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Quality-Diversity Meta-Evolution: customising
behaviour spaces to a meta-objective

David M. Bossens and Danesh Tarapore

Abstract—Quality-Diversity (QD) algorithms evolve be-
haviourally diverse and high-performing solutions. To illuminate
the elite solutions for a space of behaviours, QD algorithms
require the definition of a suitable behaviour space. If the
behaviour space is high-dimensional, a suitable dimensionality
reduction technique is required to maintain a limited number
of behavioural niches. While current methodologies for auto-
mated behaviour spaces focus on changing the geometry of the
behaviour space or on unsupervised learning of its key features,
there remains a need for customising behavioural diversity to
a particular meta-objective specified by the end-user. In the
newly emerging framework of QD Meta-Evolution, or QD-Meta
for short, one evolves a population of QD algorithms, each
with different algorithmic and representational characteristics,
to optimise the algorithms and their resulting archives to a user-
defined meta-objective. Despite promising results compared to
traditional QD algorithms, QD-Meta has yet to be compared
to state-of-the-art behaviour space automation methods such as
Centroidal Voronoi Tessellations Multi-dimensional Archive of
Phenotypic Elites (CVT-MAP-Elites) and Autonomous Robots
Realising their Abilities (AURORA). This paper performs an
empirical study of QD-Meta on function optimisation and multi-
legged robot locomotion benchmarks. Results demonstrate that
QD-Meta archives provide improved average performance and
faster adaptation to a priori unknown changes to the environment
when compared to CVT-MAP-Elites and AURORA. A qualitative
analysis shows how the resulting archives are tailored to the meta-
objectives provided by the end-user.

Index Terms—quality-diversity algorithms, meta-evolution,
evolutionary robotics

I. INTRODUCTION

Historically, most evolutionary algorithms (EAs) optimised
a fitness function without considerations for generalisation to
unseen problems or robustness to perturbations to the evaluation
environment. However, it was widely known that successfully
converging to the maximum of that fitness function requires
maintaining genetic diversity in the population of solutions
(e.g., [1]–[4]). Moreover, the use of niching demonstrated how
maintaining subpopulations could help find multiple solutions to
a single problem [5]. Some studies included genetic diversity as
one of the objectives of the EA [6]. Approaches in evolutionary
robotics, artificial life, and neuro-evolution realised that genetic
diversity does not necessarily imply a diversity of solutions,
since (i) different genotypes may encode the same behaviour
and vice versa; and (ii) many genotypes may encode unsafe or
undesirable solutions that should be discarded during evolution
(e.g., when a robot crashes into an obstacle). Such approaches
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began to emphasise behavioural diversity [7]–[10], not only as
a driver for objective-based evolution but also as the enabler
for diversity- or novelty-driven evolution [11].

In quality-diversity (QD) algorithms such as MAP-Elites
[12] and Novelty Search with Local Competition [13], the
behavioural diversity approach is combined with local com-
petition such that the best solution for each local region in
the behaviour space is stored, forming a large archive of
high-quality solutions. The development of quality-diversity
algorithms has allowed a plethora of applications. In robotics,
this includes the design of robot morphologies and controllers
[12], [14], as well as providing the behaviour space for
behaviour adaptation algorithms [15], [16], which search for
high-performing behaviours in the evolved archive to help
robots recover rapidly from environmental changes or damages
to their sensory-motor systems.

A growing number of approaches has started to explore
automatically defined behaviour spaces for QD algorithms.
For Novelty Search, Meyerson et al. (2016) [17] proposed
to learn a behavioural distance function to suit a particular
domain of problems by increasing weights of those behavioural
features that are critical to success on the target domain. For
MAP-Elites, low-dimensional behaviour spaces are particularly
desirable since the number of niches grows exponentially with
the number of dimensions in the behaviour space. In CVT-MAP-
Elites [18], Centroidal Voronoi Tesselations provide a different
geometry to MAP-Elites such that each niche is defined by
the regions around a centroid in the behaviour space. Since
the user can pre-specify the number of centroids, this avoids
the exponential increase in the number of niches. In AURORA
[19], standard dimensionality reduction algorithms such as
Principal Component Analysis (PCA) and auto-encoders are
applied to automating the behaviour space in a distance-based
archive as in Novelty Search with Local Competition. In a
first study, AURORA outperformed CVT-MAP-Elites and also
demonstrated the benefit of auto-encoders over PCA [19]. A
follow-up study [20] further showed the fitness advantage
over TAXONS [21], a comparable behaviour space automation
method which also uses auto-encoders but which emphasises
diversity but not quality.

