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Memetic EDA-Based Approaches to
Comprehensive Quality-Aware Automated

Semantic Web Service Composition
Chen Wang, Hui Ma, Gang Chen, and Sven Hartmann

Abstract—Comprehensive quality-aware automated semantic web service composition is an NP-hard problem, where service
composition workflows are unknown, and comprehensive quality, i.e., Quality of services (QoS) and Quality of semantic matchmaking
(QoSM) are simultaneously optimized. The objective of this problem is to find a solution with optimized or near-optimized overall QoS
and QoSM within polynomial time over a service request. In this paper, we proposed novel memetic EDA-based approaches to tackle
this problem. The proposed method investigates the effectiveness of several neighborhood structures of composite services by
proposing domain-dependent local search operators. Apart from that, a joint strategy of the local search procedure is proposed to
integrate with a modified EDA to reduce the overall computation time of our memetic approach. To better demonstrate the effectiveness
and scalability of our approach, we create a more challenging, augmented version of the service composition benchmark based on
WSC-08 [1] and WSC-09 [2]. Experimental results on this benchmark show that one of our proposed memetic EDA-based approach
(i.e., MEEDA-LOP) significantly outperforms existing state-of-the-art algorithms.

Index Terms—Web service composition, QoS optimization, Combinatorial optimization, EDA.
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1 INTRODUCTION

S ERVICE Oriented Architecture (SOA) has been contribut-
ing to the reuse of software components [3]. Web services

are one of the most successful implementations of SOA to
provide services as “modular, self-describing, self-contained
applications that are available on the Internet” [4]. Often,
users’ requirements cannot be satisfied by one existing web
service, Web service composition aims to loosely couple a set
of Web services to provide a value-added composite service
(i.e., a solution of service composition) that accommodates
users’ complex requirements. These requirements are re-
lated to functional (i.e., quality of semantic matchmaking
as QoSM) and non-functional (i.e., Quality of service as
QoS) requirements, which give birth to semantic web service
composition and QoS-aware web service composition, with the
aim of optimizing QoSM and QoS of service composition
solutions respectively. Many researchers have been work-
ing on solving these optimization problems in web service
composition [5], [6], [7], [8], [9], [10], [11], [12], [13].

Existing works that study the above problems are classi-
fied as semi-automated and fully-automated web service com-
position [14] with two different assumptions. One assumes
that users know an abstract service composition workflow,
and all the composite services produced by the composition
system must strictly obey the given workflow. However,
this assumption is not always valid since the workflow may
not be provided or not even known by users. The second
group of research works does not rely on any existing work-
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flows. Instead, a composite service will be constructed from
scratch by selecting and connecting multiple atomic services
obtained from the service repository [14]. Therefore, this
construction process can end up with different workflows.
Apparently, compared to semi-automated web service com-
position, fully-automated web service composition opens
new opportunities to improve QoS and QoSM further due
to different workflows automatically constructed. Neverthe-
less, the difficulty of the composition task is also increased.

AI planning and Evolutionary Computation (EC) are
two of the most widely used techniques for semi-automated
and fully-automated web service composition [5], [7], [10],
[13], [15], [16], [17]. AI planning techniques focus on creating
valid composite services, where the functional correctness
is always ensured with gradually constructed workflows.
However, these approaches do not optimize the QoS or
QoSM of the solutions produced [18]. EC techniques have
been widely used to solve service composite problems that
aim to optimize either one or both of QoSM and QoS, and
are potentially more useful in practice as they can effi-
ciently find ”good enough” composite solutions. Important
approaches [5], [6], [7], [8], [9], [10], [11], [12], [13] based on
Genetic Algorithms (GA) [19], Genetic Programming (GP)
[20], Particle Swarm Optimization (PSO) [21] and Estimation
of Distribution Algorithm (EDA) [22], have been widely
investigated in the literature.

To effectively search for good solutions, EC techniques
often employ useful information distilled from promising
solutions to produce new offspring. The information can
be used either implicitly or explicitly. Conventional EC
techniques, such as GA and GP, fall in the implicit camp
by producing new solutions through recombining solutions
evolved previously [5], [7], [13]. In contrast, one EC tech-
nique that has achieved prominent success through explicit
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use of information is Estimation of Distribution Algorithm
(EDA) [23]. In EDA, information about promising solutions
evolved previously is captured compactly in the form of
probability models. EDA has been successfully utilized
for semi-automated service composition [6], [24], but they
can not support fully automated service composition. We
recently proposed a new EDA-based approach for fully
automated web service composition through reliable and
accurate learning of a probability model that encodes the
distribution of promising solutions [12], i.e., a distribution
model.

EDA stresses more on global exploration, rather than
local exploitation [25]. It is due to that the distribution model
has the objective of exploring more promising regions in
the entire solution space, without attempting to improve
the quality of any specific solutions evolved previously.
However, the optimization performance can often be im-
proved directly through local modifications to promising
solutions. By restricting the target region for local search
and avoiding most of the randomness involved in sampling
directly from the distribution model, this can potentially
expedite the search of optimal solutions. Therefore, to im-
prove its competency in finding more effective solutions, an
idea is to enhance EDA with local search, namely, memetic
EDA. Memetic EDA has been successfully applied to many
optimizations problems with local search operators [26],
[25], such as arc routing and assembly flow-shop scheduling
problems.

On the one hand, although memetic EDA has been
successfully applied to many applications, those memetic
approaches work inappropriate for web service composi-
tion, as these local search operators are only applicable
to domain-specific or problem-specific solution representa-
tions [25], [27]. On the other hand, despite the recent success
in EDA-based service composition, the effectiveness of this
approach can be enhanced by introducing memetic EDA.
Several challenges remain to be addressed in developing a
memetic EDA approach to service composition as follows:

First, a composite service is commonly represented as
a DAG, exploring the neighborhood of a DAG, especially
large DAGs, is computationally infeasible [28]. Note that
the discussed neighborhood is structured by local search
operators on the search space, where neighbor solutions
can be generated iteratively from a given candidate solu-
tion. Therefore, researchers [9], [29] often indirectly defined
the neighborhood of a composite service represented in
the form of a permutation, which can be converted to
a DAG through a separate decoding process. Often, so-
called “swap” operators produce neighbors by swapping
two random elements in a permutation. Consequently, a
neighborhood is defined by the collection of permutations
obtainable through a “swap” to any given permutation.
However, such neighborhood often contains a large propor-
tion of neighboring permutations with inferior quality. For
effective local research, the neighborhood must be refined
to exclude most of the clearly unwise swapping choices by
exploiting domain-specific knowledge.

Second, as we know, it is very challenging to determine
which candidate solutions are to be selected for local search
in memetic algorithms, as the selection method has a signif-
icant impact on the effectiveness and efficiency of memetic

EDA. Should an equal chance be given to all the candi-
date solutions or only elite solutions should be considered
for local search? Moreover, what are elite solutions, and
how many of them should be modified locally? However,
answers to these challenging questions often vary from
many factors, such as EC algorithms, domain problems,
etc. Therefore, it is challenging to determine one effective
selection strategy for the memetic EDA-based approach to
service composition.

Third, a traditional strategy that exclusively explores the
whole neighboring space of composite services can incur
high computation cost without guarantee of improving
solution quality. For example, for permutation-based repre-
sentation, if a simple swap operator is utilized for exploring
the neighborhood, then the dimension of the permutation
determines the computational complexity. In the context
of service composition, the dimension of such permutation
is usually equivalent to the size of the service repository.
As the neighborhood size is extremely huge when many
services are to be considered during the service composition
process, this strategy is infeasible for practical use.

Fourth, in EDA, although a probability distribution
model is adjusted to trace promising searching areas
throughout generations, one proportion of promising solu-
tions (i.e., permutations) are more likely to be repetitively
sampled, while the distribution model is getting converged
along the generations. Furthermore, these repeatedly sam-
pled solutions are often favorable to users, since they are
candidate solutions with high quality. In the EDA-based
approach to service composition, sampled permutation-
based solutions are very costly as they require repetitive
computation time for decoding and evaluations.

To address these challenges above, we propose a
memetic EDA-based approach, achieving substantially high
performances in effectiveness and efficiency. These out-
standing performances are observed by comparing it with
some recently proposed web service composition ap-
proaches, such as a EDA-based approach [12], a PSO-based
approach [10], and GA- and Memetic GA-based approaches
[9]. In particular, an empirical, experimental study on the ef-
fectiveness of different neighborhoods structured by differ-
ent local search operators is conducted. The contributions of
this paper are listed below, and where the first contribution
is to address the first challenge discussed previously, and the
second contribution is proposed to address the remaining
challenges.

1) To perform an effective local search in composite ser-
vices, we first propose several neighborhood structures
for candidate solutions. These neighborhoods are cre-
ated by developing several novel domain-dependent
local search operators, based on constructing and swap-
ping effective building blocks of composite services
for local improvements. Subsequently, we develop an
effective memetic EDA-based approach based on our
previous work [12], with nature integration with those
local search operators.

2) To significantly reduce the computation time of our
proposed memetic EDA-based approach, an integrated
local search procedure is proposed with a modified
EDA based on the standard EDA. To decrease com-
putation losses in repetitive sampling and evaluations,
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we utilize an archiving technique to avoid sampling
solutions repetitively. This technique is prevalent and
straightforward to use. Besides that, the local search
procedure employs an effective joint strategy to effi-
ciently finding better solutions. This strategy considers
fitness uniform distribution scheme and stochastic local
search jointly with our proposed local search operators.

3) To demonstrate the performance of our memetic EDA-
based approach, we create a more challenging, aug-
mented version of the service composition benchmark
based on WSC-08 [1] and WSC-09 [2]. In particular, the
new benchmark inherits the functionalities provided by
services in benchmark dataset WSC-08 and WSC-09 and
the QoS attributes of web services in benchmark dataset
QWS [30]. Moreover, the number of web services in
the service repository is doubled as a new benchmark
(with much bigger searching space) to demonstrate
that memetic EDA can maintain high performance on
our problem with significantly larger sizes. This bench-
mark has been made freely available online as well
as the codes of our memetic EDA-based approach 1.
We experimentally compare our memetic EDA-based
approach with some state-of-the-art methods that have
been recently proposed to solve the same or a similar
service composition problem using the new benchmark.
Our experimental results illustrate that our method can
achieve cutting-edge performance.

2 RELATED WORK

In this section, we review some state-of-the-art EC-based
service composition approaches for solving fully automated
service composition. Afterwards, we discuss some memetic
EC-based approaches, where local search is introduced to
enhance the performance. Lastly, we focus on discussing
one promising EC-based algorithm, i.e., EDA, and some
recent success that has been achieved by memetic EDA-
based approaches for other problems.

