
1

BenchENAS: A Benchmarking Platform for
Evolutionary Neural Architecture Search

Xiangning Xie, Yuqiao Liu, Student Member, IEEE, Yanan Sun, Member, IEEE,
Gary G. Yen, Fellow, IEEE, Bing Xue, Senior, IEEE, Mengjie Zhang, Fellow, IEEE

Abstract—Neural architecture search (NAS), which automat-
ically designs the architectures of deep neural networks, has
achieved breakthrough success over many applications in the past
few years. Among different classes of NAS methods, evolutionary
computation based NAS (ENAS) methods have recently gained
much attention. Unfortunately, the issues of fair comparisons and
efficient evaluations have hindered the development of ENAS.
The current benchmark architecture datasets designed for fair
comparisons only provide the datasets, not the ENAS algorithms
or the platform to run the algorithms. The existing efficient eval-
uation methods are either not suitable for the population-based
ENAS algorithm or are too complex to use. This paper develops a
platform named BenchENAS to address these issues. BenchENAS
aims to achieve fair comparisons by running different algorithms
in the same environment and with the same settings. To achieve
efficient evaluation in a common lab environment, BenchENAS
designs a parallel component and a cache component with high
maintainability. Furthermore, BenchENAS is easy to install and
highly configurable and modular, which brings benefits in good
usability and easy extensibility. The paper conducts efficient com-
parison experiments on eight ENAS algorithms with high GPU
utilization on this platform. The experiments validate that the
fair comparison issue does exist, and BenchENAS can alleviate
this issue. A website has been built to promote BenchENAS at
https://benchenas.com, where interested researchers can obtain
the source code and document of BenchENAS for free.

Index Terms—Neural architecture search, Evolutionary neural
architecture search, Benchmarking platform

I. INTRODUCTION

DEEP Neural Networks (DNNs), as the cornerstone of
deep learning techniques [1], have achieved remarkable

success in many real-world applications, such as classifying
objects from images [2], [3], reasoning natural languages
from texts [4], and recognizing speech from voice signals [5],
to name a few. The vast successes of DNNs are generally
credited due to the design of novel DNN architectures. This
can be evidenced from VGG [6], ResNet [2], DenseNet [3],
and Transformer [7], which have significantly different neural
architectures from each other. Commonly, such novel archi-
tectures of DNNs are often manually designed with rich
expertise [2], [3], [6]. However, with the increasing number
of the state-of-the-art DNN building blocks, such as inception

X. Xie, Y. Liu, and Y. Sun are with the College of
Computer Science, Sichuan University, Chengdu 610065, China (e-
mail:xiangningxie99@gmail.com;lyqguitar@gmail.com;ysun@scu.edu.cn).

G. Yen is with the School of Electrical and Computer Engineering,
Oklahoma State University, Stillwater, OK, USA (e-mail:gyen@okstate.edu).

B. Xue and M. Zhang are with the School of Engineering and Computer
Science, Victoria University of Wellington, Wellington, New Zealand (e-
mails:bing.xue@ecs.vuw.ac.nz;mengjie.zhang@ecs.vuw.ac.nz).

modules [8], residual connections [2], or dense connections [3]
integrated into a high-performance DNN architecture, it is
increasingly difficult to handcraft DNN architectures with
exceptional performance. Furthermore, with the remarkable
performance of DNNs, more and more researchers who are
not experts of DNNs are trying to explore the amazing
functionality of DNNs for the task at hand. Unfortunately,
due to their limit or even without knowledge in designing
promising DNN architectures, it is hard to obtain DNNs with
satisfactory performance. This urgent demand has promoted
the feverish development of NAS techniques [9], which aims
to automatically generate robust and well-performing DNN
architectures by formulating as optimization problems and
then solved via well-designed optimization algorithms.

Based on the optimization algorithms adopted, existing
NAS algorithms can be broadly classified into three different
categories: Reinforcement Learning (RL) [10] based NAS
algorithms [9], gradient-based NAS algorithms [11], and Evo-
lutionary Computation (EC) [12] based NAS algorithms (in
short named ENAS) [13]. Specifically, the RL-based NAS
algorithms often consume heavy computational resources due
largely to the inexact reward resulted from RL techniques [14].
The gradient-based algorithms are more efficient than the
RL-based algorithms. Unfortunately, the gradient-based algo-
rithms require constructing a supernet in advance, which also
demands specialized expertise. The ENAS algorithms solve
the NAS problems by exploiting Evolutionary Computation
(EC) techniques. Specifically, EC is a class of computational
paradigms such as Genetic Algorithms (GA) [15], Genetic
Programming (GP) [16], and Particle Swarm Optimization
(PSO) [17] solving challenging optimization problems by
simulating the evolution of biology or swarming social be-
havior [18]–[22]. In EC, an initial population of candidate
solutions is generated and iteratively updated by the evo-
lutionary operators for generations. Each individual in each
generation needs to be evaluated to obtain the fitness value.
As a result, the population will gradually evolve to increase
in fitness to arrive at the best solution. Compared to the RL-
based NAS algorithms, ENAS algorithms often require less
computation budget. Compared to the gradient-based NAS
algorithms, ENAS algorithms are often fully automatic, and
they can produce an appropriate NAS without any human
intervention [14], [23]. ENAS algorithms have accounted for
the majority of existing NAS algorithms as evidenced from a
recent survey paper [24].

During past years, ENAS algorithms have attracted great
attention owing to their high robustness, exceptional per-

ar
X

iv
:2

10
8.

03
85

6v
2 

 [
cs

.N
E

] 
 1

4 
A

ug
 2

02
1

https://benchenas.com


2

formance, and full ability to automate DNN architectures
design [25], [26]. For example, the LargeEvo algorithm [13]
firstly used GA to automate the discovery of DNN architec-
tures for image classification. Meanwhile, the Genetic-CNN
algorithm [27] proposed a fixed-length binary-string encoding
method within GA to represent each network architecture.
Furthermore, the Hierarchical-Evo algorithm [28] combined
a new hierarchical genetic representation scheme to achieve
efficient NAS. The EvoCNN algorithm [14] firstly developed
the variable-length encoding strategy to search for promising
DNN architectures without requiring manual effort during
the search stage. The CGP-CNN algorithm [29] automati-
cally constructed CNN architectures for image classification
based on Cartesian genetic programming [30], which is a
type of GP [30]. In addition, the AE-CNN algorithm [23]
and the CNN-GA algorithm [31] proposed to automatically
evolve CNN architectures by using GA based on state-of-
the-art CNN blocks [2], [3]. The NSGA-Net [32] algorithm
achieved NAS by considering multiple conflicting targets
using multi-objective EC algorithms [33]. The Regularized-
Evo algorithm [34] introduced age attributes in a modification
of tournament selection of GA, evolving an image classifier
surpassing manual design for the first time.

Although ENAS researchers have drawn more attention to
the community, there are still two challenges that need to
be addressed. Specifically, the two challenges are the fair
comparison issue and the efficient evaluation issue, as will
be detailed below.

The fair comparison issue is widely recognized in ENAS.
Making fair comparisons between different ENAS algorithms
for ENAS developers is challenging, if not impossible. This
has somehow hindered the development of ENAS because
unfair comparisons may mislead the researchers and resulted
in frustration. In addition, the researchers cannot exactly know
how novel or competitive their algorithms are. Since ENAS is
widely used in image classification tasks, taking the image
classification task as an example, the classification accuracy
(or classification error rate) and the computation budget of the
searched architectures are the two most popular indicators used
to evaluate the performance of existing ENAS algorithms [35].
When an ENAS algorithm is proposed and its performance
is investigated on the classification accuracy, the developer
needs to collect the classification accuracy values from some
chosen state-of-the-art ENAS algorithms. However, because
most ENAS algorithms are not of open-source, reproducing
them under the same condition for arriving at fair classifi-
cation accuracy is a nontrivial matter [36], [37]. In the most
common practice, the reported classification accuracies of peer
competitors for comparison are often extracted directly from
their respective seminal papers. However, the experimental
setups of these peer competitors are vastly different from
each other, such as using different data preprocessing [38]–
[40], different optimizers [41], [42], different learning rates,
different batch sizes, and different training epochs, which are
all deciding factors of the classification accuracy resulted by
these ENAS algorithms. In this regard, the comparisons in
terms of classification accuracy are clearly biased. On the other
hand, the common practice for comparing with computation

budget of ENAS algorithms is to measure by “GPU days” (i.e.,
the number of GPUs used × the days elapsed). Due to the
different types of GPUs used by different ENAS developers,
it is difficult to directly compare the computation budget
of different ENAS algorithms by directly citing from their
seminal papers. As a result, the comparison in terms of the
collected “GPU days” is also unfair. On the other hand, the
number of function evaluations (i.e., the generation number
× the population size) is a key metric to fairly compare the
performance of EC methods. Based on the extensive observa-
tions from the seminal papers of existing ENAS algorithms,
most of them used different population sizes and generation
numbers that result in different function evaluation numbers,
and this is even worse as the individuals in the population(s)
are of variable-length instead of fixed-length. This again leads
to unfair comparisons among ENAS algorithms.