In a variety of applications, end-users may be particularly
interested in behaviour spaces that are custom-made to a
particular meta-objective, which expresses desirable properties
for the final archive, such as a high number of solutions,
generalisation towards particular problems, ability to form
meaningful behavioural sequences, etc. In this context, we
propose the newly emerging framework of quality-diversity
meta-evolution [22], [23], or QD-Meta for short, to evolve a
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population of QD algorithms, each with their own behaviour
space and optionally some other representational or algorithmic
properties. The framework learns a feature-map to define the
behaviour space and through the use of a large database
of promising solutions generated so far, it allows to rapidly
populate new archives based on the adapted behaviour space.
The proposed approach also controls dynamically, based on
the meta-population statistics, how many generations the QD
archives will evolve before they are evaluated on the meta-
objective. Both aspects have been studied in prior work, with
the evolution of feature-maps yielding large generalisation
improvements compared to MAP-Elites variants [22], [23] and
with parameter control of the generations yielding small but
consistent benefits in QD metrics and in the meta-objective
[23]. This paper aims to further demonstrate QD-Meta as a
unique framework for QD optimisation by investigating the
following research questions:
• How does QD-Meta compare to state-of-the-art methods

AURORA and CVT-MAP-Elites on standard QD metrics
as well as on behaviour adaptation to dynamic changes
to the fitness landscape, for instance, due to changes in
the environment?

• What are the unique properties of the archives, in terms
of quantitative metrics but also qualitative behaviour
characterisations, as they are tailored to different meta-
objectives?

• What is the benefit of the population-based methodology
of QD-Meta, in which multiple feature-maps are devel-
oped, and how does the meta-population size affect QD
and meta-fitness measures of QD-Meta?

• Previous QD-Meta work has used feature-sets, which
are sets of behavioural descriptors selected by the user.
Are such hand-crafted feature-sets a requirement for QD-
Meta’s performance?

These questions are investigated on two distinct benchmarking
domains of high importance for the evolutionary computation
community, namely Rastrigin function optimisation and multi-
legged robot locomotion.

II. QUALITY-DIVERSITY META-EVOLUTION

This section details our quality-diversity meta-evolution
algorithm. In this study it is implemented using Covariance
Matrix Adaptation Evolutionary Strategy (CMA-ES) [24], [25]
to evolve a population of MAP-Elites [12] algorithms (see
Fig. 1 for an illustration).

A. MAP-Elites algorithm

The MAP-Elites (ME) algorithm [12] discretises the be-
haviour space into behavioural bins, which are equally-sized
hypercubes, and then maintains for each behavioural bin the
elite solution (i.e., the solution with the highest fitness), leading
to quality-diversity.

ME first randomly generates an initial population of geno-
types. Then, each genotype in the initial population is evaluated,
resulting in a fitness score f and a behavioural descriptor β.
Each genotype is then added to the behaviour-performance
map M based on the following elitist replacement rule: if
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Fig. 1. Flow diagram of QD-Meta, which repeats a four-step cycle: 1. CMA-ES
samples the meta-population from its distribution in the meta-genotypic space.
2. Each of the meta-genotypes wi for i ∈ {1, . . . , λ} then independently
applies MAP-Elites with its own feature-map: 2a construct the feature-map
φ(wi, ·); 2b rapidly populate the archive Mi with entries from the database
D . 2c perform repeated MAP-Elites iterations, selecting a genotype from the
archive, mutating it, evaluating its fitness f ′ and its base-features b′ from the
observed behaviour, computing the target-features β = φ(wi,b′), adding the
solution to the database, and adding it in the archive as M[β]) – if it is an
elite for the region around β. 3. The archives evolved by the meta-genotypes
are evaluated on their meta-fitness. 4. Using the meta-genotypes and their
meta-fitness scores, CMA-ES updates its distribution in the meta-genotypic
space to find archives with the highest meta-fitness.

the genotype is the best solution so far for that behavioural
bin – either because β is empty (M[β] = ∅) or because
the fitness is higher than the current genotype in that bin
(f > f(M[β])) – then store that genotype g in that bin of the
behaviour-performance map (i.e., M[β]← g).