2.1 Literature on EC-Based fully automated web ser-
vice composition

Automated web service composition aims to loosely couple
web services to fulfill a service request, without strictly
obeying a pre-given abstract workflow. Instead, composi-
tion workflows are gradually built up while its component
services are selected. Existing works in fully automated web
service composition can be categorized into two approaches
— direct approaches and indirect approaches [31]. The di-
rect approaches represent composition solutions explicitly
in the representation that displays actual execution flows of
composite services, while the indirect approaches often rep-
resent composite services implicitly as permutations, which
require a decoding process to build up actual execution
workflows.

1. Two augmented benchmarks for automated web service com-
position is available from https://github.com/chenwangnida/Dataset,
and the codes of our memetic EDA-based approach is available from
https://github.com/chenwangnida/MENHBSA4SWSC.

In the first category, tree- and graph-based representa-
tions are widely used to represent service composition solu-
tions directly. A graph-based evolutionary process is intro-
duced in [32] to directly evolve DAG-based service compo-
sition solutions, applying domain-dependent crossover and
mutation operators with repairing methods. GP is utilized
for searching optimal solutions represented as trees. [7] pro-
poses a context-free grammar for randomly initializing tree-
based service composition solutions with correct structures
of composite services. In contrast, [13] randomly initial-
izes tree-based service composition solutions completely,
but they develop adaptive crossover and mutation rates
according to the diversity of the population for accelerating
the speed of convergence. Both approaches [7], [13] utilize
a penalization method for filtering incorrect solutions while
evaluating the QoS of candidate solutions. To achieve higher
performance, [5], [8] utilize a greedy search algorithm for
creating correct DAG-based composition workflows, which
are mapped to tree-based ones with different methods.
During the evolutionary process, the correctness of the
solutions is ensured by domain-dependent crossover and
mutation. However, the mapped tree-based representations
suffer a scalability issue, since many replicas of subtrees
are produced from the mapping methods. To overcome this
issue, [11] proposes a tree-like representation, on which the
replicas of subtrees are handled by removing them, and
inserting edges from the root of the replicas to the roots
of the copies.

In the second category, service composition solutions
are represented as permutations, which are then decoded
into solutions represented as DAGs [10], [31], [33]. PSO
is utilized to find an optimized queue of services (i.e., a
permutation), which can be decoded into a corresponding
DAG-based composite service [33]. [10] extends [33] to
jointly optimize QoSM and QoS, where a weighted DAG is
decoded, where edge weights correspond to matchmaking
quality between services. These two PSO-based approaches
rely on PSO to determine the weights of particle’s position
(that corresponding with a service) to form an ordered
service queue. Optimizing QoSM and QoS simultaneously
is more challenging than optimizing QoS only because the
searching space has significantly increased, and it demands
more effective and efficient searching techniques. Apart
from that, it has been suggested that utilizing the indirect
representation often contributes to a higher performance,
compared to direct representation [31]. It is due to that the
search space is not unwittingly restricted by unconstrained
random initialization of solutions and operators.

In summary, EC techniques have been showing their
promises in fully automated web service composition.
Moreover, the indirect approaches have been indicated to
be more effective. Therefore, EC techniques with indirect
representations are exciting techniques to be focused on for
solving service composition problem in this paper.

2.2 Literature on memetic EC-based approaches and
EDA

Memetic algorithms have drawn growing attention from re-
searchers in recent years and achieved significant successes
in many applications [34]. By introducing local search, the
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performance of EC techniques can be improved. In the
domain of service composition, to overcome the prematurity
and proneness of GP, Tabu search is combined with GP
to solve QoS-aware data-intensive web service composition
[35]. [9] proposed an indirect memetic approach for QoS-
aware web service composition, where a domain-dependent
crossover operator is proposed to produce candidate solu-
tions. Besides that, an exhaustive local search is applied to
composite solutions represented as permutations. However,
the produced neighbors are likely to be decoded into the
same composite solution. Therefore, the effectiveness of this
local search operator demands further improvement.

Recently, EDA has been used as a technique to tackle
permutation-based optimization problems [23]. In partic-
ular, a distribution model is learned iteratively for each
population. Subsequently, new offsprings are generated
based on the learned model. Moreover, domain-dependent
local search operators are often introduced to enhance the
performances of EDA. For example, a probability matrix
that is related to the job priority permutation of a solution is
learned in EDA-based flow-shop scheduling problem, and
different job-based local search operators were proposed
to enhance the exploitation ability of EDA [25]. An Edge
Histogram Matrix is applied to uncertain capacitated arc
routing problems and is leaned from solutions represented
by a set of routes [27]. To make local improvements, different
move operators, such as single insertion and swap, are also
proposed.

The use of EDA has only been investigated for semi-
automated web service composition [6], [24], [36]. However,
we recently proposed an EDA-based approach for fully
automated web service composition, where candidate so-
lutions are represented as permutations over a given service
repository. The success of the proposed method strongly
depends on the distribution model and the way of learning
the distribution model. We employ Node Histogram Matrix
(NHM) to learn the distribution of promising solutions in
one population, Node Histogram-Based Sampling Algo-
rithm (NHBSA) [22] is empoloyed to produce candidate
solutions. Although we started an initial study for fully
automated service composition, it remains an opportunity
to improve its performance further. EDA is good at global
exploration, and local search operators are motivated to be
introduced in EDA to enhance its capability in exploitation.

In summary, on the one hand, memetic EDA-based
approaches have been investigated in many problems,
other than fully automated service composition, achiev-
ing promising results. On the other hand, notwithstanding
success achieved in our initial investigation in EDA-based
fully automated service composition, the performance of
this EDA-based approach can be further improved by com-
bining it with local search.

3 SEMANTIC WEB SERVICE COMPOSITION PROB-
LEM

A semantic web service (service, for short) is considered as
a tuple S = (IS , OS , QoSS) where IS is a set of service
inputs that are consumed by S,OS is a set of service outputs
that are produced by S, and QoSS = {tS , cS , rS , aS} is a
set of non-functional attributes of S. The inputs in IS and

outputs in OS are parameters modeled through concepts in
a domain-specific ontology O. The attributes tS , cS , rS , aS
refer to the response time, cost, reliability, and availability
of service S, respectively, which are four commonly used
QoS attributes [37].

A service repository SR is a finite collection of services
supported by a common ontology O. A composition task
(also called service request) over a given SR is a tuple
T = (IT , OT ) where IT is a set of task inputs, and OT is
a set of task outputs. The inputs in IT and outputs in OT

are parameters that are semantically described by concepts
in the ontology O.

Two special atomic services Start = (∅, IT , ∅) and
End = (OT , ∅, ∅) are always included in SR to account
for the input and output of a given composition task T .

We use matchmaking types to describe the level of a match
between outputs and inputs [38]. For concepts a, b in O
the matchmaking returns exact if a and b are equivalent
(a ≡ b), plugin if a is a sub-concept of b (a v b), subsume
if a is a super-concept of b (a w b), and fail if none of
previous matchmaking types is returned. In this paper we
are only interested in exact and plugin matches for robust
compositions, see [39]. As argued in [39] plugin matches
are less preferable than exact matches due to the overheads
associated with data processing. For plugin matches, the
semantic similarity of concepts is suggested to be considered
when comparing different plugin matches.

A robust causal link [40] is a link between two matched
services S and S′, denoted as S → S′, if an output a
(a ∈ OS) of S serves as the input b (b ∈ OS′ ) of S′

satisfying either a ≡ b or a v b. For concepts a, b in O,
the semantic similarity sim(a, b) is calculated based on the
edge counting method in a taxonomy like WorldNet [41].
Advantages of this method are simple calculation and good
semantic measurement [41]. Therefore, the matchmaking type
and semantic similarity of a robust causal link is defined as
follows:

typelink =

{
1 if a ≡ b (exact match)
p if a v b (plugin match)

(1)

simlink = sim(a, b) =
2Nc

Na +Nb
(2)

with a suitable parameter p, 0 < p < 1, and with Na,
Nb and Nc, which measure the distances from concept a,
concept b, and the closest common ancestor c of a and b to
the top concept of the ontology O, respectively. However, if
more than one pair of matched output and input exist from
service S to service S′, typee and sime will take on their
average values.

The QoSM of a composite service is obtained by aggre-
gating over all robust causal links as follows:

MT=

m∏
j=1

typelinkj
(3)

SIM=
1

m

m∑
j=1

simlinkj
(4)

Formal expressions as in [42] are used to represent
service compositions. The constructors •, ‖, + and ∗ are
used to denote sequential composition, parallel composi-
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TABLE 1: QoS calculation for a composite service expression C

C = rC = aC = ctC = tC =

•(C1, . . . , Cd)
d∏

k=1
rCk

d∏
k=1

aCk

d∑
k=1

ctCk

d∑
k=1

tCk

‖ (C1, . . . , Cd)
d∏

k=1
rCk

d∏
k=1

aCk

d∑
k=1

ctCk
MAX{tCk

|k ∈ {1, ..., d}}

+(C1, . . . , Cd)
d∏

k=1
pk · rCk

d∏
k=1

pk · aCk

d∑
k=1

pk · ctCk

d∑
k=1

pk · tCk

∗C0 rC0
` aC0

` ` · ctC0 ` · tC0

tion, choice, and iteration, respectively. The set of composite
service expressions is the smallest collection SC that contains
all atomic services and that is closed under sequential com-
position, parallel composition, choice, and iteration. That
is, whenever C0, C1, . . . , Cd are in SC then •(C1, . . . , Cd),
‖ (C1, . . . , Cd), +(C1, . . . , Cd), and ∗C0 are in SC, too. Let
C be a composite service expression. If C denotes an atomic
service S then its QoS is given by QoSS . Otherwise the QoS
of C can be obtained inductively as summarized in Table 1.

Herein, p1, . . . , pd with
d∑

k=1

pk = 1 denote the probabilities

of the different options of the choice +, while ` denotes the
average number of iterations. Therefore, QoS of a service
composition solution, i.e., availability (A), reliability (R),
execution time (T ), and cost (CT ) can be obtained by
aggregating aC , rC , tC and ctC as in Table 1.

In the presentation of this paper, we mainly focus on two
constructors, sequence • and parallel ‖, similar as in most
automated service composition works [5], [8], [10], [11], [32],
[33], where service composition solutions are represented as
a Directed Acyclic Graph (DAG). We can easily calculate
QoS of a composite service that is represented as a DAG
[10] according to Table 1.