In addition, the lack of efficient evaluation methods has
also hindered the development of ENAS. The ENAS algo-
rithms depend upon the heavy requirement of computational
resources because the fitness evaluation of DNNs during the
evolutionary search will consume a lot of time. Specifically,
the fitness evaluation of a DNN is achieved by training
the DNN on the target dataset via a training-from-scratch
process, which is nevertheless time-consuming. For example,
training a DNN on a common dataset such as CIFAR-10 [43]
often consumes hours to days depending on the scale of
the DNN. Moreover, since the EC methods are population-
based [16], [44], [45], there are many individual DNNs to
be evaluated during the search process of the ENAS, which
greatly increases the computational overhead of ENAS. For a
common research environment, there are often multiple GPUs
available in the lab. As a result, in-lab researchers often pursuit
an acceleration of running ENAS algorithm by evaluating their
fitness on multiple GPUs. There are usually two strategies for
using multiple GPUs. One strategy is evaluating the fitness
of individuals with the in-house distributed parallel methods
from the deep learning libraries such as PyTorch [46] and
Tensorflow [47], and the other strategy is to use distributed
NAS toolkits. For the first strategy, these in-house distributed
parallel methods use only multiple GPUs for the evaluation
of a single DNN, which is not suitable for evaluating a
large number of DNNs in ENAS. In this method, differ-
ent GPUs need to communicate with each other to transfer
computational parameters, which unavoidably increases the
communication overhead and inadvertently increases the time
for individual DNN training. The second strategy is a more
effective approach to speeding up the ENAS algorithm because
users can use these distributed toolkits to evaluate multiple
DNNs simultaneously during the fitness evaluation phase of
ENAS. Under this strategy, one GPU is used to evaluate
only one DNN and there is little communication overhead
incurred between GPUs. However, these existing distributed
NAS toolkits, such as NNI are complex to configure and have
high learning costs. Therefore, they are not necessarily friendly
for in-lab users.

In this paper, we aim to develop a benchmarking platform
of ENAS algorithms named BenchENAS, to address all the
issues aforementioned. In summary, the contributions of the



3

proposed BenchENAS are shown as follows:

• Nine representative state-of-the-art ENAS algorithms,
popular data processing techniques for three widely used
benchmark datasets, as well as configurable trainer set-
tings such as learning rate policy, optimizers, batch size,
and training epochs, have been implemented into the pro-
posed BenchENAS platform. To this end, the researchers
can illustrate the innovativeness of their proposed al-
gorithms by making fair comparisons with the state-of-
the-art ENAS algorithms. Furthermore, these algorithms
cover fixed-length encoding strategies and variable-length
encoding strategies, and also single-objective optimiza-
tion algorithms and multi-objective optimization algo-
rithms as shown in Table 1. We believe the proposed
BenchENAS platform can meet the needs of most re-
searchers.

• BenchENAS has good usability and easy extensibility.
BenchENAS is easy to use for four main reasons. Firstly,
BenchENAS is implemented in python using very few
third-party libraries for easy installation. Secondly, all
the ENAS algorithms in BenchENAS can be easily con-
figured with different data settings and different trainer
settings. Thirdly, BenchENAS designs a downtime restart
strategy to reboot the platform in the event of an un-
expected stop to improve the stability and robustness.
Furthermore, BenchENAS is fully open-sourced and is
promised to be free for research use. BenchENAS is
easy to extend due to its highly modular design. Users
can easily implement their own ENAS algorithms within
BenchENAS. It is also easy for users to extend dataset
settings as they become available such as benchmark
datasets, data processing techniques, and trainer settings
(e.g. learning rate policy, optimizers), etc.

• An efficient parallel component and a cache component
are designed to accelerate the fitness evaluation phase
in BenchENAS. The parallel component is specifically
designed for ENAS algorithms for conveniently perform-
ing parallel training of DNNs by in-lab users, which is
based on the parallel training mechanism of existing deep
learning libraries and can be jointly used to collectively
speed up the running of the corresponding ENAS algo-
rithm. This platform mimics the use of manual GPU
assignments in the lab environment, and can be used
without any tedious requirements or setup from existing
peer platforms. In addition, the designed method can also
adaptively detect the available GPU in the environment
and flexibly assign the free GPUs to the algorithms. The
cache component is used to record the fitness values
for each architecture and to reuse the fitness values in
the cache when an individual of the same architecture
appears.

• Based on the designed BenchENAS platform, we have
performed fair comparisons of the implemented ENAS
algorithms on BenchENAS with popular settings. These
experimental results can be used by researchers as bench-
mark data for future studies so that they will not need
to rerun these algorithms for their comparison. The

experimental results show that the comparison results
within BenchENAS are appreciably different from those
of the respective original papers, implying that unfair
comparisons do exist. This in turn justifies the necessity
of the proposed BenchENAS platform.

The rest of this paper is organized as follows. The related
works of BenchENAS are reviewed in Section II. The details
of BenchENAS are presented in Section III. Section IV illus-
trates the extensibility and usability of BenchENAS. Section
V introduces the experimental result of BenchENAS. Finally,
the conclusion and future work are given in Section VI.

II. RELATED WORKS

In this section, the related works of BenchENAS are pre-
sented. Specifically, the background of ENAS algorithms is
briefly documented in Subsection II-A, and then existing fair
comparison approaches are introduced in Subsection II-B,
and finally, popular efficient evaluation methods are shown
in Subsection II-C.

A. Background of ENAS

NAS aims to automatically generate well-performing DNN
architectures from a predefined search space using a well-
designed search strategy. Mathematically, the NAS is generally
considered as an optimization problem which is formulated by
Equation (1):{

argmaxA = P (A,Dtrain ,Dvalid )

s.t. A ∈ A
(1)

where A denotes the search space of the neural architectures,
P(·) measures the performance of the architecture A on the
validation dataset Dvalid after being trained on the training
dataset Dtrain . Essentially, NAS is a complex optimization
problem experiencing multiple challenges, such as complex
constraints, discrete representations, bi-level structures, com-
putationally expensive characteristics and multiple conflicting
objectives [23].

