
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 26, NO. 5, OCTOBER 2022 823

A Review of Population-Based Metaheuristics
for Large-Scale Black-Box Global

Optimization—Part II
Mohammad Nabi Omidvar , Senior Member, IEEE, Xiaodong Li , Fellow, IEEE, and Xin Yao , Fellow, IEEE

Abstract—This article is the second part of a two-part survey
series on large-scale global optimization. The first part covered
two major algorithmic approaches to large-scale optimization,
namely, decomposition methods and hybridization methods, such
as memetic algorithms and local search. In this part, we focus
on sampling and variation operators, approximation and surro-
gate modeling, initialization methods, and parallelization. We also
cover a range of problem areas in relation to large-scale global
optimization, such as multiobjective optimization, constraint han-
dling, overlapping components, the component imbalance issue
and benchmarks, and applications. The article also includes a
discussion on pitfalls and challenges of the current research and
identifies several potential areas of future research.

Index Terms—Black-box optimization, evolutionary
optimization, large-scale global optimization, metaheuristics.

I. INTRODUCTION

THE FIRST part of this two-part survey series covered
decomposition methods and hybrid methods as two most

widely investigated approaches in the literature. Fig. 1 depicts
a high-level structure of the main topics covered across both
parts. In this part, we review more approaches to large-
scale global optimization and also address several problem
areas, including multiobjective optimization and constraint

Manuscript received 26 March 2021; revised 17 September 2021; accepted
9 November 2021. Date of publication 25 November 2021; date of cur-
rent version 3 October 2022. This work was supported in part by the
Australian Research Council (ARC) Discovery under Grant DP180101170
and Grant DP190101271; in part by the Shenzhen Science and Technology
Program under Grant KQTD2016112514355531; in part by the Program
for Guangdong Introducing Innovative and Entrepreneurial Teams under
Grant 2017ZT07X386; and in part by the Program for University
Key Laboratory of Guangdong Province under Grant 2017KSYS008.
(Corresponding author: Mohammad Nabi Omidvar.)

Mohammad Nabi Omidvar is with the School of Computing and Leeds
University Business School, University of Leeds, Leeds LS2 9JT, U.K.
(e-mail: m.n.omidvar@leeds.ac.uk).

Xiaodong Li is with the School of Computing Technologies,
RMIT University, Melbourne, VIC 3000, Australia (e-mail:
xiaodong.li@rmit.edu.au).

Xin Yao is with the Guangdong Provincial Key Laboratory of
Brain-Inspired Intelligent Computation, Department of Computer Science
and Engineering, Southern University of Science and Technology,
Shenzhen 518055, China, and also with the School of Computer
Science, University of Birmingham, Birmingham B15 2TT, U.K. (e-mail:
xiny@sustech.edu.cn).

This article has supplementary material provided by the
authors and color versions of one or more figures available at
https://doi.org/10.1109/TEVC.2021.3130835.

Digital Object Identifier 10.1109/TEVC.2021.3130835

Fig. 1. Outline of the topics covered in the two parts of this survey series
on large-scale global optimization.

handling. Section II covers the sampling mechanism and vari-
ation operators of two well-known algorithms: 1) particle
swarm algorithm [1] and 2) differential evolution [2], and how
they are modified to solve large-scale problems. Section III
covers the algorithms that rely on some form of approximation
to cope with the challenges of high dimensionality. Section IV
covers population initialization methods and their significance
in the large-scale global optimization. Section V addresses the
role of parallel algorithms to address the issue of scalability.

In addition to the algorithmic approaches to large-scale
optimization, the article also addresses a range of problem
areas pertaining to large-scale global optimization. These
include: 1) scalability of multiobjective optimization algo-
rithms with respect to their decision space; 2) challenges of
constraint handling in the context of large-scale optimization;
3) challenges in dealing with problems with overlapping com-
ponents and the issue of exploitable structure; 4) resource
allocation and the problem of imbalanced contribution; and
5) benchmarking and application areas.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-1944-4624
https://orcid.org/0000-0003-0346-1526
https://orcid.org/0000-0001-8837-4442

824 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 26, NO. 5, OCTOBER 2022

Fig. 2. DE and PSO are two widely used metaheuristic algorithms used
in large-scale global optimization. This figure shows major aspects of these
algorithms studied for large-scale optimization problems.

The article also features a section on pitfalls and challenges
of the field and potential areas of future research.

II. SAMPLING AND VARIATION OPERATORS

In part I of this survey, we have seen that many
optimizers, such as estimation of distribution algorithms
(EDAs), differential evolution (DE), and particle swarm
optimization (PSO), can be used as component optimizers in
decomposition-based frameworks (part I Section II-B), and as
explorative agents in memetic algorithms (part I Section III).
In this section, we focus on algorithm-specific aspects, such
as parameter adaptation, modification of variation operators or
design of new ones, diversity maintenance mechanisms, etc. In
what follows, we cover DE and PSO in more detail and other
metaheuristics are covered in Section S-II of the supplemen-
tary material. EDAs were covered in Part I Section II-A due
to their focus on modeling variable interactions. Fig. 2 shows
major aspects of PSO and DE, which have been studied under
high-dimensional settings.

A. Differential Evolution

Due to its versatility, ease of implementation, and simplicity,
DE [2] has become a widely used optimization algorithm for
global optimization [3]. Consequently, many variants of DE
have been developed for large-scale global optimization [4]
from which the most popular ones are briefly reviewed in
this section. Most of the DE variants proposed for large-
scale optimization are centered around maintaining population
diversity, which is done by various means, such as parameter
adaptation, modification of DE mutation strategy, and diversity
maintenance mechanisms.

1) Mutation Strategy: Mutation strategy is DE’s central
variation operator and has been subject to extensive investiga-
tion in [3]. Several attempts have been made to improve DE
for large-scale optimization by adapting or hybridizing several
mutation strategies or by proposing new ones [5].

a) Adaptation of mutation strategy: Different mutation
strategies exhibit various degrees of explorative/exploitative

power each being suitable for certain problem types [5]. In
the context of LSGO, several attempts have been made to use
several mutation strategies to improve the convergence prop-
erties of DE in high-dimensional spaces. These methods are
either based on adaptively applying a set of strategies to a
single population or using a multipopulation approach where
each is evolved using its own mutation strategy. Ali et al. [6]
proposed a multipopulation DE, where each subpopulation has
its own mutation strategy. Banitalebi et al. [7] proposed a
binary DE, which adaptively selects the mutation strategy for
generating trial vectors and also adapts the scaling factor and
crossover rate using a chaotic process (also see Section II-A2).
Kushida et al. [8] proposed a rank-based mechanism for select-
ing the mutation strategies. Wang et al. [9] proposed to adap-
tively switch between DE/rand/1 and DE/current_to_best/1
mutation strategies. There are also approaches that switch
between DE/rand/1/bin and a newly proposed strategy based
on a uniform distribution [10], [11].

b) Vector selection: Canonical DE uses random individ-
uals in the mutation process to generate a scaled difference
vector to be applied to a base vector and generate a new solu-
tion. The choice of the vectors participating in the mutation
procedure plays a crucial role in DE’s convergence behav-
ior [5]. Ge et al. [12] analyzed different DE strategies and
observed that those using the best individual are exploitative
while those using random individuals are more explorative.
They argue that instead of randomly selecting the participat-
ing vectors, it is better to systematically choose a vector close
to the best solution to favor exploitation and far from the
mutant to favor exploration. Inspired by PSO personal and
global-best particles, Wang et al. [13] proposed to generate
trial vectors by including the global-best and personal-best
individuals in the mutation strategy. The authors claim that
this process is akin to neighborhood search and improves con-
vergence. García-Martínez et al. [14] associated four basic
roles—1) placing; 2) leading; 3) correcting; and 4) receiving—
to each vector (solution), and the vector selection for mutation
is performed based on these four basic roles. The vector selec-
tion strategy proposed by Ali et al. [6] is a function of the rank
of a solution in the population, favoring higher quality solu-
tions to participate in the mutation. Zhang and Sanderson [15]
proposed a generalization of the classic DE/current-to-best
mutation operator, DE/current-to-pbest, which uses the top p%
best solutions to balance the greediness level of the algorithm
and to maintain better diversity in the population. Some other
studies also proposed several mutation strategies in which the
solution quality is taken into account in the vector selection
process [10], [11]. Yang et al. [16] proposed to use multiple
such difference vectors that are scaled differently to generate
trial vectors.

The choice of the base vector to which the mutation
is applied is also important in DE’s convergence behavior.
Ali et al. [6] proposed a new mutation strategy by selecting
the base individual to be a convex combination of randomly
chosen individuals from the population. Wang et al. [17]
proposed an enhanced opposition-based DE in which the can-
didate solutions are translated into a so-called opposite space
using the definition of opposite numbers [18]. Wang et al. [17]

OMIDVAR et al.: REVIEW OF POPULATION-BASED METAHEURISTICS FOR LARGE-SCALE BLACK-BOX GLOBAL OPTIMIZATION—II 825

argued that by evaluation of the candidate solutions and their
translated counterparts in the opposite space, the probabil-
ity of finding better solutions increases. This hypothesis is
backed up by a set of empirical results on a set of 19
high-dimensional benchmark functions [19]. Hiba et al. [20]
proposed a center-based mutation strategy that uses the center
of three randomly chosen solutions as the base vector.

2) Parameter Adaptation: Population size (NP), crossover
rate (CR), and the scaling factor (F) are DE’s major parame-
ters affecting its convergence properties on different problem
types. To eliminate the need for practitioners to set these hard-
to-tweak parameters, several attempts have been made to adap-
tively set these parameters in the course of optimization [3].
In this section, we review some of these adaptation methods
pertaining to large-scale global optimization.

The scaling factor and crossover rate are the two most stud-
ied parameters. Most of these attempts use some form of
probability distribution from which the parameters are sam-
pled. Brest et al. [21] dynamically changed F and CR using
a uniform distribution. Wang et al. [22] used a similar adap-
tation mechanism except that they restricted the range of CR
values. Brest et al. [23] introduced a sign changing mech-
anism to F in addition to sampling of CR and F values
from a uniform distribution. To improve the current best, it
uses smaller F values in the second half of the optimization
process. Weber et al. [24] used a multipopulation approach
each having its own scaling factor, which is regenerated in a
probabilistic way. Zamuda et al. [25] proposed to adapt CR
and F using a log-normal distribution. Improving upon self-
adaptive DE (SaDE) [26], Yang et al. [27] used a Gaussian
distribution to generate F and CR for each individual and
update the mean of the Gaussian based on the parameter val-
ues succeeding in generating surviving offsprings. Zhang and
Sanderson [15] proposed JADE, which randomly generates F
and CR at every generation using Cauchy and Gaussian dis-
tributions, respectively, whose parameters are adapted in the
course of optimization. Yang et al. [28] attempted to gener-
alize the attempts by its predecessors, such as JADE, SaDE,
and SaNSDE into a unified mechanism.

There are also alternative approaches that are not based on
sampling from probability distributions. For example, some
studies propose to change the crossover rate and the scal-
ing factor using a chaotic process [7], [9]. Takahama and
Sakai [29] proposed a DE variant in which the scaling factor is
adapted according to the modality feature of the search space.
Kushida et al. [8] improved upon the works of Takahama
and Sakai [29] by adding a rank-based mechanism for setting
the scaling factor and crossover rate, as well as the mutation
strategies.

The attempts for adaptation of population size in large-
scale optimization are ad hoc and limited. Brest et al. [23]
proposed to gradually reduce the population size in the course
of optimization. Wang et al. [30] adaptively changed the pop-
ulation size by adding or removing solutions based on their
performance. Tanabe and Fukunaga [31] linearly decreased the
population size.

3) Diversity Maintenance: Loss of population diversity is
central to DE’s deficiency in high-dimensional spaces. This is
typically avoided in lower dimensions by means of increasing

the population size [32]. However, in high-dimensional spaces,
the large population size hinders convergence [33]. The adap-
tation of the mutation scaling factor, hybridizing an array of
mutation strategies, or designing new ones are all attempts to
improve the population diversity, which were addressed in the
previous sections. Other approaches to diversification are mul-
tipopulation approaches, either in the form of several islands
searching the original search space or by means of partitioning
and coevolution, or maintaining an archive of solutions (Fig. 2).

Weber et al. [24] proposed a multipopulation strategy that
simultaneously searches different parts of the search space.
This algorithm randomly rearranges the individuals across the
subpopulations with the aim of maintaining diversity among
the solutions. Ge et al. [34] also proposed a multipopulation
DE, which maintains diversity through migration of similar
or diverse individuals. This mechanism controls the balance
between exploration and exploitation. Ge et al. [35] used a
multipopulation approach with automatic merge and split oper-
ations to improve the population diversity. Ali et al. [6] used a
multipopulation DE with each population having its own muta-
tion strategy to maintain population diversity. The information
exchange between populations helps with balancing explo-
ration and exploitation. Parsopoulos [36] used cooperative
coevolution to partition the search space into smaller regions
and optimized them with a micro DE. Micro DE is prone
to losing diversity and getting trapped in the local optima;
however, CC helps DE to focus the search with its micro pop-
ulation on smaller regions. Ge et al. [12] also used CC with
cross-cluster mutation to promote exploration.

Maintaining an archive of solutions in the course of
optimization is another means of maintaining diversity.
Takahama and Sakai [29] proposed a DE variant with an
archive of old solutions to help with diversification in the
mating process, especially when the population size is small.
Yang et al. [16] also proposed a DE variant, which keeps
an archive of failed trial vectors with the hope of preserving
the good genetic material. Zhang and Sanderson [15] proposed
JADE, which maintains an external archive of inferior solutions
to estimate the possible improvement directions. The external
archive of JADE proved to be beneficial, especially on relatively
high-dimensional problems with up to 100 dimensions.

B. Particle Swarm Optimization

PSO [1], [37] is known to be susceptible to prema-
ture convergence, which is magnified on high-dimensional
problems [38], [39]. Most approaches to handle large-scale
optimization problems are centered around increasing diver-
sity to improve exploration. In some cases, however, extreme
exploration and exploitation can co-exist [40]. The common
remedies to PSO’s premature convergence in the large-scale
global optimization literature are population reinitialization,
complementary sampling mechanisms, population size adap-
tation, space partitioning (by means of cooperative coevolution
or otherwise), improving PSO’s update rule and particle
learning mechanisms, and mechanism to deal with variable
interaction and nonseparable problems.

1) PSO Update Rule and Particle Learning: Excessive
reliance on the global-best particle can result in premature

826 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 26, NO. 5, OCTOBER 2022

convergence. Many attempts to avoid premature convergence
revolve around reducing the influence of global best. Cheng and
Jin [41] proposed a PSO variant, named CSO, which does not
use personal or global-best solutions to update the position of
the particles. Instead, random pairs are chosen to compete and
the winner returns directly to the swarm, while the loser is
updated by learning from the winner. CSO maintains a better
diversity than PSO and is more explorative, making it bet-
ter suited for large-scale global optimization. Tian et al. [42]
proposed a variant of CSO based on a two-stage update rule for
the position of particles and applied it to solving multiobjective
problems. Naderi et al. [43] proposed a fuzzy adaptive system
to adjust the inertia weight. This eliminates the use of global
best in the velocity update rule to avoid premature convergence.
Tang et al. [44] used a new update rule to exploit four best posi-
tions via Gaussian sampling to reduce the influence of global
best and promote exploration. Pluhacek et al. [45] changed
the velocity update rule such that with some probability, the
velocity is either zero or is updated by taking either a random
particle, personal best, or the global best into account.

Controlling information exchange among particles by
means of population topologies or multipopulation struc-
tures are other ways of enhancing the swarm diversity [46].
Fan et al. [47] proposed a PSO variant, which builds a dynamic
neighborhood topology for PSO by performing clustering on
the population. The neighbors of the particles are chosen from
the same cluster. It also chooses a distant neighbor for particles
through a random selection. Zhang et al. [48] improved CSO
by applying Cauchy and Gaussian updates on the winner parti-
cles and used a ring topology to enhance the swarm diversity.
Distributed multipopulation schemes [49]–[51] also promote
controlled information exchange among particles, which can
improve the population diversity.

In addition to the above, several other modifications to
PSO’s update rule have been suggested in the context of large-
scale global optimization. Arasomwan and Adewumi [52]
found that inertia weight, acceleration coefficients, and ran-
dom factors were not of significance in velocity update for
obtaining global solutions. They proposed to adaptively update
particles’ velocity based on the Euclidean distance between
particles and the global best. It also introduces the chaotic
behavior into the particle position update rule. The notion
of social learning has been proposed to reduce the adverse
effect of isolated asocial learning [53], [54]. Yang et al. [55]
proposed to group particles into several levels based on their
fitness. Two predominant particles from two different higher
levels are chosen to guide the learning of particles. This has
shown to improve diversity. The convergence speed controller
was proposed as an independent operator to respond to pre-
mature or slow convergence [56]. Cheng et al. [57] proposed
a mutation operator based on the alpha-stable distribution to
enhance the swarm diversity and avoid premature convergence.
Li et al. [58] changed the particles’ velocity update rule to
decouple exploration and exploitation. Xue et al. [59] used
multiple velocity and position update rules that are chosen
probabilistically, whose parameters are adapted according to
the effectiveness of each strategy.