When multiple quality criteria are involved in decision
making, the fitness of a solution is defined as a weighted
sum of all individual criteria in Eq. (5), assuming the
preference of each quality criterion based on its relative
importance is provided by the user [43]:

Fitness(C) = w1M̂T+w2
ˆSIM+w3Â+w4R̂+w5(1−T̂ )+w6(1−ĈT )

(5)
with

∑6
k=1 wk = 1. This objective function is defined

as a comprehensive quality model for service composition.
We can adjust the weights according to the user’s pref-
erences. M̂T , ˆSIM , Â, R̂, T̂ , and ĈT are normalized
values calculated within the range from 0 to 1 using
Eq. (6). To simplify the presentation we also use the nota-
tion (Q1, Q2, Q3, Q4, Q5, Q6) = (MT,SIM,A,R, T,CT ).
Q1 and Q2 have minimum value 0 and maximum value
1. The minimum and maximum value of Q3, Q4, Q5, and
Q6 are calculated across all the relevant services (that are
determined in Sect. 4.2) in the service repository SR using
greedy search in [5], [8].

Q̂k =


Qk−Qk,min

Qk,max−Qk,min
if k = 1, . . . , 4 and Qk,max −Qk,min 6= 0,

Qk,max−Qk

Qk,max−Qk,min
if k = 5, 6 and Qk,max −Qk,min 6= 0,

1 otherwise.
(6)

The goal of comprehensive quality-aware service compo-
sition is to find a composite service expression C? that

maximizes the objective function in Eq. (5). C? is hence con-
sidered as the best possible solution for a given composition
task T .

4 MEMETIC EDA-BASED APPROACH FOR SE-
MANTIC WEB SERVICE COMPOSITION

In this section, we present our memetic EDA-based ap-
proach to fully automated semantic web service composi-
tion. We start by giving an overview of our memetic EDA-
based approach. Subsequently, we discuss some essential
steps in the approach: the first one is to discover relevant
services and service layers, see details in Sect.4.2. The sec-
ond one is to introduce a permutation-based representation
proposed in our previous work, see details in Sect. 4.3 and
4.4. The third one is to introduce an effective joint strategy
for a local search procedure, see details in Sect. 4.5.

We propose several key ideas that are jointly employed
to build our memetic EDA-based approach:

1) A composite service is commonly represented as a
DAG, since a DAG can intuitively represent an execu-
tion flow of web services, and allows efficient compu-
tation of QoS. The success of the EDA strategy strongly
relies on the proper distribution model for learning the
knowledge of promising solutions. Our initial study
[12] represents a composite service as a unique queue
of services, i.e., a permutation of atomic services, which
is mapped from a DAG-based solution. Composite
services in this permutation form contributes to a dis-
tribution model to be learned and new permutation-
based promising solutions to be sampled. Therefore,
a bi-directional map is ensured between permutations
and DAGs for learning and evaluation purposes.

2) To significantly decrease the computation time of the
local search procedure, it is crucial to select a re-
stricted number of suitable candidate solutions for local
searches. We assume that candidate solutions with close
fitness values are similar in their corresponding DAG
forms, so neighbors produced from these candidate so-
lutions can be the same. Therefore, we group candidate
solutions based on their fitness values according to a
uniform distribution scheme, which allows candidate
solutions with the most considerable differences mea-
sured by single-objective fitness values can be effec-
tively chosen for applying local search.

3) It is not efficient to exhaustively explore the whole
neighbors in the conventional local search [9]. Instead,
stochastically searching the neighboring solutions can
significantly reduce computation cost [26]. Therefore,
we introduce a stochastic local search with EDA to
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Fig. 1: An overview of memetic EDA-based approach for
automated web service composition

efficiently exploit the neighborhood of the selected can-
didate composite services.

4) Exploring neighborhood of a large DAG-based com-
posite service is unusually computationally infeasible
[28]. However, it is straightforward to define the neigh-
borhood on a permutation-based representation by so-
called swap operators. To develop effective swap opera-
tors, we utilize domain knowledge of service composi-
tion to create effective building blocks for these swap
operators on permutation-based candidate solutions.
These swap operators aim to exploit fitter neighbors
effectively. That is they are likely to make local improve-
ments in the produced neighbors.

4.1 An overview of memetic EDA-based algorithm for
automatic service composition

An overview of the memetic EDA-based approach is rep-
resented in Figure 1, consisting of the following steps: ini-
tialize population, evaluate population, select superior sub-
population, learn probability model, sample individuals and
return optimal solutions. We start with discovering all the
relevant services that are related to a given composition
request T in Step 1. Meanwhile, several service layers

are identified (see details in Subsection 4.2). These rele-
vant services are used to randomly generate m composite
services represented as permutations, Π′

g
k, where g = 0

and k = 1, . . . ,m. In Step 2, these permutation-based
individuals are decoded into DAG-based solutions using
a forward graph building technique [10], based on which,
the fitness in Eq. 5 of each individual can be calculated.
In Step 3, we merge the current population Pg with an
archive. The archive is an empty individual set initially and
will saved with elite composite services in the future. By
adopting Breath-First Search (BFS) on each corresponding
DAG-based solutions in the merged population, we produce
another encoded permutation-based solutions Πg

k. Then, the
local search procedure is applied to a very small set of
these permutations. This small permutation set is selected
based on a fitness uniform selection scheme over the current
population (see details in 4.5.1). For each permutation in the
small set, a stochastic local search is employed to create new
permutations as its neighbors, where the best neighbor is
identified based on the fitness value. This permutation in
the small set is replaced with its best neighbor (see details
in Subsection 4.5). The top half of the best-performing
solutions are reserved in Pg according to their fitness values
and put them into the archive as elite solutions. In Step
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4, we use these elite solutions in the archive to learn a
NHMg of generation g, which produces offsprings for
generation g+1 using NHBSA, see details in Subsection 4.4.
Consequently, we go back to Step 2 to evaluate the fitness
of new offsprings. The steps 2 to 4 will be repeated until the
maximum number of generations is reached. Eventually, the
best solutions found throughout the evolutionary process is
returned.

In a nutshell, we introduce a permutation-based rep-
resentation derived from the common DAG-based one. In
our proposed algorithm, we always switch between these
two representations back and forth for better searching or
evaluation purposes. Furthermore, an effective and efficient
local search procedure is developed through the use of the
selection scheme and the stochastic local search.

4.2 Relevant Services and Service Layers

Discovering relevant services and service layers is an initial,
but crucial step for our memetic EDA-based approach. We
achieve two goals at this initial stage: the first goal is to
reduce the size of the service repository SR to keep only
those that are relevant to the service composition task T ;
the second goal is to identify service layers of these relevant
services. In particular, a group of layers is identified, and
each layer contains a set of services that have the same
longest distance to Start. We adopt a layer discovering
method in [44] to find relevant services and service layers as
illustrated in the following example.

Example 4.1. We consider a composition task T =
({a, b}, {i}) and a SR consisting of seven atomic ser-
vices. S0 = ({b}, {i}, QoSS0

), S1 = ({a}, {f, g}, QoSS1
),

S2 = ({a, b}, {h}, QoSS2
), S3 = ({f, h}, {i}, QoSS3

), S4 =
({a}, {f, g, h}, QoSS4

), S5 = ({a, c}, {f, g, h}, QoSS4
) and

S6 = ({c, d, e}, {f, g, h}, QoSS4
). The two special services

Start = (∅, {a, b, e}, ∅) and End = ({i}, ∅, ∅) are defined
by the given composition task T . Fig. 3 shows an example
of discovering relevant services and service layers given a
service request T , where five related services (i.e., S0, S1,
S2, S3, and S4) and two layers (i.e., L1 and L2) are found.
In L1, S0, S1, S2, and S4 can be satisfied by {a, b} of T ,
and they have the same distance to Start (Note that the
distance is measured by the number of predecessors). While
S3 in L2 requires additional inputs from other services and
it is associated with a longer distance to Start.

𝑆" 𝑆# 𝑆$𝑆%

𝑆& 𝑆' 𝑆(

𝑆𝑅

𝑆" 𝑆#

𝑆$

𝑆%

𝑆&

𝑆𝑅

𝑇 = ( 𝑎,𝑏 , 𝑖 )

𝐿" 𝐿#
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𝑆%

𝑆"

𝑆#
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Relevant  
services 

+

+

Fig. 2: An example of discovering relevant services and
service layers for a service request T

4.3 A Novel Permutation-Based Representation

Service composition solutions are commonly represented as
Directed Acyclic Graphs (DAGs) [5], [8], [10], [11], [32], [33].
Let G = (V,E) be a DAG-based composite solution from
Start to End, where nodes correspond to the services and
edges correspond to the robust causal links. Often, V does
not contain all services in SR.

Many combinatorial optimization problems naturally
represent solutions as permutations, which can be differ-
ent in different problems [23]. Here we present composite
services as permutations, and we ensure a bi-directional
map between permutations and DAGs. The bi-directional
map is crucial for learning the distribution of promising
composite solutions. Because it is less reliable to learn a
distribution based on permutations if different permutations
are mapped to the same DAG-based composition service.
Let Π = (Π0, . . . ,Πt,Πt+1, . . . ,Πn−1) be a permutation,
elements of which are {0, . . . , t, t + 1, . . . , n − 1} such that
Πi 6= Πj for all i 6= j. Particularly, {0, . . . , t} are service
indexes (i.e., id number) of the component services in the
corresponding G , and is sorted based on the longest dis-
tance from Start to every component services of G. While
{t + 1, . . . , n − 1} be indexes of remaining services in SR
not utilized by G. We use Πg

k to present the kth (out of
m, m is population size) service composition solution, and
Pg = [Πg

0, . . . ,Π
g
k, . . . ,Π

g
m−1] to represent a population

of solutions of generation g. An example of producing a
permutation-based composite solution is shown as follows.

Example 4.2. Let us consider a composition task T =
({a, b}, {i}) and a service repository SR consisting of five
services. S0 = ({b}, {i}, QoSS0

), S1 = ({a}, {f, g}, QoSS1
),

S2 = ({a, b}, {h}, QoSS2
), S3 = ({f, h}, {i}, QoSS3

) and
S4 = ({a}, {f, g, h}, QoSS4

). The two special services
Start = (∅, {a, b, e}, ∅) and End = ({i}, ∅, ∅) are defined
by a given composition task T . Fig. 3 illustrates a process to
produce an permutation-based solution.

As an example, take an permutation as [4, 1, 2, 3, 0]. This
service index queue is decoded into a DAG G00 representing
a service composition that satisfies the composition task T .
Afterwards G00 is mapped to a permutation Π0

0 = [1, 2, 3 |
4, 0]. Herein, each position on the left side of | corresponds
to a service discovered by a BFS on G00 from Start. This
BFS additionally takes ascending order of service indexes
during the search. While the right side corresponds to the
remaining atomic services in SR, but not in G00 . Note, that
| is just displayed for the courtesy of the reader, rather than
being part of the permutation-based representation. Further-
more, we also do not permit the encoding [1, 2, 3 | 0, 4], as
no information can be extracted from G00 to determine the
positions of 0 and 4 in the permutation.