As introduced in Section I, ENAS is a subcategory of
NAS. The main steps of an ENAS algorithm followed by the
standard flowchart of an EC method are shown as follows.
step 1 Initialize a population of individuals representing dif-

ferent DNN architectures within the predefined search
space.

step 2 Evaluate the fitness of each DNN architecture.
step 3 Select the parent solutions from the population based

on the fitness values.
step 4 Generate offspring using evolutionary operators.
step 5 Go to step 6 when the criterion is satisfied; otherwise,

go to step 2.
step 6 Terminate the evolutionary process and output the

DNN with the best fitness value.
As can be seen above, the ENAS algorithm follows the

standard flowchart of an EC method [12]. Specifically, step 2
shows the fitness evaluation phase of the ENAS algorithms.
For the majority of ENAS algorithms [14], [23], [31], [34],
the fitness value of each individual in the population will be



4

TABLE I
THE 9 ENAS ALGORITHMS INCLUDED IN THE VERSION 1.0 OF BENCHENAS

Algorithm Year Paper
LargeEvo [13] 2017 Large-Scale Evolution of Image Classifiers
CGP-CNN [29] 2017 A Genetic Programming Approach to Designing Convolutional Neural Network Architecture

Genetic CNN [27] 2017 Genetic CNN
HierarchicalEvo [28] 2018 Hierarchical Representations for Efficient Architecture Search

AE-CNN [23] 2019 Completely automated CNN architecture design based on blocks
EvoCNN [14] 2019 Evolving deep convolutional neural networks for image classification

NSGA-Net [32] 2019 NSGA-Net: Neural Architecture Search using Multi-Objective Genetic Algorithm
RegularizedEvo [34] 2019 Regularized Evolution for Image Classfier Architecture Search

CNN-GA [31] 2020 Automatically Designing CNN Architectures Using the Genetic Algorithm for Image Classification

estimated during the phase of fitness evaluation. In ENAS, the
fitness value generally represents the performance of DNNs
such as the accuracy on image classification tasks. In step
3, the mating selection operator acts as a natural selection
increasing the quality of individuals because the individuals
with superior performance are chosen as parent solutions to
generate more competitive individuals, while ill-fitted indi-
viduals are eliminated. There are a lot of strategies in how
to select an individual, such as random selection, tournament
selection [28], and the roulette wheel selection [48]. In step
4, the evolutionary operators mainly include crossover and
mutation. These operators create necessary diversity as well
as novelty. Crossover recombines the evolutionary information
of two parents to generate new offspring. Mutation, on the
other hand, randomly changes the encoding of the DNN with
a certain probability.

Generally, the earliest work of ENAS is viewed as the
LargeEvo algorithm. Since the success of LargeEvo, ENAS
has gained great attention. More and more ENAS algorithms
are proposed recently. Vast neural architectures automatically
designed by these ENAS algorithms have surpassed manual
designs in many tasks [34], [49]. Despite the positive results of
the existing ENAS algorithms, there are still some challenges
and issues which need to be addressed, such as the fair
comparison issue and the efficient evaluation mentioned above.

B. Fair Comparison Methods

As have introduced in Section-I, the fair comparison issue
may mislead researchers. More and more researchers are notic-
ing the existence of the fair comparison issue in the NAS field
and proposing some solutions. Representative works mainly
include NAS-Bench-101 [50] and NAS-Bench-201 [51].

Specifically, these works enable fair comparisons by pro-
viding a benchmark architecture dataset for researchers. NAS-
Bench-101 provides the first public architecture dataset for
NAS Research. It constructed a search space, exploiting
graph isomorphisms to identify 423K unique convolutional
architectures. Then, they trained and evaluated all of these
architectures three times on CIFAR-10 and compiled the
results into a large dataset of over 5 million trained architec-
tures. Each architecture can query the corresponding metrics,
including test accuracy, training time, etc., directly in the
dataset without the large-scale computation. NAS-Bench-201
is proposed recently and is based on cell-based encoding

space. Compared with NAS-Bench-101, which was only tested
on CIFAR-10, this dataset collects the test accuracy on three
different image classification datasets (i.e., CIFAR-10, CIFAR-
100 [43], and ImageNet-16-120 [52]). However, the encoding
space is relatively small and only contains 15.6K architectures.
Nevertheless, experiments with different ENAS methods on
these benchmark datasets can obtain fair comparisons between
different ENAS algorithms and it will not take too much time.

Unfortunately, those works have many limitations in practi-
cal applications. Firstly, NAS-Bench-101 and NAS-Bench-201
are applicable to only a few datasets. Secondly, the search
space of these works is fixed with a limited number of nodes
and edge types in a cell. These works are only based on the
cell-based encoding space and do not apply to methods based
on other coding spaces.

C. Efficient Evaluation Methods

As have introduced above, the ENAS algorithms usually
consume a lot of computational resources and time. In the
context of labs that typically have multiple GPUs, in-lab users
usually evaluate DNNs by two efficient evaluation methods.
Specifically, these two methods are using in-house distributed
parallel methods in deep learning libraries and using dis-
tributed NAS toolkits.

The in-house distributed parallel methods in deep learning
libraries can be divided into two different categories: data
parallelism and model parallelism. In the data parallelism, the
dataset is split into multiple sub-datasets. Every node hosts a
copy of the DNN and trains the DNN on a subset of the dataset
as shown in Fig. 1. Then, the values of the parameters are sent
to the parameter server. After collecting all the parameters,
they are averaged. This classical realization of the data par-
allelism is named Synchronous Stochastic Gradient Descent
(SSGD) [53], [54]. This method is not efficient because the
nodes are forced to wait for the slowest one at each iteration.
Another method is called asynchronous SGD (ASGD) [55],
[56]. This method improves on SSGD by sending outdated
parameters out of the network. However, this method leads
to a gradient staleness problem, which may result in slow
convergence speed or even non-convergence of the model. In
the model parallelism, each node hosts a partition of the DNN,
and the dataset needs to be copied to all nodes as shown in
Fig. 2. The communication happens between computational
nodes when the input of a node is from the output of the other



5

computational node. The model parallelism is not commonly
used because the communication expense is much higher. In
addition, these distributed parallel methods are mainly targeted
at a single large-scale DNN while a large number of DNNs
needed to be evaluated simultaneously in ENAS. Specifically,
assuming that there are N GPUs in a lab, these methods only
support accelerating the training of a single DNN with these
N GPUs. In this case, however, using data parallelism can
lead to synchronization overhead or cause gradient staleness
problems. Using model parallelism can lead to unnecessary
communication overhead. In the context of a large number
of DNNs to be trained simultaneously, it is more efficient to
train N individuals simultaneously with N GPUs to avoid
unnecessary overhead.

Fig. 1. The architecture of the data parallelism.

Fig. 2. The architecture of the model parallelism.

In fact, some distributed NAS toolkits exist that support
users to train N DNNs simultaneously with N GPUs. Rep-
resentative works mainly include NNI1 developed by Mi-
crosoft and Katib2 at Google. Specifically, NNI has a built-
in lightweight distributed training platform and trains multiple
DNNs in parallel. It also supports the configuration of Open-
PAI 3, Kubernetes [57] and some other distributed scheduling
platforms for distributed training of multiple DNNs. Katib

1https://github.com/microsoft/nni
2https://github.com/kubeflow/katib/trial
3https://github.com/microsoft/pai

only supports the configuration of Kubernetes. However, those
toolkits are not friendly to in-lab users. Firstly, they are
not easy to extend. Commonly, the GPUs in the lab are
distributed across multiple machines. To use the GPUs on
multiple machines, those toolkits need to be installed on every
machine. Secondly, these toolkits are more difficult to learn. In
order to use some distributed functions of those toolkits, users
may need to learn to use existing distributed platforms (Kuber-
netes, OpenPAI), such as deploying the platform, configuring
NVIDIA plug-ins, setting up storage servers, and many other
operations.

In summary, the available fair comparison methods and the
efficient evaluation methods bear some serious shortcomings.
The current fair comparison methods are very limited and
do not apply to all the main types of ENAS. In the current
efficient evaluation methods, the built-in distributed parallel
methods do not take into account the population characteristics
of ENAS and instead increases the overhead. The distributed
NAS toolkits are complicated to configure and use, and are
not suitable for in-lab users.

III. THE PROPOSED BENCHENAS

A. Overview

Fig. 3 shows the overview of BenchENAS. BenchENAS
is composed of five parts. They are ENAS algorithms,
data settings, trainer settings, runner, and comparer.
After the user has selected the ENAS algorithm to run in the
ENAS algorithms part, the data and the trainer for the train-
ing of DNNs are configured through the data settings part
and the trainer settings part. The selected ENAS algorithm
is then run through the runner part and the results are output
to the comparer part. By running multiple ENAS algorithms
with the same data settings and the same trainer settings in the
runner part, users can get relatively fair comparison results.

