some complex problems. In particular, significant progress
has been made in a class of prediction-based methods that
reuse valuable information from past moments by machine
learning and other means. For example, Koo et al. [8] proposed
a dynamic predictive gradient strategy which estimates the
direction and magnitude of the next change based on previous
solutions by a weighted average approach. Solutions updated
with the predictive gradient will remain in the vicinity of the
new Pareto-optimal set and be conducive to population conver-
gence. Zhou et al. [9] presented a method named population
prediction strategy (PPS) which maintains a sequence of center
points to predict the next center and uses the previous manifold
to estimate the next manifold. When changes are detected,
PPS can initialize the population by combining the prediction
center and estimated manifold. Various models are used in
the prediction-based approaches to learn historical knowledge
and guide the search, enabling it to respond well to changing
environments.

However, room for improvement on the prediction-based
evolutionary dynamic multiobjective algorithm still remains.
First, most of the existing methods are based on linear
prediction model [10]. These models can not accurately pre-
dict the new solutions if the optimal solutions in DMOPs
are nonlinearly correlated at different times. Second, most
available methods predict the position of the new Pareto-
optimal set based on optimal solutions in previous two or
three environments, but realistically only fetching the historical
information in the adjacent time may lead to the neglect of
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some distribution patterns existing in earlier search. Moreover,
the accuracy of prediction is highly related to the number of
historical optimal solutions. In reality, the optimal solutions
obtained by each search are very few compared with the
whole decision space. How to extract more information from
a limited number of historical optimal solutions remains a
challenge.

To address these issues, this paper proposes a novel
prediction-based algorithm, called ISVM-DMOEA, which
seamlessly integrate several strategies to generate a high-
quality population. We believe that there are some implicit
correlations between the optimal solutions, from which pre-
dictable general patterns can be detected. For a specific
problem with a certain regularity, such patterns may exist in all
environments experienced. If we can extract the features of the
optimal solutions to a greater extent by oversampling method,
and constantly assimilate the features via online learning, we
can build a more efficient and accurate prediction model for
DMOPs.

The proposed method can be briefly summarized as follows:
support vector machine (SVM) is introduced to explore the
potential correlations between the optimal solutions at different
times, and the features included in the latest optimal solutions
are utilized online in an incremental learning process. To
further improve the performance of incremental support vector
machine (ISVM), we use synthetic minority oversampling
technique to deal with the imbalanced data. As the envi-
ronment changes, a continuously modified ISVM classifier
can accurately predict a good initial population for the next
moment, which is of great help to the handling of dynamic
multiobjective optimization problems.

The contributions of this work are as follows: First, the
kernel function in SVM maps the vectors to a high dimensional
feature space to construct the classifier, which can handle the
possible nonlinear correlation between solutions at different
times. Second, the incremental SVM not only can obtain the
optimal solution distribution in the new environment online,
but also effectively reuse the information contained in all
past moments to extract a more comprehensive distribution
pattern. Furthermore, the combination of oversampling and
incremental SVM overcomes the sample imbalance caused
by the small number of optimal solutions. The experimental
results show that the algorithm can significantly improve the
convergence rate and the quality of solutions, and can be
combined with various population-based static optimization
algorithms.

The remainder of the paper is organized as follows: Sec-
tion II provides the background and some related work of
DMOPs. Section III introduces the principles of incremental
support vector machine and synthetic minority oversampling
technique. Section IV describes the proposed algorithm ISVM-
DMOEA in detail. Section V presents the experimental study
and analysis. Section VI concludes the paper with suggestions
for future work.

II. PRELIMINARIES AND RELATED WORK

A. Dynamic Multiobjective Optimization

The dynamic multiobjective optimization problem can be
defined as:{

min F (x, t) = (f1(x, t), f2(x, t), . . . , fM (x, t))
s.t. x ∈ Ω

(1)

where t is the discrete time instants and x is the D-dimension
decision variable within the decision space Ω. F refers to
the objective vector consists of M time-varying objective
functions.

Definition 1. [Pareto Dominance] At time t , a decision vector
xp is said to dominate another vector xq , denoted by xp � xq ,
if and only if :{

∀i ∈ (1, . . . ,M) , fi(xp, t) ≤ fi(xq, t)
∃i ∈ (1, . . . ,M) , fi(xp, t) < fi(xq, t).

(2)

Definition 2. [Dynamic Pareto-optimal Set] At time t, a
solution x∗ is said to be nondominated (Pareto-optimal) if
and only if there is no solution x in the decision space which
can dominate x∗. The Dynamic Pareto-optimal Set (DPOS) is
the set of all Pareto-optimal solutions:

DPOS(t) = {x∗ ∈ Ω | @x ∈ Ω, x � x∗} (3)

Definition 3. [Dynamic Pareto-optimal Front] At time t, the
Dynamic Pareto-optimal Front includes the corresponding
objective vectors of the DPOS:

DPOF (t) = {F (x∗, t) | x∗ ∈ DPOS(t)} (4)

B. Related Work

Over the years, great progress has been made in the inves-
tigation of DMOAs. In general, most existing algorithms can
be categorized into three classes: diversity-based approaches,
memory-based approaches, and prediction-based approaches.

Diversity-based approaches aim to keep the balance between
convergence and diversity. There are two main strategies to
enhance the diversity of a population: diversity introduction
and diversity maintenance. Diversity introduction can effec-
tively prevent the solutions from trapping in local optima [11],
[12]. Deb et al. [13] proposed two variants of NSGA-II for
dynamic optimization problems. The first version is called
DNSGA-II-A, which introduces randomly generated solutions
to replace part of the population; the second version is called
DNSGA-II-B, which enhances the diversity by replacing a
portion of the population with mutated solutions. Liu et al.
[14] proposed a method sensitive to change intensity. When
environmental change is detected, two strategies are utilized
in different situations: an inverse modeling is used for drastic
changes, while partially initialization is utilized for mild ones.
Ruan et al. [15] presented a hybrid diversity algorithm. In an
exploitation step, some diverse individuals within the region
of the next probable POS are randomly generated.

Some methods based on diversity maintenance were also
presented to solve the DMOPs [16], [17]. A steady-state and
generational evolutionary algorithm (SGEA) was introduced
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in [18], which responds to environmental changes in a steady-
state manner. When change occurs, SGEA retains part of
outdated solutions with good diversity and predicts some solu-
tions according to the previous environment. These solutions
are mixed with random solutions with a certain proportion
to create a new population. Shang et al. proposed a class of
evolutionary optimization algorithms based on clonal selection
[19], [20]. These algorithms directly use the POS of the current
environment as the initial population of the new environment.

Memory-based approaches use additional storage to im-
plicitly or explicitly reserve the solutions in the historical
environment, and reuse the stored solutions in the new en-
vironment. An adaptive hybrid population management strat-
egy using memory, local search and random strategies was
proposed by Azzouz et al. in [21]. In this algorithm, the
memory size and the number of random solutions to be
extracted are dynamically adjusted according to the severity
of the change. Xu et al. [22] presented a memory-enhanced
dynamic multiobjective evolutionary algorithm based on Lp
decomposition (dMOEA/D-Lp). A subproblem-based bunchy
memory scheme is used in dMOEA/D-Lp to store good
solutions from past environments and reuse them when neces-
sary. Sahmoud et al. [23] proposed a hybrid storage strategy
integrating memory mechanism within NSGA-II. To improve
the ability of NSGA-II to track the non-dominated solutions
in dynamic environment, explicit memory is implemented to
store the best solutions in each generation. Helbig et al.
[24] introduced a dynamic vector evaluation particle swarm
optimisation (DVEPSO) algorithm and investigated various
ways to manage the archive when the environment changes.
Chen et al. [25] proposed a two-archive algorithm that dy-
namically reconstructs two populations (one concerns about
convergence and the other concerns about diversity) to solve
problems with a time-dependent number of objectives. In
general, memory-based mechanism is suitable for DMOPs
with periodic changes.