A permutation-based population Pg can be created with
m permutation-based solutions. Consider m = 6, Pg could
be represented as follows:

Pg =


solg0
solg1
solg2
solg3
solg4
solg5

 =


1 2 3 | 0 4
0 | 1 2 3 4
0 | 1 2 3 4
4 3 | 0 1 2
4 3 | 0 1 2
2 1 3 | 0 4

 =


1 2 3 0 4
0 1 2 3 4
0 1 2 3 4
4 3 0 1 2
4 3 0 1 2
2 1 3 0 4
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Unused service indexes

𝑆"
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Encoding 
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1 2 3 4 0

Fig. 3: An example of G over service request T

4.4 Application of node histogram-based sampling

[22] proposed Node histogram-based sampling (NHBSA)
as a tool for sampling new candidate solutions, which is
commonly represented in the form of permutations. By em-
ploying the discussed representation of composite services
in Sect. 4.3, we are now capable of applying NHBSA to
sample new permutations as candidate composite services.

The NHM at generation g, denoted by NHMg , is an
n× n-matrix with entries ei,j as follows:

egi,j =

n−1∑
k=0

δi,j(sol
g
k) + ε (7)

δi,j(sol
g
k) =

{
1 if Igk (Si) = j
0 otherwise

(8)

ε =
m

n− 1
bratio (9)

where i, j = 0, 1, . . . , n − 1, and bratio is a predetermined
bias. Roughly speaking, entry egi,j counts the number of
times that service Si appears in position j of the service
queue over all solutions in population Pg .

Example 4.3. Consider Pg in Example 4.2, the size of popu-
lation m equals 6 and the dimension size of each individual
(i.e., permutation) n equals 5, and bratio = 0.2, we calculate
NHMg as follows:

NHMg =


2.6 1.6 1.6 0.6 2.6
0.6 3.6 1.6 2.6 0.6
2.6 0.6 2.6 2.6 0.6
2.6 2.6 0.6 2.6 0.6
0.6 0.6 2.6 0.6 4.6


We pick up an element in the NHMg as an example

to demonstrate the meaning of each element in the NHM.
For example, eg0,0( that equals 2.6) is made of integer and
decimal parts: 2 and 0.6. The integer number 2 means that
service S0 appears at the first position 2 times, while the
decimal number 0.6 is a ε bias.

Once we have computed NHMg , we use node
histogram-based sampling [22] to sample new permutations
for the next generation.

4.5 Effective Local Search Procedure Through a Joint
Strategy

In this section, we introduce a joint strategy of our local
search procedure: we begin with an introduction of a selec-
tion of suitable individuals for employing local search. This
selection aims to choose the individuals based on global
and local population information using a fitness uniform

selection scheme in Algorithim 2. Subsequently, we present
several local search operators with the representation dis-
cussed in 4.3. These operators are specially designed to
work seamlessly with different neighborhoods that are in-
vestigated in this paper. The joint strategy for local search is
summarized in ALGORITHM 1.

ALGORITHM 1. Joint strategy for local search (Step 3.3
in Fig. 1)

Input : Pg , nnb and nset
Output: updated Pg

1 Select a small number nset of individulals to form a
subset SelectedIndiSet of Pg using ALGORITHM 2;

2 foreach Π in SelectedIndiSet do
3 Generate a size nnb of neighbors from Π by local

search ;
4 Identify the best neighbor Πbest with the highest

fitness ;
5 replace Π with Πbest;

6 return Pg ;

ALGORITHM 1 takes three inputs: Pg the gth popula-
tion, nset the number of seleted individuals for local search
and nnb the number of neighbors. In this algorithm, we start
by selecting a fixed and small number nset of candidate
solutions to form a subset SelectedIndiSet of the current
population Pg using ALGORITHM 2, see details in Sec-
tion 4.5.1. These selected solutions are used for local search.
For each solution Π in SelectedIndiSet, we produce a
number nnb of neighbors from Π by local search, see details
in Section 4.5.2, and then we identify the best neighbor
Πbest from the produced neighbors. We replace the best
neighbor Πbest with the selected Π in the small solutions
set SelectedIndiSet. Eventually, we return a updated Pg .

4.5.1 Application of uniform distribution schema
Two types of selection schemes for selecting suitable in-
dividuals for local search have been studied [34]: random
selection scheme, and statistics scheme. The random selec-
tion scheme is a primary selection method, where a local
search is potentially applied to all individuals with a pre-
defined rate. However, it can be less effective as it does not
assign local search to the most suitable candidate solutions,
and it is more time-consuming when the population size
is huge. This statistics scheme often chooses more suitable
individuals based on the statistics information of the cur-
rent population. For example, this method can assign local
search on a set of candidate solutions with the highest
differences measured by their fitness values.

Our selection scheme, inspired by [45], is proposed based
on the statistics information that aims to select a small
number of suitable individuals for local search, making a
good balance of local improvement and execution time. This
selection scheme is presented in ALGORITHM 2. This algo-
rithm applied a local search on a set of selected individuals
SelectedIndiSet. The size of SelectedIndiSet, nset, is a
pre-defined parameter. SelectedIndiSet consists of one elite
individual and nset − 1 individuals from nset − 1 groups of
individuals in each generation. Particularly, we calculate a
uniform fitness interval based on the maximal fitness value,
maxfitness and minimal fitness value, minfitness of the
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ALGORITHM 2. Fitness uniform selection scheme
Input : Pg and nset
Output: selected solutions SelectedIndiSet

1 SelectedIndiSet← {} ;
2 Sort Pg in descending order based on the fitness ;
3 Put the first individual in Pg into SelectedIndiSet ;
4 Calculate fitness range for nset − 1 groups based on

an uniform interval between maxfitness and
minfitness ;

5 Assign each permutation in Pg to nset − 1 groups
based on the fitness value ;

6 Random select one permutation from each group and
put it in SelectedIndiSet;

7 return SelectedIndiSet;

current population Pg . Therefore, the population is divided
into nset− 1 groups based on the calculated fitness interval.
Consequently, these groups represent different groups of
individuals, and each group represents close similarities
based on their fitness. Note that, for every generation, the
actual number of selected individuals for local search could
be less than nset, because there could be no individuals fall
into one group based on its fitness value.

4.5.2 Stochastic Local Search Operators
To investigate an appropriate structure of neighborhood
for composite services, suitable local search operators
must be proposed to effectively utilize domain knowledge.
Then we repeatedly assign these local search operators to
SelectedIndiSet for exploring their neighboring solutions.
Apart from that, to balance the quality of local improvement
and computation time, only a random subset of the entire
large neighborhood is explored by a stochastic strategy.
Based on the discussed permutation-based representation in
Sect. 4.3, local search operators are proposed in a straight-
forward way as “swap”. In this paper, we investigate four
different swap operators:

1) Constrained One-Point Swap: For a permutation Π =
(Π0, . . . ,Πt,Πt+1, . . . ,Πn−1), two service indexes Πa,
where 0 ≤ a ≤ t, and Πb, where t+ 1 ≤ b ≤ n− 1, are
selected and exchanged.
The one-point swap local search operator is inspired
by [9], which swaps a pair of service indexes in a
permutation. In [9], local search exclusively explores
the neighborhood based on one selected index of the
permutation, so the size of the neighborhood associated
with the index is n − 1. However, it can be very
computational expensive because the number of swaps
becomes significant for large n. Besides that, it can be
less flexible as the neighborhoods are just focusing on
those neighborhoods in relation to one selected index.
Herein we propose a more efficient and flexible local
search with one-point swap: first, we pre-determine
a fixed, relatively small number of neighbors nnb to
be produced for a considerable computational time
assigned for local search; second, we randomly produce
nnb neighbors by swapping two randomly selected
indexes, rather than by swapping n−1 indexes with one
fixed index. We expect that swapping two randomly se-
lected indexes is more effective within a budget compu-
tation time for making local improvements. Meanwhile,

1 2 3 0 4

A permutation:
Unused servicesUsed services

2 3 4

Neighbor 1:

10

Fig. 4: Examples of tone-point swap

we constrain the two randomly selected indexes that
they must be before | and after | respectively in every
swap because these swaps exclude those have lower
opportunities for local improvements. For example, one
neighbor is created by swapping one pair of used ser-
vice indexes. This swap operation has a higher chance
to produce the same DAG-based solution. Figure 4
shows an example of one-point swap for a selected
individual.

2) Constrained Two-Point Swap: For a permutation Π =
(Π0, . . . ,Πt,Πt+1, . . . ,Πn−1), four service indexes Πa1

,
Πa2

, Πb1 , and Πb2 are selected, where 0 ≤ a1 ≤ t, 0 ≤
a2 ≤ t, t+ 1 ≤ b1 ≤ n− 1, t+ 1 ≤ b2 ≤ n− 1, a1 6= a2,
and b1 6= b2. Πa1

and Πb1 are exchanged. Likewise, Πa2

and Πb2 are exchanged.
Motivated by the one-point swap proposed above,
we created two-point swap operator by combing two
constrained one-point swap into a single operator. We
make a hypothesis that the two-point swap could ef-
ficiently produce a higher quality neighbor by one
local change, rather than producing two neighbors by
a sequence of two constrained one-point local changes.
Primarily, given a budgeted number of candidate so-
lutions for local search, a two-point swap operator can
perform a more efficient local search for finding high-
quality solutions. Figure 5 shows an example of a two-
point swap for a selected individual and a produced
neighbors.

3

Neighbor 1:

10 4 2

1 2 3 0 4

A permutation:
Unused servicesUsed services

Fig. 5: Examples of two-point swap

3) Constrained One-Block Swap: For a permutation
Π = (Π0, . . . ,Πt,Πt+1, . . . ,Πn−1), two sub-blocks
{Πa, . . . ,Πt}, where where 0 ≤ a < t and
{Πb, . . . ,Πn−1}, where where t + 1 ≤ b < n − 1, are
selected and exchanged.
Constrained One-Block Swap is proposed based on
the concept of a block, i.e., consecutive points (service
indexes) in a permutation. In this swap, two blocks
are built up based on two randomly generated starting
point Πa and Πb before | and after I of a permutation
respectively. After swaps, produced neighbors inherit
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two parts of the original permutation. Figure 5 shows
an example of a constrained one-block swap for a
permutation, where one block is built up from the
start position StartPos1 to the last positions of used
services, and another block is built up from the start
position StartPos2 to the last index.