Specifically, the ENAS algorithms part includes the
ENAS algorithms implemented by BenchENAS. Users can
choose the algorithm they want to run or implement their
own code. The data settings part includes settings for the
benchmark dataset and data preprocessing. Users can choose
MNIST [58], CIFAR-10, CIFAR-100, or ImageNet as bench-
mark dataset for comparison. All of these datasets are widely
used in the field of image classification. Users can also choose
data preprocessing methods such as cutout [39], mixup [38],
resize, and denoise. An option is also made available to
incorporate any new utilities for data preprocessing. These
data preprocessing methods can be used to improve the
performance of DNNs. Specifically, cutout and mixup are both
commonly used data augmentation methods to improve the
generalization of neural network architectures. Cutout masks
out random sections of input images during training. Mixup
trains a neural network on convex combinations of pairs of
examples and their labels, regularizing the neural network to
favor simple linear behavior in-between training examples.
For the resize method, rescaling and cropping can be used to
resize data. Denoising removes useless information from the
data to improve the performance of neural architectures. The
trainer settings part includes learning rate settings, batch



6

Fig. 3. The overview of BenchENAS.

size settings, epoch settings, and optimizer settings. Users can
set the learning rate by StepLR, MultiStepLR, ExponentialLR,
CosineAnnealingLR [59], and ReduceLROnPlateau learning
rate strategies. These strategies are all very practical learning
rate adjustment strategies. StepLR is a strategy to adjust the
learning rate at equal intervals. MultiStepLR is a strategy to
adjust the learning rate at set intervals. ExponentialLR is a
strategy to adjust the learning rate by an exponential decay.
CosineAnnealingLR is a strategy that takes the cosine function
as the period and resets the learning rate at each period.
ReduceLROnPlateau is a strategy that adjusts the learning rate
when a metric is no longer changing. The runner part is used
to run the ENAS algorithm. As shown in Fig. 3, the center
node launches and runs the entire ENAS algorithm. When
the algorithm proceeds to the fitness evaluation phase, the
runner uses a well-designed evaluator to obtain the fitness
of each individual in the population. In the evaluator, the
center node firstly decodes the individuals in the population
into DNN architectures. Secondly, the center node generates
DNN scripts from the DNN architectures. Thirdly, the center
node distributes the DNN scripts to the compute nodes. Each

GPU in these compute nodes runs a DNN script with the data
and the trainer to obtain the fitness of the DNN. Finally, each
compute node sends the fitness value to the center node. The
comparer part includes the performance indicators such as the
accuracy, flops, parameter size, and GPU days of different
ENAS algorithms. Users can do fair comparisons between
different ENAS algorithms by those performance indicators.
The core of BenchENAS is the runner part. The details of the
implementation of the runner are given in Section III-B.

B. Runner

Runner is used to run the ENAS algorithm to get the
results. The ENAS algorithm maintains a high degree of
uniformity, and the implementation process is basically the
same except for some minor differences in details. To increase
the stability and robustness of BenchENAS, we design a log-
based downtime restart strategy to allow BenchENAS to use
logs to restart when it is unexpectedly shut down. Next, we
will describe in detail the operation process of the runner with
the downtime restart strategy.



7

Algorithm 1: The runner of BenchENAS
Input: Parameters required for the algorithm, the

population size, the maximal generation
number, the image dataset for classification,
is running.

Output: The discovered best DNN architecture.
1 if is running == 0 then
2 t← 0;
3 Pt ← Initialize a population;
4 is running ← 1;
5 else
6 t← Get the newest generation number;
7 Pt ← Load the population;
8 end
9 Evaluate the fitness of each individual in Pt using the

evaluator ;
10 Save the population Pt ;
11 while t <the maximal generation number do
12 Qt ← Generate offspring;
13 Evaluate the fitness of each individual in Pt using

the evaluator ;
14 Pt+1 ←Environmental selection from Pt ∪ Qt;
15 Save the population Pt+1 ;
16 t← t + 1;
17 end
18 is running ← 0;
19 Return Pt.

The pseudocode of the runner with the downtime restart
strategy is shown in Algorithm 1. Specifically, for the down-
time restart strategy, we add a parameter called is running
to the runner. “is running == 0” means that the runner has
not run or finished running last time. On the other hand,
“is running == 1” implies that the operation of the last runner
was interrupted. When the runner starts running, if is running
is equal to 0, the population P0 is initialized and is running is
set to 1 (Lines 1-4). Otherwise, the latest population counter
t is gotten, and the population Pt is loaded according to the
acquired population number (Lines 5-8). Then, the fitness of
each individual, which encodes a particular architecture of the
DNN, is evaluated on the given dataset by the evaluator (Line
9). The population is saved (Line 10). During evolution, the
parent individuals are selected based on the fitness, and then
a new offspring is generated by the evolutionary operators,
including the crossover and mutation operators (Line 12).
After that, the fitness of each individual is evaluated using the
evaluator (Line 13). The evaluator is designed by BenchENAS
to save evaluation time and will be explained in detail in
the next section. Then, a population of individuals surviving
into the next generation is selected by the environmental
selection from the current population (Line 14). Next, the
population is saved (Line 15). Finally, the counter is increased
by one, and the evolution continues until the counter exceeds
the predefined maximal generation. When the evolution is
finished, the parameter is running is set to 0 (Line 18).

Next, we will describe how to load the population infor-

mation (Line 7). From Algorithm 1, we can find that the
population information is saved after the fitness evaluation
phase (Lines 10, 15). Specifically, BenchENAS saves the
population Pt as a file named begin t.txt. The file begin t.txt
contains the name, the encoding information, the identifier,
and the fitness value of each individual in the population.
When is running is not 0, the latest written population file
will be loaded and the information of each individual in the
population will be obtained to rebuild the population Pt. The
downtime restart strategy enables log-based downtime restart.
Doing so gives BenchENAS the advantages of persistence and
stability. When a power outage or downtime is caused by
the wrong operations, the saved log files are used to restore
the platform to the working state before the downtime, thus
avoiding wasting computational resources by starting training
from scratch.

In the next sub-section, we will detail the implementation of
the evaluator which is well-designed to save the computational
resources and evaluation time.

C. Evaluator

As mentioned above, because training DNNs is very time-
consuming, varying from several hours to even several months
depending on the particular architecture, the evaluator is de-
signed to speed up the fitness evaluation phase in BenchENAS.
In the evaluator, we reduce the evaluation time and the
computational resources by the cache component and the
parallel component. Specifically, the cache component is used
to store the fitness of every DNN evaluated. It works by
reusing the fitness of the DNNs that have previously appeared
in the population to save time. The parallel component works
by evaluating multiple individuals on multiple GPUs. Next,
we will describe in detail how the evaluator uses these two
components.

The detail of the evaluator is shown in Algorithm 2, which
includes the specifics of the cache component (Lines 4-15).
Briefly, given the population Pt containing all the individ-
uals for evaluating the fitness, the evaluator evaluates each
individual of Pt in the same manner, and finally returns Pt

containing the individuals whose fitness have been evaluated.
Specifically, for each individual in the population, the evaluator
firstly decodes the individual into DNN and generates the
python script of the DNN (Lines 2-3). The cache component
method is achieved in Lines 4-15. Specifically, if the cache
does not exist, the evaluator will create an empty global
cache system (denoted as Cache), storing the fitness of the
individuals with unseen architectures (Lines 4-7). Then, if the
individual is found in Cache, its fitness is directly derived
from Cache (Lines 8-10). Otherwise, the individual is asyn-
chronously evaluated using the parallel component to obtain
the fitness of the individual (Lines 12-13). The identifier and
fitness value of the individual will be stored to Cache (Line
14). For the cache component, querying an individual from
Cache is based on the individual’s identifier. Theoretically,
arbitrary identifiers can be used as long as they can distinguish
individuals encoding different architectures. In BenchENAS,
the 224-hash code [60], which has been implemented by most



8

programming languages in terms of the encoded architecture
is used as the corresponding identifier. For the parallel compo-
nent, the individual is asynchronously placed on an available
GPU, which implies that multiple individuals can be evaluated
simultaneously on multiple GPUs.