Recently, prediction-based approaches have arisen with an
increasing interest among researchers, and a great number
of prediction algorithms have been proposed. Essentially,
prediction-based approaches use the information of the his-
torical optimal solutions to predict the location of the new
POS. Muruganantham et al. [26] proposed a Kalman Filter
(KF) based dynamic multiobjective optimization algorithm
(MOEA/D-KF). In this method, a linear discrete KF composed
of time update equations and measurement update equations
is used to estimate the process state by feedback control. A
2-D KF and a 3-D KF were designed to predict the location of
new POS when change is detected, and then a decomposition-
based differential evolution algorithm was used to obtain the
optimal population.

Rong et al. [27] presented a multidirectional prediction
strategy (MDP) to enhance the performance of evolution algo-
rithms. A number of representative individuals are selected via
adaptive clustering, and the population is then classified into
several clusters according to the distances between individu-
als. Subsequently, MDP constructs time series models based
on the historical information provided by the representative
individuals, which is used to predict a number of evolutionary

directions. However, only the trajectories in the previous two
environments are considered in MDP.

To reduce computing cost, Li et al. [28] proposed a predic-
tive strategy based on special points (SPPS) including feed-
forward center points, boundary points, close-to-center points,
close-to-boundary points and knee points. The special point
set that eliminates useless individuals can make the predicted
population track POF more accurately. Knee points were also
adopted in [29] and [30] to facilitate the tracking ability. Wu et
al. [31] introduced a directed search strategy to predict a new
population, in which the moving direction of POS is estimated
by the position of centroid points. Min et al. [32] proposed an
adaptive knowledge reuse framework based on multiproblem
surrogates, which accelerated the convergence of expensive
multiobjective optimization.

Evolutionary transfer optimization (ETO) is an emerging
paradigm in prediction [33], [34]. Da et al. [35] proposed an
adaptive transfer framework to utilize the similarity of black-
box optimization problems online. Bali et al. [36] dynamically
adapted the extent of transfer between different tasks based
on the optimal mixing of probabilistic model. Jiang et al. [37]
proposed a dynamic multiobjective optimization method based
on transfer learning (Tr-DMOEA), which maps the POF in the
past environment into a latent space via transfer component
analysis (TCA), and then uses these mapped solutions to
construct a high-quality population. Inspired by Tr-DMOEA,
some transfer learning algorithms combined with memory
mechanisms or pre-search strategies were proposed to solve
DMOPs [38]–[40].

Differential models and linear models are often used in
prediction algorithms. Liu et al. [41] proposed an improved
adaptive differential evolution crossover operator to facilitate
population evolution, and use the information from the past
two searches to make prediction. In [9], Zhou et al. constructed
a time series for each individual in the population, and used
a simple linear model to predict the individual position in the
next time window. Cao et al. [42] introduced a first-order and
second-order mixed difference model based on the historical
position to predict the centroid position of the population.
Liang et al. [43] proposed a hybrid of memory and prediction
strategies for dynamic multiobjective optimization (MOEA/D-
HMPS). In response to dissimilar changes, MOEA/D-HMPS
exploits the moving direction of the population center at the
previous two continuous time steps to predict the moving
trajectory at the next moment.

Prediction-based methods can take advantage of the trending
in POS changes and show a promising performance in solving
DMOPs. However, most prediction models assume that a
linear correlation exists in the solutions at different times.
While in many cases, even POS at adjacent moments are
nonlinearly correlated. In addition, the time series constructed
by most models is very short, and the information contained
in the earlier searches is lost, which will affect the accuracy
of prediction. Therefore, it is necessary to improve the gen-
eralization ability and information extraction ability of the
prediction model. In this paper, incremental support vector
machine (ISVM) and synthetic minority over-sampling tech-
nique (SMOTE) will be introduced to enhance the prediction
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model.

III. INCREMENTAL SUPPORT VECTOR MACHINE AND
SYNTHETIC MINORITY OVER-SAMPLING TECHNIQUE

As incremental support vector machine and synthetic mi-
nority over-sampling technique are two critical components in
the proposed algorithm, we will review them in this section
for the completeness of the presentation. In the process of
solving DMOPs, ISVM can incrementally learn knowledge
from previous POS to accurately determine the quality of the
solutions, while SMOTE can extract more information from a
limited number of POS samples.

A. Incremental Support Vector Machine

Support Vector Machine (SVM) is a widely used binary
classification model with sparsity and robustness [44]. The
strategy of SVM is to build an optimal hyperplane in the
feature space for binary classification by maximizing the
classification interval [45]. The application of kernel function
in SVM enables it to solve nonlinear and high dimensional
pattern recognition problems well, which maps the samples
from low dimensional space to a high dimensional space and
turns the problem into a linearly separable one.

Generally, the training data of a typical SVM are imported
in batch. But in some instances, SVM needs to be trained on-
line. Incremental Support Vector Machine (ISVM) is proposed
to handle incoming samples. ISVM can gradually update the
parameters to accommodate new samples without training on
all samples repeatedly [46]. Next, the principle of ISVM is
briefly introduced.

To generate an ISVM, we need to create a discriminant
function f(x) = w · φ(x) + b learned from the samples
{(xi, yi) ∈ Rm × {−1, 1},∀i ∈ {1, . . . , N}}. That is to solve
a quadratic programming problem:{

minw,b 1
2‖w‖

2+C ·
∑N
i=1 εi

s.t. yi (w · xi + b) ≥ 1− εi, i ∈ {1, . . . , N}
(5)

The first term represents the maximized interval distance,
while the second term is the regularization term. C is the
penalty parameter, and εi is the slack variable used to build a
soft margin. When dealing with nonlinear issues, the quadratic
program is typically expressed in its dual form:

min
0≤αi≤C

: L =
1

2

∑
i,j

αiQijαj −
∑
i

αi + b
∑
i

yiαi (6)

where Qij = yiyjK(xi, xj), K(xi, xj) = ϕ (xi) · ϕ (xj).
K is the kernel function that implicitly maps the vectors
to a high dimensional feature space meanwhile simplify the
calculation. The dual form of SVM discriminant function is
herein represented as f(x) =

∑
j αjyjK (xj , x) + b.

The Karush-Kuhn-Tucker (KKT) conditions uniquely define
the solution of dual parameters {α, b} by the first-order
conditions on L:

Gi =
∂L

∂αi
=
∑
j

Qijαj + yib− 1

 > 0, αi = 0
= 0, 0 ≤ αi ≤ C
< 0, αi = C

∂L

∂b
=
∑
j

yjαj = 0

(7)
The KKT conditions partition the training samples into three

categories: the set S of margin support vectors with Gi = 0,
the set E of error support vectors with Gi ≤ 0 and the set R
of the remaining vectors with Gi > 0 [47].

With the continuous introduction of new samples in the
incremental learning process, the margin vector coefficients
change simultaneously to keep the KKT conditions satisfied
for all previously trained samples. For a new sample m
considered as a candidate support vector, the KKT conditions
can be expressed differentially as:

∆Gi = Qim∆αm +
∑
j∈S Qij∆αj + yi∆b,∀i ∈ D ∪ {m}

0 = ym∆αm +
∑
j∈S yj∆αj

(8)
Since Gi = 0 for the margin vector set S = {S1, ..., Sls},

the changes in coefficients must satisfy:

Q ·


∆b

∆αs1
...