StartPos1 StartPos2

2 31 0

EndPos1 EndPos2

Neighbor 1:

01

4

4 2 3

A permutation:
Unused servicesUsed services

Fig. 6: Example of Block swap operation

4) Layer-Based Constrained One-Point Swap: For a per-
mutation Π = (Π0, . . . ,Πt,Πt+1, . . . ,Πn−1), one ser-
vice index Πa, where 0 ≤ a ≤ t, are selected, and
one layer L′, where L′ s.t. Πa ∈ L′, is identified.
Afterwards, another service index Πb is randomly se-
lected from the index set L′ ∩ {Πt+1, . . . ,Πn−1}. Con-
sequently, Πa and Πb are exchanged.
Layer-based one-point swap operator is proposed by
extending our one-point swap in additionally consid-
ering the layer information of relevant services. The
layer information includes a set of layers, each of which
estimates a set of services that could be located at
positions of themselves in permutations. Herein we
propose a layer-based one-point swap operator: we first
select one service index and identify its associated layer,
and then select another service index randomly from
a set of indexes, i.e., an intersection of the indexes of
the identified layer and the indexes of unused services.
Consequently, two service indexes are exchanged. Fig-
ure 7 shows an example of layer-based one-point swap
for creating one neighbor from a selected individual.

1 2 3 0 4

A permutation:
Unused servicesUsed services

Selected service from the intersection

1

Layer: 𝐿"

04

1 2

2 3 4

Neighbor 1:

10 4

4

1 2

∩
Unused services

Layer: 𝐿"

0

0

+

Selected service

Fig. 7: Example of layer-based one-point swap operation

5 EXPERIMENTS

We conduct experiments to evaluate the performances of
our memetic EDA-based approaches, i.e., memetic EDA
with constrained one-point swap (henceforth referred to
as MEEDA-OP), memetic EDA with constrained two-point
swap (henceforth referred to as MEEDA-TP), memetic EDA
with constrained layer-based one-point swap (henceforth

referred to as MEEDA-LOP) and memetic EDA with con-
strained one-block swap (henceforth referred to as MEEDA-
OB). These memetic EDA-based approaches are compared
to some state-of-the-art EC-based methods that were re-
cently proposed to solve the same or similar problems: a
PSO-based approach [10] (henceforth referred to as PSO),
a GA-based approach (henceforth referred to as GA), a
memetic GA-based approach [9] (henceforth referred to as
MEGA) and an EDA-based approach [12] (henceforth re-
ferred to as NHM-EDA). Two benchmarks, WSC-08 [1] and
WSC-09 [2] extended with QoS attributes , which generated
from the QoS distribution from QWS [30] are created. These
two benchmarks have already been broadly employed in
service composition [5], [10], [13] for experimental evalua-
tions. Moreover, the number of web services in the service
repository is doubled as a new benchmark (with much
bigger searching space) to demonstrate that memetic EDA
can maintain high performance on our problem with signif-
icantly larger sizes. We also make this benchmark available
to the public. Particuarly, WSC08 contains 8 composition
tasks with increasing size of service repository, i.e., 316,
1116, 1216, 2082, 2180, 4396, 8226, and 16238, and WSC09
contains 5 composition tasks with increasing size of service
repository, i.e., 1144, 8258, 16276, 16602, and 30422 SRs
respectively.

The population size is set to 200, the number of gen-
erations equals to 100, and bratio is 0.0002. The size of
SelectedIndiSet is 6, and the number of neighbors of each
individual in SelectedIndiSet explored by local search op-
erators nnb is 20. For all the competing methods, we follow
strictly their settings in their papers. In GA, the crossover
rate is set to 0.95, and the mutation rate is set to 0.05. In
MEGA, the crossover rate is set to 0.95, and local search
rate is 0.05. We run the experiment with 30 independent
repetitions. Following existing works [10], [11], [12], the
weights of the fitness function Eq. (5) are simply configured
to balance the QoSM and QoS. In particular, we set both
w1 and w2 to 0.25, and w3, w4, w5 and w6 all to 0.125.
More experiments have been conducted and show that all
our methods work consistently well under different weight
settings. The p of typelink is determined by the preference
of users, and is recommended as 0.75 for the plugin match
according to [39].

5.1 Comparison of the Fitness

We employ the independent-sample T-test with a signif-
icance level of 5% to verify the observed differences in
performance concerning fitness value and execution time.
In particular, we use a pairwise comparison to compare all
competing approaches, and then the top performances are
identified, and its related value is highlighted in green color
in Table 2. Note that those methods that consistently find
the best-known solutions over 30 runs with 0 standard de-
viations are also marked as top performances. The pairwise
comparison results for fitness are summarized in Table 3,
where textitwin/draw/loss shows the scores of one method
compared to all the others, and displays the frequency that
this method outperforms, equals or is outperformed by the
competing method. This testing and comparison methods
are also used in Sect 5.2.
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One of the objectives of the experiments is to evaluate
the effectiveness of the proposed memetic EDA-based ap-
proaches comparing to NHM-EDA [12], PSO [10], GA and
MEGA [9]. Table 2 shows the mean value of the fitness value
and the standard deviation over 30 repetitions. The pairwise
comparison results of the fitness value are summarized
in Table 3. From Table 2 and Table 3, we observe some
interesting behaviors of these approaches in finding high-
quality solutions. Based on these observations, we also make
some analysis and possible conclusions below:

Firstly, for the two baseline methods — PSO and GA,
all EDA-based approaches (with and without local search)
consistently outperform PSO. However, only memetic EDA-
based approaches outperform GA.

Then, MEGA [9] achieved very comparable results to
all our memetic EDA-based methods. However, MEEDA-
LOP achieves the best performance. As shown in Table 3,
MEEDA-LOP only loss 1 out of 13 composition tasks
over WSC-08 land WSC-09. Furthermore, MEEDA-LOP has
achieved extremely stable performance in the most runs
with 0 standard deviation.

In addition, MEEDA-OP, MEEDA-TP, MEEDA-OB, and
MEEDA-LOP significantly outperforms NHM-EDA [12].
This observation corresponds well with our expectation
that the exploitation ability of EDA can be enhanced by
hybridizing it with local search. We can see that all memetic
EDA-based approaches reach a better balance of exploration
and exploitation.

Furthermore, for the four memetic EDA-based ap-
proaches, MEEDA-OB is the worst while MEEDA-OP and
MEEDA-TP are very comparable to each other. This obser-
vation demonstrates that the neighborhood based on blocks
is considered to be less suitable for service composition
problems, it is due to that swapping building blocks can
potentially ruin the learned distribution of promising solu-
tions.

Lastly, MEEDA-LOP is the best performer. This obser-
vation corresponds well with our assumption that using
the layer-based information can further improve the effec-
tiveness of one-point swap. MEEDA-LOP applies the local
search operator to a much smaller, but useful set of services
considered in MEEDA-OP.

In summary, we sort all the competing approaches based
on the effectiveness in a descending order: MEEDA-LOP >
MEGA > MEEDA-TP = MEEDA-OP > MEEDA-OB > GA
> EDA > PSO.

5.2 Comparison of the Execution Time
The second objective of our experiment is to study the
efficiency of all the proposed EDA-based approaches com-
paring to EDA[12], PSO [10], GA and MEGA [9]. Table 4
shows the mean value of the execution time and the stan-
dard deviation over 30 repetitions. The pairwise comparison
results for the execution time are summarized Table 5. From
the two tables above, we make some analysis and possible
conclusions about the execution time of these approaches as
below:

First, MEEDA-LOP requires consistently less execution
time compared to other approaches, which can be observed
from the highlighted execution time in Table 4. It is a re-
markable observation that the local search in MEEDA-LOP

based on layers and constrained one-point swap requires
less computation time compared to MEEDA-OP. However,
this significant improvement is mainly due to two tech-
niques in MEEDA-LOP. The first one is the archive tech-
nique, which reserves half population-size elite individuals
to the next generation, and significantly reduces the overall
computation time for the decoding and evaluation of the
reserved individuals in the future. The second one is the
layer-based information, which improves the effectiveness
of one-point swap, resulting in learning more accurate and
reliable NHM. Therefore, useful services are more likely to
be put in the front of the permutation, which accelerates the
execution time in the decoding process.

Second, in contrast, MEGA requires the highest execu-
tion time, because all the candidate solutions in MEGA
have an opportunity for local search using random selection
scheme, and MEGA also exclusively searches the whole
neighborhood based on one position. These results confirm
that the combination of the random selection scheme and
the exclusively local search strategy in MEGA is less effec-
tive and more time-consuming than our statistics scheme
and stochastic local search operators.

Lastly, MEEDA-OB is also very computation-intensive
among all the memetic EDA-based approaches. It is due
to that one-block swap retards accurate distributions to be
learned as local improvements of one-block swap is less
effective, so required services for service composition are
less likely to be put at the front of a service queue. Also,
building blocks consume extra time in MEEDA-OB.

In summary, we sort all the competing approaches based
on the execution time in a ascending order: MEEDA-LOP >
MEEDA-OP > MEEDA-TP > PSO > GA > MEEDA-OB >
MEGA.

5.3 Comparison of the Convergence Rate
The third objective of our experiment is to study the conver-
gence rate of all the approaches over 30 independent runs.
We have used WSC08-3 and WSC09-2 as two examples to
illustrate the performance of all the compared methods.

Fig. 8 exhibits the evolution of the mean fitness value
of the best solution found along the execution time over
30 independent runs for MEEDA-OP, MEEDA-TP, MEEDA-
OB, MEEDA-LOP, NHM-EDA, PSO, GA, and MEGA. As

Fig. 8: A comparison of the average convergence rate of
MEEDA-OP, MEEDA-TP, MEEDA-BP, MEEDA-LOP,

NHM-EDA, PSO, MEGA and GA over execution time on
WSC08-3 (the left) and WSC09-2 (the right)
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MEGA requires much higher time for execution, we set
different execution time scales for two tasks of WSC08-3 and
WSC09-2 to easily observe their differences.

First, we observe a significant increase in the fitness
value towards the optimum over all the approaches ex-
cluding MEGA. These approaches eventually reach different
levels of plateaus. Given the same budget of execution
time, all memetic EDA-based methods happen to converge
significantly faster and require much less time than the
baseline PSO over all the composition tasks.

Second, MEGA suffers from the the scalability issue
when the size of the service repository is doubled in our
new benchmark. The complexity of its local search strongly
depends on n, i.e., the dimension of each permutation.
Therefore, MEGA does not even converge at all when the
same amount of execution time that is required by other
approaches is assigned.

Lastly, MEEDA-LOP is consistently ranked as a top per-
former among all the competing methods. The convergence
rate of MEEDA-OP and MEEDA-TP presents a very similar
pattern. However, MEEDA-OB happens to converge slower
than the others, but it eventually reaches comparable results
compared to MEEDA-OP and MEEDA-TP.