The cache component is designed to speed up the fitness
evaluation phase of the ENAS algorithms, which is mainly
based on the following two considerations. Firstly, individuals
who survive to the next generation without changes in neural
network architecture do not need to be re-evaluated. Secondly,
the evolutionary operators such as crossover and mutation may
generate individuals that have been evaluated before. In such
a context, the cache component can be used to save time
and improve evolutionary efficiency. In general, we should
be concerned about the size of the cache component and
discuss the conflicting collision problem resulted from the
duplicate keys. However, in BenchENAS, it is not necessary
a concerning issue. Firstly, the cache component is similar
to a map data structure. Each of these records in the cache
component is a string containing the identifier of a DNN and
the corresponding fitness value. For example, a record such
as “id = 90.50” denotes that the identifier of the DNN is “id”
and its fitness value is “90.50”. Secondly, as we mentioned in
the last paragraph, the identifier is calculated by the 224-hash
code that can generate 2224 different identifiers. Commonly,
the ENAS algorithms only evaluate thousands of individuals.
Obviously, the issue will hardly happen. Thirdly, the 224-hash
code implementation used by BenchENAS will generate the
identifier with the length of 32, the symbol “=” with the length
of 1, and the fitness value with the length of 4. Thus, each
record in the cache component is a string with the length of 37,
occupying 37 bytes with the UTF-8 file encoding. Obviously,
the cache component will occupy less than 1MB of disk space,
even though there are tens of thousands of records. Therefore,
we do not need to consider the size of the cache component.

The parallel component is a parallel computing platform
based on GPUs. As shown in Algorithm 2, when the identifier
of the individual is not in Cache, the evaluator will evaluate
the individual by the parallel component. This component is
designed for the ENAS algorithm because the EC algorithms
are population-based. In this component, a GPU is used to
evaluate only one DNN. Assuming a total of N GPUs for all
compute nodes, N individuals are evaluated simultaneously
during the fitness evaluation phase of ENAS. Specifically, the
center node gets GPU usage from a SQL database. When the
ENAS algorithm begins to run, the SQL database including
the state (i.e. usage) of each GPU is created. The center node
remotely queries the GPU usage of all compute nodes in
parallel at a regular intervals. When the fitness of an individual
is to be obtained, the evaluator will use the parallel component
to evaluate the individual as Algorithm 3 shows. Specifically,
while there is an available GPU by querying the SQL database,
the center node firstly gets the compute node, says nodej , and
the identifier of GPUk. Secondly, the center node set the usage
of GPUk to busy in the SQL database. Then, the center node
sends the DNN script to nodej and remotely commands nodej
to train the DNN script with GPUk (Lines 2-7). Finally, when
the training of the DNN script is completed, the fitness value

Algorithm 2: Evaluator
Input: The population Pt of the individuals to be

evaluated.
Output: The population Pt of the individuals with

their fitness values.
1 foreach individual in Pt do
2 Decode the individual to DNN;
3 Generate the python script for the DNN;
4 if Cache does not exist then
5 Cache← ∅;
6 Set Cache to a global variable;
7 end
8 if the identifier of individual in Cache then
9 v ← Query the fitness by identifier from

Cache;
10 Set v to individual;
11 else
12 v← evaluate individual by the parallel

component;
13 Set v to individual;
14 Cache← the identifier of individual and the

fitness;
15 end
16 end
17 Return Pt.

of the DNN script will be obtained. And the status of the
GPUk is updated again in the SQL database.

Next, the reasons for designing such a parallel component
are given. Since training DNNs can take a lot of time, in-lab
users often run the ENAS algorithm with multiple GPUs to
speed up the evaluation. As discussed in related works, current
methods of running ENAS with multiple GPUs such as the
in-house distributed parallel methods and the distributed NAS
toolkits are not suitable for in-lab users. This motivates us
to design such a parallel component. The parallel component
is designed using parallel computing techniques. In parallel
computing, large problems can often be divided into multiple
independent subproblems, which can then be solved at the
same time. By parallel performing these subproblems in dif-
ferent computational platforms, the total processing time of
the entire problem is consequently shortened. In the fitness
evaluation phase of ENAS, multiple individuals are waiting
to be evaluated at the same time due to the population-
based characteristics. Furthermore, the fitness evaluation of
each individual is independent, which just satisfies the scene
of using the parallel computing techniques. As a result, we
design the parallel component. For the parallel component,
the individual is placed in parallel on an available GPU, which
implies that we do not need to wait for the fitness evaluation
of the next individual until the fitness evaluation of the current
one finishes, but place the next individual on an available GPU
immediately. In doing so, BenchENAS significantly reduces
the time consumed by the fitness evaluation.

During the operation process of the parallel component,
the information generated by all compute nodes needs to be



9

Algorithm 3: The parallel component
Input: The individual indii to be evaluated.
Output: The fitness values of indii.

1 while there is an available GPU in the SQL database
do

2 nodej ← get the compute node where the GPU
located;

3 GPUk ← get the GPU id;
4 Set GPUk to busy in the SQL database;
5 Send the DNN script of indii to nodej ;
6 Fitnessi ← Remote command nodej train the

DNN script with GPUk;
7 Set GPUk to the idle state in the SQL database;
8 end
9 Return Fitnessi.

Fig. 4. The Category of Redis database.

exported to the center node through the information integration
module. As mentioned above, the parallel component divides
the problem of evaluating N individuals in the fitness evalu-
ation phase of ENAS into N subproblems. Each subproblem
is solved by a sub-process that trains a DNN on one GPU
of a random compute node. Each sub-processes will generate
lots of information which can be firstly divided into two main
categories as shown in Fig. 4.

One category is Process information, and the other cat-
egory is RUN information. The Redis database is used to
transfer these two types of information between the center
node and compute nodes. Specifically, Process information
mainly contains the IP address of the compute node where the
sub-process is located and the pid of the sub-process. Before
the sub-process starts training the DNN, the sub-process inserts
the process information into the Redis database. When training
is complete, the sub-process will remove its own process
information from the Redis database. This allows the user to
keep track of the processes running on each compute node. In
addition, when the user interrupts BenchENAS, BenchENAS
will kill each sub-process to prevent it from continuing to
occupy computational resources. RUN information mainly
contains the LOG record output by the sub-process during
training and the FitnessRecord record obtained when the
training is completed. The LOG record is the log of the output
of the sub-process during training, such as epoch and the
corresponding accuracy. The FitnessRecord record is mainly
used to output the fitness values obtained from training to
two types of files: Cache and Result. The Cache file is the
implementation of the cache component introduced before,

and the sub-process will output the individual identifier and
its fitness value to the cache when it obtains the individual’s
fitness value. BenchENAS uses this cache file as the cache
component, reducing the time consumed by the evaluation.
The Result file is a hash table that stores the fitness value
of each individual. When the sub-process obtains the fitness
value, the sub-process outputs the individual name and its
fitness value to the Result file. It is convenient for users to
view the fitness values of each individual at any time through
this file. When there are RUN records that need to be exported
to the center node, the sub-process inserts the information
into the Redis database. There is a listener process that keeps
looking at the Redis database, and when records exist, the
process performs the appropriate operation based on the record
type and deletes the record at the end of the operation to avoid
duplicate reads. For example, if a FitnessRecord record that
needs to be stored in the cache is inserted into the Redis
database, the listener process will read the record, insert the
fitness value into the cache file, and delete the record.

The reason that we choose the Redis database is that the
speed of information output of each sub-process is very fast
during training. The Redis database is a high-performance
key-value database. Redis can read data 110,000 times per
second and write data 81,000 times per second. Therefore,
Redis database meets the need for the information output. In
this way, we consolidate all the information that we want to
output to the center node during the fitness evaluation phase.
This has two advantages. One is that users can view the
log information and population information in the process of
operation at any time, and analyze the results of operation.
Users do not need to wait for the algorithm to finish running
before analyzing the running process; Second, it is convenient
for users to compare the difference between the running results
of different algorithms.

IV. USABILITY AND EXTENSIBILITY

In this section, we will explain the merit of BenchENAS in
terms of its good usability and easy extensibility.