After initialisation, the algorithm applies repeated cycles of
random selection, genetic variation, evaluation, and replacement.
Random selection is implemented by randomly selecting
genotypes from non-empty behavioural bins in the behaviour-
performance maps. Genetic variation is based on mutations
to the genotypes. Evaluation of genotypes is based on a
user-defined fitness function f(·). Replacement is based on
the above-mentioned elitist replacement rule. After many
repetitions of this cycle, applying mutations on genotypes
selected randomly from a growing set of filled behavioural
bins ultimately leads to covering most behavioural bins of
the behaviour-performance map. Due to repeatedly replacing
existing genotypes with higher-performing genotypes, the
fitness potential of each covered behavioural bin will be
illuminated.
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B. QD-Meta algorithm

There are two key limitations to ME: 1) it is not suited
to high-dimensional behaviour spaces; and 2) since the elites
in the resulting behaviour-performance maps are not at any
time evaluated in changed environments, they are not nec-
essarily selected for their generalisation potential. Quality-
diversity meta-evolution provides a promising perspective to
overcome these issues by using feature-maps to formulate low-
dimensional behaviour spaces and by evaluating its elites on a
meta-objective that includes changed environments.

The QD-Meta algorithm implementation uses Covariance
Matrix Adaptation Evolutionary Strategy (CMA-ES) [24], [25]
to evolve a population of MEs – the meta-population – and
thereby optimise behaviour-performance maps with generali-
sation as a meta-objective. The algorithm, described in detail
in Algorithm 1, first applies an initialisation phase to populate
the behaviour-performance maps in which a large number of
random genotypes are sampled, evaluated, and then added to the
database D (see l. 1–6, and Section II-C for further details on
the database). After initialisation, the meta-evolution algorithm
performs a large number of meta-generations, consisting of
the following steps:

1) Sample new meta-genotypes W1, . . . ,Wλ from the
multivariate normal distribution defined by CMA-ES (see
l. 10).

2) For i ∈ {1, . . . , λ}, use meta-genotype Wi to construct a
new map Mi based on existing solutions in the database
(l. 11–12).

3) Get the meta-population state s′ and select the number of
ME iterations a′ based on the Q-table defined by SARSA
(l. 15–16).

4) For i ∈ {1, . . . , λ}, ME(a′,Mi,Wi) further evolvesMi

(l. 18 and l. 36–42). Newly generated solutions, including
their genotype, base-features, and fitness, are stored in the
database to be used in step 2) of the next meta-generation.

5) Evaluate each meta-genotype i ∈ {1, . . . , λ} on the meta-
fitness F(Wi) (l. 19; see Section III for its definition).

6) SARSA(λ) uses the new experience 〈s, a, r, s′, a′〉 to
update Q (see Section II-E).

7) CMA-ES updates the mean, covariance, and step size,
applying the (µ/µW , λ)-CMA Evolution Strategy [25] (l.
23–25).

C. Database

The database D stores a large number of previously found so-
lutions to enable rapidly generating new behaviour-performance
maps. Each such solution is a tuple 〈g,b, f〉, where g is the
genotype (e.g., the parameters of a controller), b is the base-
behavioural description of the solution according to a large
number of Nb user-defined features, and f is the fitness (e.g.,
the performance of a controller).

Two database types have been explored in prior work, a
circular buffer [22] and the k-best database designed to preserve
high-performing solutions with high behavioural diversity [23].
We opt for the former, as the latter is not scalable to high-
dimensional base-behavioural spaces.

Algorithm 1 QD-Meta
1: D ← ∅. # Create empty database.
2: for i = 1 to p do # Create initial database.
3: g← random-genotype().
4: b, f ← eval(g). # Base-features and fitness.
5: Insert 〈g,b, f〉 into D. # Fill the database (see Section II-C).
6: end for
7: for j = 1 to G do # Loop over meta-generations.
8: for i = 1 to λ do
9: Set Mi ← ∅. # Empty the map.