∆αslS

 = −


ym
Qs1m

...
QslSm

∆αm (9)

where Q is a symmetric but not positive-definite Jacobian
matrix:

Q =


0 ys1 · · · ys`S
ys1 Qs1s1 · · · Qs1s`S

...
...

. . .
...

ys`S Qs`Ss1 · · · Qs`S s`S

 (10)

Then we can get

∆b = β∆αm

∆αj = βj∆αm, ∀j ∈ D
(11)

with coefficient sensitivities
β
βs1

...
βs`S

 = −R ·


ym
Qs1m

...
Qs`Sm

 (12)

where R = Q−1 and βj = 0 for all j outside S. Hence, we
have the KKT conditions in equation (7) changed according
to:

∆Gi = γi∆αm,∀i ∈ D ∪ {m}
γi = Qim +

∑
j∈S Qijβj + yiβ,∀i /∈ S

(13)
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To append a candidate vector m into the margin vector set
S, R is expanded as:

R ←


0

R
...
0

0 · · · 0 0

+
1

γm


β
βs1

...
βs`S

1

 ·
[
β, βs1 · · ·βs`S , 1

]

(14)
Conversely, to remove a vector k from S, R is deflated as:

Rij ← Rij −R−1kkRikRkj ,∀i, j ∈ S ∪ {0}; i, j 6= k (15)

Consequently, when a new sample m is added to the
training data set D : Dl+1 = Dl ∪ {m}, the solution of
parameters {α, b} is updated with respect to the candidate
xm, ym, the present solution and Jacobian inverse matrix R.
The incremental procedure can be summarized as:

1. Initialize αm to zero, calculate Gm;
2. If Gm > 0, terminate (m is not a margin or error vector);
3. If Gm ≤ 0, apply the largest possible increment αm so

that one of the following conditions occurs: (a) Gm = 0: Add
m to margin set S, update R accordingly and terminate; (b)
αm = C: Add c to error set E, terminate; (c) Elements of Dl

migrate across S, E and R: update membership of elements
and repeat step 3. If S changes, update R accordingly.

B. Synthetic Minority Over-sampling Technique

Uniformity in quantity of samples is a key factor affecting
the accuracy of a classifier. Excessive differences in the
number of samples may bias the classification results toward
the dominant category. Synthetic minority over-sampling tech-
nique (SMOTE) is an effective way to deal with imbalanced
data [48].

SMOTE suggests that there are some potentially available
samples between the adjacent minority samples in the feature
space. New samples are synthesized based on adjacent samples
to balance the data set. As shown in Fig. 1, xm is a sample
belonging to minority class in a two-dimensional feature
space, and Xm =

{
x1m, x

2
m, . . . , x

k
m

}
are k neighbors of xm

in the same category. By multiplying the difference of the
two vectors by a random number (range 0-1), new samples
Y =

{
y1, y2, . . . , yr

}
are synthesized along the line segment

between xm and samples in Xm. The number of synthesized
samples is determined by the oversampling rate r. Finally,
r new samples are added to the initial minority sample set
to maintain the balance of sample class thereby improve the
generalization ability of the classifier.

IV. PROPOSED ALGORITHM

In this section, we propose an online algorithm based on in-
cremental support vector machine to solve DMOPs. The main
idea is to train an ISVM classifier online by reusing the optimal
solutions obtained in the previous environments which are
preprocessed by a sampling strategy based on SMOTE. When
environmental changes are detected, the classifier predicts a
high-quality initial population, which helps the optimization
algorithm to converge to the true POS more quickly and

Fig. 1: Illustration of synthetic minority over-sampling
technique (taking 2D decision space as an example).

accurately. The schematic diagram of the proposed ISVM-
DMOEA is presented in Fig. 2. Briefly, ISVM-DMOEA con-
sists of two main subroutines:1) POSMOTE sampling strategy
and 2) ISVMPRE online prediction strategy. The description
of subroutines is followed by the framework illustration of
ISVM-DMOEA.

A. POSMOTE Sampling Strategy

As mentioned above, an ISVM classifier will be trained
to predict an initial population for the next moment based
on previous distribution of solutions. The optimal solutions
obtained in the past environments are regarded as positive
samples, while solutions with poor quality are regarded as
negative samples accordingly. In DMOPs, a limited number of
positive samples composed by optimal solutions will lead to
low accuracy of ISVM. Therefore, it is necessary to generate a
sufficient and balanced sample set for the predictor in advance.

SMOTE is employed in the oversampling of positive sam-
ples belonging to minority class. The optimal solution set
obtained at the last moment is expressed as POSt−1 ={
POS1

t−1, POS
2
t−1, . . . , POS

n
t−1
}

. In the first step, k nearest
neighbors of each optimal solution POSnt−1 are identified
in POSt−1 by the Euclidean distance. To synthesize a new
sample P+

sy , a vector POSmt−1 is selected from the k near-
est neighbors of POSnt−1. The attributes of P+

sy in each
dimension are calculated randomly by linear interpolation of
POSmt−1 and POSnt−1:

P+
sy(d) = POSnt−1(d) +Rand×

(
POSnt−1(d)− POSmt−1(d)

)
(16)

where d ∈ {1, . . . , D}, and D is the dimension of the
decision vector. Rand represents a random number in (0,1).
The number of new samples synthesized by each optimal
solution depends on the oversampling rate r. n× r synthetic
samples and n original samples constitute the positive sample
set P+.

Compared with positive samples, the number of negative
samples is very large. The generation of negative sample set
can be regarded as a down-sampling process. Since most of
the solutions in the decision space fall outside of the POSt−1,
negative sample set can be composed of randomly synthesized
solutions. To generate a balanced sample set, n × (r + 1)
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Fig. 2: Schematic of ISVM-DMOEA. At time t, the search for POS can be decomposed into: sampling (POSMOTE) →
prediction (ISVMPRE) → optimization (SMOA).

Fig. 3: Illustration of POSMOTE sampling strategy (taking
2D decision space as an example): positive samples are

synthesized by calculating the linear interpolation between
the solutions in POSt−1, and negative samples are randomly

generated according to the number of positive samples.

negative samples are synthesized. As illustrated in Fig. 3, the
number of negative samples in P− is consistent with that of
positive samples in P+, and the samples are sufficient for the
training of ISVM. The details of POSMOTE are shown in
Algorithm 1.

B. ISVMPRE Online Prediction Strategy

For a specific problem, we assume that a general distribution
pattern lies in the optimal solutions at different instants. The
strategy of prediction is to explore the general pattern with a
binary classifier. A well-trained classifier can estimate whether
a solution has the characteristics of being an optimal solution.

SVM can map the solutions in the decision space to a
high dimensional feature space to construct a linear classifier,
which can explore the implicit connection between the optimal
solutions in the original space, regardless linear or nonlinear.
However, if only optimal solutions in the former environment
are used to construct an SVM each time, the information
contained in solutions at earlier instants cannot be extracted;
while if all the optimal solutions in previous environments are
used to train the SVM, enormous amount of time and storage
space will be needed.