A. Good Usability

BenchENAS is easy to use. First of all, BenchENAS is
easy to install. Specifically, BenchENAS is implemented in
python and uses very few third-party libraries, except for the
built-in libraries in python itself, which are torch, torchvision,
paramiko and redis. Secondly, users only need to install
BenchENAS on the center node, and on the compute node
the user only needs to configure the computing environment
for training DNNs. Furthermore, BenchENAS is very easy to
configure. Users can easily select the ENAS algorithm used,
data settings and trainer settings through several ini files.
Specifically, the name of the ENAS algorithm used, the max
generation and population size can be configured via a file
named global.ini as shown in Table II. The data settings
and the trainer settings can be configured via a file named
train.ini as shown in Table III. When evaluating individuals,
BenchENAS loads the optimizer, batch size, epoch, learning
rate, and data for the evaluation by using the configuration in



10

TABLE II
THE GLOBAL.INI FOR BENCHENAS

Section Key Type Description

algorithm

name string Folder name of the algorithm output
run algorithm positive interger Name of the algorithm used

max gen positive interger Max generation size
pop size positive interger Population size

TABLE III
THE TRAIN.INI FOR BENCHENAS

Section Key Type Description

optimizer
optimizer name string Name of the optimizer used

batch size positive interger Batch size
total epoch positive interger Number of epoch

LearningRate lr float Learning rate
lr strategy string Learning rate strategy

dataset name string Name of the dataset used

Fig. 5. Relationship diagram between classes

train.ini. BenchENAS implements several optimizer classes
such as Adam, RMSprop, SGD, several LearningRate classes
such as CosineAnnealingLR, ExponentialLR, MultiStepLR
and several dataloader classes for MNIST, CIFAR-10/CIFAR-
100, ImageNet. Users select the optimizer to be used by
filling in the optimizer class name in the optimizer name in
train.ini. Similarly, the learning rate strategy and the dateset
are selected by the values in train.ini. In addition, the batch
size, epoch and initial value of learning rate to be used can also
be set via train.ini. Furthermore, BenchENAS uses a log-
based downtime restart strategy as mentioned above. When the
downtime is caused by power failure or wrong operation, the
saved information and log files are used to restore BenchENAS
to the working state before the downtime, thus avoiding wast-
ing computational resources by starting training from scratch
again. This makes the computing platform with advantages of
persistence and stability. Finally, BenchENAS is completely
open-sourced, and users can add their own algorithms. We
will make the code publicly available upon request.

B. Easy Extensibility

BenchENAS is an open platform for the research of
ENAS, hence it allows users to extend their own ENAS
algorithms. BenchENAS is easy to expand in two ways. On
one hand, users can easily write their own ENAS algorithms in

BenchENAS with their defined evolutionary operators such as
crossover, mutation, and selection. On the other hand, users
can easily add the contents of the data settings and trainer
settings such as datasets, optimizers as shown in Fig. 3.

The reason that users can easily write their own ENAS algo-
rithms is that BenchENAS is highly modular. BenchENAS has
a simple architecture, where it involves 13 classes. Specifically,
the relationships between these classes are illustrated in Fig.
5. The user starts BenchENAS via the class Run. The class
Run is implemented by running the class EvolveCNN . The
entire process of running the ENAS algorithm is defined in
EvolveCNN . The class EvolveCNN consists of the class
Population, the class CrossoverAndMutation, the class
Selection, and the class FitnessEvaluation. The user can
change the entire flow of the ENAS algorithm by changing
EvolveCNN , such as removing the crossover operation from
the ENAS algorithm or changing the stopping condition. One
of the classes, Population, which is the class that defines the
population, is implemented by the class Individual. Users can
define their own Individual to implement operations such as
changing the encoding method and properties of individuals.
The class CrossoverAndMutation is the class that imple-
ments crossover and mutation to generate new offspring, which
includes the class Crossover and the class Mutation. Users
can define their own Crossover and Mutation. The class



11

Selection is used for environment selection, eliminating the
ill-fit individuals and selecting the competitive ones. The class
FitnessEvaluation gets the fitness value of each individual
in a population by training each individual using the class
TrainModel. In general, the class FitnessEvaluation does
not need to be changed because the process of evaluation
should be the same for each individual in BenchENAS. These
classes are placed in folders with the corresponding names,
and users can easily implement their own algorithms by
changing these classes.

For data settings and trainer settings, the class TrainModel
is implemented by loading the class Optimizer, the class
Learningrate and the class DataLoader. BenchENAS
has provided several Optimizer, Learningrate and
DataLoader classes. Users can customize Optimizer,
Learningrate and DataLoader classes to extend the
optimizer settings and data settings. As for batch size, epoch,
and initial value of learning rate, users can expand them by
filling in new values in train.ini.

V. EXPERIMENTS AND ANALYSIS

In this section, we run eight ENAS methods on
BenchENAS, which can serve as baselines for future research.
Since the original paper of EvoCNN did not perform exper-
iments on the CIFAR-10 dataset, it does not participate in
the comparison of ENAS algorithms. Specifically, we evaluate
some typical ENAS algorithms, including LargeEvo [13],
Genetic CNN [27], HierarchicalEvo [28], CGP-CNN [29],
AE-CNN [23], NSGA-Net [32], RegularizedEvo [34], CNN-
GA [31]. Noting that the experiments of BenchENAS are
performed on GPU cards with the same model of Nvidia
GeForce GTX 2080 Ti.

To ensure a consistent evolution across ENAS algorithms,
for each algorithm, the number of function evaluations is set
at 400. We ensure that the other settings of the algorithm
are consistent with those cited in their original papers, such
as mutation probability, network length, convolution layer
settings, etc. Due to the limitation of computing resources,
we used the early stop policy in our experiments. We divide
the algorithm into the evolution phase and the re-train phase.
The evolutionary phase is the search process of ENAS, in
which only the best performing DNN architecture needs to be
found, so it is not necessary to train each DNN to its best
performance. The approximate performance of each DNN can
be observed by training epochs using the early stop policy. In
the evolution phase, we use 50 epochs to train the DNNs to
reduce the evolution time. In the re-train phase, we retrain
the best DNN selected by the algorithm to reach its best
performance, and this phase uses 600 epochs. The specific
settings will be explained in Section V-B.

A. Data Settings

The CIFAR-10 benchmark dataset is chosen as the image
classification task in the experiments. There are two reasons
to choose it. Firstly, the dataset is challenging in terms of
the image sizes, categories of classification, and noise as well
as rotations in each image. Secondly, it is widely used to

measure the performance of ENAS algorithms, and most of the
ENAS algorithms have publicly reported their classification
accuracy on it. Specifically, the CIFAR-10 dataset is an image
classification benchmark for recognizing ten classes of natural
objects, such as airplanes and birds. It consists of 60,000 RGB
images in the dimension of 32 × 32. In addition, there are
50,000 images and 10,000 images in the training set and the
testing set, respectively. Each category has an equal number
of images. In order to do a fair comparison, we employ
the data preprocessing method that is often used in ENAS
algorithms [2], [3], [31]. Specifically, each direction of one
image is padded by four zeros pixels, and then an image with
the dimension of 32 × 32 is randomly cropped. Finally, a
horizontal flip is randomly performed on the cropped image
with a probability of 0.5. In this re-training phase, we use the
additionally data preprocessing technique cutout.

B. Trainer Settings

To assign the fitness to the candidate DNN architectures,
we train the DNN by stochastic gradient descent (SGD) with
a momentum of 0.9, a mini-batch size of 64, and a weight
decay of 5.0×10−4. The softmax cross-entropy loss is used
as the loss function. We train each DNN for 50 epochs at an
initial learning rate of 0.025.

After the evolution process, we re-train the best DNN
architecture. In this re-training phase, we optimize the weights
of the best architecture for 600 epochs with a different training
procedure. We use SGD with a momentum of 0.9, a mini-batch
size of 96, and a weight decay of 3.0×10−4. We start with a
learning rate of 0.025 and use the cosineAnnealing learning
rate.

C. Result And Analysis

In our experiments, we mainly compare the classification
accuracy, parameter size and GPU days for different ENAS
algorithms. For the convenience of summarizing the compar-
ison results, we use the name of the ENAS algorithms as
the name of the discovered best DNN when comparing the
classification accuracy, parameter size and GPU days between
different ENAS algorithms.