2) Reinitialization, Sampling, and Population Size Control:
Hsieh et al. [60] proposed a PSO variant with dynamic swarm

size, which increases or decreases the swarm size based on the
status of particles. In general, if the global best of the swarm
is not updated for several consecutive iterations, new parti-
cles are generated by applying a crossover-like operator on
the best solutions that were obtained in the past. Conversely,
if the information content of the swarm is rich enough to
allow frequent and robust updating of the global best, some
of the poor-quality solutions might be removed from the
swarm. There are some other mechanisms in place to avoid the
growth of the swarm size beyond bounds. De Oca et al. [61]
proposed an improved version of incremental particle swarm-
guided local search [62], which incrementally increases the
population size to solve large-scale continuous optimization
problems.

Garcí-Nieto and Alba [63] proposed restart PSO with
velocity modulation. Velocity modulation is the process by
which the particles are guided within a region of interest.
Additionally, a restart mechanism is devised to avoid pre-
mature convergence of the algorithm. Cheng et al. [64]
proposed partial reinitialization to improve exploration. They
partition the search space and count the number of parti-
cles in each partition and abandon the low-activity areas. It
also subdivides and reinitializes particles in higher activity
regions. This mechanism has shown to improve exploita-
tion. Zhou et al. [65] introduced opposition-based sampling
into CSO.

3) Nonseparability and Coordinate Rotation: The update
equations of PSO are dimensionwise, which makes it suitable
for separable functions. Hendtlass [66] used dynamic momen-
tum values to enable PSO to better handle nonseparability,
making it suitable for functions with interacting dimensions.
Korenaga et al. [67] introduced the coordinate rotation into the
velocity update rule, which makes it possible to consider the
information of other coordinates when calculating the veloc-
ity of a component. This can improve population diversity
and has shown to be beneficial for large-scale optimization.
Chu et al. [68] used PCA to parts of the space not spanned
by the current population resulting in improved exploration.
In a similar way, Chu et al. [69] also used PCA to find lost
dimensions and promote search in the less explored areas due
to lost dimensions.

4) Space Partitioning: Zhang et al. [70] partitioned the
space by grouping the dimensions into segments. Then,
some newly designed operators are assigned to each seg-
ment to update those segments. These operators are designed
to improve population diversity and avoid premature conver-
gence. Zhao et al. [71] proposed to form subswarms which
work independently during the search. Then, the subswarms
are randomly changed to enlarge their neighborhood and pro-
mote information exchange and population diversity. This
improves exploration but may deteriorate exploitation, which
is compensated for by means of local search. Cheng et al. [64]
proposed space partitioning with the aim of identifying and
abandoning low-activity areas and focused the search effort in
high-activity areas.

Balancing exploration and exploitation and maintaining
population diversity are generally central to the design of
effective optimizers for large-scale optimization. In this sec-
tion, we have seen that this plays a crucial role in both DE

OMIDVAR et al.: REVIEW OF POPULATION-BASED METAHEURISTICS FOR LARGE-SCALE BLACK-BOX GLOBAL OPTIMIZATION—II 827

Fig. 3. Problem approximation/simplification methods used for large-scale
global optimization.

and PSO. Novel means of using population topologies [46],
sampling methods, parameter adaptation, and space parti-
tioning are needed to further improve these algorithms for
large-scale optimization.

III. APPROXIMATION AND SURROGATE MODELING

Solving an approximation of a problem can potentially be
more viable than obtaining a solution for its original high-
fidelity model. In other words, the aim of approximation is to
simplify. In optimization, this simplification is either achieved
by means of applying some transformation to the objective
function (often to reduce the dimensions), or by building a
model of the objective function or its constraints [72], i.e.,
a metamodel to act as a surrogate to the original complex
problem (Fig. 3). Metamodels or surrogates are used to reduce
the computational overhead of optimizing expensive objective
functions. In recent years, one approach to large-scale global
optimization is to treat it as an expensive optimization problem
and use metamodels to solve it [73].

Metamodels are built and refined based on sampling of the
objective function. In high-dimensional spaces, the accuracy
of the model drops significantly due to the limited sample size
upon which the model is built. To alleviate this problem, sev-
eral studies use some form of problem decomposition to break
the problem into a set of lower dimensional subproblems, each
of which is approximated using a metamodeling technique,
such as radial basis functions or the Gaussian processes. Due
to problem decomposition, it is clear that the problem struc-
ture and variable interaction plays an important role in building
an ensemble of surrogates. In some cases, the metamodeling
itself is used to identify separable and nonseparable compo-
nents of a problem [74]. For example, [75] used cut-HDMR
to detect the components [75]. Then, a multisurrogate strat-
egy is used to model the nonseparable components. In other
cases, variable interaction analysis algorithms, such as differ-
ential grouping [76] is used to decompose the problem and the
subsequent subproblems are then approximated using meta-
modeling techniques [77]. Werth et al. [78] also proposed a
sliding window approach over the decision vectors to reduce
the dimensionality of the problem. They use LINC-R to

discover the variable interaction structure of a subset of the
decision variables falling within the sliding window. Then,
a surrogate-assisted algorithm is used to optimize over those
variables.

Metamodeling and problem decomposition are mutually
benefiting approaches to solve large-scale optimization prob-
lems. Problem decomposition makes it possible to build more
accurate metamodels, given the limited samples, while meta-
models can help with the issue of evaluating partial solutions
in a divide-and-conquer paradigm. In cooperative coevolution
and other divide-and-conquer paradigms, partial solutions need
to be evaluated in the context of other partial solutions to
form a complete solution. The issue of estimating the fit-
ness of partial solutions was studied by Wang and Gao [79]
using fixed auxiliary functions with no dynamic metamodel-
ing mechanism. Several studies use metamodeling as a means
of reducing the overhead of matching partial solutions and
their re-evaluation for cooperative coevolution [77], [80], [81]
and other divide-and-conquer paradigms, such as random
projections [73].

In addition to modeling of subproblems, metamodels have
also been used to balance the global search (exploration) and
local search (exploitation) efforts. Metamodels have been used
in the competitive swarm optimizer [41] to approximate the
fitness of neighboring particles of a particle with a known
fitness [82]. Sun et al. [83] proposed to balance the explo-
ration and exploitation efforts by means of building local and
global surrogates. For the exploration part, they use social
learning PSO [53], which has good global optimization prop-
erties in conjunction with radial basis functions capable of
capturing the global profile of the objective function. For
exploitation, they use a variant of the fitness approximation
method proposed by Sun et al. [82] in conjunction with PSO
for local search.

Beside building an explicit model of the objective func-
tion, as is the case with metamodeling, approximation can
be built into problem representation [84] or be achieved
by means of dimensionality reduction through transfor-
mation [85]–[91] or finding intrinsic dimensions of a
problem [92]. Wang et al. [93] combined the benefit of meta-
models and dimensionality reduction by using autoencoders to
find lower dimensional features of graph embedding problems
and use them to construct a surrogate model to approx-
imate the robustness value of large-scale graph networks.
Principal component analysis has also been used to iden-
tify a lower dimensional representation of the probabilistic
Gaussian models of EDAs [88], and the convergence vari-
ables on multiobjective problems [89]. The variable reduction
strategy is another means of representing the decision vari-
ables of an objective function or its constraints based on a
smaller subset of core decision variables [90], [91]. The ran-
dom projection theory, which was covered in part I of the
survey as an implicit way of exploiting the problem struc-
ture, can be used for dimensionality reduction in the context
of EDAs. The weighted optimization framework, inspired
from adaptive weighting by Yang et al. [94], is another way
of transforming the problem into a lower dimensional one
(see Section VI-C).

828 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 26, NO. 5, OCTOBER 2022

IV. INITIALIZATION METHODS

The random initialization of a set of candidate solutions is at
the heart of the existing metaheuristic algorithms. The aim of
initialization methods is to make the best use of random num-
ber generators or other sampling techniques to cover the vast
search space more uniformly. This section covers the studies
on random initialization for large-scale global optimization.

A wide range of population initialization methods have
been employed by evolutionary algorithms [95], [96]. There
are various conclusions, conflicting at times, on the effect of
initialization methods on large-scale optimization [97]–[99].
Kazimipour et al. [97] studied the effect of advanced ini-
tialization methods on large-scale optimization. The study
suggested that EAs are more sensitive to initialization in high-
dimensional spaces than in lower dimensional ones, regardless
of the population size. They also reported that the pseudoran-
dom number generator is inferior to advanced initialization
methods in high dimensions. A follow-up study showed that
the effect of advanced initialization methods becomes marginal
when the parameters of the optimizer are properly set [98]. A
systematic study of advanced initialization methods on a DE
variant, DE/rand/1/bin [3], showed that when the parameters
of the algorithm are set close to their optimal, the statisti-
cal difference between random number generators and other
initialization methods becomes insignificant.

Segredo et al. [100] showed that although overall distinction
between random number generators and advanced initializa-
tion methods fades away in high-dimensional spaces, there is
still a significant difference between them when best case and
worst case performances are taken into account. They there-
fore concluded that the choice of the initialization method is
of crucial importance, especially when a limited number of
runs are allowed.

Kazimipour et al. [99] used centered L2 discrepancy to mea-
sure population uniformity as a function of population size and
the dimensionality of the space. They reported that the loss of
population uniformity (hence diversity) due to curse of dimen-
sionality is the dominant factor in the performance degradation
of optimization algorithms, regardless of the choice of the ini-
tialization method. Putting differently, it is the geometric pecu-
liarities of high-dimensional spaces that affect all initialization
methods. For example, it is well known that the contrast in the
distance between randomly chosen points diminishes as the
dimensionality of the space increases [101], [102], which has
serious implications on various initialization/sampling tech-
niques. Consequently, Kazimipour et al. [99] recommended
the use of advanced initialization methods only when the
population size and the problem dimensionality are low.

V. PARALLELIZATION

In this section, we review the algorithms that rely on CPU
and GPU parallelization to improve solving large-scale global
optimization problems.

A. Historical Context

Cantú-Paz and Goldberg [103] studied the scalability of par-
allel single- and multipopulation GAs. Their goal was to find

the optimal number of processors that minimizes the runtime.
Their analysis showed that the number of processors that min-
imizes the execution time is proportional to the square root
of the population size and the objective function evaluation
time. Munetomo et al. [104] also investigated the use of par-
allel processing for linkage learning and proposed a parallel
implementation of the LINC linkage learning algorithm called
pLINC (see part I of the survey). They also proposed a two-
level GA with a series of intra-GAs operating on the linkage
groups identified by pLINC, and an inter-GA that operates at
a higher level and treats the linkage groups as a whole.

B. Large-Scale Cases

In the context of large-scale optimization, two types of
parallelization are common. The first type is specific to a
particular EA, and the second type is a generic framework
applicable to a wide range of EAs most of which are based
on a divide-and-conquer paradigm by means of problem
decomposition.

In the algorithm-specific department, Mendiburu et al. [105]
proposed a parallel master–slave implementation of several
binary and continuous EDAs based on a Bayesian network
model using message passing interface (MPI) and POSIX
threads. They parallelized the learning phase or the model-
building process, which often takes the maximum proportion
of the execution time and tested their algorithm on 500-D
binary problems and 1500-D continuous problems. A draw-
back of this study is the use of very simple benchmark
problems, such as OneMax for the binary case and the sphere
function, which is fully separable, for the continuous case.
Wang et al. [22] proposed a parallelized version of DE based
on GPU parallelization and tackled continuous problems of up
to 1000 dimensions. They also observed that with a fixed pop-
ulation size the speed-up rate decreases as the dimensionality
of the problem increases. Iturriaga and Nesmachnow [106]
proposed a parallel version of compact GA for CPU/GPU
architectures and tested it on OneMax and noisy OneMax
with up to one billion variables. They also proposed an
asynchronous model on GPU, which is only suitable for large-
scale separable problems. More recently, Duan et al. [107]
proposed a spark-based software framework for paralleliza-
tion of various PSO implementations. Their proposed parallel
PSO showed a superlinear speedup and was tested on contin-
uous benchmark functions with up to 105 dimensions as well
as on expensive functions. Cao et al. [108] proposed a parallel
quantum-enhanced DE by parallelizing the fitness evaluation
of individuals.

Lastra et al. [109] proposed a GPU-based MA-SW-
Chains [110], a memetic algorithm for large-scale global
optimization (see part I of the survey), by parallelizing all
major components of the algorithm, such as fitness function
evaluation, crossover, local search, random number gener-
ation, and population sorting. In another study, Cano and
García-Martínez [111] proposed an improved GPU-based
model for MA-SW-Chain and tested it on a scaled version
of the CEC’2013 large-scale benchmarking suite on functions
with up to 100 million decision variables. Cano et al. [112]

OMIDVAR et al.: REVIEW OF POPULATION-BASED METAHEURISTICS FOR LARGE-SCALE BLACK-BOX GLOBAL OPTIMIZATION—II 829

proposed a parallel MA-SW-Chains by adapting it to the
MapReduce framework to tackle problems with up to 10 mil-
lion decision variables. The local search component of the
algorithm is done using a divide-and-conquer strategy by
performing local search for a subset of the decision variables.

Multipopulation algorithms are common in parallelizing
many metaheuristics for large-scale optimization. Ge et al. [35]
proposed a multipopulation topology-based island model
with a master–slave paradigm to solve large-scale prob-
lems. Wang et al. [50] proposed a distributed PSO based
on randomly formed equally size subpopulations, which are
co-evolved using a master–slave paradigm. Yang et al. [49]
proposed a distributed swarm optimizer-based multipopulation
master–slave model where the elites of each subpopulation are
used in the velocity update rule. Su et al. [113] proposed a par-
allel multiobjective algorithm for community detection. They
first identify the key nodes in the network graph and the com-
munities associated with the key nodes are then detected in
parallel using a multipopulation model.

Problem decomposition into lower dimensional subprob-
lems is central in several recent parallelization frameworks.
Among them, Cao et al. [114] proposed a distributed parallel
cooperative coevolutionary algorithm for solving large-scale
multiobjective problems. They used a variant of differential
grouping [115] to decompose the decision space into smaller
components, which are optimized in parallel using a two-level
parallelization structure based on the MPI. The experimental
results are based on 1000-D DTLZ and WFG test func-
tions. De Falco et al. [80] proposed a decomposition-based
parallel model for solving expensive large-scale continuous
optimization problems. They use the random grouping decom-
position method and build a separate surrogate (metamodel)
for each component of the problem. The components are then
solved in parallel using cooperative coevolution. The proposed
algorithm was tested on problems with up to 1000 dimensions.
Yang et al. [116] argued that decomposition-based methods,
despite their modular nature, cannot be readily parallelized
due to the defects in how partial solutions are evaluated. They
show that the objective function used to assign a fitness to a
partial solution is not consistent with the ideal fitness assign-
ment. They address the problem of fitness assignment to partial
solutions for divide-and-conquer methods by appealing to a
parallel framework called naturally parallelizable divide and
conquer.

Decomposition-based and multipopulation parallelization
methods can also be combined to solve large-scale problems.
Hybrid two-way parallelism has also been used for large-scale
optimization. These often combine: 1) parallelism by means
of problems decomposition, i.e., the problem is decomposed
into several lower dimensional subproblems and 2) parallelism
by means of population distributions, i.e., a distributed pool
model [117]. Jia et al. [118] proposed such a two-way algo-
rithm that controls the resource allocation by adapting the
subpopulation sizes as well as the number of iterations a partic-
ular component (subproblem) is optimized. Another two-way
parallelism decomposes the problem into several components
based on the variable interaction analysis. Each component
is subsequently divided into subpopulations each receiving

a processor for optimization. A resource allocator then pri-
oritizes processor allocation as a function of components’
contribution toward the overall improvement of the objective
function.

VI. RELATED RESEARCH TOPICS

In the previous sections, we reviewed common approaches
to large-scale global optimization. In this section, however,
we take a problem oriented perspective and discuss several
problem areas arising in the context of large-scale global
optimization, such as the problem of overlapping components
(Section VI-A), resource allocation and the imbalance problem
(Section VI-B), decision space scalability of multiobjective
optimization (Section VI-C), and the scalability of constrained
optimization problems (Section VI-D). The section concludes
with a discussion on benchmarking large-scale optimization
algorithms and a brief review of their real-world applications
(Section VI-E).

A. Overlapping Problems

The importance of the problem structure and how it can
be exploited in various ways were discussed in part I of the
survey. The decomposition approaches covered in part I of
the series are mostly suited to partially separable problems,
i.e., those with distinct independent lower dimensional com-
ponents. However, there are problems with the sparse variable
interaction structure, which are not partially decomposable.
These problems, which we refer to as overlapping problems,
occur in many application areas, such as multidisciplinary
design optimization [119] and concurrent engineering [120].
Multiobjective optimization problems can also be seen as over-
lapping problems due to shared decision variables among
the objective functions [121]. This is particularly the case
when a scalarization technique is used to convert them to a
series of single objective optimization problems. Constrained
optimization problems may have overlapping interaction struc-
tures [122] or may become overlapping depending on the
constraint-handling techniques used to handle them. The vari-
able interaction structure of the overlapping problems can
be discovered using the methods outlined in part I of the
survey. However, exploiting the structure is a more chal-
lenging task as compared to partially separable problems.
Despite the importance of overlapping problems, very few
works have been dedicated to large-scale overlapping prob-
lems [78], [123], [124]. This section reviews some of such
techniques that can help with the scalability of algorithms for
large-scale global optimization.