To construct a prediction model with both high efficiency
and accuracy, incremental SVM is employed. The parameters
of ISVM are constantly updated as the environment changes.
ISVMt is an updated model of ISVMt−1 based on new
samples imported online. A randomly generated solution is
recognized as a candidate for optimal solution if it is classified

Algorithm 1: POSMOTE — Sampling Strategy
Input: the POS with n solutions obtained at the last

moment, POSt−1; the oversampling rate r; the
number of nearest neighbors considered, k; the
number of decision variables, D;

Output: a balanced sample set, Ptrain;
1 initialize the sample set, Ptrain = ∅;
2 for i = 1 to n do
3 identify k nearest neighbors of POSit−1;
4 while r 6= 0 do
5 randomly select a neighbor in k neighbors;
6 for j = 1 to D do
7 calculate the attributes of the synthesized

vector P+
sy in each dimension according to

formula 16;
8 end
9 P+ = P+ ∪ P+

sy;
10 r = r - 1;
11 end
12 end
13 P+= P+ ∪ POSt−1;
14 for i = 1 to n(r + 1) do
15 randomly generate a vector P−sy in the decision

space;
16 P−= P− ∪ P−sy;
17 end
18 Ptrain = {P+, P−};
19 return Ptrain;

as positive in ISVMt. To generate a promising population,
ISVMt works as a filter: random solutions classified as positive
are retained, and the negative ones are discarded. Finally, NP
positive samples are placed into POPt, which is a high-quality
initial population for the new environment. The pseudocode of
ISVMPRE is presented in Algorithm 2.

C. Framework of ISVM-DMOEA

Algorithm 3 depicts the overall framework of the proposed
ISVM-DMOEA. The entire process of solving a dynamic
multiobjective optimization problem is accompanied by the
online learning process of ISVM-based predictor.

In the first environment, the population is initialized ran-
domly, and then the initial population is optimized by a
population-based static multiobjective optimization algorithm
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Algorithm 2: ISVMPRE — Online Prediction Strategy
Input: the population size, Np; the parameters of

ISVM at the last moment, ISVMt−1; the
training samples, Ptrain;

Output: a predicted population, POPt; updated
parameters of ISVM at time t, ISVMt;

1 initialize the predicted population: POPt = ∅ ,Ncount
= 0;

2 incrementally train the ISVMt based on ISVMt−1 with
samples in Ptrain;

3 while Ncount <Np do
4 randomly generate a vector Prand in the decision

space;
5 get the label of Prand in ISVMt;
6 if lable = +1 then
7 POPt = POPt ∪ Prand;
8 Ncount = Ncount + 1;
9 end

10 end
11 return POPt, ISVMt;

(SMOA) to obtain the corresponding POS0. When changes in
the environment are detected, a new sample set is synthesized
based on POSt−1 obtained in the previous environments. The
number and characteristics of new samples are predefined by
the parameters in POSMOTE. Subsequently, new samples are
introduced into the prediction strategy, where the parameters
of ISVM are updated online to incorporate more general infor-
mation from previous POS. A high-quality initial population is
then predicted by ISVMPRE and further optimized by SMOA
until POS is obtained.

It is worth noting that, the procedures of POSMOTE
sampling strategy, ISVMPRE prediction strategy and SMOA
optimization are successive and non-interfering in ISVM-
DMOEA, so any population-based multiobjective optimization
algorithm can be embedded in the proposed framework.

Algorithm 3: Framwork of ISVM-DMOEA
Input: the dynamic optimization problem, F (x, t);

the population size, Np; the oversampling rate
r; the number of nearest neighbors considered,
k; the number of decision variables, D;

Output: The solutions at time t, POSt;
1 randomly initialize a population POP0, t = 0;
2 POS0 = SMOA(POP0, F (x, 0), Np);
3 while change detected do
4 t = t + 1;
5 Ptrain = POSMOTE(POSt−1, r, k, D);
6 POPt = ISVMPRE(Ptrain, ISVMt−1, Np );
7 POSt = SMOA(POPt, F (x, t), Np);
8 end
9 return POSt;

V. EXPERIMENTAL STUDY

A. Benchmark Problems and performance indicators

In this paper, the performance of the proposed ISVM-
DMOEA and chosen competing algorithms is uniformly ex-
amined on CEC 2018 DMO benchmark suite with nine bi-
objective and five tri-objective problems. These problems are
named DF1-DF14, which cover diverse problem character-
istics such as dynamic POF/POS geometries, irregular POF
shapes, variable linkage and disconnectivity. The time instance
t involved in the problems is defined as t = 1

nt
bτ/τtc, where

nt, τt and τ denote the severity of change, the frequency
of change and the iteration counter, respectively. For each
problem, various pairs of nt and τt are implemented to
configure different dynamic characteristics. The definition of
test instances is detailed in [49].

The following matrix are adopted to assess the performance
of algorithms:

1) Inverted Generational Distance (IGD): IGD is a
frequently-used metric to measure the convergence and diver-
sity of the solutions by computing the difference between true
POF and the POF estimated by an algorithm. At time t, IGD
is calculated as:

IGD (POF∗t ,POFet ) =

∑
p∈POF∗

t
d (p,POFet )

|POF∗t |
(17)

where POF∗t is a set of points uniformly sampled from the
true POFt, and POFet is estimated by the tested algorithm.
d(p,POFet ) represents the minimum Euclidian distance be-
tween p belonging to POF∗t and the points in POFet . The
d(p,POFet ) of each point in POF∗t is calculated and then the
average distance is computed.

To apply IGD to the changing environments, a variant of
IGD called MIGD is adopted. MIGD takes the average of the
IGD values at different time, given by:

MIGD =

∑
t∈T IGD (POF∗t ,POFet )

|T |
(18)

where T is a set of discrete instants and |T | is the number
of changes in a run. In this paper, 1000 points are uniformly
sampled from POF∗t for the calculation of IGD.

2) Hypervolume (HV): HV is used to evaluate the diversity
and distribution of the solutions by computing the hypervol-
ume of the region dominated by the obtained POF [50]. HV
is formally defined as follows:

HV(POFet , rp) = Λ

 ⋃
p∈POFe

t

{q | rp � q � p}

 (19)

where Λ denotes the Lebesgue measure and rp ∈ RD is the
reference point calculated by the maximum value of the d−th
objective of the POF. Similarily, we can define a metric MHV
based on HV, which is given as:

MHV =

∑
t∈T HV (POFet , rp)

|T |
(20)
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B. Compared algorithms and parameter settings

Without loss of generality, we choose the regularity model-
based multiobjective estimation of distribution algorithm (RM-
MEDA) as the static optimizer in the proposed ISVM-
DMOEA. RM-MEDA is a widely-used algorithm that con-
structs a posterior probability distribution model of promising
solutions based on global statistical information extracted from
selected solutions [51]. The proposed algorithm incorporating
RM-MEDA is called ISVM-RM-MEDA.

To verify the performance of ISVM-RM-MEDA, four state-
of-the-art algorithms are chosen for comparison: Kalman
prediction-based MOEA (MOEA/D-KF) [26], population pre-
diction strategy (PPS) [52], support vector regression-based
predictor (MOEA/D-SVR) [10] and transfer learning-based
DMOEA (Tr-DMOEA) [37]. These algorithms use different
prediction strategies to solve DMOPs, and have achieved
considerable performance. Besides, RM-MEDA is modified
to adapt to dynamic problems, called DA-RM-MEDA. For a
fair comparison, the baseline optimizer in these algorithms are
uniformly replaced by RM-MEDA. In our empirical studies,
the compared algorithms are referred to as KF-RM-MEDA,
PPS-RM-MEDA, SVR-RM-MEDA, TR-RM-MEDA and DA-
RM-MEDA, respectively.