10: w ∼ N (m, σC). # Sample meta-genotype.
11: for 〈g,b, f〉 ∈ D do # Construct map from database.
12: add-to-map(Mi, w, g, b, f ).
13: end for
14: end for
15: Get meta-population state s′. # see Section II-E
16: a′ ← epsilon-greedy(s′). # Control ME iterations.
17: for i = 1 to λ do
18: Perform ME-iterations(a′,Mi,wi).
19: Fi ← Meta-fitness(Mi).
20: end for
21: SARSA(λ) update on 〈s, a, r, s′, a′〉. # see Eq. 2
22: s← s′; a← a′.
23: m← Update-mean().
24: C← Update-covariance().
25: σ ← Update-step().
26: end for
27: procedure ADD-TO-MAP(M, w, g, b, f )
28: W← transform(w). # Transform meta-genotype
29: # (see Section II-D).
30: β ← φ(W,b). # Apply feature-map to get target features
31: # (see Eq. 1).
32: if M[β] = ∅ or f > f(M[β]) then
33: M[β]← g. # Add genotype g to the map M.
34: end if
35: end procedure
36: procedure ME-ITERATIONS(I ,M, w)
37: for i = 1 to I do # I is the number of iterations.
38: g ∼M. # Sample genotype randomly from map.
39: g′ ← mutate(g). # Mutation.
40: b, f ← eval(g′). # Base-features and fitness.
41: add-to-map(M, w, g′, b, f ).
42: Insert 〈g′,b, f〉 into D . # Fill the database.
43: end for
44: end procedure

D. Non-linear feature-maps

In QD-Meta, feature-maps are used to transform the base-
behavioural features b ∈ [0, 1]Nb to a low-dimensional
behavioural descriptor β ∈ [0, 1]Nt . We use non-linear feature-
maps based on a feed-forward neural network with scaled
sigmoid function,

n(W,b) = W2SNb
(W1b +B1) +B2

φ(W,b) = SNh
(n(W,b)) ,

(1)
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where SN (x) = 1/ (1 + exp (−αsx/(N + 1))) is an element-
wise sigmoid function that scales the incoming activation based
on the number of incoming units, N ;1 αs is an empirically
defined scaling factor; and the transformed meta-genotype,
W, is composed of a weight matrix from input to hidden
layer, W1 ∈ RNh×Nb , a weight matrix from hidden layer
to output, W2 ∈ RNt×Nh , and the corresponding bias units
B1, B2 ∈ R. For networks such as φ(W,b), universal
approximation theorems (e.g., [26], [27]) imply that in principle
all multi-variate functions over closed and bounded intervals
can be represented to arbitrary precision, assuming a sufficient
number of neurons.

Such feature-maps strongly outperform other linear and
feature-selector feature-maps in practice (see [23]). Beyond the
ability to represent arbitary input-output mappings, the output
sigmoid activation in Eq. 1 also has a favourable statistical
profile. It accounts for the high frequencies of near-zero values
of n(W,b) as it increases steeply for values close to zero and
slowly for extreme values. This ensures that for a sizeable
proportion of mappings, each bin in [0, 1]Nt is frequently
represented, leading to diversity and local competition in the
target-feature space – the key requirements for quality-diversity.

E. Dynamic parameter control

An additional feature of the algorithm is dynamic param-
eter control to find high-performing dynamic schedules of
parameters such as the number of generations per meta-
generation and the mutation rate. Compared to other dynamic
parameter control schedules, reinforcement learning (RL) using
the SARSA(λ) implemetation of Karafotias et al. (2014) [28]
has been demonstrated as the method of choice in QD-Meta
[23]. This paper will use the same RL technique for dynamic
control of the number of generations per meta-generations to
solve the trade-off between quality-diversity (base-generations)
and the evaluation of the quality-diversity archive in terms
of the meta-fitness (meta-generations). An advantage of RL
over other adaptive schedules, such as annealing, endogenous
control, multi-armed bandits, etc. (see [29] for annealing and
endogenous control in QD and [30] for an overview), is that RL
makes use of a rich observation history with various indicators
of meta-evolutionary progress.

In the RL setup for QD-Meta parameter control, the
algorithm uses intervals of the parameter setting as “actions”
and then learns which actions result in meta-fitness improve-
ments given observations on the meta-evolutionary progress.
Observations are the maximum, mean, and standard-deviation
of meta-fitness, the meta-genotypic diversity, the number of
consequent meta-generations the maximal meta-fitness has not
improved, and the reward. The reward is the ratio improvement
in maximal meta-fitness divided by the function evaluations
performed in the latest meta-generation. To ensure the state-
space is not too large with such continuous observations, the
state of the RL agent is formed using a tree-based discretisation
[31], in which states represent different partitions with Q-values

1Hidden units receive a weighted activation based on N = Nb input units
while output units receive a weighted activation based on N = Nh hidden
units

indicated as significantly distinct according to a Kolmogorov-
Smirnoff test.