Some approaches rely on breaking selected interactions with
the aim of converting the overlapping problems into partially
separable ones [125]–[127] or by means of special crossover
operators that take the overlapping nature of the problem
into account [128], [129]. Munetomo and Goldberg [125]
used monotonicity checking to identify the variable interaction
structure of the objective function and proposed a metric to
measure the linkage tightness with the aim of breaking weak
interactions. Yu et al. [130] used an information-theoretic

830 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 26, NO. 5, OCTOBER 2022

interaction detection mechanism to detect the problem struc-
ture and used an entropy-based measure of a component
or building block to identify and break weak interactions.
Yu et al. [131] assumed that the interaction structure is given
and designed a crossover operator that partitions the interaction
graph into two subgraphs such that the disruption of over-
lapping components is minimized. Sun et al. [126] proposed
a variation of recursive differential grouping [132], RDG3,
which limits the dimensionality of components forcing some
interactions to be broken as a consequence. Li et al. [127]
proposed a decomposition method based on spectral clus-
tering, which takes the strength of interactions into account
and breaks some weak interactions such that intergroup inter-
actions are minimized and the intragroup interactions are
maximized.

Thierens [128] proposed to use hierarchical clustering to
represent the interactions using a linkage tree, which is
subsequently used to perform recombination. Bosman and
Thierens [129] proposed an improved version of linkage tree
recombination to eliminate superfluous hierarchical linkage
relations. Experimental results have shown that this type of
recombination performs well on overlapping problems.

In the context of cooperative coevolution, overlapping
components or groups with shared decision variables is a com-
mon way of solving overlapping problems. Sun et al. [123]
used monotonicity detection to identify the structure of an
n-dimensional problem and form n groups, one for each deci-
sion variable containing all other variables it interacts with.
These n groups, which are not necessarily mutually exclusive,
are optimized in a round-robin fashion within a CC framework.
Due to the nonexclusive nature of the groups, this algorithm
takes, to some extent, the overlapping nature of the problem into
account. Jia et al. [133] used the variable interaction analysis
to identify the underlying components of the objective function
and their shared variables. They then use a contribution-based
mechanism to promote components with a higher contribution
toward improving the objective function and assign the shared
variables the components with large contributions.

Werth et al. [78] used a sliding window mechanism and
optimized the variables inside the window to reduce the dimen-
sion of the problem. The problem structure is taken into
account by iteratively constructing the interaction matrix of the
problem using LINC-R; however, instead of finding the entire
matrix, only the interactions within a given sliding window are
considered at each iteration. To deal with overlap, the Cuthill–
McKee algorithm is used to reduce the bandwidth of the
matrix, which places interacting variables close to each other.
Song et al. [124] proposed overlapped cooperative coevolu-
tion that uses a mechanism called delta disturbance to find the
most influential variables and distribute them among the exist-
ing components. Although this algorithm was not intended for
overlapping problems, the replication of influential variables
within all components can have a positive effect on solving
overlapping problems. However, this has not been verified
empirically on overlapping problems. Song et al. [134] used a
similar mechanism and identified important variables that can
participate in multiple components to solve large-scale virtual
network embedding problems.

Factored EA [135] is another framework with the capac-
ity to decompose a problem into a set of lower dimensional
subproblems. It can mimic CC as its special case and has the
capacity to define overlapping components suitable for solv-
ing overlapping problems. FEA can be an effective method
for solving the overlapping problem if the problem structure
is known a priori. The performance of FEA remains to be
checked on large-scale overlapping problems such as those
proposed in the CEC’2013 large-scale benchmark suite.

The Bayesian optimization algorithm (BOA), uses Bayesian
networks to represent the problem structure, which is capa-
ble of capturing overlapping components [136]. Although
modeling the Bayesian network is computationally expensive,
its flexibility makes it a good choice for solving overlapping
problems. Empirical evidence suggests that BOA performs
better than tightness detection [137]. Clustered EDAs are
also among the implicit methods that improve the identifi-
cation of problem structures as compared to canonical EDAs.
Emmendorfer and Pozo [138] proposed a cluster-based EDA
that uses the notion of concept-guided combination to bet-
ter capture and exploit problem structure. This technique was
shown to outperform models based on Bayesian networks.

B. Resource Allocation and the Imbalance Problem

The efficient use of computational resources is of significant
importance in large-scale global optimization. The contribution
of a decision variable or a group of decision variables, belong-
ing to an underlying subfunction within the objective function,
can have a varying degree of influence on the function out-
put. This characteristic, which is often called the imbalance
problem, can have a detrimental effect on the optimization
performance if not handled properly. For example, Chuang
and Chen [139] showed that the model-building process of
EDAs is affected by the imbalance problem. They reported
that the selected individuals based on which the probabilis-
tic model of EDAs is updated lack the necessary information
about the linkage structure of some parts of the problem.
Omidvar et al. [140] also showed that the imbalance problem
renders the round-robin optimization policy of cooperative
coevolution suboptimal.

Although the imbalance issue has implications in many
areas, such as multiobjective optimization [141], [142], con-
straint handling [122], and dynamic optimization [143], it has
mostly been studied in the context of optimal component selec-
tion policy of cooperative coevolution. Contribution-based
cooperative coevolution (CBCC) [140] is the first algorithm
of this kind. To deal with the imbalance problem, CBCC
and other contribution-aware algorithms first need to esti-
mate the contribution of components, and second devise an
exploration/exploitation policy to update the contribution of
components and to optimize the influential components longer.
The algorithms which will be reviewed in the rest of this
section differ in the way they handle these two aspects.

1) Problem Decomposition and Quantifying Contributions:
Problem decomposition and quantification of contributions are
important prerequisites of an effective resource allocation pol-
icy. Under the black-box assumption, all we can observe is

OMIDVAR et al.: REVIEW OF POPULATION-BASED METAHEURISTICS FOR LARGE-SCALE BLACK-BOX GLOBAL OPTIMIZATION—II 831

TABLE I
LIST OF CONTRIBUTION-AWARE ALGORITHMS WITH A SHORT DESCRIPTION OF THEIR METHOD OF ESTIMATING THE CONTRIBUTION OF

COMPONENTS AS WELL AS THEIR RESOURCE ALLOCATION POLICY

the objective value and how it changes over time. In the liter-
ature, the improvement on optimizing a subset of the decision
variables (a component) can have on the objective function
value is taken as a unit of improvement or contribution. This
value can be quantified for an arbitrary subset of the deci-
sion variables irrespective of whether or not they belong to
an underlying subfunction. For a partially separable problem,
if the ideal decomposition is known, one can study the effect
of a single component on the objective value by freezing all
other components. However, this may not be possible for an
overlapping problem (see Section VI-A), where an optimal
decomposition may not be known. It is therefore apparent
that problem decomposition and estimation of contributions
are closely interconnected.

Most algorithms define the contribution of a component
to be a function of the improvement it makes on the over-
all objective value when it is optimized for a predetermined
number of iterations while all other components are kept con-
stant. Let δ

(t)
k be the improvement we get at time t when

the kth component is optimized for τ iterations. Based on
this definition, the two original versions of the CBCC algo-
rithms (called CBCC1 and CBCC2) define the contribution of
the kth components to be (1/T)

∑T
t=1 δ

(t)
k , i.e., the average of

all previous improvements up to the current iteration. Due to
the nonstationary nature of the underlying distribution of the
contributions, some algorithms defined the contribution as a
moving average over the last L iterations. CBCC3 [144] used
the extreme case of L = 1, while in the case of CCFR [145]
L = 2. CCFR2 [146] improves upon CCFR by averaging
the improvements per function evaluations to account for
unequal subpopulations. CCFR2 [146] and some other algo-
rithms [133], [142] exponentially decay the effect of historical
contributions. Ren et al. [147] defined the contribution as a
function of both δ

(t)
k and the standard deviation across all

components. Some authors suggested various normalization
of δ

(t)
k [118], [133], [142], [148], [149] as the contribution of

a component.
In addition to δ

(t)
k defined previously, other measures of

contributions have also been proposed. Global sensitivity anal-
ysis techniques, such as Morris screening is used in several

works as the contribution measure for individual variables
as well as components [150]–[152]. Delta disturbance is a
perturbation method proposed to measure the contribution of
individual variables and finding the most influential variables
for further optimization. Using the plain fitness of a com-
ponent as the contribution of a component has also been
suggested [153].

2) Resource Allocation Policies: A simple allocation pol-
icy, the variations of which are used by many algorithms,
is to complement the round-robin policy of canonical CC
by one or more iterations of optimizing the highest con-
tributing component (as measured by the methods outlined
in Section VI-B1 and Table I). CBCC1 [140] is the most con-
servative approaches in which the round robin is followed
by only one episode of optimizing the highest contributing
component (also employed by SACC1 [152]. CBCC2 [140] is
greedier and exploits the highest contributing component until
no improvement is observed (also employed by SACC2 [152]).
This is shown to be an unstable policy because the contribution
of initially best component may not remain the best for
the rest of a run. CBCC3 [144] addresses this issue by
optimizing the highest contributing component until its con-
tribution drops below the second best. This has the effect
of equalizing contributions. CBCC3 also randomly enters an
exploration phase where all components get a chance of updat-
ing their contributions. CCFR [145] and CCFR2 [146] use a
similar equalization strategy and includes a stagnation detec-
tion mechanism to avoid optimizing stagnant components.
FCRACC [147] is similar to CBCC3 in which it exploits the
best component, but its method of quantifying contributions
differs (see Section VI-B1). Meselhi et al. [149] used round
robin followed by a fuzzy rule-based allocation based on the
contribution and population diversity. Shen et al. [142] used
a roulette-wheel selection mechanism based on the contribu-
tions. Jia et al. [133] optimized all the components whose
contribution is more than half the best contribution. Although
not specifically designed to address the imbalance problem,
overlapped CC [124] replicates influential decision variables in
more than one component, which has the effect of optimizing
influential variables more often.

832 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 26, NO. 5, OCTOBER 2022

In addition to the heuristics described above, some algo-
rithms define the resource allocation policy as a function of
the estimated contributions. SACC3 [152] determines the num-
ber of times a component is optimized (τ) as a function of its
effect as measured by Morris screening. CCAOI [148] normal-
izes the contributions according to the Gini index and allocates
the computational resources accordingly. DCCA [118] uses a
distributed model and allocates more CPU instances to better
contributing components. The population size and τ are then
defined to be functions of the number of CPUs assigned to
a component. Bandit-based CC (BBCC) [154] uses multiarm
bandit approaches, such as ε-greedy, SoftMax, or upper con-
fidence bound (UCB) to select the components based on their
contributions aiming at balancing exploration and exploitation
in a more systematic way.

3) Component Selection as Multiarmed Bandit Problem:
Despite being effective in outperforming the canonical CC, the
contribution-aware algorithms discussed so far are based on
a set of heuristics derived form empirical observations with
minimal theoretical basis. Some authors proposed that the
component selection policy of CC can be treated as a mul-
tiarmed bandit (MAB) problem [154], [155]. Among them,
Kazimipour et al. [154] defined and mapped the building
blocks of a contribution-aware CC into a MAB framework.
This framework, BBCC, has the flexibility to mimic the
previously described algorithms as a special case. BBCC treats
the contribution of a component as the utility or the value
function in reinforcement learning. This estimated contribution
or long-term utility is defined to be a function of immedi-
ate improvements or rewards measured by quantities, such
as δ

(t)
k . Given this interpretation, a wide range of contribu-

tion estimators, such as moving average (simple, weighted,
or exponential), rank-based, or hybrid estimators can be used.
The component selection policy is also responsible for balanc-
ing between exploration and exploitation, which can be done
using a wide range of existing selectors, such as ε-greedy,
ε-first, GreedyMix, LeastTaken, SoftMax, UCB, and other
similar selectors widely used in the multiarm bandit and rein-
forcement learning literature. The simplest instance of BBCC
with a normalized δ

(t)
k , and simple averaging as the contri-

bution estimator, and ε-greedy has shown to outperform all
CBCC family of algorithms, as well as CCFR and MOFBVE
on the CEC’2013 large-scale benchmark suite.

C. Multiobjective Optimization

Multiobjective optimization problems are prevalent in a
wide range of application areas [156]. As the name implies,
these problems have two or more conflicting objectives caus-
ing them to have multiple tradeoff solutions known as the
Pareto-optimal solutions. The scalability of multiobjective
problems can be studied in either the objective space [157]
or the decision space. The former refers to the effect of
the number of objective functions on the performance of the
algorithms [157], while the latter is concerned with the scala-
bility of each objective function with respect to its number of
decision variables. In this section, we address the scalability
of multiobjective problems in the decision space, which has
attracted attention in the last decade [158]–[160].

Large-scale multiobjective approaches can be seen in four
major categories.

1) Problem decomposition where the aim is to break the
problem into a set of lower dimensional subproblems in
the decision space.

2) Problem transformation where the aim is to reformu-
late the original problem into a single lower dimensional
problem.

3) Operator design where the aim is to devise more efficient
solution generation mechanisms.

4) Problem reduction and intrinsic dimensions where the
aim is to find a lower dimensional latent space embedded
in a higher dimensional sparse space.

Problem decomposition approaches, not to be confused with
scalarization techniques, such as Tchebychev [161], operate
in the decision space and aim at forming a set of smaller
and more manageable subproblems. Such decompositions are
often done by considering the interaction structure of the
decision variables [115] or by grouping the variables based
on their effect in the objective space, i.e., those pertaining
to the convergence of solutions toward the Pareto-optimal
front, and those pertaining to diversity of the solutions on the
Pareto-optimal front [162], [163]. Problem decomposition by
means of variable interaction detection is a challenging task in
large-scale multiobjective optimization for the following major
reasons.

1) The lack of consistent partially separable grouping
across all objectives.

2) The effect of problem formulation on variable
interaction [164]. For example, the use of scalariza-
tion techniques may result in an sparse but overlapping
interaction structure due to shared decision variables
among several objectives (see Section VI-A for more
information about overlapping problems).

3) The cost of variable interaction detection for several
objectives.

Cooperative coevolution has been used with several decom-
position strategies, such as random grouping [165], [166],
multilevel random grouping [167], differential group-
ing [114], [168], and monotonicity detection [57], [162] to
solve large-scale multiobjective problems. In some cases,
several variable decomposition methods are combined [142]
or completely new ones are proposed [169]. For instance,
Ma et al. [170] proposed to use a convergence relevance
degree to decompose the problem and Wang et al. [169]
used a tensor canonical polyadic decomposition to divide
the d-order tensor of decision variables into a set of
uncorrelated components. Some other decomposition tech-
niques [114], [162], [163], [168], [171] divide the decision
variables based on their dominant role in the optimization
problems: convergence of solutions on the Pareto-optimal
front and diversity of solution on the Pareto-optimal front.
In such techniques, it is customary to further divide the con-
vergence matrix using variable interaction methods described
before.

An alternative to problem decomposition is to trans-
form the original large-scale problem into a single low-
dimensional problem. This transformation can be implemented

OMIDVAR et al.: REVIEW OF POPULATION-BASED METAHEURISTICS FOR LARGE-SCALE BLACK-BOX GLOBAL OPTIMIZATION—II 833

TABLE II
CATEGORIZATION OF LARGE-SCALE ALGORITHMS WITH RESPECT TO

THEIR STRATEGY OF HANDLING MULTIPLE OBJECTIVES

using well-known methods such as PCA to obtain a lower
dimensional representation of the convergence variables [89],
regression analysis to represent a subset of variables as a
function another subset [172], or other reformulation tech-
niques [86], [173]. One such reformulation, which has gained
attraction in recent years and has shown to outperform some
state-of-the-art methods [174], is the weighted optimization
framework (WOF) [86], [175]. Inspired by the notion of adap-
tive weighting [94], WOF reduces the dimensionality of the
decision space by forming several groups of the decision
variables, often using some variable grouping method [176],
and transforming them using a given transformation function
parameterized by a weight vector.

Problem reduction is another approach where the algorithm
attempts to find the intrinsic dimensionality of the problem,
which is often substantially lower than its nominal dimensions.
Sparse multiobjective problems arise in many practical appli-
cation areas where the decision value of many Pareto-optimal
solutions is zero. The essence of these algorithms is to find
the sparse distribution of the decision variables using tech-
niques, such as autoencoders [177] or pattern mining [178],
and devising mechanisms capable of taking the sparsity into
account [179], [180].

The previous approaches stated above are all based on
operating in a lower dimensional space. There are also
a range of algorithm-specific ways traversing the search
space more effectively. For instance, Yi et al. [181] stud-
ied and improved the crossover operator of NSGA-III [182].
Some studies proposed new update strategies for PSO to
improve its convergence and diversity properties for large-
scale multiobjective problems [42], [57], [183]. Similarly,
quantum-enhanced DE [108] and variable-importance-based
DE [141] have also been proposed to tackle high-dimensional
multiobjective problems. Designing better local and neigh-
borhood search mechanisms [113], [184], [185] and better
solution selection mechanisms [186], [187] are other ways of
improving the overall search efficiency.

Multiobjective algorithms can be categorized into
dominance-based, decomposition-based, or indicator-based
approaches based on how they handle the multiplicity of
objective functions. Table II summarizes the large-scale
multiobjective algorithms based on these three approaches.
Fig. 4 shows the percentage of each approach used in

Fig. 4. Proportion of papers according to Table II using different approaches
to multiobjective optimization.

the large-scale multiobjective literature. As can be seen,
dominance- and decomposition-based approaches are the
most dominant and indicator-based approaches are the least
explored. Here, generic refers to the frameworks which are
neutral to the choice of the optimizer.

D. Constraint Handling

Constraints are indispensable part of many real-world
optimization problems [195]. As a result, a wide range of
constraint-handling methods has been proposed for evolu-
tionary algorithms and nature-inspired metaheuristics [196].
Despite the plethora of constraint-handling techniques, they
suffer from the curse of dimensionality and very few studies
have been dedicated to the topic of scalability in constrained
optimization. Constraint-handling methods have the following
scalability challenges.

1) High-dimensional objective and/or constraint functions.
2) The dependence between the number of constraints

and the number of decision variables. For a large-
scale problem, this may result in a highly constrained
problem.