The parameters in the test environments and algorithms are
set as follows:

1) Population size and number of decision variables: The
population size is set to be 100 for bi-objective problems
(DF1-DF9) and 150 for tri-objective problems (DF10-DF14).
The number of decision variables is set as 10 for all test
problems.

2) Dynamic characteristics: For each problem, three pairs
of dynamic characteristics are set by different combinations
of nt and τt: ( nt=10, τt=10); ( nt=5, τt=10); ( nt=10, τt=5).
τ/τt is fixed to be 30, which ensures there are 30 changes in
each run. Each algorithm is run 20 times on each test instance
independently.

3) Parameters in algorithms: In the proposed algorithm,
Gaussian RBF kernel is selected as the kernel function of
ISVM, and the kernel scale is determined by grid search;
both the oversampling rate r and the number of k nearest
neighbors are both set to be 5 in POSMOTE. The parameters
of RM-MEDA and compared algorithms are referenced from
the original papers.

C. Comparison Study

The statistical results of MIGD and MHV obtained by
ISVM-RM-MEDA and five competing algorithms are pre-
sented in Table I and Table II, respectively. For an intuitive
comparison, the best values on each instance are hilighted in
bold and the Wilcoxon rank sum test at the 0.05 significance
level is carried out to indicate the significance between differ-
ent results.

It can be seen from Table I that ISVM-RM-MEDA ob-
tains the best MIGD results on the majority of the tested
problems, implying that the proposed algorithm has superior
tracking ability of dynamic POF in most cases. ISVM-RM-
MEDA performs slightly worse than PPS-RM-MEDA in half

of the configurations on DF1, DF2 and DF9, which may be
attributed to the comprehensive strategy of PPS combining
POS center prediction and manifold estimation. The POS of
DF8 contains a group of stationary centroids and the POS
varies nonlinearly over time, which makes it very difficult to be
approximated. Therefore, the MIGD values on DF8 obtained
by the randomly reinitialized approach for RM-MEDA (DA-
RM-MEDA) is better than those of all the algorithms based
on prediction. Nevertheless, two nonlinear prediction driven
algorithms, ISVM-RM-MEDA and SVR-RM-MEDA, achieve
better results than other prediction algorithms on DF8. ISVM-
RM-MEDA seems slightly inefficient on the complex problem
DF12 with a time-varying number of POF holes. Except
for DF12, ISVM-RM-MEDA significantly outperform other
algorithms on tri-objective problems. Obviously, the MIGD
values obtained by ISVM-RM-MEDA are competitive in three
pairs of (nt ,τt) configurations, demonstrating that ISVM-RM-
MEDA is a robust model with less sensitive to the frequency
and severity of change.

Fig. 4 depicts the evolution curves of the IGD values on
DF1-DF14 averaged over 20 runs with nt = 10 and τt = 10. We
can see that the IGD curves obtained by ISVM-RM-MEDA are
relatively low on most problems except for DF12. Besides, the
fluctuation range of the curves obtained by ISVM-RM-MEDA
is slighter than other algorithms, indicating that the proposed
method can respond to the environmental changes quickly and
stably.

As shown in Table II, ISVM-RM-MEDA achieves the best
performance on 30 out of 42 test instances in terms of MHV
metrics. The MHV value obtained by ISVM-RM-MEDA is
slightly worse than that of PPS-RM-MEDA on DF1-DF2 and
TR-RM-MEDA on DF12, but better than that of the rest
algorithms. The Wilcoxon test result indicates that there is
no significant difference between these solution sets.

The MIGD values indicate the comparatively convergence
of solutions obtained by ISVM-RM-MEDA, and the MHV
values indicate the superior diversity and distribution. In other
words, the proposed ISVM-based prediction model can effec-
tively explore the linear or nonlinear correlations between POS
obtained at different environments, thereby generate promising
populations for varying environments.

D. Ablation Study

In the proposed algorithm, two key procedures are imple-
mented: SMOTE-based sampling strategy and ISVM-based
prediction strategy. The results of comparison study have
shown that the combination of the two strategies can sig-
nificantly improve the quality of the predicted population.
However, the role that each strategy plays in solving DMOPs
remains unclear. To verify the effectiveness of these two
strategies, we carry out an ablation experiment. We modify
the sampling strategy and propose two variants, in which the
oversampling rate r of POSMOTE is set to 0 and 3, and
r = 0 indicates that the sampling strategy is switched off.
The two variants are denoted as ISVMr0-RM-MEDA and
ISVMr3-RM-MEDA, respectively. In the exploration of the
prediction strategy, we keep r = 5 and deactivate the online
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TABLE I: MEAN AND STANDARD DEVIATION VALUES OF MIGD OBTAINED BY ISVM-RM-MEDA AND
COMPARED ALGORITHMS

Prob (nt ,τt) DA-RM-MEDA KF-RM-MEDA PPS-RM-MEDA SVR-RM-MEDA TR-RM-MEDA ISVM-RM-MEDA

DF1
(10,10) 0.1576±4.55E-03(+) 0.1972±1.99E-02(+) 0.0365±7.34E-03(-) 0.1305±9.37E-03(+) 0.0929±1.48E-02(+) 0.0424±2.02E-03
(5,10) 0.1579±7.64E-03(+) 0.1958±2.32E-02(+) 0.0717±6.06E-03(+) 0.1544±1.38E-02(+) 0.0876±1.14E-02(+) 0.0674±1.06E-02
(10,5) 0.3481±9.82E-03(+) 0.2462±7.21E-03(+) 0.0949±2.11E-02(-) 0.2683±1.45E-02(+) 0.1672±7.29E-03(=) 0.1516±6.24E-02

DF2
(10,10) 0.0982±2.56E-03(+) 0.1437±1.83E-02(+) 0.0408±8.58E-03(+) 0.0854±3.44E-03(+) 0.0658±1.05E-02(+) 0.0386±1.53E-03
(5,10) 0.1034±1.41E-03(+) 0.1366±1.29E-02(+) 0.0741±5.64E-03(+) 0.0933±7.11E-03(+) 0.0711±7.32E-03(+) 0.0634±3.92E-03
(10,5) 0.2286±4.12E-03(+) 0.2018±8.95E-03(+) 0.0917±7.86E-03(-) 0.1742±8.74E-03(+) 0.1262±1.40E-02(+) 0.1018±5.53E-03

DF3
(10,10) 0.4155±9.69E-03(+) 0.2686±1.55E-02(+) 0.2012±6.02E-03(=) 0.4203±1.49E-02(+) 0.2534±1.15E-02(+) 0.1991±8.20E-03
(5,10) 0.4238±1.15E-02(+) 0.2656±1.84E-02(+) 0.2415±1.54E-02(+) 0.4089±1.63E-02(+) 0.2360±1.19E-02(+) 0.2251±1.57E-02
(10,5) 0.5371±1.74E-02(+) 0.3276±8.79E-03(+) 0.2809±3.57E-02(+) 0.5361±2.29E-02(+) 0.3810±3.96E-02(+) 0.2687±3.38E-02

DF4
(10,10) 1.4078±9.79E-03(+) 2.0779±2.56E-02(+) 1.0118±1.78E-02(+) 1.3655±3.07E-02(+) 1.2846±3.51E-02(+) 0.9658±3.47E-03
(5,10) 1.4163±1.05E-02(+) 2.0865±1.64E-02(+) 1.0334±1.15E-02(+) 1.3735±2.32E-02(+) 1.3092±3.96E-02(+) 0.9783±7.70E-03
(10,5) 1.7953±2.38E-02(+) 2.1402±1.57E-02(+) 1.0861±1.48E-02(=) 1.7378±4.49E-02(+) 1.5536±6.89E-02(+) 1.0365±8.62E-03