The RL parameter control follows the algorithm by Karafo-
tias et al. (2014) [28]. It uses the SARSA algorithm [32],
[33], an on-policy version of Q-learning, with eligibility
traces (see SARSA(λ) [33]). The algorithm performs ε-greedy
action selection, selecting the best action according to a∗ =
arg maxaQ(s, a) with probability 1−ε and selecting a random
action with probability ε. After each experienced transition of
state, action, reward, state, and action, 〈st, at, rt, st+1, at+1〉,
the Q-table is updated for all eligible state-action pairs as
follows:

Q(s, a) +=αe(s, a)
(
rt + γQ(st+1, at+1)−Q(st, at)

)
, (2)

where γ is the discount factor (discounting the future rewards);
α is the learning rate; and the eligibility e(s, a) gives more
weight to recently experienced state-action pairs, which ad-
dresses the temporal credit assignment problem in a way that
works well for online learning in a non-episodic environments.2

This is done by assigning e(st, at) ← 1 and e(s, a) ←
e(s, a)λγ for all other state-action-pairs (s, a) ∈ S ×A .

III. EXPERIMENT SETUP

To illustrate the principles of QD meta-evolution on a variety
of applications, experiments are conducted on two benchmarks,
Rastrigin function optimisation and hexapod robot locomotion.3

In both benchmarks, there are two phases:
1) Evolution phase: the behavioural archives are evolved us-

ing QD algorithms; a summary of evolutionary parameters
is given in Table I.

2) Test phase: the behavioural archives are assessed on
fitness landscapes not experienced during evolution.

The key hypothesis is that if robustness to dynamic changes
is incorporated to the meta-fitness, then archives evolved with
QD meta-evolution will have improved performance on the
test phase when compared to other QD algorithms.

A. Baseline algorithms

To evaluate QD meta-evolution compared to the state-of-the-
art for low-dimensional behaviour spaces in QD, we compare
to two baseline algorithms:
• AURORA [20]. To represent unsupervised automation of

low-dimensional behaviour spaces, we include the popular
AURORA algorithm mentioned in the introduction. Based
on its superior overall performance over other AURORA
variants, we choose AURORA-CSC-Uniform, which uses
Container Size Control (CSC), a proportional control
technique to match a desired pre-specified container
size, and uniform selection over the archive. Out of
the two neural network architectures for the feature-
maps experimented with in the literature, Multi-Layer
Perceptron (MLP) and Convolutional Neural Networks

2The dynamic parameter control problem is non-episodic since there is only
a single lifetime with no terminal states

3Open-source code for replicating the experiments is available on the
repository https://github.com/resilient-swarms/QDMeta_experiments.
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(CNN), we select the MLP as the base-features are
not spatially correlated pixel data as is typical in CNN
applications. The implementation is based on the source
code provided in Grillotti & Cully (2021) [20] (see https:
//github.com/adaptive-intelligent-robotics/AURORA).

• CVT-MAP-Elites [18]. An alternative methodology for
automated low-dimensional behaviour spaces, without use
of feature-maps, is to formulate the problem in one dimen-
sion based on a few prototype behaviours. To represent this
approach for dimensionality reduction in QD algorithms,
we include Centroidal Voronoi Tesselations MAP-Elites, in
which the niches are determined by a behaviour’s distance
to a limited number of pre-defined centroids spread
evenly across the behaviour space. The implementation is
based on the CVT-MAP-Elites module for the sferes2
framework (see https://github.com/sferes2/cvt_map_elites),
which was used in Vassiliades et al. (2021) [18].

In the experiments, the baseline algorithms and QD-Meta
algorithms have the same base-behavioural features, denoted
as b ∈ [0, 1]Nb . For AURORA and QD-Meta, base-features are
projected onto a set of target-features, β ∈ [0, 1]Nt by means
of their feature-maps. For CVT-MAP-Elites, the centroids are
formulated within the same base-feature space.

TABLE I
PARAMETER SETTINGS FOR EVOLUTION. TOP HALF SHOWS SETTINGS

COMMON TO ALL CONDITIONS WHILE BOTTOM HALF SHOWS SETTINGS FOR
QD-META CONDITIONS.