5.4 Comparison of local search operators
We investigate how often the mean fitness of neighbors
is better than the fitness of their original permutation in
MEEDA-OP, MEEDA-TP, MEEDA-LOP, and MEEDA-BP to
demonstrate which swap-based local search operator is
more likely to produce better solutions. Herein we use the
composition task WSC0803 as an example to demonstrate
the percentage of better neighbors produced by our four
memetic EDA-based approaches along generations over 30
runs for WSC08-03 in Fig. 9.
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Fig. 9: A comparison of the percentage of better neighbors
produced by four memetic approaches along generations

over 30 runs for WSC08-03

The result shows that MEEDA-BP and MEEDA-TP are
less like to produce better solutions while MEEDA-OP and
MEEDA-LOP are very comparable to each other, although
slightly higher percentages of better mean fitness can be
achieved by MEEDA-LOP.

We further analyze differences between layer-based con-
strained one-point swap and constraint one-point swap
operator using a permutation in Figure 10.

Figure 10 exhibits an example of two produced neigh-
bors from a permutation using constraint one-point swaps

𝐿"

𝐿"

A permutation: 

1 2 3 4 0 1 2 4 3 0

Layer-based constrained one-point swap

1 2 0 4 3

Neighbor 1:

Neighbor 2:

𝐿" 𝐿# 𝐿"

𝐿"
𝑆"

𝑆#

𝑆% 𝐸𝑛𝑑𝑆𝑡𝑎𝑟𝑡

Constrained one-point swap

Layer-based constrained one-point swap
Constrained one-point swap

Decoding Decoding

Decoding

Fig. 10: Examples of layer order breached by constrained
one swap operation

without considering layer information. In the example, one
identical solution can be decoded from both the given per-
mutation and the produced two neighbors, resulting in no
local exploitation. In contrast, the discussed swapping cases
are not qualified for the layer-based constraint one-point
swap, where any produced neighbor must strictly follow
the layer order on the left-hand side of the permutation.

In the example, a given permutation is highlighted with
two layers (i.e., L1 and L2) in ascending order. Particularly,
S1, S2 ∈ L1 and S3 ∈ L2. When the constrained one-point
swap is performed, S3 in the given permutation are replaced
with S4 or S0 in the produced neighbor 1 and neighbor
2 respectively. However, L2 is destroyed in the produced
neighbors because of S4 ∈ L1 and S0 ∈ L1. However,
if the layer-based one-point swap is applied to the given
permutation, it prevents these two neighbors from being
exploited. In general, all produced neighbors must keep all
the ordered layers from the given permutation.

6 CONCLUSION

In this paper, we propose effective and efficient memetic
EDA-based approaches to fully automated service compo-
sition. The success of this memetic approach principally
relies on the local search, where several ideas are jointly
employed. In particular, we proposed several neighborhood
structures by different local search operators, which are
integrated with our permutation-based representation nat-
urally. Besides that, a uniform distribution scheme and a
stochastic strategy are also jointly utilized for selecting and
applying local search. The experiments show that one of
our proposed approach MEEDA-LOP achieves significantly
better effectiveness and efficiency, compared to some state-
of-the-art EC-based approaches and other memetic EDA-
based approaches we proposed in the paper. Future work
can investigate variable neighborhood with combinations of
more than one local search operators in one evolutionary
process, and investigate memetic EDA for handling multi-
objective service composition problems.



13

TA
BL

E
2:

M
ea

n
fit

ne
ss

va
lu

es
fo

r
ou

r
ap

pr
oa

ch
in

co
m

pa
ri

so
n

to
N

H
M

-E
D

A
[1

2]
,P

SO
[1

0]
,M

EG
A

[9
]a

nd
G

A
.(

N
ot

e:
th

e
hi

gh
er

th
e

fit
ne

ss
th

e
be

tt
er

)

D
at

as
et

M
EE

D
A

-O
P

M
EE

D
A

-T
P

M
EE

D
A

-O
B

M
EE

D
A

-L
O

P
N

H
M

-E
D

A
[1

7]
PS

O
[1

0]
M

EG
A

[9
]

G
A

W
SC

08
-1

0
.6

1
3
7
4
5
±

0
0
.6

1
3
7
4
5
±

0
0
.6

1
3
7
4
5
±

0
0
.6

1
3
7
4
5
±

0
0
.6

0
4
9
6
6
±

0
.0

1
7
2
3
2

0
.6

1
0
1
8
2
±

0
.0

0
3
7
4
8

0
.6

1
3
7
4
5
±

0
0
.6

1
3
4
3
9
±

0
.0

0
0
6
9
3

W
SC

08
-2

0
.7

5
6
8
1
2
±

0
0
.7

5
6
8
1
2
±

0
0
.7

5
6
8
1
2
±

0
0
.7

5
6
8
1
2
±

0
0
.7

5
6
8
1
2
±

0
0
.7

5
6
7
7
9
±

0
.0

0
0
1
7
5

0
.7

5
6
8
1
2
±

0
0
.7

5
6
8
1
2
±

0
W

SC
08

-3
0
.4

7
7
8
6
4
±

5
.1

e
−

0
5

0
.4

7
7
8
6
6
±

4
e
−

0
5

0
.4

7
7
8
0
3
±

6
.7

e
−

0
5

0
.4

7
7
9
1
±

1
.7

e
−

0
5

0
.4

7
6
5
3
±

0
.0

0
0
2
1
2

0
.4

7
6
0
8
6
±

0
.0

0
0
5
2
8

0
.4

7
7
7
6
8
±

0
.0

0
0
1
5

0
.4

7
7
4
4
7
±

0
.0

0
0
2
2
8

W
SC

08
-4

0
.5

5
7
8
1
5
±

0
0
.5

5
7
8
1
5
±

0
0
.5

5
7
8
1
5
±

0
0
.5

5
7
8
1
5
±

0
0
.5

5
7
8
1
5
±

0
0
.5

5
7
4
1
6
±

0
.0

0
0
6
6
6

0
.5

5
7
8
1
5
±

0
0
.5

5
7
8
1
±

3
.1

e
−

0
5

W
SC

08
-5

0
.5

2
4
5
3
±

0
.0

0
0
3
8

0
.5

2
4
7
4
±

0
.0

0
0
3
8
8

0
.5

2
4
4
8
2
±

0
.0

0
0
3
6
9

0
.5

2
4
4
1
2
±

0
.0

0
0
3
2
9

0
.5

2
2
2
2
5
±

0
.0

0
0
8
9
6

0
.5

1
7
9
1
2
±

0
.0

0
5
4
4

0
.5

2
5
5
8
6
±

0
.0

0
0
6
3
9

0
.5

2
3
4
6
3
±

0
.0

0
2
0
7
8

W
SC

08
-6

0
.4

8
2
6
9
8
±

0
.0

0
0
1
0
7

0
.4

8
2
6
8
4
±

0
.0

0
0
1
4
3

0
.4

8
2
6
2
2
±

0
.0

0
0
1
3
1

0
.4

8
2
7
0
3
±

0
.0

0
0
2
2
5

0
.4

8
1
5
0
9
±

0
.0

0
0
1
6
4

0
.4

8
1
7
2
3
±

0
.0

0
0
5
0
5

0
.4

8
2
7
5
9
±

0
.0

0
0
2
5
3

0
.4

8
2
1
4
2
±

0
.0

0
0
4
5
2

W
SC

08
-7

0
.5

2
3
5
8
8
±

0
0
.5

2
3
5
8
8
±

0
0
.5

2
3
5
7
7
±

5
.8

e
−

0
5

0
.5

2
3
5
8
8
±

0
0
.5

2
1
7
7
7
±

0
.0

0
0
7
9
7

0
.5

1
6
1
4
1
±

0
.0

0
5
1
9

0
.5

2
3
5
5
9
±

0
.0

0
0
1
4

0
.5

2
1
6
9
4
±

0
.0

0
2
2
4
8

W
SC

08
-8

0
.4

9
7
6
7
6
±

1
.3

e
−

0
5

0
.4

9
7
6
7
6
±

1
.3

e
−

0
5

0
.4

9
7
6
4
6
±

9
.4

e
−

0
5

0
.4

9
7
6
7
9
±

0
0
.4

9
1
1
5
8
±

0
.0

0
1
4
2
3

0
.4

8
9
5
8
1
±

0
.0

0
3
2
1
9

0
.4

9
7
4
5
5
±

0
.0

0
0
3
5
7

0
.4

9
6
3
4
7
±

0
.0

0
0
8
6
1

W
SC

09
-1

0
.6

4
9
0
2
±

0
.0

0
3
7
4
7

0
.6

5
0
8
6
1
±

0
.0

0
3
8
3

0
.6

4
8
5
2
±

0
.0

0
3
0
0
5

0
.6

5
0
4
4
4
±

0
.0

0
4
1
2

0
.6

4
8
2
6
7
±

0
.0

0
2
8
9
5

0
.6

4
8
6
0
5
±

0
.0

0
4
3
2
8

0
.6

5
0
7
3
7
±

0
.0

0
3
8
6
3

0
.6

4
9
6
1
2
±

0
.0

0
3
6
8
8

W
SC

09
-2

0
.5

2
1
8
1
7
±

0
.0

0
3
8
5
5

0
.5

2
0
5
6
2
±

0
.0

0
4
9
4
3

0
.5

2
0
9
6
6
±

0
.0

0
8
2
5
8

0
.5

2
3
0
9
±

0
.0

0
0
4
4
3

0
.4

9
5
6
4
7
±

0
.0

1
2
5
1
7

0
.5

0
6
7
0
1
±

0
.0

1
1
0
4
5

0
.5

2
2
5
7
±

0
.0

0
3
2
4
6

0
.5

2
1
4
2
4
±

0
.0

0
3
0
1
1

W
SC

09
-3

0
.5

8
3
9
7
8
±

0
0
.5

8
3
9
7
8
±

0
0
.5

8
3
9
7
8
±

0
0
.5

8
3
9
7
8
±

0
0
.5

8
3
9
7
8
±

0
0
.5

8
3
3
5
8
±

0
.0

0
1
1
8
2

0
.5

8
3
9
7
8
±

0
0
.5

8
3
9
5
4
±

9
.1

e
−

0
5

W
SC

09
-4

0
.4

8
4
4
2
8
±

0
.0

0
0
1
9
1

0
.4

8
4
4
2
7
±

0
.0

0
0
3
2

0
.4

8
4
2
9
5
±

0
.0

0
0
1
4

0
.4

8
5
5
3
3
±

0
.0

0
2
0
7
3

0
.4

8
2
2
2
±

0
.0

0
0
3
0
9

0
.4

8
1
7
4
1
±

0
.0

0
0
9
8
5

-
0
.4

8
3
2
7
7
±

0
.0

0
0
3
6
7

W
SC

09
-5

0
.4

8
4
8
3
2
±

2
.6

e
−

0
5

0
.4

8
4
8
1
8
±

9
.5

e
−

0
5

0
.4

8
4
7
8
8
±

0
.0

0
0
1
7
9

0
.4

8
4
8
2
5
±

0
.0

0
0
1
1
7

0
.4

8
0
1
3
7
±

0
.0

0
0
4
5
8

0
.4

8
0
5
3
9
±

0
.0

0
1
3
0
8

0
.4

8
4
6
0
3
±

0
.0

0
0
2
9
4

0
.4

8
3
2
7
8
±

0
.0

0
1
1
8
5

TA
BL

E
3:

Su
m

m
ar

y
of

st
at

is
ti

ca
ls

ig
ni

fic
an

ce
te

st
s

fo
r

fit
ne

ss
,w

he
re

ea
ch

co
lu

m
n

sh
ow

s
w

in
/d

ra
w

/l
os

s
sc

or
e

of
an

ap
pr

oa
ch

ag
ai

ns
to

th
er

s
fo

r
al

li
ns

ta
nc

es
of

W
SC

-2
00

8
an

d
W

SC
-2

00
9.