DF5
(10,10) 1.5713±2.82E-02(+) 5.0891±1.03E+00(+) 1.1942±1.30E-02(+) 1.8507±3.50E-02(+) 2.1915±1.33E-01(+) 1.0040±1.12E-02
(5,10) 1.7356±2.23E-02(+) 5.4275±7.56E-01(+) 1.1311±6.80E-03(=) 1.7124±2.94E-02(+) 1.8596±1.60E-01(+) 1.1293±8.90E-03
(10,5) 1.9029±1.84E-02(+) 4.4369±1.05E+00(+) 1.3787±6.25E-02(+) 2.1661±3.93E-02(+) 2.1836±3.44E-02(+) 1.1440±1.74E-02

DF6
(10,10) 7.5990±5.43E-01(+) 26.517±2.48E+00(+) 3.0892±3.07E-01(-) 6.1963±2.24E-01(+) 4.8816±2.87E-01(+) 3.5468±1.99E-01
(5,10) 7.4662±3.42E-01(+) 28.525±3.65E+00(+) 6.2691±6.85E-01(+) 6.5605±3.20E-01(+) 2.9575±2.29E-01(-) 5.1673±4.55E-01
(10,5) 10.794±4.46E-01(+) 27.334±1.47E+00(+) 6.5176±5.38E-01(+) 8.7349±5.45E-01(+) 6.7721±3.09E-01(+) 6.4605±8.49E-01

DF7
(10,10) 6.2632±3.93E-01(+) 26.876±2.69E-01(+) 2.9774±2.83E-01(-) 5.0264±4.13E-01(+) 4.2575±1.90E-01(+) 3.9424±1.81E-01
(5,10) 6.5309±3.50E-01(+) 24.683±3.55E+00(+) 5.0051±4.46E-01(+) 5.6358±4.20E-01(+) 2.3972±1.66E-01(-) 4.4235±7.12E-01
(10,5) 9.3613±5.68E-01(+) 24.894±3.67E+00(+) 5.7018±5.14E-01(+) 7.5320±3.68E-01(+) 5.9953±5.53E-01(+) 5.6874±7.62E-01

DF8
(10,10) 0.7128±1.42E-02(-) 1.3389±1.00E-02(+) 0.8667±7.93E-03(+) 0.7401±1.06E-02(-) 0.8182±1.17E-02(+) 0.7672±1.23E-02
(5,10) 0.7325±8.61E-03(-) 1.3879±4.88E-03(+) 0.8947±1.14E-02(+) 0.7768±1.07E-02(-) 0.8283±1.32E-02(+) 0.7957±2.33E-03
(10,5) 0.6897±6.85E-03(-) 1.3553±1.01E-02(+) 0.7860±2.10E-02(+) 0.7196±1.11E-02(-) 0.8125±6.75E-03(+) 0.7451±1.38E-02

DF9
(10,10) 2.3578±3.93E-02(+) 3.3843±1.57E-02(+) 1.5801±1.13E-02(-) 1.9235±5.45E-02(-) 1.8126±4.12E-02(-) 1.9743±2.32E-02
(5,10) 2.2928±3.12E-02(+) 3.3336±7.23E-01(+) 1.2775±4.44E-02(=) 1.6277±3.81E-02(+) 1.3831±5.47E-02(+) 1.2819±3.39E-02
(10,5) 2.4821±4.62E-02(+) 3.3780±9.79E-03(+) 1.6691±3.88E-02(+) 2.0972±3.65E-02(+) 1.8970±8.15E-02(+) 1.5579±5.12E-02

DF10
(10,10) 0.1683±1.53E-03(+) 0.2286±2.04E-03(+) 0.1389±1.84E-03(+) 0.1792±1.80E-03(+) 0.1198±2.91E-03(+) 0.1046±4.95E-04
(5,10) 0.1462±1.55E-03(+) 0.2285±3.85E-03(+) 0.1478±1.88E-03(+) 0.1815±2.81E-03(+) 0.1320±2.24E-03(+) 0.0933±2.45E-03
(10,5) 0.2053±2.83E-03(+) 0.3072±5.13E-03(+) 0.1874±2.68E-03(+) 0.2181±3.09E-03(+) 0.1548±3.98E-03(+) 0.1396±1.48E-03

DF11
(10,10) 0.1935±7.33E-03(+) 0.2373±7.34E-03(+) 0.1565±1.09E-02(+) 0.2280±2.55E-03(+) 0.3587±4.45E-02(+) 0.0778±1.07E-03
(5,10) 0.1919±3.35E-03(+) 0.2823±5.46E-03(+) 0.2235±4.30E-03(+) 0.2436±3.49E-03(+) 0.4266±2.40E-02(+) 0.0791±1.39E-03
(10,5) 0.3418±6.32E-03(+) 0.3808±3.66E-03(+) 0.1783±7.75E-03(+) 0.3656±4.36E-03(+) 0.3395±1.87E-02(+) 0.1112±3.70E-03

DF12
(10,10) 0.7447±2.51E-02(-) 0.4199±3.98E-03(-) 1.1756±5.61E-03(=) 0.7261±2.11E-02(-) 1.1853±0.00E+00(+) 1.1654±4.96E-03
(5,10) 0.6314±1.29E-02(-) 0.4229±7.75E-04(-) 1.1804±3.31E-03(=) 0.6241±5.64E-03(-) 1.1858±0.00E+00(+) 1.1702±3.09E-03
(10,5) 0.6714±1.39E-02(-) 0.4108±3.10E-03(-) 1.1760±5.61E-03(+) 0.6718±7.88E-03(-) 1.1853±1.18E-08(+) 1.1428±7.09E-03

DF13
(10,10) 1.6407±2.98E-02(+) 1.3463±2.28E-02(+) 1.3815±2.58E-02(+) 1.9113±4.83E-02(+) 2.0254±4.36E-02(+) 1.1329±2.78E-02
(5,10) 1.7724±3.20E-02(+) 1.2424±1.84E-02(+) 1.2986±2.03E-02(+) 1.7943±2.12E-02(+) 1.8959±2.20E-02(+) 1.1945±3.35E-02
(10,5) 1.8983±2.36E-02(+) 1.6241±4.30E-02(+) 1.6325±3.88E-02(+) 2.2068±4.07E-02(+) 2.3661±3.62E-02(+) 1.3567±4.16E-02

DF14
(10,10) 1.1099±3.00E-02(+) 0.9028±1.43E-02(+) 0.8579±7.83E-03(+) 1.2956±3.70E-03(+) 1.2527±3.54E-02(+) 0.6884±6.92E-03
(5,10) 1.2009±1.91E-02(+) 0.8273±1.53E-02(+) 0.8362±6.64E-03(+) 1.1804±1.96E-02(+) 1.1503±1.86E-02(+) 0.7745±9.52E-03
(10,5) 1.3038±2.59E-02(+) 1.0438±1.96E-02(+) 1.0334±4.22E-02(+) 1.4983±5.73E-02(+) 1.5649±3.39E-02(+) 0.7589±1.20E-02

(+), (=) and (-) indicate that ISVM-RM-MEDA performs significantly better or equivalently or worse than the compared algorithms, respectively.

update mechanism of ISVM. In other words, every time the
environment changes, a new SVM is constructed based on the
POS obtained from the former environment. The third variant
is denoted as SVM-RM-MEDA.