3) The complex problem structure due to shared deci-
sion variables among the objective function and the
constraints.

4) The effect of constraint-handling method on the problem
structure and variable interaction. For example, a sim-
ple penalty method can convert a partially separable
problem into an overlapping one (see Section VI-A).

Constraint-handling techniques used in large-scale global
optimization are mostly based on problem decomposition
and variable interaction analysis. Accurate decomposition
has been shown to have a significant impact on reducing
the number of constraint violations [197]. Fitness difference
minimization [198] and the differential grouping family [115]
are two of the most widely used decomposition methods in
large-scale-constrained optimization.

Sayed et al. [198] used a fitness difference minimization
approach to analyze the interaction structure of the objective
and constraint functions and decompose them into a set of
smaller subproblems. Aguilar-Justo and Mezura-Montes [199]
improved upon [198] and used an aggregate function of all
constraint violations, rather than the individual constraints, for

834 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 26, NO. 5, OCTOBER 2022

interaction analysis and problem decomposition. A problem
of fitness difference minimization methods is the need for
specifying the number or the size of components. To fix
this, Aguilar-Justo et al. [200] proposed to evolve the best
arrangement of the decision variables as well as the num-
ber of components using GA to solve large-scale-constrained
problems.

Finite-difference decomposition methods (part I
Section II-B) are generally more accurate than fitness
difference minimization. A study shows that one such algo-
rithm, differential grouping version 2 [115], is more robust
and, therefore, better suited to complex highly constrained
problems [201]. Blanchard et al. [202] used a variant of
differential grouping, IDG [203], to form an interaction
structure matrix for the objective function and the constraints.
The aggregate interaction matrix of interactions is then
used to decompose the objective as well as the constraints.
Xu et al. [122] also proposed a coevolutionary algorithm
based on differential grouping and used a contribution-based
mechanism to allocate resources to components based on
their contributions and degree of constraint violations.

In addition to problem decomposition, other approaches,
such as surrogate modeling [72], memetic algorithms [201],
offspring generation [204], and boundary constraints viola-
tions [69], [205] are also studied in the context of large-scale-
constrained optimization. Approximation and variable reduc-
tion techniques also appear to be promising approaches for
solving large-scale-constrained problems [90], [91] requiring
further investigation.

E. Benchmarks and Applications

Although the ultimate goal of designing efficient algorithms
is to solve real-world problems, their sheer complexity due
to the entanglement of various aspects, such as constraint
handling and dealing with mixed variable types, limits one’s
ability to conduct a focused study of a particular aspect of a
problem common to a wider range of problems. Benchmark
problems address this issue by capturing practical aspects, such
as dimensionality, modality, structure, constraints, variable
types, noise, etc., into a set of tunable well-defined func-
tions [206]. In the context of large-scale global optimization,
the IEEE CEC large-scale global optimization benchmark
suites [207]–[209] are the most widely used. All the bench-
marks are based on a set of base functions popular in numerical
optimization [210], such as Rastrigin, Rosenbrock, Ackley,
Schwefel, Sphere, Elliptical, Griewank, and many more.

The CEC’2008 large-scale suite [207] contains a set of
seven functions, which is tested in 100, 500, and 1000-D
dimensions. This is a very small set and lacks modularity,
i.e., systematic control over how decision variables are linked.
The CEC’2005 suite, though not labeled as “large scale” is
scalable but used mostly in low-dimensional (≈30-D) analy-
ses. It introduces composite functions1 through the weighted
sum of a series of base functions, which can potentially cause

1Composition used by [211] does not refer to composite functions gener-
ally defined as f (g(x)) ≡ (f ◦ g)(x). It refers to weighted sum of a set of
subfunctions.

partial interaction between decision variables. However, this
is not implemented in a systematic way to give a full control
over the problem structure. Herrera et al. [19] used a similar
approach to propose a set of 19 functions used in the special
issue of Soft Computing Journal on the scalability of evo-
lutionary algorithms and other metaheuristics for large-scale
continuous optimization problems [212].

To facilitate the study of variable interaction and
decomposition-based algorithms, the CEC’2010 large-scale
suite [208] introduced modularity into the benchmarks, where
the number of component functions and their participating
decision variables are known and controllable. The bench-
mark contains a set of 20 1000-D functions in three categories:
1) fully separable; 2) two types of partially separable functions
with and without a fully separable component; and 3) fully
nonseparable. The CEC’2013 large-scale suite [209] addressed
the shortcomings of its predecessor by introducing nonuniform
component sizes, imbalance among the contributions of com-
ponents, and overlapping functions the components of which
may not be disjoint. It also includes transformations, such as
symmetry breaking, ill conditioning, and local irregularities
proposed in the black-box optimization benchmark (BBOB)
suite [213]. Sun et al. [214] extended the CEC’2013 suite
to make it more tunable. Other studies which paid attention
to problems with overlapping components were conducted by
Werth et al. [78] and Sayed et al. [215].

There are other scalable benchmarks that have been used to
study various other aspects of large-scale optimization algo-
rithms. COPS 3.0 represents a repertoire of scalable and con-
strained problems found in various areas of engineering and
sciences. Goh et al. [216] used the EEG big data optimization
problem and proposed a BigOpt2015 benchmark suite for
large-scale multiobjective optimization. Cheng et al. [217]
adopted the ideas proposed in [208] and [218] to propose a set
of large-scale multi- and many-objective benchmark functions.
Scalable benchmark functions for constrained optimization
problems are very limited. Beside the constrained prob-
lems compiled by Dolan et al. [219], which are not widely
used in the EC community, Sayed et al. [198], [215] also
proposed a set of artificial benchmark functions for constrained
problems. Recent studies also attempted to extend stan-
dard dynamic optimization benchmarks to study large-scale
dynamic optimization problems [143], [220].

Applications: Benchmarks are used to ultimately help with
designing and evaluating efficient algorithms for solving
real-world problems. Some studies directly used real-world
problem instances, in addition to artificial benchmarks, to
compare algorithms. Table S-III of the supplementary mate-
rial shows a set of high-dimensional optimization problems
in a wide range of application areas. The problem types
include real valued, integer/binary, mixed integer, and com-
binatorial, and about half of these include constraints. Among
the approaches, divide-and-conquer methods, such as problem
decomposition and coevolutionary algorithms are the most
popular followed by hybrid methods (memetic algorithm,
local search hybridization, and ensembles), which is consis-
tent with our observations in part I of this survey series.
Other approaches include parallelization, approximation and

OMIDVAR et al.: REVIEW OF POPULATION-BASED METAHEURISTICS FOR LARGE-SCALE BLACK-BOX GLOBAL OPTIMIZATION—II 835

TABLE III
WINNING AND RUNNER-UP ALGORITHMS OF LARGE-SCALE GLOBAL

OPTIMIZATION COMPETITIONS SINCE 2008

encoding schemes, and algorithm-specific sampling and vari-
ation operator design. Curse of dimensionality is the predom-
inant source of difficulty among these application areas and
the existence of other factors, such as constraints, noisy, and
nonsmooth objective functions add to the complexity. For the
continuous decomposition-based approaches, noise and non-
smooth functions appear to be an obstacle to an accurate
variable interaction analysis. In the case of combinatorial prob-
lems, finding an effective decomposition is a major challenge
in its own right. A challenge for approximation and encod-
ing schemes is model resolution or granularity which mediates
between the accuracy of the model and its complexity. Among
the constrained problems, handling of infeasible solutions
and the interplay between dimensionality and the number of
constraints are two of the most important challenges.

Large-Scale Global Optimization Competitions: In this sec-
tion, we review the results of large-scale global competitions
since 2008 when the first IEEE CEC competition on large-
scale global optimization was held. Table III lists the winners
and runner ups. Based on the approaches to large-scale global
optimization we outlined in this article, high performing
algorithms almost exclusively belong to either memetic algo-
rithms (part I Section III) or decomposition-based algorithms
(part I Section II) with memetic algorithms and local search
dominating the competition.

It is interesting to note that the algorithmic philosophy of
these two approaches is orthogonal and complementary to each
other. The premise of memetic algorithms is to balance explo-
ration and exploitation by means of combining global and
local search operators. Whereas the main premise of decom-
position methods is interaction-aware space partitioning and
dimensionality reduction. Consequently, memetic algorithms
lack an intrinsic mechanism for dealing with variable inter-
actions and systematic space partitioning, and decomposition
methods lack an intrinsic mechanism for balancing exploration
and exploitation. It is therefore not surprising to see that the
effort of hybrid algorithms is focused on proposing novel ways
of balancing exploration and exploitation, and the effort of
decomposition methods is centered around finding accurate
interaction detection principles and effective grouping. This
leaves both approaches with major blind spots. The absence
of interaction detection mechanism in hybrid frameworks puts
an extra burden on the exploration process by searching the
regions which could have been avoided through partitioning,
and reduces the efficiency of dimensionwise local search due
to ignored interactions. Most decomposition-based methods

also discount the role of the component optimizer in balancing
exploration and exploitation. This deficiency is partially com-
pensated by contribution-aware algorithms (see Section VI-B)
which balance exploration and exploitation at the component
level.

The design biases of hybrid and decomposition-based meth-
ods stated above can also be seen among the competition
winners and runner ups listed in Table III. MTS [221] uses
orthogonal arrays combined with a mixture of local opera-
tors. Orthogonal arrays give an expansive initial coverage of
the search space, which forms the basis for the subsequent
local search process. MA-SW-Chains [110], IHDELS [226],
and SHADEILS [227] combine a global search algorithm with
a chain of iterated local search attempts to balance explo-
ration and exploitation. MOS [224], [225], despite being a
framework capable of hybridizing any set of operators, uses
a mixture of global and local operators to control exploration
and exploitation. Even the algorithms, such as MPS [229] and
LSEDA-gl [222], which are not memetic by definition, have
explicit elements of balancing the exploration and exploita-
tion forces. MPS [229], for instance, proposes a mechanism
to disentangle the exploration and exploitation mechanisms
with the aim of minimizing failed and deceptive exploration
attempts and maximize the successful ones. LSEDA-gl [222]
also hybridizes heavy-tailed distributions such as Lévy to pro-
mote exploration with the classic Gaussian distribution to
promote exploitation.

Among the competition winners and runner ups listed in
Table III, LSHADE-SPA [228] and EOEA [230] are the only
hybrid algorithms that consider both exploration/exploitation
balance as well as problem decomposition. On the decompo-
sition side, however, they both fall short of using an effective
variable interaction detection method. LSHADE-SPA [228]
uses the outdated random grouping [94] known to perform
poorly on partially separable problems (see Section II of
part I) and EOEA [230] uses a grouping strategy incapable
of an effective space partitioning. Due to their emphasis
on accurate interaction analysis, decomposition methods are
historically not systematic with their choice of component
optimizer, which limits their ability in maintaining good explo-
ration/exploitation balance within the lower dimensional sub-
spaces. This is perhaps why hybrid algorithms are dominant in
competitions [231], [232]. As a matter of fact, decomposition-
based algorithms are capable of using any component opti-
mizer, including memetic algorithms and other hybrids, to
further improve their scalability. This is why the combi-
nation of accurate problem decomposition (RDG3 [126])
and good component optimizer (CMA-ES) resulted in supe-
rior performance by CC-RDG3 in 2019. Further evidence
also suggests that several decomposition-based algorithms not
present in competitions can outperform competition winners.
For example, the decomposition-based algorithm proposed by
Mei et al. [233] outperformed MA-SW-Chains [110], the
winner of CEC’2010 competition on both CEC’2008 can
CEC’2010 LSGO benchmark suites, and recursive differen-
tial grouping [132] outperformed MA-SW-Chains [110] and
MOS [225] on the CEC’2010 and CEC’2013 LSGO bench-
mark suites. It is often stated that the cost of decomposition

836 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 26, NO. 5, OCTOBER 2022

prohibits their use in large-scale settings. However, recent
advances in variable interaction and grouping methods allows
this to be achieved in O(n log n) in the general case and
O(n) on separable functions (see part I Section II-B for more
details).

VII. CONCLUDING REMARKS

In the two parts of this survey, we reviewed a wide
range of population-based metaheuristics for large-scale global
optimization in six major categories: 1) problem decompo-
sition; 2) hybridization and memetic algorithms; 3) sam-
pling and variation operators; 4) approximation and surrogate
modeling; 5) initialization methods; and 6) parallelization. We
reported on the state of the art and what has been achieved
over the last decade. In this section, we change perspective and
try to touch upon two major issues pertaining to the future of
the field.

1) Where do we stand as a field and what are the poten-
tial pitfalls and challenges hindering the progress of the
field?

2) Where to go next? What are the pressing open questions
and where more focus is needed?

A. Large-Scale Global Optimization: Pitfalls and Challenges

Big Picture: Despite the advances in various areas of large-
scale global optimization, sometimes their relation to the
bigger picture is unclear. This is partly due to the lack of
a clear measure of the progress in the field and lack of clar-
ity about its grand challenges. The bulk of the research in
the field is currently driven by showing statistically significant
improvements over existing results with minimal reference to
whether these so-called significant results are actually mean-
ingful in real-world settings. There is also an overemphasis
of the success stories, rather than giving insights into why an
algorithm fails on a particular problem or a class of problems.
This is partly due to the departure from the scientific method
in conducting research in favor of an engineering approach
where a comparison with the state of the art is encouraged.

The lack of a big picture may cause the field to focus
too much on nice-to-have incremental research rather than
addressing the core issues of large-scale global optimization.
This deficiency currently manifests itself in at least three
forms.

1) Emergence of New “Metaphor”-Based Algorithms: A
wide array of metaphor-based metaheuristics have been
proposed in recent years. These “novel” algorithms are
often a marginal variation of an existing algorithm
under the disguise of new terminology. In large-scale
global optimization, some works claim novelty by sim-
ply applying one such new metaheuristic to solve some
standard large-scale benchmark suite. This is very detri-
mental to the field and “take the field of metaheuristics
a step backward rather than forward” [234].

2) Ad Hoc Improvements of Algorithms With Marginal
Scientific or Practical Significance: This type of work
often present a minor variation of an existing algorithm,
which statistically improves upon the previous results

despite the magnitude of the difference being negligi-
ble for any practical purpose. As an example, applying
a known parameter adaptation technique to dynamically
control the parameters of a new metaheuristic algorithm
falls short of addressing major challenges of the field.

3) Theory-Practice Gap: Given the ever growing need for
scalable optimization algorithms in a wide range of
application areas, the gap between theory and practice
in terms of the problem sizes currently being tackled is
widening. In other words, the large-scale problems being
studied now using the standard benchmarks are far from
the large-scale problems faced in practice.

To avoid falling prey to these defects, we need to check
where we stand as a community in relation to identifying and
addressing the grand challenges of the field and bridging the
gap between theory and practice. This perhaps requires a sep-
arate quantitative in-depth investigation of the large body of
reported results, which is outside the scope of this article.

Comparison: Despite the availability of relatively standard-
ized and widely used benchmark suites, it is still hard to
compare the reported results across a wider body of publica-
tions to be able to see the major patterns and trends. Despite
some attempts to develop automated comparison tools such as
the toolkit for automatic comparison of optimizers (TACOs),2

we currently do not know the answer to questions such as the
following: given a specific function or family of functions,
which algorithm or class of algorithms performs the best and
why? In continuous problems, especially due to the imbal-
ance effect, the overall solution quality may seem poor, but
the solution may indeed be close to the global optimum. Based
on the reported results, we currently do not know how far the
solutions are from the global optimum.

The large-scale global optimization competitions also acted
as a venue to compare a wider range of algorithms, but their
conclusions remain limited due to the absence of several state-
of-the-art algorithms from the competitions. We do not know
to what extent does the competition outcomes depend on
the allotted number of objective function evaluations. Do the
conclusions change if the algorithms are given less or more
resources?

Answering some of the questions stated above can help
in finding the recurring issues and bottlenecks and help with
shaping the big picture and identifying the core issues of the
field.

Adoption: Lack of streamlined and easy-to-use software
packages make the adoption of the recent developments very
difficult for practitioners or other researchers outside the field.
The most recent algorithms are often sophisticated and hard
to implement which is a stumbling block in the way of their
wider adoption.

B. Potential Areas for Future Research

1) Synergy Between Optimization and Learning: Deep
learning problems are in essence high-dimensional prob-
lems with the potential to contain millions or billions
of decision variables. Although evolutionary algorithms

2https://tacolab.org/

OMIDVAR et al.: REVIEW OF POPULATION-BASED METAHEURISTICS FOR LARGE-SCALE BLACK-BOX GLOBAL OPTIMIZATION—II 837

have shown competitive results on high-dimensional learn-
ing problems [235], [236], research on devising population-
based algorithms to tackle large-scale learning problems is
scarce [237]–[242]. Population-based metaheuristics in gen-
eral, and evolutionary algorithms in particular, are suited
for environments that require hard exploration. As a result,
they can be competitive in areas, such as neural architec-
ture search [243], training of deep neural networks [236], and
reinforcement learning [244]. In reinforcement learning, for
instance, evolution strategies have shown to perform better
than the policy gradient on Atari 2600 games. These methods
are particularly suitable when the effective number of time
steps is long, the actions have long-lasting effects, and no
good value function estimator is available [244].

Conversely, machine learning algorithms can be used in
conjunction with large-scale global optimization algorithms
to improve their scalability. For example, machine learning
can be used as a general approach to learn and discover a
problem’s structural information from available data [245].
The learned model can then be applied to unseen data for
the purpose of classification or time-series prediction. An
optimization process such as branch and bound can be mod-
eled as a decision making process; hence, a machine learning
model can be applied, to learn the most efficient and effective
way [246]. This will go a long way in helping an algorithm’s
ability to scale to higher dimensional problems. Similarly,
machine learning algorithms can be used to reduce the size of
an optimization problem before being tackled. For examples,
some recent work on employing machine learning techniques
to learn from known instances that contain optimal solutions
in order to reduce the problem first, without losing the optimal
solutions [247], [248].