D
at

as
et

M
et

ho
d

M
EE

D
A

-O
P

M
EE

D
A

-T
P

M
EE

D
A

-O
B

M
EE

D
A

-L
O

P
N

H
M

-E
D

A
[1

2]
PS

O
[1

0]
M

EG
A

[9
]

G
A

W
SC

-0
8

(8
ta

sk
s)

M
EE

D
A

-O
P

-
0/

8/
0

0/
6/

2
1/

7/
0

0/
2/

6
0/

1/
7

1/
4/

3
0/

1/
7/

M
EE

D
A

-T
P

0/
8/

0
-

1/
5/

2
1/

6/
1

0/
2/

6
0/

1/
7

1/
4/

3
0/

1/
7

M
EE

D
A

-O
B

2/
6/

0
2/

5/
1

-
1/

7/
0

0/
2/

6
0/

1/
7

2/
5/

1
0/

1/
7

M
EE

D
A

-L
O

P
0/

7/
1

1/
6/

1
0/

7/
1

-
0/

2/
6

0/
1/

7
1/

4/
3

0/
1/

7
N

H
M

-E
D

A
6/

2/
0

6/
2/

0
6/

2/
0

6/
2/

0
-

0/
2/

6
6/

2/
0

5/
2/

1
PS

O
[1

0]
7/

1/
0

7/
1/

0
7/

1/
0

7/
1/

0
6/

2/
0

-
8/

0/
0

8/
0/

0
M

EG
A

[9
]

3/
4/

1
3/

4/
1

1/
5/

2
3/

4/
1

0/
2/

6
0/

0/
8

-
0/

0/
8

G
A

7/
1/

0
7/

1/
0

7/
1/

0
7/

1/
0

1/
2/

5
0/

0/
8

8/
0/

0
-

W
SC

-0
9

(5
ta

sk
s)

M
EE

D
A

-O
P

-
0/

5/
0

0/
4/

1
1/

4/
0

0/
2/

3
0/

1/
4

0/
3/

1
0/

3/
2/

M
EE

D
A

-T
P

0/
5/

0
-

0/
4/

1
2/

3/
0

0/
1/

4
0/

0/
5

1/
2/

1
0/

3/
2

M
EE

D
A

-O
B

1/
4/

0
1/

4/
0

-
2/

3/
0

0/
2/

3
0/

2/
3

1/
2/

1
0/

3/
2

M
EE

D
A

-L
O

P
0/

4/
1

0/
3/

2
0/

3/
2

-
0/

1/
4

0/
1/

4
0/

3/
1

0/
2/

3
N

H
M

-E
D

A
3/

2/
0

4/
1/

0
3/

2/
0

4/
1/

0
-

2/
2/

1
3/

1/
0

2/
2/

1
PS

O
[1

0]
4/

1/
0

5/
0/

0
3/

2/
0

4/
1/

0
1/

2/
2

-
3/

1/
0

3/
1/

1
M

EG
A

[9
]

1/
3/

0
1/

2/
1

1/
2/

1
1/

3/
0

0/
1/

3
0/

1/
3

-
0/

2/
2

G
A

2/
3/

0
2/

3/
0

2/
3/

0
3/

2/
0

1/
2/

2
1/

1/
3

2/
2/

0
-

TA
BL

E
4:

M
ea

n
ex

ec
ut

io
n

ti
m

e
(i

n
s)

fo
r

ou
r

ap
pr

oa
ch

in
co

m
pa

ri
so

n
to

N
H

M
-E

D
A

[1
2]

,P
SO

[1
0]

,M
EG

A
[9

]a
nd

G
A

.(N
ot

e:
th

e
sh

or
te

r
th

e
ti

m
e

th
e

be
tt

er
)

D
at

as
et

M
EE

D
A

-O
P

M
EE

D
A

-T
P

M
EE

D
A

-O
B

M
EE

D
A

-L
O

P
N

H
M

-E
D

A
[1

2]
PS

O
[1

0]
M

EG
A

[9
]

G
A

W
SC

08
-1

1
5
6
±

1
2

2
1
1
±

1
9

4
2
2
±

7
0

1
1
2
±

8
2
2
9
±

3
9

1
1
1
±

7
6

6
2
2
±

7
4

1
0
2
±

1
1

W
SC

08
-2

7
2
±

9
9
8
±

1
3

1
3
3
±

1
4

7
2
±

6
6
9
±

5
6
8
±

4
8

1
1
8
±

1
7

2
1
±

3
W

SC
08

-3
8
4
7
0
±

4
6
2

8
8
0
7
±

6
2
1

1
2
8
4
9
±

7
4
0

8
3
2
9
±

3
4
6

1
1
3
1
7
±

7
3
4
4

1
5
7
8
9
±

2
6
0
2

6
8
3
8
2
±

1
3
1
4
2

1
2
5
1
4
±

1
5
7
5

W
SC

08
-4

8
7
±

6
1
1
2
±

7
1
7
7
±

7
8
4
±

6
8
5
±

5
2
1
1
±

1
0
4

7
6
6
±

2
5
3

1
4
7
±

3
6

W
SC

08
-5

1
7
0
5
±

1
4
8

2
1
3
6
±

1
4
2

4
3
6
3
±

1
5
4

1
7
4
2
±

1
2
2

2
7
3
4
±

1
2
7
8

2
5
4
9
±

1
5
1
7

4
7
6
0
3
±

4
7
1
0
4

3
8
0
1
±

1
5
1
2

W
SC

08
-6

1
7
5
2
4
±

8
4
3

1
9
9
5
4
±

1
3
5
2

4
3
6
2
1
±

2
0
6
2

1
7
3
0
3
±

1
5
6
9

2
7
1
6
4
±

3
8
1
0

3
3
1
1
9
±

1
2
1
9
4

9
4
7
3
6
8
±

1
5
7
8
2
8

5
1
2
8
7
±

1
1
5
6
1

W
SC

08
-7

2
0
2
5
±

1
3
8

2
8
6
9
±

1
2
5
8

8
0
9
6
±

4
4
8

1
9
1
8
±

1
1
9

3
9
9
3
±

4
0
8

4
4
5
6
±

2
8
2
5

8
1
8
4
7
±

2
0
6
1
0

5
4
9
9
±

1
5
2
6

W
SC

08
-8

4
3
7
5
±

3
7
1

5
0
6
6
±

3
5
0

1
1
3
4
1
±

6
6
6

4
2
8
3
±

3
6
8

7
2
5
8
±

9
3
2

6
1
5
3
±

1
9
5
1

1
4
8
1
3
3
±

2
9
3
0
4

1
0
9
3
1
±

1
6
6
7

W
SC

09
-1

1
5
9
±

2
3

2
3
9
±

3
8

3
1
4
±

2
7

1
5
9
±

1
8

1
4
4
±

9
3

1
2
6
±

1
3
9

5
0
6
±

1
0
4

6
5
±

1
2

W
SC

09
-2

3
3
1
4
±

5
5
1

4
3
1
1
±

6
8
6

7
5
7
3
±

5
5
3

3
3
6
2
±

5
0
5

4
6
4
2
±

1
0
2
1

3
6
5
2
±

1
5
1
6

4
9
4
5
5
±

1
7
8
3
1

4
0
8
1
±

1
4
3
3

W
SC

09
-3

1
6
4
3
±

1
4
6

2
3
0
3
±

1
9
1

4
6
3
8
±

3
4
3

1
6
1
4
±

1
2
4

1
5
5
6
±

2
5
1

2
1
9
8
±

2
0
3
8

1
8
9
9
8
±

3
3
0
0

1
7
1
3
±

3
9
4

W
SC

09
-4

9
2
3
4
2
±

7
5
8
4

1
0
3
4
3
3
±

6
8
4
7

2
1
4
0
6
7
±

1
2
3
5
8

8
6
5
4
3
±

6
0
4
6

1
4
3
0
9
8
±

5
4
8
4
1

8
5
8
1
3
±

3
7
8
9
5

-
1
7
6
1
5
2
±

4
6
3
2
1

W
SC

09
-5

1
6
1
6
0
±

1
1
2
3

1
8
4
4
6
±

1
7
7
6

4
5
0
3
9
±

4
5
3
4

1
5
2
4
9
±

9
7
8

2
6
5
0
6
±

1
7
1
6

1
4
8
0
7
±

5
6
0
5

6
3
5
6
3
7
±

1
5
1
9
7
5

2
9
9
9
1
±

4
8
6
7

TA
BL

E
5:

Su
m

m
ar

y
of

st
at

is
ti

ca
ls

ig
ni

fic
an

ce
te

st
s

fo
r

ex
ec

ut
io

n
ti

m
e

(i
n

s)
,w

he
re

ea
ch

co
lu

m
n

sh
ow

s
w

in
/d

ra
w

/l
os

s
sc

or
e

of
an

ap
pr

oa
ch

ag
ai

ns
to

th
er

s
fo

r
al

li
ns

ta
nc

es
of

W
SC

-2
00

8
an

d
W

SC
-2

00
9.