The accuracy, parameter size, GPU days, and the number
of function evaluations in the original paper are shown in
Table VII. The accuracy after 50 epochs on the test dataset,
re-train accuracy, parameter size, and GPU days of these
ENAS algorithms in BenchENAS are shown in Table VIII.
The number of function evaluations of these algorithms is 400.
The symbol “–” implies there is no result publicly reported by
the corresponding algorithm.

We can find from the experimental results that, in terms
of accuracy, the accuracy ranking of all algorithms derived
from the original papers is: RegularizedEvo >HierarchicalEvo
>NSGA-Net >AECNN >CNN-GA >LargeEvo >CGP-CNN
>Genetic CNN with RegularizedEvo ranked number one
while Genetic CCN ranked the last. On the other hand,
the accuracy ranking of all algorithms under the same ex-
perimental conditions in the proposed BenchENAS platform
is: HierarchicalEvo >AECNN >CNN-GA >RegularizedEvo



12

TABLE IV
EXPERIMENTAL RESULTS OF EACH ALGORITHM IN THE ORIGINAL PAPER ON CIFAR-10

Algorithm Accuracy #Parameters GPU days Number of function evaluations
LargeEvo [13] 94.60 5.4M 2750 -
CGP-CNN [29] 94.02 1.68M 27 1000

Genetic CNN [27] 92.90 - 17 1000
HierarchicalEvo [28] 96.37 - 300 1400000

AE-CNN [23] 95.7 2.0M 27 400
NSGA-Net [32] 96.15 3.3M 8 1200

RegularizedEvo [34] 96.60 2.6M - 20000
CNN-GA [31] 95.22 2.9M 35 400

TABLE V
EXPERIMENTAL RESULTS OF EACH ALGORITHM ON BENCHENAS

Algorithm Accuracy After 50 epoch Re-train Accuracy #Parameters GPU days
LargeEvo 80.55 86.04 0.54M 5
CGP-CNN 89.07 94.24 4.62M 14

Genetic CNN 85.36 92.86 0.28M 3
HierarchicalEvo 85.59 95.26 47.13M 4

AE-CNN 89.04 95.25 6.79M 9
NSGA-Net 85.12 93.08 1.08M 4

RegularizedEvo 89.97 94.42 7.88M 15
CNN-GA 90.85 94.67 2.86M 5

>CGP-CNN >NSGA-Net >Genetic-CNN >LargeEvo. It can
be seen that the performance of each ENAS algorithm under
the same experimental conditions is not the same as quoted
from the original papers. The comparability problem does exist
in the comparison of the algorithms. Next, we will analyze
why the situation that leads to different performance from the
original paper occurs.

From the two rankings, we can observe that Regular-
izedEvo, NSGA-Net, and LargeEvo rankings are different
from the ones in the original paper. The LargeEvo algorithm
evolved from a linear structure in the original paper, starting
with 1000 individuals per generation and evolving for 11 days
to obtain a classification accuracy of 94.60%. In this experi-
ment, the LargeEvo algorithm stopped evolving after searching
only 400 individuals. Therefore, the obtained neural network
is a shallow one with poor performance. For NSGA-Net, we
believe that it is the result of the combination of different
data settings, different trainer settings, and different number
of function evaluations. In the original paper of NSGA-Net, it
incorporates a data preprocessing technique cutout [39], and
a regularization technique, scheduled path [61]. To further
improve the training process, an auxiliary head classifier
is also appended to the DNN search. To ensure the same
setup for each experiment, these tricks are not applied in our
experiments. In addition, the number of function evaluations
of NSGA-Net is 1,000 in the original paper, while the number
is only 400 in this experiment. These factors together cause
NSGA-Net to perform less satisfactorily than the original
paper showed. For the RegularizedEvo algorithm, the number
of function evaluations of the original paper is 20000 while
the number is only 400 in this experiment. In addition,

the RegularizedEvo algorithm uses the model augmentation
trick in [61], RMSProp optimizers and the scheduled path in
training that are not used in this experiment. As a result, the
performance is not as good as the original paper indicated.

Therefore, we believe that BenchENAS is effective for
fair comparisons of ENAS algorithms. Through the training
results of this platform, users can analyze the advantages
and disadvantages of each algorithm more objectively without
being influenced by other conditions such as trainer settings,
data settings, and the number of function evaluations.

VI. CONCLUSIONS AND FUTURE WORK

This paper has introduced a benchmarking platform for
ENAS, named BenchENAS. Version 1.0 of BenchENAS in-
cludes nine EC-based NAS algorithms. BenchENAS is com-
pletely open-sourced, such that interested users are able to
develop new algorithms on top of it. In a nutshell, BenchENAS
provides a platform for the fair comparisons of different ENAS
algorithms. Furthermore, BenchENAS elaborates an evaluator
to speed up the fitness evaluation and save much computational
resource by the cache components and the parallel compo-
nents. BenchENAS has easy extensibility and good usability
so that users can easily extend their own algorithms and easily
use the platform. We have done comparative experiments on
BenchENAS using eight state-of-the-art ENAS algorithms to
demonstrate that the fair comparison issue is possible and to
provide benchmark data for future studies by researchers.

However, there are still issues in BenchENAS to be attended
to. Firstly, the number of implemented ENAS algorithms
remains small. Secondly, the efficient evaluator designed in



13

BenchENAS only alleviates the problem of expensive compu-
tational resources, but does not solve the problem completely.
Finally, the search spaces of different ENAS algorithms are
still different at present. As expected, there is still room for
improvement for a truly fair comparison.

In the future, we will keep trying to solve the above
problems. Firstly, although BenchENAS allows the users to
submit their own codes to be included, we will keep follow-
ing and adding more state-of-the-art ENAS algorithms into
BenchENAS. The authors with promising ENAS algorithms
will also be actively solicited. Secondly, some efficient meth-
ods for evaluating DNNs already exist to solve the problem
of time-consuming DNN evaluation, and we will consider
incorporating them into BenchENAS. Finally, we will exploit
means to make all algorithms compare in the same search
space. Furthermore, we will continuously maintain and de-
velop BenchENAS for years to come.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” IEEE, 2016.

[3] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2017, pp. 4700–4708.

[4] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[5] Y. Zhang, W. Chan, and N. Jaitly, “Very deep convolutional networks for
end-to-end speech recognition,” in 2017 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2017,
pp. 4845–4849.

[6] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[7] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, 2017, pp. 5998–6008.

[8] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 1–9.

[9] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” arXiv preprint arXiv:1611.01578, 2016.

[10] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” Journal of artificial intelligence research, vol. 4,
pp. 237–285, 1996.

[11] H. Liu, K. Simonyan, and Y. Yang, “Darts: Differentiable architecture
search,” arXiv preprint arXiv:1806.09055, 2018.

[12] T. Bäck, D. B. Fogel, and Z. Michalewicz, “Handbook of evolutionary
computation,” Release, vol. 97, no. 1, p. B1, 1997.

[13] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. V.
Le, and A. Kurakin, “Large-scale evolution of image classifiers,” in
International Conference on Machine Learning. PMLR, 2017, pp.
2902–2911.

[14] Y. Sun, B. Xue, M. Zhang, and G. G. Yen, “Evolving deep convolu-
tional neural networks for image classification,” IEEE Transactions on
Evolutionary Computation, vol. 24, no. 2, pp. 394–407, 2019.

[15] M. Mitchell, An introduction to genetic algorithms. MIT press, 1998.
[16] W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone, Genetic

programming: an introduction: on the automatic evolution of computer
programs and its applications. Morgan Kaufmann Publishers Inc.,
1998.

[17] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceed-
ings of ICNN’95-international conference on neural networks, vol. 4.
IEEE, 1995, pp. 1942–1948.

[18] Y. Sun, G. G. Yen, and Z. Yi, “Igd indicator-based evolutionary algo-
rithm for many-objective optimization problems,” IEEE Transactions on
Evolutionary Computation, vol. 23, no. 2, pp. 173–187, 2018.