2) Synergy Between Metaheuristics and Classic
Mathematical Programming: Several classic derivative-
free optimization algorithms have been successfully used as
local search operators in the context of memetic algorithms
(c.f. part I Section III). Other promising areas of research at
the intersection of population-based optimization algorithms
and classic mathematical programming are as follows.

1) Problem Decomposition: In classic mathematical pro-
gramming, there exist some decomposition meth-
ods, such as column generation, Bender’s cut, and
Dantzig–Wolfe decomposition [249]. These techniques
can be effective under certain assumptions such con-
vexity or linearity. An important question to ask is
how one would combine the merits of metaheuristics
with these decomposition methods to tackle real-world
LSGO problems that are often nonconvex and nonlin-
ear? As an example, machine learning has been used to
learn when Dantzig–Wolf decomposition is effective on
mixed-integer linear programming problems [250].

2) Variation Operators: Many large-scale real-world
optimization problems are combinatorial by nature, e.g.,
either discrete, binary, or mixed types. Examples include
large-scale traveling salesman problems or other graph-
based optimization problems. Designing metaheuristic
variation operators (such as crossover and mutation) in
order to produce new solutions from the existing ones

can be a significant challenge. Most existing successful
methods are conventional mathematical programming
methods, such as branch-and-bound and branch-and-cut
methods. Hybrid methods that combine the merits of
metaheuristics and exact methods (e.g., taking advan-
tage of the “shared information” in a metaheuristic
population) are a promising direction [251]–[254].

3) Exploiting Problem Structure: Exploiting the problem
structure and gray-box optimization has shown to be effec-
tive ways of solving large-scale problems (part I Section II).
These structural information can be used in the form of
explicit decomposition or implicitly through model building.
The challenge of explicit methods is the cost of offline variable
interaction learning, which requires objective function eval-
uations and causes an overhead on the overall optimization
cost. Another issue is that a crisp decomposition is some-
times impractical due to various forms of couplings caused by
the existence of multiple objectives, overlapping components
(shared variables among subfunctions), or coupling through
constraints. Implicit methods also suffer from the accuracy of
capturing the problem structure, especially when the problem
size grows in size. Finding more efficient and effective ways of
exploiting structural information, such as overlap, can have a
significant impact on improving the scalability of optimization
algorithms.

4) Noise, Dynamism, and Uncertainty: The scalability
of optimization algorithms in the presence of noise,
dynamical changes of the landscape, and uncertainty has
scarcely been studied with only few papers addressing
these issues [143], [220]. These problem types pose a range
of new challenges to the existing approaches to large-
scale optimization presented before. For example, variable
interaction analysis methods are designed based on the
assumption that the objective function is noiseless. The
dynamical changes of the landscape can change the structural
properties of the objective function, which makes it difficult for
the explicit and implicit methods to exploit these information
in an efficient manner.

5) Constraint Handling: Constraints are indispensable part
of most real-world optimization problems; however, very
limited studies have been dedicated to the effect of
problem dimensionality on constraints [198], [202] (also
see Section VI-D). There is still a lack of efficient constraint
handling tools to cope with high-dimensional constraint func-
tions or the cases where the number of constraints is a function
of the dimensionality of the objective function [255], [256]. In
the later case, the problem may contain a large number of low-
dimensional constraints. The field currently lacks scalable and
controllable constrained benchmark problems either synthetic
or based on real-world problems [195].

REFERENCES

[1] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc.
IEEE Int. Conf. Neural Netw., vol. 4, 1995, pp. 1942–1948.

[2] R. Storn and K. Price, “Differential evolution—A simple and efficient
heuristic for global optimization over continuous spaces,” J. Global
Optim., vol. 11, no. 4, pp. 341–359, 1997.

838 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 26, NO. 5, OCTOBER 2022

[3] S. Das and P. N. Suganthan, “Differential evolution: A survey of the
state-of-the-art,” IEEE Trans. Evol. Comput., vol. 15, no. 1, pp. 4–31,
Feb. 2011.

[4] M. S. Maučec and J. Brest, “A review of the recent use of differential
evolution for large-scale global optimization: An analysis of selected
algorithms on the CEC 2013 LSGO benchmark suite,” Swarm Evol.
Comput., vol. 50, Nov. 2019, Art. no. 100428.

[5] A. W. Mohamed, A. A. Hadi, and A. K. Mohamed, “Differential evo-
lution mutations: Taxonomy, comparison and convergence analysis,”
IEEE Access, vol. 9, pp. 68629–68662, 2021.

[6] M. Z. Ali, N. H. Awad, and P. N. Suganthan, “Multi-population
differential evolution with balanced ensemble of mutation strategies
for large-scale global optimization,” Appl. Soft Comput., vol. 33,
pp. 304–327, Aug. 2015.

[7] A. Banitalebi, M. I. A. Aziz, and Z. A. Aziz, “A self-adaptive binary
differential evolution algorithm for large scale binary optimization
problems,” Inf. Sci., vols. 367–368, pp. 487–511, Nov. 2016.

[8] J.-I. Kushida, A. Hara, and T. Takahama, “Rank-based differential
evolution with multiple mutation strategies for large scale global
optimization,” in Proc. IEEE Congr. Evol. Comput., 2015, pp. 353–360.

[9] Y. Wang, B. Li, and X. Lai, “Variance priority based cooperative co-
evolution differential evolution for large scale global optimization,” in
Proc. IEEE Congr. Evol. Comput., 2009, pp. 1232–1239.

[10] A. W. Mohamed and A. S. Almazyad, “Differential evolution with
novel mutation and adaptive crossover strategies for solving large scale
global optimization problems,” Appl. Comput. Intell. Soft Comput.,
vol. 2017, Mar. 2017, Art. no. 7974218.

[11] A. W. Mohamed, “Solving large-scale global optimization problems
using enhanced adaptive differential evolution algorithm,” Complex
Intell. Syst., vol. 3, no. 4, pp. 205–231, Dec. 2017.

[12] H. Ge, L. Sun, X. Yang, S. Yoshida, and Y. Liang, “Cooperative
differential evolution with fast variable interdependence learning and
cross-cluster mutation,” Appl. Soft Comput., vol. 36, pp. 300–314,
Nov. 2015.

[13] H. Wang, Z. Wu, S. Rahnamayan, and D. Jiang, “Sequential DE
enhanced by neighborhood search for large scale global optimization,”
in Proc. IEEE Congr. Evol. Comput., 2010, pp. 1–7.

[14] C. García-Martínez, F. J. Rodríguez, and M. Lozano, “Role differen-
tiation and malleable mating for differential evolution: an analysis on
large-scale optimisation,” Soft Comput., vol. 15, no. 11, pp. 2109–2126,
2011.

[15] J. Zhang and A. C. Sanderson, “JADE: Adaptive differential evolution
with optional external archive,” IEEE Trans. Evol. Comput., vol. 13,
no. 5, pp. 945–958, Oct. 2009.

[16] Q. Yang, H.-Y. Xie, W.-N. Chen, and J. Zhang, “Multiple parents
guided differential evolution for large scale optimization,” in Proc.
IEEE Congr. Evol. Comput., 2016, pp. 3549–3556.

[17] H. Wang, Z. Wu, and S. Rahnamayan, “Enhanced opposition-
based differential evolution for solving high-dimensional continuous
optimization problems,” Soft Comput., vol. 15, no. 11, pp. 2127–2140,
2011.

[18] S. Rahnamayan, H. R. Tizhoosh, and M. Salama, “Opposition-based
differential evolution algorithms,” in Proc. IEEE Congr. Evol. Comput.
(CEC), 2006, pp. 2010–2017.

[19] F. Herrera, M. Lozano, and D. Molina, “Test suite for the special
issue of soft computing on scalability of evolutionary algorithms and
other metaheuristics for large scale continuous optimization prob-
lems,” 2009. [Online]. Available: http://150.214.190.154/sites/default/
files/files/TematicWebSites/EAMHCO/fu nctions1-19.pdf

[20] H. Hiba, S. Mahdavi, and S. Rahnamayan, “Differential evolution with
center-based mutation for large-scale optimization,” in Proc. IEEE
Symp. Series Comput. Intell., 2017, pp. 1–8.

[21] J. Brest, A. Zamuda, B. Boskovic, M. S. Maucec, and V. Zumer,
“High-dimensional real-parameter optimization using self-adaptive dif-
ferential evolution algorithm with population size reduction,” in Proc.
IEEE Congr. Evol. Comput. (IEEE World Congr. Comput. Intell.), 2008,
pp. 2032–2039.

[22] H. Wang, S. Rahnamayan, and Z. Wu, “Parallel differential evolution
with self-adapting control parameters and generalized opposition-
based learning for solving high-dimensional optimization problems,”
J. Parallel Distrib. Comput., vol. 73, no. 1, pp. 62–73, 2013.

[23] J. Brest, A. Zamuda, I. Fister, and M. S. Maučec, “Large scale global
optimization using self-adaptive differential evolution algorithm,” in
Proc. IEEE Congr. Evol. Comput., 2010, pp. 1–8.

[24] M. Weber, F. Neri, and V. Tirronen, “Shuffle or update parallel dif-
ferential evolution for large-scale optimization,” Soft Comput., vol. 15,
no. 11, pp. 2089–2107, 2011.

[25] A. Zamuda, J. Brest, B. Boskovic, and V. Zumer, “Large scale global
optimization using differential evolution with self-adaptation and coop-
erative co-evolution,” in Proc. IEEE Congr. Evol. Comput., 2008,
pp. 3718–3725.

[26] A. K. Qin and P. N. Suganthan, “Self-adaptive differential evolution
algorithm for numerical optimization,” in Proc. IEEE Congr. Evol.
Comput., vol. 2, 2005, pp. 1785–1791.

[27] Z. Yang, K. Tang, and X. Yao, “Self-adaptive differential evolution
with neighborhood search,” in Proc. IEEE Congr. Evol. Comput. (IEEE
World Congr. Comput. Intell.), 2008, pp. 1110–1116.

[28] Z. Yang, K. Tang, and X. Yao, “Scalability of generalized adaptive
differential evolution for large-scale continuous optimization,” Soft
Comput., vol. 15, no. 11, pp. 2141–2155, 2011.

[29] T. Takahama and S. Sakai, “Large scale optimization by differential
evolution with landscape modality detection and a diversity archive,”
in Proc. IEEE Congr. Evol. Comput., 2012, pp. 1–8.

[30] H. Wang, S. Rahnamayan, and Z. Wu, “Adaptive differential evolution
with variable population size for solving high-dimensional problems,”
in Proc. IEEE Congr. Evol. Comput., 2011, pp. 2626–2632.

[31] R. Tanabe and A. S. Fukunaga, “Improving the search performance of
SHADE using linear population size reduction,” in Proc. IEEE Congr.
Evol. Comput. (CEC), 2014, pp. 1658–1665.

[32] J. Lampinen and I. Zelinka, “On stagnation of the differential evolution
algorithm,” in Proc. MENDEL, 2000, pp. 76–83.

[33] C. Segura, C. A. Coello Coello, and A. G. Hernández-Díaz, “Improving
the vector generation strategy of differential evolution for large-scale
optimization,” Inf. Sci., vol. 323, pp. 106–129, Dec. 2015.

[34] Y.-F. Ge, W.-J. Yu, and J. Zhang, “Diversity-based multi-population dif-
ferential evolution for large-scale optimization,” in Proc. Genet. Evol.
Comput. Conf., 2016, pp. 31–32.

[35] Y.-F. Ge et al., “Distributed differential evolution based on adaptive
mergence and split for large-scale optimization,” IEEE Trans. Cybern.,
vol. 48, no. 7, pp. 2166–2180, Jul. 2018.

[36] K. E. Parsopoulos, “Cooperative micro-differential evolution for high-
dimensional problems,” in Proc. Genet. Evol. Comput. Conf., 2009,
pp. 531–538.

[37] E. H. Houssein, A. G. Gad, K. Hussain, and P. N. Suganthan,
“Major advances in particle swarm optimization: Theory, analysis, and
application,” Swarm Evol. Comput., vol. 63, Jun. 2021, Art. no. 100868.

[38] J. Vesterstrom and R. Thomsen, “A comparative study of differential
evolution, particle swarm optimization, and evolutionary algorithms on
numerical benchmark problems,” in Proc. Congr. Evol. Comput., vol. 2,
2004, pp. 1980–1987.

[39] F. van den Bergh and A. P. Engelbrecht, “A cooperative approach to
particle swarm optimization,” IEEE Trans. Evol. Comput., vol. 8, no. 3,
pp. 225–239, Jun. 2004.

[40] N. Lynn and P. N. Suganthan, “Heterogeneous comprehensive learning
particle swarm optimization with enhanced exploration and exploita-
tion,” Swarm Evol. Comput., vol. 24, pp. 11–24, Oct. 2015.

[41] R. Cheng and Y. Jin, “A competitive swarm optimizer for large scale
optimization,” IEEE Trans. Cybern., vol. 45, no. 2, pp. 191–204,
Feb. 2015.

[42] Y. Tian, X. Zheng, X. Zhang, and Y. Jin, “Efficient large-scale
multiobjective optimization based on a competitive swarm optimizer,”
IEEE Trans. Cybern., vol. 50, no. 8, pp. 3696–3708, Aug. 2020.

[43] E. Naderi, H. Narimani, M. Fathi, and M. R. Narimani, “A novel fuzzy
adaptive configuration of particle swarm optimization to solve large-
scale optimal reactive power dispatch,” Appl. Soft Comput., vol. 53,
pp. 441–456, Apr. 2017.

[44] R.-L. Tang, Z. Wu, and Y.-J. Fang, “Adaptive multi-context cooper-
atively coevolving particle swarm optimization for large-scale prob-
lems,” Soft Comput., vol. 21, no. 16, pp. 4735–4754, 2016.

[45] M. Pluhacek, R. Senkerik, and I. Zelinka, “Investigation on the
performance of a new multiple choice strategy for PSO algorithm in
the task of large scale optimization problems,” in Proc. IEEE Congr.
Evol. Comput., 2013, pp. 2007–2011.

[46] N. Lynn, M. Z. Ali, and P. N. Suganthan, “Population topologies for
particle swarm optimization and differential evolution,” Swarm Evol.
Comput., vol. 39, pp. 24–35, Apr. 2018.

[47] J. Fan, J. Wang, and M. Han, “Cooperative coevolution for large-
scale optimization based on kernel fuzzy clustering and variable trust
region methods,” IEEE Trans. Fuzzy Syst., vol. 22, no. 4, pp. 829–839,
Aug. 2014.

[48] Q. Zhang, H. Cheng, Z. Ye, and Z. Wang, “A competitive swarm opti-
mizer integrated with cauchy and Gaussian mutation for large scale
optimization,” in Proc. Chin. Control Conf., 2017, pp. 9829–9834.

OMIDVAR et al.: REVIEW OF POPULATION-BASED METAHEURISTICS FOR LARGE-SCALE BLACK-BOX GLOBAL OPTIMIZATION—II 839

[49] Q. Yang et al., “A distributed swarm optimizer with adaptive commu-
nication for large-scale optimization,” IEEE Trans. Cybern., vol. 50,
no. 7, pp. 3393–3408, Jul. 2020.

[50] Z.-J. Wang et al., “Dynamic group learning distributed particle
swarm optimization for large-scale optimization and its application
in cloud workflow scheduling,” IEEE Trans. Cybern., vol. 50, no. 6,
pp. 2715–2729, Jun. 2020.

[51] Z.-J. Wang, Z.-H. Zhan, S. Kwong, H. Jin, and J. Zhang, “Adaptive
granularity learning distributed particle swarm optimization for
large-scale optimization,” IEEE Trans. Cybern., vol. 51, no. 3,
pp. 1175–1188, Mar. 2021.

[52] M. A. Arasomwan and A. O. Adewumi, “An adaptive velocity parti-
cle swarm optimization for high-dimensional function optimization,”
in Proc. IEEE Congr. Evol. Comput., 2013, pp. 2352–2359.

[53] R. Cheng and Y. Jin, “A social learning particle swarm optimization
algorithm for scalable optimization,” Inf. Sci., vol. 291, pp. 43–60,
Jan. 2015.

[54] J.-R. Jian, Z.-G. Chen, Z.-H. Zhan, and J. Zhang, “Region encoding
helps evolutionary computation evolve faster: A new solution encoding
scheme in particle swarm for large-scale optimization,” IEEE Trans.
Evol. Comput., vol. 25, no. 4, pp. 779–793, Aug. 2021.

[55] Q. Yang, W.-N. Chen, J. Da Deng, Y. Li, T. Gu, and J. Zhang, “A level-
based learning swarm optimizer for large-scale optimization,” IEEE
Trans. Evol. Comput., vol. 22, no. 4, pp. 578–594, Aug. 2018.

[56] H. Huang, L. Lv, S. Ye, and Z. Hao, “Particle swarm optimization with
convergence speed controller for large-scale numerical optimization,”
Soft Comput., vol. 23, no. 12, pp. 4421–4437, Jun. 2019.

[57] S. Cheng, H. Zhan, H. Yao, H. Fan, and Y. Liu, “Large-scale many-
objective particle swarm optimizer with fast convergence based on
Alpha-stable mutation and Logistic function,” Appl. Soft Comput.,
vol. 99, Feb. 2021, Art. no. 106947.