Three variants were tested with the same parameters as the
comparison experiment and the statistical results of MIGD
averaged over three pairs of (nt,τt) configurations for each
problem are shown in Table III. Consistent with the results
in Table I, the average MIGD values obtained by ISVM-RM-
MEDA are significantly better than those of DA-RM-MEDA
on most problems with 30%-60% improvement. The only
exceptions are DF8 and DF12, which are also challenges for
other comparison algorithms.

ISVMr0-RM-MEDA performs worse than DA-RM-MEDA
on 6 out of 14 problems, and only a tiny improvement was

observed on the rest of problems. Invalidation of ISVMr0-RM-
MEDA can be attributed to the limited number of POS training
samples, which is insufficient to build an accurate classifier.
With the samples tripled by the POSMOTE sampling strat-
egy, ISVMr3-RM-MEDA achieves significantly better MIGD
results than ISVMr0-RM-MEDA. It is clear that inefficient
predictions on DF1-DF3 and DF7 are corrected and the MIGD
values on most problems are reduced. The quality of the
solution sets obtained by ISVM-based algorithms is improved
with the increase of the oversampling rate (r = 0, 3, 5),
which demonstrates the necessity and advantage of proposed
sampling strategy.

SVM-RM-MEDA with the oversampling rate of 5 shows
effective predictions. But compared with ISVM-RM-MEDA,
SVM-RM-MEDA still has room for improvement. The su-
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Fig. 4: Average IGD values versus environmental changes for different problems with nt = 10 and τt = 10.

periority of ISVM-RM-MEDA over SVM-RM-MEDA can
be attributed to the incremental learning mechanism, which
incorporate more general features from samples in previous
environments rather than only utilize the information from
adjacent moment.

E. Adaptation Study
In the experiments above, RM-MEDA is employed to opti-

mize the population in each iteration. To further investigate
if ISVM-DMOEA relies on a specific static multiobjective
optimization algorithm, we choose two other popular static
algorithms as the optimizer. The first one is NSGA-II [53], a
genetic algorithm that uses non-dominant sorting and crowding
distance to select dominant individuals derived from cross
mutation. The second one is the multiple objective particle
swarm optimization algorithm [54], abbreviated as MOPSO,
in which the flight direction of particles determined by Pareto
dominance is regarded as a guide for solution search.

Similar to the operation on RM-MEDA, these two methods
are embedded in ISVM-DMOEA and also modified to adapt
to dynamic change. The modified algorithms are called DA-
NSGA-II, ISVM-NSGA-II, DA-MOPSO and ISVM-MOPSO,
respectively. The results of average MIGD obtained by the
four algorithms on DF1-DF14 are shown in Table IV.

Due to different static optimization strategies, the average
MIGD values obtained by three kinds of algorithms are quite

different. However, it is clear from the table that ISVM-based
algorithms for NSGA-II and MOPSO significantly surpass
the randomly reinitialized algorithms, which is also observed
in RM-MEDA. ISVM-MOPSO greatly improves the perfor-
mance of DA-MOPSO and even reduces the average MIGD
values by more than 60% on four problems, because the
high-quality initial population accelerates the convergence of
particle swarm to the optimal solutions.

The strong adaptability and outstanding performance on
RM-MEDA, NSGA-II and MOPSO demonstrate that ISVM-
DMOEA is a versatile algorithm that can effectively cooperate
with various static optimization algorithms.

VI. CONCLUSION

Prediction-based models are promising in solving dynamic
multiobjective optimization problems, which estimate the opti-
mal solutions by taking advantage of existing information. An
assumption is put forward that predictable general patterns
can be detected from some implicit correlations between
the optimal solutions obtained in changing environments. In
this paper, we propose an online prediction model based on
incremental support vector machine (ISVM) to utilize these
patterns. The parameters of ISVM are updated online to
accommodate new samples and extract the linear or nonlinear
(more common in practice) correlations between previous
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TABLE II: MEAN AND STANDARD DEVIATION VALUES OF MHV OBTAINED BY ISVM-RM-MEDA AND
COMPARED ALGORITHMS

Prob (nt ,τt) DA-RM-MEDA KF-RM-MEDA PPS-RM-MEDA SVR-RM-MEDA TR-RM-MEDA ISVM-RM-MEDA

DF1
(10,10) 0.4047±3.10E-03(+) 0.3979±1.66E-02(+) 0.5654±9.47E-03(=) 0.4311±8.91E-03(+) 0.4868±1.57E-02(+) 0.5593±3.22E-03
(5,10) 0.4258±4.95E-03(+) 0.4146±2.29E-02(+) 0.5352±7.54E-03(=) 0.4330±1.49E-02(+) 0.5225±1.40E-02(=) 0.5286±1.06E-02
(10,5) 0.2971±4.45E-03(+) 0.3651±5.38E-03(+) 0.4905±2.67E-02(-) 0.3175±9.91E-03(+) 0.3989±5.19E-03(+) 0.4514±5.43E-02

DF2
(10,10) 0.7138±3.28E-03(+) 0.6364±2.14E-02(+) 0.8058±1.04E-02(=) 0.7282±5.73E-03(+) 0.7334±1.85E-02(+) 0.7979±3.28E-03
(5,10) 0.7025±2.24E-03(+) 0.6463±1.67E-02(+) 0.7686±1.02E-02(=) 0.7167±9.97E-03(+) 0.7305±1.57E-02(+) 0.7578±4.66E-03
(10,5) 0.5820±4.43E-03(+) 0.5598±7.89E-03(+) 0.7119±1.28E-02(+) 0.5979±1.21E-02(+) 0.6557±1.93E-02(+) 0.6910±7.04E-03

DF3
(10,10) 0.2125±3.83E-03(+) 0.2867±1.18E-02(+) 0.3622±3.57E-03(+) 0.2080±7.47E-03(+) 0.2958±7.23E-03(+) 0.3811±6.67E-03
(5,10) 0.2042±2.68E-03(+) 0.2946±1.61E-02(+) 0.3362±1.25E-02(+) 0.2142±7.86E-03(+) 0.3092±1.09E-02(+) 0.3551±1.07E-02
(10,5) 0.1504±7.65E-03(+) 0.2383±8.31E-03(+) 0.2884±2.39E-02(=) 0.1482±9.61E-03(+) 0.1982±1.83E-02(+) 0.3049±2.25E-02

DF4
(10,10) 1.8391±3.73E-02(+) 1.2709±4.45E-02(+) 3.3939±5.09E-02(+) 2.0724±9.91E-02(+) 2.3573±1.22E-01(+) 3.4176±1.67E-02
(5,10) 1.8020±5.88E-02(+) 1.1554±3.26E-02(+) 3.3433±5.53E-02(-) 2.2123±9.47E-02(+) 2.4650±1.04E-01(+) 3.2589±2.68E-02
(10,5) 0.8896±1.03E-01(+) 1.1361±4.98E-02(+) 3.0427±6.01E-02(+) 1.1253±1.08E-01(+) 1.6316±2.34E-01(+) 3.1048±2.45E-02

DF5
(10,10) 0.3326±5.39E-03(+) 0.1216±4.12E-02(+) 0.4425±7.35E-03(+) 0.3338±4.36E-03(+) 0.2746±3.71E-02(+) 0.4624±3.06E-03
(5,10) 0.3277±4.31E-03(+) 0.1256±2.03E-02(+) 0.4331±9.40E-03(=) 0.3380±6.29E-03(+) 0.3004±3.20E-02(+) 0.4254±5.15E-03
(10,5) 0.2310±3.23E-03(+) 0.1071±3.20E-02(+) 0.3693±2.18E-02(+) 0.2406±7.33E-03(+) 0.2404±4.68E-03(+) 0.3854±1.99E-02