Parameter Setting for Rastrigin Setting for RHex
Genotype (g) [0, 1]20 discretised in [0, 1]24

Base-behaviour space genotype trajectory in [0, 1]50

or feature-sets in
[0, 1]15

Mutation rate 0.10 0.125
Mutation type Gaussian with SD

σ = 0.05
random increment or
decrement with step
of 0.025

Maximal number of solutions 10,000 solutions 4,096 solutions
Function evaluations 100,000,000 12,000,000
Batch size per generation 400 400
Initial population (p) 2,000 2,000
Meta-population size (λ) 10 10
Number of target-features (Nt) 2 4
Number of hidden units (Nh) 10 10
Meta-genotype (w) [−1, 1]222 [−1, 1]542

Sigmoid scaling factor (αs) 30 30
Database capacity 500,000 500,000

B. Rastrigin function optimisation benchmark

In a first set of experiments, quality-diversity archives are
evolved on a 20-dimensional Rastrigin function and then
assessed on a set of test-perturbations, which represent a
dynamic change of the fitness landscape. While standard genetic
algorithms can solve the 20-D Rastrigin near-optimally, the
archives evolved by QD algorithms have a unique benefit of
covering various peaks of a fitness landscape; therefore, QD al-
gorithms can potentially provide a near-optimal solution after a
dynamic landscape change. The following two independent QD-
Meta conditions are run, QD-Meta Dimension and QD-Meta
Translation, corresponding to two different meta-objectives: 1)
dimensionality decreases which remove one input-dimension
from the Rastrigin computation; and 2) linear transformations

over the fitness landscape. The test phase runs two independent
test scenarios, each of which are applied to all the algorithms.
The Dimension test consists of injecting sinusoidal noise to
selected pairs of dimensions while the Translation test consists
of performing linear transformations. The resulting fitness
landscapes of the tests are out-of-distribution even for the
QD-Meta conditions.

a) Evolution phase: The 20-dimensional Rastrigin func-
tion is highly multi-modal and non-linear, posing a challenging
optimisation problem. Formulated as a maximisation problem
it takes the following form:

f(g) = −10Ng

( Ng∑
i=1

g2i − 10 cos(2πgi)
)
, (3)

where Ng is the number of genes in the genotype, g ∈
[−5.12, 5.12]Ng .

The following settings are common to all algorithms. The
Rastrigin with its continuous search space is optimised by a
Gaussian mutation operator with standard deviation of σ = 0.05
and a mutation rate of 0.10. As the Rastrigin experiments have
low-cost function evaluations, a large budget of 100 million
function evaluations and a large number of 10,000 solutions
are allowed. The base-behavioural features of a solution are
equal to its genotype.

Further algorithm-specific settings are as follows. For generat-
ing its centroids, CVT-MAP-Elites uses the k-means algorithm
on randomly generated data points; here, we use 1 million
data points of randomly generated points in [0, 1]20. For QD-
Meta, the meta-population size is increased to 10 compared
to 5 in prior works [22], [23], mainly to discourage getting
stuck in local optima of the meta-fitness. Two distinct QD-
Meta conditions are included according to two different meta-
objectives. In a first condition, called QD-Meta Dimension,
the meta-fitness aims to provide behaviourally diverse and
high-quality solutions despite changes to the dimensionality
of the Rastrigin function. For QD-Meta Dimension, the meta-
fitness of an archive M combines the archive-summed fitness,
averaged over different dimensionality decrements, and the
summed pairwise distance in the genotypic space (here also
the base-behavioural space):

Fd(M) = − 1

|J |

(∑
j∈J

∑
g∈M̂

M+f̄{j}(g)+α
∑
g′ 6=g

||g−g′||2
)
,

(4)
where J ⊂ {1, . . . , 20} is a set of 10 indices randomly selected
before the start of evolution; M̂ is a random subset of 10%
of the solutions of the full archive, selected anew for each
meta-fitness evaluation; an upper bound M normalises f̃j(g)
to the range [0,M ] to obtain a positive score; f̄{j}(g) =
−10(Ng − 1)

∑
i 6=j g

2
i − 10 cos(2πgi), thereby removing one

selected dimension; and α =

√
NgM

|M̂|−1 is scaled such that
diversity and quality have comparable importance. Taking the
archive-summed fitness rather than archive-averaged fitness
implies a bonus for larger archives. In a second condition, called
QD-Meta Translation, the meta-fitness aims to provide high-
quality solutions despite various translations to the genotype
changing the location of the global optimum. For QD-Meta
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Translation, the meta-fitness of an archive M is the average
of the archive-summed fitness across different translations:

Ft(M) = − 10

|T |Ng

( ∑
T∈T

∑
g∈M̂

Ng∑
i=1

T (gi)
2−10 cos(2πT (gi))

)
,

(5)
where T is a set of randomly generated linear transformations
of the type T (x)← ax+ b where b ∈ [−0.50, 0.50] represents
a small to medium-sized shift of the fitness landscape and
a ∈ [−1.10,−0.91] ∪ [0.91, 1.10] represents a 10% expansion
or shrinkage of the landscape, with or without a sign change. To
reduce variance across meta-evolution while sampling different
values of a and b, we sample transformations based on 8 non-
overlapping ranges determined by three boolean features: the
sign of a, whether a shrinks or expands x, and the sign of b.
So, for example, T1 has a ∼ U(−1.10,−1), b ∼ U(−0.50, 0),
T2 has a ∼ U(−1.10,−1), b ∼ U(0, 0.50), T3 has a ∼
U(1, 1.10), b ∼ U(−0.50, 0), etc. For each range there are
two repetitions, yielding 16 random translations in each meta-
fitness evaluation.

b) Test phase: The test phase assess rapid adaptation
to fitness landscape changes in no more than 100 function
evaluations of random search over the behavioural archive,
randomly selecting solutions without replacement. Two distinct
and independently run tests are set up which compared to
the meta-fitness functions are conceptually similar but have a
completely different distribution of optimal solutions.

In the Dimension test, one removes two selected dimensions
of the genotype from the Rastrigin computation and replaces it
with high-frequency sinusoidal noise with the same amplitude
(i.e. 10) as the cosine in the original Rastrigin):

f̃J (g) = −10(Ng − |J |)
(∑
i 6∈J

g2i − 10 cos(2πgi)

−
∑
i∈J

10 sin(6πgi)
)
,

(6)

where J is a chosen index set. While conceptually similar to
QD-Meta Dimension, the key difference is that two dimensions
are altered and that the altered dimensions are replaced by
a high-amplitude sine wave rather than completely being
removed.
In the Translation test, one transforms the genotype using a lin-
ear transformation gi ← agi+ b for all i ∈ {1, . . . , Ng} before
computing the 20-dimensional Rastrigin (see Eq. 3). In the test
set, 120 unique index sets are generated, each of size |J | = 2.
Twelve settings of the slope, a, are generated by applying, or
not applying, shrinkage and reversal to a′ = {0.01, 0.25, 0.5}.
The settings using a′ = 0.25 and a′ = 0.50, with or without
shrinkage or reversal, are far out-of-distribution compared to the
QD-Meta Translation’s meta-fitness. The intercept, b, is chosen
in ±{0.01, 0.25, 0.50, 0.75, 1.0}. Therefore, only 8 out of 120
(a, b)-values are in-distribution for QD-Meta Translation and
values close to these are only rarely chosen during meta-fitness
evaluation.

C. Hexapod robot locomotion benchmark
To evaluate the QD systems on a realistic application, they

are compared on the RHex hexapod robot platform (see Figure

(a) RHex robot (b) Down-and-up stairs (c) Thick pipe

Fig. 2. The RHex hexapod robot platform: (a) the physical robot, on which
the simulation is based; (b) the down-and-up stairs obstacle course; (c) the
thick pipe obstacle course. For the full set of obstacle courses, see Fig. S2 of
the Supplemental Materials.

2) [34], which is of interest because RHex can move across
difficult terrains at high speeds. For QD-Meta, we independently
run 4 different conditions based on two meta-objectives and
two types of base-behavioural spaces per meta-objective. The
meta-objectives are based on the performance after damaging
one of the RHex robot’s legs or after introducing an obstacle
into the environment. The base-behavioural space is based
on either feature-sets, which are traditionally used in quality-
diversity meta-evolution, or the trajectory of the robot, as is
traditionally used in AURORA and CVT-MAP-Elites. In the
test phase, we devise two independent test scenarios, namely
damages to the robot’s legs as well as obstacle-courses. These
test scenarios are not presented during the evolutionary phase
and therefore represent adaptation to a priori unknown events.

a) Evolution phase: The RHex robot is simulated using
the DART (Dynamic Animation and Robotics Toolkit) physics
engine [35]. The task of the Rhex robot is to walk in a straight
line and the fitness function f is the total distance the robot
has moved forward within a time span of 5 s, on a flat plain
surface where the robot faces no damages or obstacles. The
control cycle of the locomotion controller is 5 ms.