[58] D. Li, W. Guo, A. Lerch, Y. Li, L. Wang, and Q. Wu, “An adaptive
particle swarm optimizer with decoupled exploration and exploitation
for large scale optimization,” Swarm Evol. Comput., vol. 60, Feb. 2021,
Art. no. 100789.

[59] Y. Xue, T. Tang, W. Pang, and A. X. Liu, “Self-adaptive parameter and
strategy based particle swarm optimization for large-scale feature selec-
tion problems with multiple classifiers,” Appl. Soft Comput., vol. 88,
Mar. 2020, Art. no. 106031.

[60] S.-T. Hsieh, T.-Y. Sun, C.-C. Liu, and S.-J. Tsai, “Solving large scale
global optimization using improved particle swarm optimizer,” in Proc.
IEEE Congr. Evol. Comput., 2008, pp. 1777–1784.

[61] M. A. M. de Oca, D. Aydın, and T. Stützle, “An incremental particle
swarm for large-scale continuous optimization problems: An exam-
ple of tuning-in-the-loop (re)design of optimization algorithms,” Soft
Comput., vol. 15, no. 11, pp. 2233–2255, 2011.

[62] M. A. M. De Oca, K. Van den Enden, and T. Stützle, “Incremental
particle swarm-guided local search for continuous optimization,” in
Proc. Int. Workshop Hybrid Metaheuristics, 2008, pp. 72–86.

[63] J. Garcí-Nieto and E. Alba, “Restart particle swarm optimization with
velocity modulation: A scalability test,” Soft Comput., vol. 15, no. 11,
pp. 2221–2232, 2011.

[64] S. Cheng, Y. Shi, and Q. Qin, “Dynamical exploitation space reduction
in particle swarm optimization for solving large scale problems,” in
Proc. IEEE Congr. Evol. Comput., 2012, pp. 1–8.

[65] J. Zhou, W. Fang, X. Wu, J. Sun, and S. Cheng, “An opposition-based
learning competitive particle swarm optimizer,” in Proc. IEEE Congr.
Evol. Comput. (CEC), 2016, pp. 515–521.

[66] T. Hendtlass, “Particle swarm optimisation and high dimensional
problem spaces,” in Proc. IEEE Congr. Evol. Comput., 2009,
pp. 1988–1994.

[67] T. Korenaga, T. Hatanaka, and K. Uosaki, “Performance improve-
ment of particle swarm optimization for high-dimensional func-
tion optimization,” in Proc. IEEE Congr. Evol. Comput., 2007,
pp. 3288–3293.

[68] W. Chu, X. Gao, and S. Sorooshian, “A new evolutionary search strat-
egy for global optimization of high-dimensional problems,” Inf. Sci.,
vol. 181, no. 22, pp. 4909–4927, 2011.

[69] W. Chu, X. Gao, and S. Sorooshian, “Fortify particle swam optimizer
(PSO) with principal components analysis: A case study in improv-
ing bound-handling for optimizing high-dimensional and complex
problems,” in Proc. IEEE Congr. Evol. Comput., 2011, pp. 1644–1648.

[70] Q. Zhang, W. Liu, X. Meng, B. Yang, and A. V. Vasilakos,
“Vector coevolving particle swarm optimization algorithm,” Inf. Sci.,
vols. 394–395, pp. 273–298, Jul. 2017.

[71] S.-Z. Zhao, J. J. Liang, P. N. Suganthan, and M. F. Tasgetiren,
“Dynamic multi-swarm particle swarm optimizer with local search for
large scale global optimization,” in Proc. IEEE Congr. Evol. Comput.,
2008, pp. 3845–3852.

[72] R. G. Regis, “Evolutionary programming for high-dimensional con-
strained expensive black-box optimization using radial basis functions,”
IEEE Trans. Evol. Comput., vol. 18, no. 3, pp. 326–347, Jun. 2014.

[73] P. Yang, K. Tang, and X. Yao, “Turning high-dimensional optimization
into computationally expensive optimization,” IEEE Trans. Evol.
Comput., vol. 22, no. 1, pp. 143–156, Feb. 2018.

[74] S. Mahdavi, M. E. Shiri, and S. Rahnamayan, “Cooperative
co-evolution with a new decomposition method for large-
scale optimization,” in Proc. IEEE Congr. Evol. Comput., 2014,
pp. 1285–1292.

[75] E. Li, H. Wang, and F. Ye, “Two-level multi-surrogate assisted
optimization method for high dimensional nonlinear problems,” Appl.
Soft Comput., vol. 46, pp. 26–36, Sep. 2016.

[76] M. N. Omidvar, X. Li, Y. Mei, and X. Yao, “Cooperative co-evolution
with differential grouping for large scale optimization,” IEEE Trans.
Evol. Comput., vol. 18, no. 3, pp. 378–393, Jun. 2014.

[77] B. Pang, Z. Ren, Y. Liang, and A. Chen, “Enhancing cooperative coevo-
lution for large scale optimization by adaptively constructing surrogate
models,” 2018, arXiv:1803.00906.

[78] B. Werth, E. Pitzer, and M. Affenzeller, “Enabling high-dimensional
surrogate-assisted optimization by using sliding windows,” in Proc.
Genet. Evol. Comput. Conf. Companion, 2017, pp. 1630–1637.

[79] C. Wang and J.-H. Gao, “A differential evolution algorithm with
cooperative coevolutionary selection operation for high-dimensional
optimization,” Optim. Lett., vol. 8, no. 2, pp. 477–492, 2014.

[80] I. De Falco, A. D. Cioppa, and G. A. Trunfio, “Large scale optimization
of computationally expensive functions: An approach based on parallel
cooperative coevolution and fitness metamodeling,” in Proc. Genet.
Evol. Comput. Conf. Companion, 2017, pp. 1788–1795.

[81] Z. Ren, B. Pang, Y. Liang, A. Chen, and Y. Zhang, “Surrogate model
assisted cooperative coevolution for large scale optimization,” 2018,
arXiv:1802.09746.

[82] C. Sun, Y. Jin, J. Ding, and J. Zeng, “Fitness estimation strategy
assisted competitive swarm optimizer for high dimensional expensive
problems,” in Proc. Genet. Evol. Comput. Conf., 2016, pp. 1277–1278.

[83] C. Sun, Y. Jin, R. Cheng, J. Ding, and J. Zeng, “Surrogate-assisted
cooperative swarm optimization of high-dimensional expensive prob-
lems,” IEEE Trans. Evol. Comput., vol. 21, no. 4, pp. 644–660,
Aug. 2017.

[84] Z. Yang, B. Sendhoff, K. Tang, and X. Yao, “Target shape design
optimization by evolving B-splines with cooperative coevolution,”
Appl. Soft Comput., vol. 48, pp. 672–682, Nov. 2016.

[85] A. Tiwari, R. Roy, G. Jared, and O. Munaux, “Interaction and multi-
objective optimisation,” in Proc. Genet. Evol. Comput. Conf., 2001,
pp. 671–678.

[86] H. Zille, H. Ishibuchi, S. Mostaghim, and Y. Nojima, “A framework
for large-scale multiobjective optimization based on problem trans-
formation,” IEEE Trans. Evol. Comput., vol. 22, no. 2, pp. 260–275,
Apr. 2018.

[87] A. Kabán, J. Bootkrajang, and R. J. Durrant, “Toward large-scale con-
tinuous EDA: A random matrix theory perspective,” Evol. Comput.,
vol. 24, no. 2, pp. 255–291, Jun. 2016.

[88] W. Dong, Y. Wang, and M. Zhou, “A latent space-based estima-
tion of distribution algorithm for large-scale global optimization,” Soft
Comput., vol. 23, no. 13, pp. 4593–4615, Jul. 2019.

[89] R. Liu, R. Ren, J. Liu, and J. Liu, “A clustering and dimensionality
reduction based evolutionary algorithm for large-scale multi-objective
problems,” Appl. Soft Comput., vol. 89, Apr. 2020, Art. no. 106120.

[90] G. Wu, W. Pedrycz, P. N. Suganthan, and R. Mallipeddi, “A vari-
able reduction strategy for evolutionary algorithms handling equality
constraints,” Appl. Soft Comput., vol. 37, pp. 774–786, Dec. 2015.

[91] G. Wu, W. Pedrycz, P. N. Suganthan, and H. Li, “Using variable
reduction strategy to accelerate evolutionary optimization,” Appl. Soft
Comput., vol. 61, pp. 283–293, Dec. 2017.

[92] M. L. Sanyang and A. Kabán, “REMEDA: Random embedding
EDA for optimising functions with intrinsic dimension,” in Parallel
Problem Solving From Nature. Heidelberg, Germany: Springer, 2016,
pp. 859–868.

[93] S. Wang, J. Liu, and Y. Jin, “Surrogate-assisted robust optimization of
large-scale networks based on graph embedding,” IEEE Trans. Evol.
Comput., vol. 24, no. 4, pp. 735–749, Aug. 2020.

840 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 26, NO. 5, OCTOBER 2022

[94] Z. Yang, K. Tang, and X. Yao, “Large scale evolutionary
optimization using cooperative coevolution,” Inf. Sci., vol. 178, no. 15,
pp. 2985–2999, 2008.

[95] B. Kazimipour, X. Li, and A. K. Qin, “A review of population initial-
ization techniques for evolutionary algorithms,” in Proc. IEEE Congr.
Evol. Comput., 2014, pp. 2585–2592.

[96] S. Mahdavi, S. Rahnamayan, and K. Deb, “Center-based initialization
of cooperative co-evolutionary algorithm for large-scale optimization,”
in Proc. IEEE Congr. Evol. Comput., 2016, pp. 3557–3565.

[97] B. Kazimipour, X. Li, and A. K. Qin, “Initialization methods for large
scale global optimization,” in Proc. IEEE Congr. Evol. Comput., 2013,
pp. 2750–2757.

[98] B. Kazimipour, X. Li, and A. K. Qin, “Effects of population initial-
ization on differential evolution for large scale optimization,” in Proc.
IEEE Congr. Evol. Comput., 2014, pp. 2404–2411.

[99] B. Kazimipour, X. Li, and A. Qin, “Why advanced population initial-
ization techniques perform poorly in high dimension?” in Simulated
Evolution and Learning (LNCS 8886). Heidelberg, Germany: Springer
Int., 2014, pp. 479–490.

[100] E. Segredo, B. Paechter, C. Segura, and C. I. González-Vila, “On the
comparison of initialisation strategies in differential evolution for large
scale optimisation,” Optim. Lett., vol. 12, no. 1, pp. 221–234, 2018.

[101] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, “When is ‘near-
est neighbor’ meaningful?” in Proc. Int. Conf. Database Theory, 1999,
pp. 217–235.

[102] R. J. Durrant and A. Kabán, “When is ‘nearest neighbour’ meaningful:
A converse theorem and implications,” J. Complex., vol. 25, no. 4,
pp. 385–397, 2009.

[103] E. Cantú-Paz and D. E. Goldberg, “On the scalability of parallel genetic
algorithms,” Evol. Comput., vol. 7, no. 4, pp. 429–449, Dec. 1999.

[104] M. Munetomo, N. Murao, and K. Akama, “Empirical investigations on
parallelized linkage identification,” in Parallel Problem Solving From
Nature. Heidelberg, Germany: Springer, 2004, pp. 322–331.

[105] A. Mendiburu, J. A. Lozano, and J. Miguel-Alonso, “Parallel imple-
mentation of EDAs based on probabilistic graphical models,” IEEE
Trans. Evol. Comput., vol. 9, no. 4, pp. 406–423, Aug. 2005.

[106] S. Iturriaga and S. Nesmachnow, “Solving very large optimization prob-
lems (up to one billion variables) with a parallel evolutionary algorithm
in CPU and GPU,” in Proc. 7th Int. Conf. P2P Parallel Grid Cloud
Internet Comput., 2012, pp. 267–272.

[107] Q. Duan, L. Sun, and Y. Shi, “Spark clustering computing platform
based parallel particle swarm optimizers for computationally expensive
global optimization,” in Proc. Int. Conf. Parallel Problem Solving Nat.,
2018, pp. 424–435.

[108] B. Cao, S. Fan, J. Zhao, P. Yang, K. Muhammad, and M. Tanveer,
“Quantum-enhanced multiobjective large-scale optimization via paral-
lelism,” Swarm Evol. Comput., vol. 57, Sep. 2020, Art. no. 100697.

[109] M. Lastra, D. Molina, and J. M. Benítez, “A high performance memetic
algorithm for extremely high-dimensional problems,” Inf. Sci., vol. 293,
pp. 35–58, Feb. 2015.

[110] D. Molina, M. Lozano, and F. Herrera, “MA-SW-Chains: Memetic
algorithm based on local search chains for large scale continuous
global optimization,” in Proc. IEEE Congr. Evol. Comput., 2010,
pp. 3153–3160.

[111] A. Cano and C. García-Martínez, “100 million dimensions large-scale
global optimization using distributed GPU computing,” in Proc. IEEE
Congr. Evol. Comput., 2016, pp. 3566–3573.

[112] A. Cano, C. García-Martínez, and S. Ventura, “Extremely high-
dimensional optimization with mapreduce: Scaling functions and
algorithm,” Inf. Sci., vols. 415–416, pp. 110–127, Nov. 2017.

[113] Y. Su, K. Zhou, X. Zhang, R. Cheng, and C. Zheng, “A parallel multi-
objective evolutionary algorithm for community detection in large-scale
complex networks,” Inf. Sci., vol. 576, pp. 374–392, Oct. 2021.

[114] B. Cao, J. Zhao, Z. Lv, and X. Liu, “A distributed parallel cooper-
ative coevolutionary multiobjective evolutionary algorithm for large-
scale optimization,” IEEE Trans. Ind. Informat., vol. 13, no. 4,
pp. 2030–2038, Aug. 2017.

[115] M. N. Omidvar, M. Yang, Y. Mei, X. Li, and X. Yao, “DG2: A
faster and more accurate differential grouping for large-scale black-box
optimization,” IEEE Trans. Evol. Comput., vol. 21, no. 6, pp. 929–942,
Dec. 2017.

[116] P. Yang, K. Tang, and X. Yao, “A parallel divide-and-conquer
based evolutionary algorithm for large-scale optimization,” 2018,
arXiv:1812.02500.

[117] G. Roy, H. Lee, J. L. Welch, Y. Zhao, V. Pandey, and D. Thurston,
“A distributed pool architecture for genetic algorithms,” in Proc. IEEE
Congr. Evol. Comput., 2009, pp. 1177–1184.

[118] Y.-H. Jia et al., “Distributed cooperative co-evolution with adaptive
computing resource allocation for large scale optimization,” IEEE
Trans. Evol. Comput., vol. 23, no. 2, pp. 188–202, Apr. 2019.

[119] J. R. R. A. Martins and A. B. Lambe, “Multidisciplinary design
optimization: A survey of architectures,” AIAA J., vol. 51, no. 9,
pp. 2049–2075, 2013.

[120] A. Yassine and D. Braha, “Complex concurrent engineering and the
design structure matrix method,” Concurrent Eng., vol. 11, no. 3,
pp. 165–176, 2003.

[121] K. Li, M. N. Omidvar, K. Deb, and X. Yao, “Variable interaction in
multi-objective optimization problems,” in Parallel Problem Solving
From Nature. Cham, Switzerland: Springer Int., 2016, pp. 399–409.

[122] P. Xu, W. Luo, X. Lin, J. Zhang, Y. Qiao, and X. Wang,
“Constraint-objective cooperative coevolution for large-scale con-
strained optimization,” ACM Trans. Evol. Learn. Optim., vol. 1, no. 3,
pp. 1–26, Aug. 2021.

[123] L. Sun, S. Yoshida, X. Cheng, and Y. Liang, “A cooperative particle
swarm optimizer with statistical variable interdependence learning,” Inf.
Sci., vol. 186, no. 1, pp. 20–39, 2012.

[124] A. Song, W.-N. Chen, P.-T. Luo, Y.-J. Gong, and J. Zhang, “Overlapped
cooperative co-evolution for large scale optimization,” in Proc. IEEE
Int. Conf. Syst. Man Cybern., 2017, pp. 3689–3694.

[125] M. Munetomo and D. E. Goldberg, “Linkage identification by non-
monotonicity detection for overlapping functions,” Evol. Comput.,
vol. 7, no. 4, pp. 377–398, Dec. 1999.

[126] Y. Sun, X. Li, A. Ernst, and M. N. Omidvar, “Decomposition for large-
scale optimization problems with overlapping components,” in Proc.
IEEE Congr. Evol. Comput., 2019, pp. 326–333.

[127] L. Li, W. Fang, Y. Mei, and Q. Wang, “Cooperative coevolution for
large-scale global optimization based on fuzzy decomposition,” Soft
Comput., vol. 25, no. 5, pp. 3593–3608, Mar. 2021.

[128] D. Thierens, “The linkage tree genetic algorithm,” in Parallel
Problem Solving From Nature. Heidelberg, Germany: Springer, 2010,
pp. 264–273.

[129] P. A. N. Bosman and D. Thierens, “More concise and robust link-
age learning by filtering and combining linkage hierarchies,” in Proc.
Genet. Evol. Comput. Conf., 2013, pp. 359–366.

[130] T.-L. Yu, D. E. Goldberg, K. Sastry, C. F. Lima, and M. Pelikan,
“Dependency structure matrix, genetic algorithms, and effective recom-
bination,” Evol. Comput., vol. 17, no. 4, pp. 595–626, 2009.

[131] T.-L. Yu, K. Sastry, and D. E. Goldberg, “Linkage learning, overlapping
building blocks, and systematic strategy for scalable recombination,”
in Proc. Genet. Evol. Comput. Conf., 2005, pp. 1217–1224.