DF6
(10,10) 0.0015±2.04E-03(+) 0.0259±1.37E-02(+) 0.2918±2.97E-02(=) 0.0015±1.53E-03(+) 0.0302±1.75E-02(=) 0.3018±5.42E-02
(5,10) 0.0014±2.71E-03(+) 0.0535±3.26E-02(+) 0.0780±4.01E-02(+) 0.0065±6.29E-03(+) 0.0424±1.63E-02(+) 0.1656±3.43E-02
(10,5) 0.0120±2.87E-03(+) 0.0144±9.89E-03(+) 0.0118±1.69E-02(+) 0.0113±5.78E-03(+) 0.0158±8.43E-03(+) 0.0209±3.30E-02

DF7
(10,10) 0.0452±2.07E-02(+) 0.0043±1.04E-02(+) 3.3767±5.00E-02(+) 0.2116±1.38E-01(+) 1.3009±3.61E-01(+) 3.4280±9.22E-02
(5,10) 0.1130±1.20E-01(+) 0.6582±4.13E-01(+) 2.5602±2.97E-01(+) 0.3686±2.29E-01(+) 1.5217±2.75E-01(+) 3.0019±5.85E-01
(10,5) 0.0232±2.11E-02(+) 0.2107±7.40E-01(+) 0.9028±3.12E-01(+) 0.0396±1.94E-02(+) 1.2744±1.59E-01(+) 1.7112±2.50E-01

DF8
(10,10) 51.818±4.83E-02(+) 49.071±3.56E-02(+) 52.378±5.24E-02(=) 51.932±2.96E-02(+) 52.354±3.60E-02(=) 52.403±4.54E-02
(5,10) 53.590±2.01E-02(=) 50.523±3.06E-02(+) 53.970±1.96E-02(=) 53.642±6.84E-02(=) 53.858±3.74E-02(=) 54.013±2.25E-02
(10,5) 51.412±3.38E-02(+) 48.976±4.09E-02(+) 52.126±7.43E-02(=) 51.643±8.14E-02(+) 52.197±5.06E-02(=) 52.272±5.08E-02

DF9
(10,10) 15.630±3.13E-01(+) 11.739±4.70E-01(+) 16.229±4.54E-01(+) 12.032±4.57E-01(+) 14.140±3.56E-01(+) 19.068±1.18E-01
(5,10) 14.526±2.20E-01(+) 3.9067±1.19E+00(+) 9.7689±6.89E-01(+) 6.6475±1.22E-01(+) 10.454±2.91E-01(+) 17.069±8.85E-02
(10,5) 14.287±2.84E-01(+) 11.941±5.46E-01(+) 13.500±9.43E-01(+) 10.162±4.12E-01(+) 12.955±6.08E-01(+) 17.707±1.74E-01

DF10
(10,10) 0.6101±3.79E-03(+) 0.6164±2.98E-03(+) 0.6883±2.73E-03(+) 0.5969±2.03E-03(+) 0.7330±9.24E-03(+) 0.7878±3.72E-03
(5,10) 0.7650±2.50E-03(+) 0.7324±4.55E-03(+) 0.7945±3.60E-03(+) 0.7205±4.80E-03(+) 0.8304±4.60E-03(+) 0.9064±7.19E-03
(10,5) 0.5517±2.66E-03(+) 0.5432±5.16E-03(+) 0.5892±4.84E-03(+) 0.5338±3.23E-03(+) 0.6566±8.06E-03(+) 0.7308±4.11E-03

DF11
(10,10) 0.5900±1.37E-02(+) 0.6462±1.07E-02(+) 0.8824±5.66E-03(+) 0.5537±1.30E-02(+) 0.4029±4.69E-02(+) 0.9695±3.03E-03
(5,10) 0.5872±8.29E-03(+) 0.8023±1.44E-02(+) 1.0555±2.27E-03(+) 0.6597±2.19E-02(+) 0.4213±2.71E-02(+) 0.9566±3.65E-03
(10,5) 0.3371±4.90E-03(+) 0.4272±7.20E-03(+) 0.7985±6.88E-03(+) 0.3152±8.32E-03(+) 0.3701±2.86E-02(+) 0.9086±6.90E-03

DF12
(10,10) 9.8341±3.31E-03(+) 8.3648±3.05E-02(+) 9.8572±4.91E-03(=) 9.8319±2.22E-03(+) 9.8602±3.89E-02(=) 9.8592±5.61E-04
(5,10) 8.7664±7.23E-02(+) 7.7746±2.01E-02(+) 9.2294±2.75E-03(=) 8.7230±5.27E-02(+) 9.2302±2.45E-02(=) 9.2296±1.77E-04
(10,5) 9.6966±2.02E-02(+) 8.0002±6.94E-02(+) 9.8462±5.61E-03(=) 9.6895±2.18E-02(+) 9.8597±2.17E-02(=) 9.8532±3.18E-03

DF13
(10,10) 1.9718±3.09E-02(+) 1.9045±6.61E-02(+) 2.2321±2.67E-02(+) 1.9371±2.35E-02(+) 1.7975±5.13E-02(+) 2.4104±3.66E-02
(5,10) 2.0124±1.41E-02(+) 2.0079±4.28E-02(+) 2.2706±1.47E-02(+) 2.0188±1.16E-02(+) 1.9317±4.53E-02(+) 2.4010±2.16E-02
(10,5) 1.6846±1.36E-02(+) 1.4227±1.51E-02(+) 1.9582±4.04E-02(+) 1.6584±1.15E-02(+) 1.2634±4.19E-02(+) 2.1315±3.37E-02

DF14
(10,10) 0.2796±9.17E-03(+) 0.2833±6.96E-03(+) 0.3623±1.48E-03(=) 0.2806±5.31E-03(+) 0.3211±1.40E-02(+) 0.3722±2.53E-03
(5,10) 0.2760±4.31E-03(+) 0.2824±5.36E-03(+) 0.3475±3.10E-03(+) 0.2788±6.19E-03(+) 0.3255±5.99E-03(+) 0.3608±7.40E-03
(10,5) 0.2130±4.25E-03(+) 0.2398±2.79E-03(+) 0.3190±7.60E-03(+) 0.2106±4.29E-03(+) 0.1947±3.05E-02(+) 0.3442±6.72E-03

(+), (=) and (-) indicate that ISVM-RM-MEDA performs significantly better or equivalently or worse than the compared algorithms, respectively.

POS. When the environment changes, an evolving ISVM clas-
sifier can estimate whether a solution has the characteristics
of being an optimal solution and guide the prediction of the
initial population. To avoid low prediction accuracy caused by
the limited number of POS samples, a sampling strategy based
on SMOTE is implemented in advance.

The experimental results demonstrate that the proposed
algorithm achieves competitive performance on DMOPs. Be-
sides, ablation and adaptation study indicate the versatility of
ISVM-DMOEA and the advantage of sub-strategies. However,
solving problems with low correlation between solutions at
different environments and problems with strange distributions
such as POF holes remains a challenge. For future work, we
would like to combine ISVM-DMOEA with transfer learn-
ing to improve the applicability of the algorithm on more

instances. In addition, we plan to introduce few-shot learning
and sample quality pre-evaluation, which can enhance the
accuracy of prediction. Furthermore, kinds of machine learn-
ing methods are expected to be integrated into evolutionary
algorithm for solving real-world problems.
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