D
at

as
et

M
et

ho
d

M
EE

D
A

-O
P

M
EE

D
A

-T
P

M
EE

D
A

-O
B

M
EE

D
A

-L
O

P
N

H
M

-E
D

A
[1

2]
PS

O
[1

0]
M

EG
A

[9
]

G
A

W
SC

-0
8

(8
ta

sk
s)

M
EE

D
A

-O
P

-
0/

0/
8

0/
0/

8
6/

2/
0

0/
2/

6
1/

1/
6

0/
0/

8
2/

0/
6

M
EE

D
A

-T
P

8/
0/

0
-

0/
0/

8
8/

0/
0

2/
1/

5
2/

1/
5

0/
0/

8
2/

0/
6

M
EE

D
A

-O
B

8/
0/

0
8/

0/
0

-
8/

0/
0

7/
1/

0
5/

1/
2

0/
0/

8
4/

3/
1

M
EE

D
A

-L
O

P
0/

2/
6

0/
0/

8
0/

0/
8

-
0/

0/
8

0/
2/

6
0/

0/
8

2/
0/

6
N

H
M

-E
D

A
6/

2/
0

5/
1/

2
0/

1/
7

8/
0/

0
-

2/
4/

2
0/

0/
8

2/
1/

5
PS

O
[1

0]
6/

1/
1

5/
1/

2
2/

1/
5

6/
2/

0
2/

4/
2

-
0/

0/
8

2/
4/

2
M

EG
A

[9
]

8/
0/

0
8/

0/
0

8/
0/

0
8/

0/
0

8/
0/

0
8/

0/
0

-
8/

0/
0

G
A

6/
0/

2
6/

0/
2

1/
3/

4
6/

0/
2

5/
1/

2
2/

4/
2

0/
0/

8
-

W
SC

-0
9

(5
ta

sk
s)

M
EE

D
A

-O
P

-
0/

0/
5

0/
0/

5
2/

3/
0

0/
2/

3
0/

1/
4

0/
0/

4
3/

1/
1

M
EE

D
A

-T
P

5/
0/

0
-

0/
0/

5
5/

0/
0

2/
1/

2
4/

1/
0

0/
0/

4
4/

1/
0

M
EE

D
A

-O
B

5/
0/

0
5/

0/
0

-
5/

0/
0

5/
0/

0
5/

0/
0

0/
0/

4
5/

0/
0

M
EE

D
A

-L
O

P
0/

3/
2

0/
0/

5
0/

0/
5

-
0/

2/
3

0/
5/

0
0/

0/
4

1/
1/

3
N

H
M

-E
D

A
3/

2/
0

2/
1/

2
0/

0/
5

3/
2/

0
-

3/
2/

0
0/

0/
4

1/
2/

2
PS

O
[1

0]
4/

1/
1

0/
1/

4
0/

0/
5

0/
5/

0
0/

2/
3

-
0/

0/
4

1/
2/

2
M

EG
A

[9
]

4/
0/

0
4/

0/
0

4/
0/

0
4/

0/
0

4/
0/

0
4/

0/
0

-
4/

0/
0

G
A

1/
1/

3
0/

1/
4

0/
0/

5
3/

1/
1

2/
2/

1
2/

2/
1

0/
0/

4
-



14

REFERENCES

[1] A. Bansal, M. B. Blake, S. Kona, S. Bleul, T. Weise, and M. C. Jaeger,
“Wsc-08: continuing the web services challenge,” in E-Commerce

[2] S. Kona, A. Bansal, M. B. Blake, S. Bleul, and T. Weise, “Wsc-2009:
a quality of service-oriented web services challenge,” in 2009 IEEE
Conference on Commerce and Enterprise Computing. IEEE, 2009, pp.
487–490.

[3] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion,
C. Ferris, and D. Orchard, “Web services architecture. w3c working
note,” W3C Working Notes, 2004.

[4] F. Curbera, W. Nagy, and S. Weerawarana, “Web services: Why
and how,” in Workshop on Object-Oriented Web Services-OOPSLA,
2001.

[5] H. Ma, A. Wang, and M. Zhang, “A hybrid approach using ge-
netic programming and greedy search for QoS-aware web service
composition,” Transactions on Large-Scale Data Knowledge-Centered
System, pp. 180–205, 2015.

[6] S. Peng, H. Wang, and Q. Yu, “Estimation of distribution with
restricted boltzmann machine for adaptive service composition,”
in IEEE ICWS, 2017, pp. 114–121.

[7] P. Rodriguez-Mier, M. Mucientes, M. Lama, and M. I. Couto,
“Composition of web services through genetic programming,”
Evolutionary Intelligence, pp. 171–186, 2010.

[8] A. S. da Silva, H. Ma, and M. Zhang, “Genetic programming for
QoS-aware web service composition and selection,” Soft Comput-
ing, pp. 1–17, 2016.

[9] A. S. da Silva, Y. Mei, H. Ma, and M. Zhang, “Evolutionary
computation for automatic web service composition: an indirect
representation approach,” Journal of Heuristics, pp. 1–32, 2017.

[10] C. Wang, H. Ma, A. Chen, and S. Hartmann, “Comprehensive
quality-aware automated semantic web service composition,” in
Australasian Joint Conference on Artificial Intelligence. Springer,
2017, pp. 195–207.

[11] ——, “Gp-based approach to comprehensive quality-aware auto-
mated semantic web service composition,” in Asia-Pacific Confer-
ence on Simulated Evolution and Learning. Springer, 2017, pp. 170–
183.

[12] C. Wang, H. Ma, G. Chen, and S. Hartmann, “Knowledge-driven
automated web service composition — an EDA-based approach,”
in International Conference on Web Information Systems Engineering.
Springer, 2018.

[13] Y. Yu, H. Ma, and M. Zhang, “An adaptive genetic program-
ming approach to QoS-aware web services composition,” in IEEE
Congress on Evolutionary Computation, 2013, pp. 1740–1747.

[14] J. Rao and X. Su, “A survey of automated web service composition
methods,” in International Workshop on Semantic Web Services and
Web Process Composition. Springer, 2004, pp. 43–54.

[15] J. Peer, “Web service composition as AI planning-a survey,” Uni-
versity of St. Gallen, 2005.

[16] L. Qi, Y. Tang, W. Dou, and J. Chen, “Combining local optimization
and enumeration for QoS-aware web service composition,” in
IEEE ICWS, 2010, pp. 34–41.

[17] C. Wang, H. Ma, and G. Chen, “Eda-based approach to compre-
hensive quality-aware automated semantic web service compo-
sition,” in Proceedings of the Genetic and Evolutionary Computation
Conference Companion. ACM, 2018, pp. 147–148.

[18] H. Tong, J. Cao, S. Zhang, and M. Li, “A distributed algorithm
for web service composition based on service agent model,” IEEE
Transactions on Parallel and Distributed Systems, vol. 22, no. 12, pp.
2008–2021, 2011.

[19] D. Whitley, “A genetic algorithm tutorial,” Statistics and computing,
pp. 65–85, 1994.

[20] J. R. Koza, Genetic programming: on the programming of computers by
means of natural selection. MIT press, 1992, vol. 1.

[21] J. KENNEDY and R. EBERHART, “Particle swarm optimization,”
in IEEE International Conference on Neural Networks. IEEE, 1995,
pp. 1942–1948.

[22] S. Tsutsui, “A comparative study of sampling methods in node
histogram models with probabilistic model-building genetic algo-
rithms,” in International Conference on Systems, Man and Cybernetics.
IEEE, 2006, pp. 3132–3137.

[23] J. Ceberio, E. Irurozki, A. Mendiburu, and J. A. Lozano, “A
review on estimation of distribution algorithms in permutation-
based combinatorial optimization problems,” Progress in Artificial
Intelligence, pp. 103–117, 2012.

Technology and the Fifth IEEE Conference on Enterprise Computing.
IEEE, 2008, pp. 351–354.

[24] K. Pichanaharee and T. Senivongse, “Qos-based service provision
schemes and plan durability in service composition,” in IFIP
International Conference on Distributed Applications and Interoperable
Systems. Springer, 2008, pp. 58–71.

[25] S.-Y. Wang and L. Wang, “An estimation of distribution algorithm-
based memetic algorithm for the distributed assembly permuta-
tion flow-shop scheduling problem,” Transactions on Systems, Man,
and Cybernetics: Systems, pp. 139–149, 2016.

[26] J. Wang, K. Tang, J. A. Lozano, and X. Yao, “Estimation of the
distribution algorithm with a stochastic local search for uncertain
capacitated arc routing problems,” IEEE Trans. Evolutionary Com-
put., pp. 96–109, 2016.

[27] ——, “Estimation of the distribution algorithm with a stochastic
local search for uncertain capacitated arc routing problems,” IEEE
Transactions on Evolutionary Computation, pp. 96–109, 2016.

[28] S. Acid and L. M. de Campos, “Searching for bayesian network
structures in the space of restricted acyclic partially directed
graphs,” Journal of Artificial Intelligence Research, pp. 445–490, 2003.

[29] P. Lacomme, C. Prins, and W. Ramdane-Cherif, “Competitive
memetic algorithms for arc routing problems,” Annals of Operations
Research, pp. 159–185, 2004.

[30] E. Al-Masri and Q. H. Mahmoud, “Qos-based discovery and
ranking of web services,” in the 16th International Conference on
Computer Communications and Networks. IEEE, 2007, pp. 529–534.

[31] A. S. da Silva, Y. Mei, H. Ma, and M. Zhang, “Evolutionary
computation for automatic web service composition: an indirect
representation approach,” Journal of Heuristics, pp. 425–456, 2018.

[32] A. S. da Silva, H. Ma, and M. Zhang, “Graphevol: a graph
evolution technique for web service composition,” in International
Conference on Database and Expert Systems Applications. Springer,
2015, pp. 134–142.

[33] A. S. da Silva, Y. Mei, H. Ma, and M. Zhang, “Particle swarm
optimisation with sequence-like indirect representation for web
service composition,” in European Conference on Evolutionary Com-
putation in Combinatorial Optimization. Springer, 2016, pp. 202–218.

[34] X. Chen, Y.-S. Ong, M.-H. Lim, and K. C. Tan, “A multi-facet sur-
vey on memetic computation,” IEEE Transactions on Evolutionary
Computation, pp. 591–607, 2011.

[35] Y. Yu, H. Ma, and M. Zhang, “A hybrid gp-tabu approach to
qos-aware data intensive web service composition,” in Asia-Pacific
Conference on Simulated Evolution and Learning. Springer, 2014, pp.
106–118.

[36] C. Mao, J. Chen, and X. Yu, “An empirical study on meta-heuristic
search-based web service composition,” in International Conference
on e-Business Engineering. IEEE, 2012, pp. 117–122.

[37] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and Q. Z.
Sheng, “Quality driven web services composition,” in International
conference on World Wide Web. ACM, 2003, pp. 411–421.

[38] M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara, “Semantic
matching of web services capabilities,” in International Semantic
Web Conference. Springer, 2002, pp. 333–347.
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