[132] Y. Sun, M. Kirley, and S. K. Halgamuge, “A recursive decomposition
method for large scale continuous optimization,” IEEE Trans. Evol.
Comput., vol. 22, no. 5, pp. 647–661, Oct. 2018.

[133] Y.-H. Jia, Y. Mei, and M. Zhang, “Contribution-based cooperative
co-evolution for nonseparable large-scale problems with overlapping
subcomponents,” IEEE Trans. Cybern., early access, Oct. 29, 2020,
doi: 10.1109/TCYB.2020.3025577.

[134] A. Song, W.-N. Chen, Y.-J. Gong, X. Luo, and J. Zhang, “A divide-
and-conquer evolutionary algorithm for large-scale virtual network
embedding,” IEEE Trans. Evol. Comput., vol. 24, no. 3, pp. 566–580,
Jun. 2020.

[135] S. Strasser, J. Sheppard, N. Fortier, and R. Goodman, “Factored evo-
lutionary algorithms,” IEEE Trans. Evol. Comput., vol. 21, no. 2,
pp. 281–293, Apr. 2017.

[136] M. Pelikan, D. E. Goldberg, and E. Cantú-Paz, “BOA: The Bayesian
optimization algorithm,” in Proc. 1st Annu. Conf. Genet. Evol. Comput.
Vol. 1, 1999, pp. 525–532.

[137] M. Tsuji, M. Munetomo, and K. Akama, “Linkage identification by fit-
ness difference clustering,” Evol. Comput., vol. 14, no. 4, pp. 383–409,
2006.

[138] L. R. Emmendorfer and A. T. R. Pozo, “Effective linkage learning
using low-order statistics and clustering,” IEEE Trans. Evol. Comput.,
vol. 13, no. 6, pp. 1233–1246, Dec. 2009.

[139] C.-Y. Chuang and Y.-P. Chen, “Sensibility of linkage information and
effectiveness of estimated distributions,” Evol. Comput., vol. 18, no. 4,
pp. 547–579, 2010.

[140] M. N. Omidvar, X. Li, and X. Yao, “Smart use of computational
resources based on contribution for cooperative co-evolutionary algo-
rithms,” in Proc. Genet. Evol. Comput. Conf., 2011, pp. 1115–1122.

[141] S. Liu, Q. Lin, Y. Tian, and K. C. Tan, “A variable importance-
based differential evolution for large-scale multiobjective
optimization,” IEEE Trans. Cybern., early access, Aug. 18, 2021,
doi: 10.1109/TCYB.2021.3098186.

http://dx.doi.org/10.1109/TCYB.2020.3025577
http://dx.doi.org/10.1109/TCYB.2021.3098186

OMIDVAR et al.: REVIEW OF POPULATION-BASED METAHEURISTICS FOR LARGE-SCALE BLACK-BOX GLOBAL OPTIMIZATION—II 841

[142] X. Shen, Y. Guo, and A. Li, “Cooperative coevolution with an improved
resource allocation for large-scale multi-objective software project
scheduling,” Appl. Soft Comput., vol. 88, Mar. 2020, Art. no. 106059.

[143] D. Yazdani, M. N. Omidvar, J. Branke, T. T. Nguyen, and X. Yao,
“Scaling up dynamic optimization problems: A divide-and-conquer
approach,” IEEE Trans. Evol. Comput., vol. 24, no. 1, pp. 1–15,
Feb. 2020.

[144] M. N. Omidvar, B. Kazimipour, X. Li, and X. Yao, “CBCC3—
A contribution-based cooperative co-evolutionary algorithm with
improved exploration/exploitation balance,” in Proc. IEEE Congr. Evol.
Comput. (CEC), Vancouver, BC, Canada, 2016, pp. 3541–3548.

[145] M. Yang et al., “Efficient resource allocation in cooperative co-
evolution for large-scale global optimization,” IEEE Trans. Evol.
Comput., vol. 21, no. 4, pp. 493–505, Aug. 2017.

[146] M. Yang, A. Zhou, C. Li, J. Guan, and X. Yan, “CCFR2: A more
efficient cooperative co-evolutionary framework for large-scale global
optimization,” Inf. Sci., vol. 512, pp. 64–79, Feb. 2020.

[147] Z. Ren, Y. Liang, A. Zhang, Y. Yang, Z. Feng, and L. Wang, “Boosting
cooperative coevolution for large scale optimization with a fine-grained
computation resource allocation strategy,” 2018, arXiv:1802.09703.

[148] G. A. Trunfio, “Adaptation in cooperative coevolutionary optimization,”
in Adaptation and Hybridization in Computational Intelligence. Cham,
Switzerland: Springer, 2015, pp. 91–109.

[149] M. A. Meselhi, S. M. Elsayed, R. A. Sarker, and D. L. Essam,
“Contribution based co-evolutionary algorithm for large-scale
optimization problems,” IEEE Access, vol. 8, pp. 203369–203381,
2020.

[150] S. Mahdavi, S. Rahnamayan, and M. E. Shiri, “Multilevel frame-
work for large-scale global optimization,” Soft Comput., vol. 21,
pp. 4111–4140, Feb. 2016.

[151] S. Mahdavi, S. Rahnamayan, and M. E. Shiri, “Incremental cooperative
coevolution for large-scale global optimization,” Soft Comput., vol. 22,
pp. 2045–2064, Dec. 2016.

[152] S. Mahdavi, S. Rahnamayan, and M. E. Shiri, “Cooperative co-
evolution with sensitivity analysis-based budget assignment strategy
for large-scale global optimization,” Appl. Intell., vol. 47, no. 3,
pp. 888–913, 2017.

[153] X. Peng and Y. Wu, “Large-scale cooperative co-evolution with
bi-objective selection based imbalanced multi-modal optimization,”
in Proc. IEEE Congr. Evol. Comput., Donostia, Spain, 2017,
pp. 1527–1532.

[154] B. Kazimipour, M. N. Omidvar, A. K. Qin, X. Li, and X. Yao,
“Bandit-based cooperative coevolution for tackling contribution imbal-
ance in large-scale optimization problems,” Appl. Soft Comput., vol. 76,
pp. 265–281, Mar. 2019.

[155] F.-M. D. Rainville, M. Sebag, C. Gagné, M. Schoenauer, and
D. Laurendeau, “Sustainable cooperative coevolution with a multi-
armed bandit,” in Proc. 15th Annu. Conf. Genet. Evol. Comput., 2013,
pp. 1517–1524.

[156] C. A. Coello Coello and G. B. Lamont, Applications of Multi-Objective
Evolutionary Algorithms, vol. 1. Singapore: World Sci., 2004.

[157] B. Li, J. Li, K. Tang, and X. Yao, “Many-objective evolutionary
algorithms: A survey,” ACM Comput. Surv., vol. 48, no. 1, p. 13, 2015.

[158] J. J. Durillo, A. J. Nebro, C. A. Coello Coello, F. Luna, and E. Alba,
“A comparative study of the effect of parameter scalability in multi-
objective metaheuristics,” in Proc. IEEE Congr. Evol. Comput. (IEEE
World Congress on Computational Intelligence), Hong Kong, 2008,
pp. 1893–1900.

[159] J. J. Durillo, A. J. Nebro, C. A. Coello Coello, J. García-Nieto, F. Luna,
and E. Alba, “A study of multiobjective metaheuristics when solving
parameter scalable problems,” IEEE Trans. Evol. Comput., vol. 14,
no. 4, pp. 618–635, Aug. 2010.

[160] S. Liu, Q. Lin, K.-C. Wong, Q. Li, and K. C. Tan, “Evolutionary
large-scale multiobjective optimization: Benchmarks and algo-
rithms,” IEEE Trans. Evol. Comput., early access, Jul. 26, 2021,
doi: 10.1109/TEVC.2021.3099487.

[161] Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algo-
rithm based on decomposition,” IEEE Trans. Evol. Comput., vol. 11,
no. 6, pp. 712–731, Dec. 2007.

[162] X. Ma et al., “A multiobjective evolutionary algorithm based on deci-
sion variable analyses for multiobjective optimization problems with
large-scale variables,” IEEE Trans. Evol. Comput., vol. 20, no. 2,
pp. 275–298, Apr. 2016.

[163] X. Zhang, Y. Tian, R. Cheng, and Y. Jin, “A decision variable
clustering-based evolutionary algorithm for large-scale many-objective
optimization,” IEEE Trans. Evol. Comput., vol. 22, no. 1, pp. 97–112,
Feb. 2018.

[164] A. E. I. Brownlee, J. A. Wright, M. He, T. Lee, and P. McMenemy,
“A novel encoding for separable large-scale multi-objective problems
and its application to the optimisation of housing stock improvements,”
Appl. Soft Comput., vol. 96, Nov. 2020, Art. no. 106650.

[165] L. M. Antonio and C. A. Coello Coello, “Use of cooperative
coevolution for solving large scale multiobjective optimization prob-
lems,” in Proc. IEEE Congr. Evol. Comput., Cancun, Mexico, 2013,
pp. 2758–2765.

[166] L. M. Antonio and C. A. Coello Coello, “Decomposition-based
approach for solving large scale multi-objective problems,” in Parallel
Problem Solving From Nature. Cham, Switzerland: Springer, 2016,
pp. 525–534.

[167] A. Song, Q. Yang, W.-N. Chen, and J. Zhang, “A random-
based dynamic grouping strategy for large scale multi-objective
optimization,” in Proc. IEEE Congr. Evol. Comput., Vancouver, BC,
Canada, 2016, pp. 468–475.

[168] B. Cao, J. Zhao, Y. Gu, Y. Ling, and X. Ma, “Applying graph-based dif-
ferential grouping for multiobjective large-scale optimization,” Swarm
Evol. Comput., vol. 53, Mar. 2020, Art. no. 100626.

[169] Q. Wang, L. Zhang, S. Wei, and B. Li, “Tensor decomposition-
based alternate sub-population evolution for large-scale many-objective
optimization,” Inf. Sci., vol. 569, pp. 376–399, Aug. 2021.

[170] L. Ma, M. Huang, S. Yang, R. Wang, and X. Wang, “An adaptive local-
ized decision variable analysis approach to large-scale multiobjective
and many-objective optimization,” IEEE Trans. Cybern., early access,
Jan. 21, 2021, doi: 10.1109/TCYB.2020.3041212.

[171] H. Chen, R. Cheng, J. Wen, H. Li, and J. Weng, “Solving large-scale
many-objective optimization problems by covariance matrix adapta-
tion evolution strategy with scalable small subpopulations,” Inf. Sci.,
vol. 509, pp. 457–469, Jan. 2020.

[172] A. Tiwari and R. Roy, “Variable dependence interaction and multi-
objective optimisation,” in Proc. Genet. Evol. Comput. Conf., 2002,
pp. 602–609.

[173] C. He et al., “Accelerating large-scale multiobjective optimization via
problem reformulation,” IEEE Trans. Evol. Comput., vol. 23, no. 6,
pp. 949–961, Dec. 2019.

[174] H. Zille and S. Mostaghim, “Comparison study of large-scale optimi-
sation techniques on the LSMOP benchmark functions,” in Proc. IEEE
Symp. Ser. Comput. Intell., Honolulu, HI, USA, 2017, pp. 1–8.

[175] H. Zille, H. Ishibuchi, S. Mostaghim, and Y. Nojima, “Weighted
optimization framework for large-scale multi-objective optimization,”
in Proc. Genet. Evol. Comput. Conf., 2016, pp. 83–84.

[176] R. Liu, J. Liu, Y. Li, and J. Liu, “A random dynamic grouping
based weight optimization framework for large-scale multi-objective
optimization problems,” Swarm Evol. Comput., vol. 55, Jun. 2020,
Art. no. 100684.

[177] Y. Tian, C. Lu, X. Zhang, K. C. Tan, and Y. Jin, “Solving large-scale
multiobjective optimization problems with sparse optimal solutions via
unsupervised neural networks,” IEEE Trans. Cybern., vol. 51, no. 6,
pp. 3115–3128, Jun. 2021.

[178] Y. Tian, C. Lu, X. Zhang, F. Cheng, and Y. Jin, “A pattern mining-
based evolutionary algorithm for large-scale sparse multiobjective
optimization problems,” IEEE Trans. Cybern., early access, Dec. 30,
2020, doi: 10.1109/TCYB.2020.3041325.

[179] Y. Tian, X. Zhang, C. Wang, and Y. Jin, “An evolutionary algorithm for
large-scale sparse multiobjective optimization problems,” IEEE Trans.
Evol. Comput., vol. 24, no. 2, pp. 380–393, Apr. 2020.

[180] Y. Tian, R. Liu, X. Zhang, H. Ma, K. C. Tan, and Y. Jin, “A multi-
population evolutionary algorithm for solving large-scale multimodal
multiobjective optimization problems,” IEEE Trans. Evol. Comput.,
vol. 25, no. 3, pp. 405–418, Jun. 2021.

[181] J.-H. Yi et al., “Behavior of crossover operators in NSGA-III for
large-scale optimization problems,” Inf. Sci., vol. 509, pp. 470–487,
Jan. 2020.

[182] K. Deb and H. Jain, “An evolutionary many-objective optimization
algorithm using reference-point-based nondominated sorting approach,
part I: Solving problems with box constraints,” IEEE Trans. Evol.
Comput., vol. 18, no. 4, pp. 577–601, Aug. 2014.

[183] Y. Yin, Y. Zhao, H. Li, and X. Dong, “Multi-objective evolution-
ary clustering for large-scale dynamic community detection,” Inf. Sci.,
vol. 549, pp. 269–287, Mar. 2021.

[184] L. P. Cota et al., “An adaptive multi-objective algorithm based on
decomposition and large neighborhood search for a green machine
scheduling problem,” Swarm Evol. Comput., vol. 51, Dec. 2019,
Art. no. 100601.

http://dx.doi.org/10.1109/TEVC.2021.3099487
http://dx.doi.org/10.1109/TCYB.2020.3041212
http://dx.doi.org/10.1109/TCYB.2020.3041325

842 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 26, NO. 5, OCTOBER 2022

[185] S. Qin, C. Sun, Y. Jin, Y. Tan, and J. Fieldsend, “Large-scale evolution-
ary multiobjective optimization assisted by directed sampling,” IEEE
Trans. Evol. Comput., vol. 25, no. 4, pp. 724–738, Aug. 2021.

[186] Y. Zhang, G.-G. Wang, K. Li, W.-C. Yeh, M. Jian, and J. Dong,
“Enhancing MOEA/D with information feedback models for large-
scale many-objective optimization,” Inf. Sci., vol. 522, pp. 1–16,
Jun. 2020.

[187] W. Hong, K. Tang, A. Zhou, H. Ishibuchi, and X. Yao, “A scalable
indicator-based evolutionary algorithm for large-scale multiobjective
optimization,” IEEE Trans. Evol. Comput., vol. 23, no. 3, pp. 525–537,
Jun. 2019.

[188] J. Xiao, T. Zhang, J. Du, and X. Zhang, “An evolutionary multiobjective
route grouping-based heuristic algorithm for large-scale capacitated
vehicle routing problems,” IEEE Trans. Cybern., vol. 51, no. 8,
pp. 4173–4186, Aug. 2021.

[189] X. Zhang, K. Zhou, H. Pan, L. Zhang, X. Zeng, and Y. Jin, “A network
reduction-based multiobjective evolutionary algorithm for community
detection in large-scale complex networks,” IEEE Trans. Cybern.,
vol. 50, no. 2, pp. 703–716, Feb. 2020.

[190] J. Zhang, L. Xing, G. Peng, F. Yao, and C. Chen, “A large-scale
multiobjective satellite data transmission scheduling algorithm based
on SVM + NSGA-II,” Swarm Evol. Comput., vol. 50, Nov. 2019,
Art. no. 100560.

[191] S.-Y. Ho, L.-S. Shu, and J.-H. Chen, “Intelligent evolutionary algo-
rithms for large parameter optimization problems,” IEEE Trans. Evol.
Comput., vol. 8, no. 6, pp. 522–541, Dec. 2004.

[192] M. Gong, H. Li, E. Luo, J. Liu, and J. Liu, “A multiobjective coop-
erative coevolutionary algorithm for hyperspectral sparse unmixing,”
IEEE Trans. Evol. Comput., vol. 21, no. 2, pp. 234–248, Apr. 2017.

[193] Y. Wang, B. Li, and T. Weise, “Estimation of distribution and
differential evolution cooperation for large scale economic load dis-
patch optimization of power systems,” Inf. Sci., vol. 180, no. 12,
pp. 2405–2420, 2010.

[194] R. Shang, K. Dai, L. Jiao, and R. Stolkin, “Improved memetic algo-
rithm based on route distance grouping for multiobjective large scale
capacitated arc routing problems,” IEEE Trans. Cybern., vol. 46, no. 4,
pp. 1000–1013, Apr. 2016.

[195] A. Kumar, G. Wu, M. Z. Ali, R. Mallipeddi, P. N. Suganthan, and
S. Das, “A test-suite of non-convex constrained optimization problems
from the real-world and some baseline results,” Swarm Evol. Comput.,
vol. 56, Aug. 2020, Art. no. 100693.

[196] E. Mezura-Montes and C. A. Coello Coello, “Constraint-handling
in nature-inspired numerical optimization: Past, present and future,”
Swarm Evol. Comput., vol. 1, no. 4, pp. 173–194, 2011.

[197] C. Peng and Q. Hui, “Comparison of differential grouping and
random grouping methods on sCCPSO for large-scale constrained
optimization,” in Proc. IEEE Congr. Evol. Comput., Vancouver, BC,
Canada, 2016, pp. 2057–2063.