[19] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: Nsga-ii,” IEEE transactions on evolu-
tionary computation, vol. 6, no. 2, pp. 182–197, 2002.

[20] Y. Sun, G. G. Yen, and Z. Yi, “Improved regularity model-based eda
for many-objective optimization,” IEEE Transactions on Evolutionary
Computation, vol. 22, no. 5, pp. 662–678, 2018.

[21] M. Jiang, Z. Huang, L. Qiu, W. Huang, and G. G. Yen, “Transfer
learning-based dynamic multiobjective optimization algorithms,” IEEE
Transactions on Evolutionary Computation, vol. 22, no. 4, pp. 501–514,
2017.

[22] Y. Sun, G. G. Yen, and Z. Yi, “Reference line-based estimation of
distribution algorithm for many-objective optimization,” Knowledge-
Based Systems, vol. 132, pp. 129–143, 2017.

[23] Y. Sun, B. Xue, M. Zhang, and G. G. Yen, “Completely automated
cnn architecture design based on blocks,” IEEE transactions on neural
networks and learning systems, vol. 31, no. 4, pp. 1242–1254, 2019.

[24] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A
survey,” The Journal of Machine Learning Research, vol. 20, no. 1, pp.
1997–2017, 2019.

[25] X. He, K. Zhao, and X. Chu, “Automl: A survey of the state-of-the-art,”
Knowledge-Based Systems, vol. 212, p. 106622, 2021.

[26] H. Al-Sahaf, Y. Bi, Q. Chen, A. Lensen, Y. Mei, Y. Sun, B. Tran, B. Xue,
and M. Zhang, “A survey on evolutionary machine learning,” Journal of
the Royal Society of New Zealand, vol. 49, no. 2, pp. 205–228, 2019.

[27] L. Xie and A. Yuille, “Genetic cnn,” in Proceedings of the IEEE
international conference on computer vision, 2017, pp. 1379–1388.

[28] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and K. Kavukcuoglu,
“Hierarchical representations for efficient architecture search,” arXiv
preprint arXiv:1711.00436, 2017.

[29] M. Suganuma, S. Shirakawa, and T. Nagao, “A genetic programming
approach to designing convolutional neural network architectures,” in
Proceedings of the genetic and evolutionary computation conference,
2017, pp. 497–504.

[30] J. F. Miller and S. L. Harding, “Cartesian genetic programming,” in
Proceedings of the 10th annual conference companion on Genetic and
evolutionary computation, 2008, pp. 2701–2726.

[31] Y. Sun, B. Xue, M. Zhang, G. G. Yen, and J. Lv, “Automatically
designing cnn architectures using the genetic algorithm for image
classification,” IEEE transactions on cybernetics, vol. 50, no. 9, pp.
3840–3854, 2020.

[32] Z. Lu, I. Whalen, V. Boddeti, Y. Dhebar, K. Deb, E. Goodman, and
W. Banzhaf, “Nsga-net: neural architecture search using multi-objective
genetic algorithm,” in Proceedings of the Genetic and Evolutionary
Computation Conference, 2019, pp. 419–427.

[33] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast elitist non-
dominated sorting genetic algorithm for multi-objective optimization:
Nsga-ii,” in International conference on parallel problem solving from
nature. Springer, 2000, pp. 849–858.

[34] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolution
for image classifier architecture search,” in Proceedings of the aaai
conference on artificial intelligence, vol. 33, no. 01, 2019, pp. 4780–
4789.

[35] Y. Liu, Y. Sun, B. Xue, M. Zhang, and G. Yen, “A survey on evolutionary
neural architecture search,” arXiv preprint arXiv:2008.10937, 2020.

[36] L. Li and A. Talwalkar, “Random search and reproducibility for neural
architecture search,” in Uncertainty in artificial intelligence. PMLR,
2020, pp. 367–377.

[37] K. Yu, C. Sciuto, M. Jaggi, C. Musat, and M. Salzmann, “Evaluating
the search phase of neural architecture search,” 2019.

[38] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond
empirical risk minimization,” arXiv preprint arXiv:1710.09412, 2017.

[39] T. DeVries and G. W. Taylor, “Improved regularization of convolutional
neural networks with cutout,” arXiv preprint arXiv:1708.04552, 2017.

[40] G. Ghiasi, T.-Y. Lin, and Q. V. Le, “Dropblock: A regularization method
for convolutional networks,” arXiv preprint arXiv:1810.12890, 2018.

[41] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2016, pp.
2818–2826.

[42] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola,
A. Tulloch, Y. Jia, and K. He, “Accurate, large minibatch sgd: Training
imagenet in 1 hour,” arXiv preprint arXiv:1706.02677, 2017.

[43] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[44] L. M. Schmitt, “Theory of genetic algorithms,” Theoretical Computer
Science, vol. 259, no. 1-2, pp. 1–61, 2001.



14

[45] T. Back, Evolutionary algorithms in theory and practice: evolution
strategies, evolutionary programming, genetic algorithms. Oxford
university press, 1996.

[46] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” 2017.

[47] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-
scale machine learning,” in 12th {USENIX} symposium on operating
systems design and implementation ({OSDI} 16), 2016, pp. 265–283.

[48] K. A. De Jong, An analysis of the behavior of a class of genetic adaptive
systems. University of Michigan, 1975.

[49] V. Passricha and R. K. Aggarwal, “Pso-based optimized cnn for hindi
asr,” International Journal of Speech Technology, vol. 22, no. 4, pp.
1123–1133, 2019.

[50] C. Ying, A. Klein, E. Christiansen, E. Real, K. Murphy, and F. Hutter,
“Nas-bench-101: Towards reproducible neural architecture search,” in
International Conference on Machine Learning. PMLR, 2019, pp.
7105–7114.

[51] X. Dong and Y. Yang, “Nas-bench-201: Extending the scope of repro-
ducible neural architecture search,” arXiv preprint arXiv:2001.00326,
2020.

[52] P. Chrabaszcz, I. Loshchilov, and F. Hutter, “A downsampled variant
of imagenet as an alternative to the cifar datasets,” arXiv preprint
arXiv:1707.08819, 2017.

[53] D. Povey, X. Zhang, and S. Khudanpur, “Parallel training of
dnns with natural gradient and parameter averaging,” arXiv preprint
arXiv:1410.7455, 2014.

[54] S. Shi, Q. Wang, K. Zhao, Z. Tang, Y. Wang, X. Huang, and X. Chu, “A
distributed synchronous sgd algorithm with global top-k sparsification
for low bandwidth networks,” in 2019 IEEE 39th International Con-
ference on Distributed Computing Systems (ICDCS). IEEE, 2019, pp.
2238–2247.

[55] W. Zhang, S. Gupta, X. Lian, and J. Liu, “Staleness-aware async-sgd
for distributed deep learning,” arXiv preprint arXiv:1511.05950, 2015.

[56] X. Lian, W. Zhang, C. Zhang, and J. Liu, “Asynchronous decentralized
parallel stochastic gradient descent,” in International Conference on
Machine Learning. PMLR, 2018, pp. 3043–3052.

[57] D. Bernstein, “Containers and cloud: From lxc to docker to kubernetes,”
IEEE Cloud Computing, vol. 1, no. 3, pp. 81–84, 2014.

[58] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[59] I. Loshchilov and F. Hutter, “Sgdr: Stochastic gradient descent with
warm restarts,” arXiv preprint arXiv:1608.03983, 2016.

[60] R. Housley, “A 224-bit one-way hash function: Sha-224,” RFC 3874,
September, Tech. Rep., 2004.

[61] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable
architectures for scalable image recognition,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018, pp. 8697–
8710.


	I Introduction
	II Related Works
	II-A Background of ENAS
	II-B Fair Comparison Methods
	II-C Efficient Evaluation Methods

	III The proposed BenchENAS
	III-A Overview
	III-B Runner
	III-C Evaluator

	IV Usability And Extensibility
	IV-A Good Usability
	IV-B Easy Extensibility

	V Experiments and Analysis 
	V-A Data Settings
	V-B Trainer Settings
	V-C Result And Analysis

	VI Conclusions and Future Work
	References