[198] E. Sayed, D. Essam, R. Sarker, and S. Elsayed, “Decomposition-based
evolutionary algorithm for large scale constrained problems,” Inf. Sci.,
vol. 316, pp. 457–486, Sep. 2015.

[199] A. E. Aguilar-Justo and E. Mezura-Montes, “Towards an improvement
of variable interaction identification for large-scale constrained prob-
lems,” in Proc. IEEE Congr. Evol. Comput., Vancouver, BC, Canada,
2016, pp. 4167–4174.

[200] A. E. Aguilar-Justo, E. Mezura-Montes, S. M. Elsayed, and
R. A. Sarker, “Decomposition of large-scale constrained problems
using a genetic-based search,” in Proc. IEEE Int. Autumn Meeting
Power Electron. Comput. (ROPEC), Ixtapa, Mexico, 2016, pp. 1–6.

[201] A. E. Aguilar-Justo and E. Mezura-Montes, “A local cooperative
approach to solve large-scale constrained optimization problems,”
Swarm Evol. Comput., vol. 51, Dec. 2019, Art. no. 100577.

[202] J. Blanchard, C. Beauthier, and T. Carletti, “A cooperative co-
evolutionary algorithm for solving large-scale constrained problems
with interaction detection,” in Proc. Genet. Evol. Comput. Conf., 2017,
pp. 697–704.

[203] M. N. Omidvar, “IDG: A faster and more accurate differential group-
ing algorithm,” Ph.D. dissertation, Dept. School Comput. Sci., Univ.
Birmingham, Birmingham U.K., 2015.

[204] C. He, R. Cheng, Y. Tian, X. Zhang, K. C. Tan, and Y. Jin,
“Paired offspring generation for constrained large-scale multiobjective
optimization,” IEEE Trans. Evol. Comput., vol. 25, no. 3, pp. 448–462,
Jun. 2021.

[205] W. Chu, X. Gao, and S. Sorooshian, “Handling boundary constraints
for particle swarm optimization in high-dimensional search space,” Inf.
Sci., vol. 181, no. 20, pp. 4569–4581, 2011.

[206] O. A. Elhara, “Stochastic black-box optimization and benchmarking in
large dimensions,” Ph.D. dissertation, Dept. Laboratoire de Recherche
en Informatique, Université Paris-Saclay, Gif-sur-Yvette, France, 2017.

[207] K. Tang et al., “Benchmark functions for the CEC’2008 special session
and competition on large scale global optimization,” Dept. Nat. Inspired
Comput. Appl. Lab., USTC, Hefei, China, Rep., 2007.

[208] K. Tang, X. Li, P. N. Suganthan, Z. Yang, and T. Weise,
“Benchmark functions for the CEC’2010 special session and competi-
tion on large-scale global optimization,” Dept. Nat. Inspired Comput.
Appl. Lab., USTC, Hefei, China, Rep., 2009. [Online]. Available:
http://nical.ustc.edu.cn/cec10ss.php

[209] X. Li, K. Tang, M. N. Omidvar, Z. Yang, and K. Qin,
“Benchmark functions for the CEC’2013 special session and
competition on large-scale global optimization,” RMIT Univ.,
Melbourne, VIC, Australia, Rep., 2013, [Online]. Available:
http://goanna.cs.rmit.edu.au/∼xiaodong/cec13-lsgo

[210] M. Jamil and X.-S. Yang, “A literature survey of benchmark functions
for global optimization problems,” 2013, arXiv:1308.4008.

[211] P. Suganthan et al., “Problem definitions and evaluation criteria for
the CEC 2005 special session on real-parameter optimization,” Elect.
Electron. Eng., Nanyang Technol. Univ., Singapore, Rep. 2005005,
2005. [Online]. Available: http://www.ntu.edu.sg/home/EPNSugan

[212] M. Lozano, D. Molina, and F. Herrera, “Editorial scalability of evolu-
tionary algorithms and other metaheuristics for large-scale continuous
optimization problems,” Soft Comput., vol. 15, no. 11, pp. 2085–2087,
2011.

[213] N. Hansen, S. Finck, R. Ros, and A. Auger, “Real-parameter black-
box optimization benchmarking 2009: Noiseless functions definitions,”
INRIA, Le Chesnay-Rocquencourt, France, Rep. RR-6829, 2009.

[214] Y. Sun, M. Kirley, and S. K. Halgamuge, “Quantifying variable
interactions in continuous optimization problems,” IEEE Trans. Evol.
Comput., vol. 21, no. 2, pp. 249–264, Apr. 2017.

[215] E. Sayed, D. Essam, and R. Sarker, “Dependency identification tech-
nique for large scale optimization problems,” in Proc. IEEE Congr.
Evol. Comput., Brisbane, QLD, Australia, 2012, pp. 1–8.

[216] S. K. Goh, K. C. Tan, A. Al-Mamun, and H. A. Abbass, “Evolutionary
big optimization (BigOpt) of signals,” in Proc. IEEE Congr. Evol.
Comput., Sendai, Japan, 2015, pp. 3332–3339.

[217] R. Cheng, Y. Jin, M. Olhofer, and B. Sendhoff, “Test problems
for large-scale multiobjective and many-objective optimization,” IEEE
Trans. Cybern., vol. 47, no. 12, pp. 4108–4121, Dec. 2017.

[218] M. N. Omidvar, X. Li, and K. Tang, “Designing benchmark prob-
lems for large-scale continuous optimization,” Inf. Sci., vol. 316,
pp. 419–436, Sep. 2015.

[219] E. D. Dolan, J. J. More, and T. S. Munson, “Benchmarking optimization
software with COPS 3.0,” Dept. Math. Comput. Sci. Division, Argonne
Nat. Lab., Argonne, IL, USA, Rep. ANL/MCS-TM-273, 2004.

[220] W. Luo, B. Yang, C. Bu, and X. Lin, “A hybrid particle swarm
optimization for high-dimensional dynamic optimization,” in Proc.
Asia–Pac. Conf. Simul. Evol. Learn., 2017, pp. 981–993.

[221] L.-Y. Tseng and C. Chen, “Multiple trajectory search for large scale
global optimization,” in Proc. IEEE Congr. Evol. Comput., Hong Kong,
2008, pp. 3052–3059.

[222] Y. Wang and B. Li, “A restart univariate estimation of distribution
algorithm: Sampling under mixed Gaussian and lévy probability dis-
tribution,” in Proc. IEEE Congr. Evol. Comput., Hong Kong, 2008,
pp. 3917–3924.

[223] Y. Wang and B. Li, “Two-stage based ensemble optimization for
large-scale global optimization,” in Proc. IEEE Congr. Evol. Comput.,
Barcelona, Spain, 2010, pp. 1–8.

[224] A. LaTorre, S. Muelas, and J.-M. Peña, “A MOS-based dynamic
memetic differential evolution algorithm for continuous optimization:
A scalability test,” Soft Comput., vol. 15, no. 11, pp. 2187–2199, 2011.

[225] A. LaTorre, S. Muelas, and J.-M. Peña, “Large scale global
optimization: Experimental results with MOS-based hybrid algo-
rithms,” in Proc. IEEE Congr. Evol. Comput., Cancun, Mexico, 2013,
pp. 2742–2749.

[226] D. Molina and F. Herrera, “Iterative hybridization of DE with local
search for the CEC’2015 special session on large scale global
optimization,” in Proc. IEEE Congr. Evol Comput., Sendai, Japan,
2015, pp. 1974–1978.

[227] D. Molina, A. LaTorre, and F. Herrera, “SHADE with iterative local
search for large-scale global optimization,” in Proc. IEEE Congr. Evol.
Comput. (CEC), Rio de Janeiro, Brazil, Jul. 2018, pp. 1–8.

[228] A. A. Hadi, A. W. Mohamed, and K. M. Jambi, “LSHADE-SPA
memetic framework for solving large-scale optimization problems,”
Complex Intell. Syst., vol. 5, no. 1, pp. 25–40, 2019.

OMIDVAR et al.: REVIEW OF POPULATION-BASED METAHEURISTICS FOR LARGE-SCALE BLACK-BOX GLOBAL OPTIMIZATION—II 843

[229] A. Bolufé-Röhler, S. Chen, and D. Tamayo-Vera, “An analysis of min-
imum population search on large scale global optimization,” in Proc.
IEEE Congr. Evol. Comput. (CEC), Wellington, New Zealand, 2019,
pp. 1228–1235.

[230] Y. Wang et al., “Two-stage based ensemble optimization framework
for large-scale global optimization,” Eur. J. Oper. Res., vol. 228, no. 2,
pp. 308–320, 2013.

[231] D. Molina, A. LaTorre, and F. Herrera, “An insight into bio-inspired
and evolutionary algorithms for global optimization: Review, analysis,
and lessons learnt over a decade of competitions,” Cogn. Comput.,
vol. 10, no. 4, pp. 517–544, 2018.

[232] D. M. Cabrera, “Evolutionary algorithms for large-scale global optimi-
sation: A snapshot, trends and challenges,” Progr. Artif. Intell., vol. 5,
no. 2, pp. 85–89, 2016.

[233] Y. Mei, M. N. Omidvar, X. Li, and X. Yao, “A competitive
divide-and-conquer algorithm for unconstrained large-scale black-box
optimization,” ACM Trans. Math. Softw., vol. 42, no. 2, p. 13, 2016.

[234] K. Sörensen, “Metaheuristics—The metaphor exposed,” Int. Trans.
Oper. Res., vol. 22, no. 1, pp. 3–18, 2015.

[235] K. O. Stanley, J. Clune, J. Lehman, and R. Miikkulainen, “Designing
neural networks through neuroevolution,” Nat. Mach. Intell., vol. 1,
no. 1, pp. 24–35, 2019.

[236] F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley, and
J. Clune, “Deep neuroevolution: Genetic algorithms are a competi-
tive alternative for training deep neural networks for reinforcement
learning,” 2018, arXiv:1712.06567.

[237] S. Fujino, T. Hatanaka, N. Mori, and K. Matsumoto, “The evolution-
ary deep learning based on deep convolutional neural network for the
anime storyboard recognition,” in Proc. Int. Symp. Distrib. Comput.
Artif. Intell., 2017, pp. 278–285.

[238] G. Morse and K. O. Stanley, “Simple evolutionary optimization can
rival stochastic gradient descent in neural networks,” in Proc. Genet.
Evol. Comput. Conf., 2016, pp. 477–484.

[239] E. Real et al., “Large-scale evolution of image classifiers,” in Proc.
34th Int. Conf. Mach. Learn. Vol. 70, 2017, pp. 2902–2911.

[240] A. Yaman, D. C. Mocanu, G. Iacca, G. Fletcher, and M. Pechenizkiy,
“Limited evaluation cooperative co-evolutionary differential evolution
for large-scale neuroevolution,” in Proc. Genet. Evol. Comput. Conf.,
2018, pp. 569–576.

[241] X. Cui, W. Zhang, Z. Tüske, and M. Picheny, “Evolutionary stochas-
tic gradient descent for optimization of deep neural networks,” in
Advances in Neural Information Processing Systems. Red Hook, NY,
USA: Curran, 2018, pp. 6048–6058.

[242] M. Jaderberg et al., “Population based training of neural networks,”
2017, arXiv:1711.09846.

[243] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A
survey,” J. Mach. Learn. Res., vol. 20, pp. 1–21, Mar. 2019.

[244] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever, “Evolution
strategies as a scalable alternative to reinforcement learning,”
Sep. 2017, arXiv:1703.03864.

[245] Y. Bengio, A. Lodi, and A. Prouvost, “Machine learning for combi-
natorial optimization: A methodological tour d’horizon,” Eur. J. Oper.
Res., vol. 290, no. 2, pp. 405–421, 2021.

[246] A. Lodi and G. Zarpellon, “On learning and branching: A survey,”
TOP, vol. 25, no. 2, pp. 207–236, 2017.

[247] Y. Sun, X. Li, and A. Ernst, “Using statistical measures and machine
learning for graph reduction to solve maximum weight clique prob-
lems,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 5,
pp. 1746–1760, May 2021.

[248] Y. Sun, A. Ernst, X. Li, and J. Weiner, “Generalization of machine
learning for problem reduction: A case study on travelling salesman
problems,” OR Spectr., vol. 43, no. 3, pp. 607–633, 2021.

[249] D. Bertsimas and J. N. Tsitsiklis, Introduction to Linear Optimization.
Belmont, MA, USA: Athena Sci., 1997.

[250] M. Kruber, M. E. Lübbecke, and A. Parmentier, “Learning when
to use a decomposition,” in Integration of AI and OR Techniques
in Constraint Programming (Lecture Notes in Computer Science),
D. Salvagnin and M. Lombardi, Eds. Cham, Switzerland: Springer Int.,
2017, pp. 202–210.

[251] C. Blum and G. R. Raidl, Hybrid Metaheuristics: Powerful Tools for
Optimization. Cham, Switzerland: Springer, 2016.

[252] A. Kenny, X. Li, A. T. Ernst, and D. Thiruvady, “Towards solving
large-scale precedence constrained production scheduling problems in
mining,” in Proc. Genet. Evol. Comput. Conf., 2017, pp. 1137–1144.

[253] A. Kenny, X. Li, and A. T. Ernst, “A merge search algorithm and its
application to the constrained pit problem in mining,” in Proc. Genet.
Evol. Comput. Conf., 2018, pp. 316–323.

[254] A. Kenny, X. Li, A. T. Ernst, and Y. Sun, “An improved merge search
algorithm for the constrained pit problem in open-pit mining,” in Proc.
Genet. Evol. Comput. Conf., 2019, pp. 294–302.

[255] S. Elsayed, R. Sarker, D. Essam, and C. A. Coello Coello,
“Evolutionary approach for large-Scale mine scheduling,” Inf. Sci.,
vol. 523, pp. 77–90, Jun. 2020.

[256] C. He, R. Cheng, C. Zhang, Y. Tian, Q. Chen, and X. Yao,
“Evolutionary large-scale multiobjective optimization for ratio error
estimation of voltage transformers,” IEEE Trans. Evol. Comput.,
vol. 24, no. 5, pp. 868–881, Oct. 2020.

Mohammad Nabi Omidvar (Senior
Member, IEEE) received the first bachelor’s
degree (First Class Hons.) in computer science, the
second bachelor’s degree in applied mathematics,
and the Ph.D. degree in computer science from
RMIT University, Melbourne, VIC, Australia, in
2010, 2014, and 2016, respectively.

He is currently an Assistant Professor of
Artificial Intelligence in Financial Services with the
Leeds University Business School and School of
Computing, University of Leeds, Leeds, U.K. Prior

to that, he was a Research Fellow with the School of Computer Science,
University of Birmingham, Birmingham, U.K. His current research interests
include large-scale global optimization, high-dimensional machine learning,
and AI for financial services.

Dr. Omidvar is the winner of IEEE CEC Large-Scale Global Optimization
Competition in 2019. He was a recipient of the IEEE TRANSACTIONS ON

EVOLUTIONARY COMPUTATION Outstanding Paper Award for his research
on large-scale global optimization in 2017, the Australian Postgraduate
Award in 2010, and the Best Computer Science Honours Thesis Award
from the School of Computer Science and IT, RMIT University. He was the
Chair of IEEE Computational Intelligence Taskforce on Large-Scale Global
Optimization.

Xiaodong Li (Fellow, IEEE) received the B.Sc.
degree from Xidian University, Xi’an, China, in
1988, and the Ph.D. degree in information science
from the University of Otago, Dunedin, New
Zealand, in 1998.

He is a Professor with the School of Computing
Technologies, RMIT University, Melbourne,
VIC, Australia. His research interests include
machine learning, evolutionary computation,
neural networks, data analytics, multiobjective
optimization, multimodal optimization, and swarm

intelligence.
Prof. Li was a recipient of the 2013 ACM SIGEVO Impact Award and the

2017 IEEE CIS IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

Outstanding Paper Award. He serves as an Associate Editor for the
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION and Swarm
Intelligence (Springer). He is the Former Vice-Chair of the IEEE Task Force
on Multimodal Optimization and the Former Chair of the IEEE CIS Task
Force on Large Scale Global Optimization.

Xin Yao (Fellow, IEEE) received the B.Sc. degree
from the University of Science and Technology of
China (USTC), Hefei, China, in 1982, the M.Sc.
degree from the North China Institute of Computing
Technologies, Beijing, China, in 1985, and the Ph.D.
degree from USTC in 1990.

He is the Chair Professor of Computer Science
with the Southern University of Science and
Technology, Shenzhen, China, and a Part-Time
Professor of Computer Science with the University
of Birmingham, Birmingham, U.K. His major

research interests include evolutionary computation, ensemble learning, and
their applications to software engineering.

Dr. Yao received the Prestigious Royal Society Wolfson Research Merit
Award in 2012, the IEEE CIS Evolutionary Computation Pioneer Award
in 2013, and the 2020 IEEE Frank Rosenblatt Award. His work won the
2001 IEEE Donald G. Fink Prize Paper Award; 2010, 2016, and 2017 IEEE
TRANSACTIONS ON EVOLUTIONARY COMPUTATION Outstanding Paper
Awards; 2011 IEEE TRANSACTIONS ON NEURAL NETWORKS Outstanding
Paper Award; and many other best paper awards at conferences. He served as
the President of IEEE Computational Intelligence Society (CIS) from 2014 to
2015 and the Editor-in-Chief of IEEE TRANSACTIONS ON EVOLUTIONARY

COMPUTATION from 2003 to 2008. He was a Distinguished Lecturer of
IEEE CIS.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