Each leg of the robot is controlled by a Buehler clock,
which alternates between a stance phase where the robot leg
touches the ground and a swing phase where the leg rotates
above ground [34], [36]. The genotype g is comprised of 24
parameters, including: the period of the clocks, T , between
0.33-1 s (clock speed within 1-3 Hz; parameter 1); for each
leg its duty-factor, the proportion of time that the leg touches
the ground (parameters 2-7); the stance angle in [0, π], the
angle in which the robot leg touches the ground (parameters
8-13); the stance offset in [−π/4, π/4], the angular offset to
the leg’s stance phase (parameters 14-19); the phase offset in
[0, T/2], the time lag with which the leg touches the ground
when compared to leg 1 (parameters 20-24; reference leg 1 is
excluded as parameter). The resulting 24-dimensional genotypic
space is discretised with a step size of 0.025 and therefore
whenever a gene is mutated, the mutation operator generates
random increments or decrements of one step. The RHex robot
experiments involve computationally expensive simulations,4

so the budget is limited to 12 million function evaluations and
only 4,096 solutions are allowed.

Settings common to all algorithms are as follows. The base-
behavioural space is a 50-dimensional space in [0, 1]50 repre-

4Experiments are conducted on Intel Xeon Gold 6138 (2.00GHz) CPUs.
While for Rastrigin, a single run requires only one CPU run for at most 20h,
the RHex robot experiment runs require 40 CPUs for around 300h.
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senting 10-step trajectories of the robot in terms of Cartesian
xy-coordinates and the roll-pitch-yaw coordinates5. This choice
serves two purposes: 1) these features are comparable to the
typical AURORA setup thereby allowing a fair comparison; and
2) while previous work on QD-Meta used hand-crafted feature-
sets, it is not clear whether such feature-sets are required
or whether trajectories similar to those used in AURORA
are sufficient. This would be important to know because the
construction of feature-sets often requires additional prior
knowledge (as mentioned in [20]), resulting in a potential
trade-off between applicability and the customisation.

Settings specific to particular algorithms are as follows. For
CVT-MAP-Elites, feasible trajectories must be sampled before
forming centroids since a large part of the base-behavioural
space may not provide a feasible solution; unlike the Rastrigin
function optimisation, where all behaviours are feasible, the
RHex robot may have a validly formed genotype without
adhering to safety criteria. To obtain a suitable dataset for
the feasible behaviour space, we sample genotypes until there
are 100,000 valid robot trajectories that do not violate the
safety measure (i.e. the RHex robot did not turn over). For
QD-Meta, we additionally include the original feature-sets (see
[22]), which combine: 1) the linear velocity in the 3 Cartesian
axes (3D); 2) the frequencies of the body orientation being
significantly negative or positve in the 3 orientation axes of roll,
pitch, and yaw (6D); and 3) for each leg, the duty factor, i.e.
the proportion of time it touches the ground. The different base-
behaviour spaces will be distinguished by the suffix Feature-
sets versus Trajectory. Two distinct QD-Meta conditions are
included according to two different meta-objectives. In the
QD-Meta Damage condition, the meta-objective is based on
the average performance of the archiveM on a set of damages
injected to the robot’s legs (one-by-one):

Fdamage(M) =
1

6|D||M|
∑
g∈M

∑
d∈D

6∑
l=1

f(g; d(l)) , (7)

where D defines a set of two damage-types, selected randomly
from the full damage set at the start of the evolutionary
experiment; and f(g; d(l)) computes the fitness of the genotype
g when a damage of type d is applied to leg l of the RHex
robot. The full damage set, from which the meta-fitness is
constructed, comprises four types of damages to the RHex
robot’s legs: 1) leg-removal, which completely removes one
leg; 2) leg-shortening, which shortens one leg significantly,
usually preventing it from touching the floor; 3) blocked-joint,
in which a joint cannot move; or 4) passive-joint, in which the
affected joint cannot be controlled but can move passively. In
the QD-Meta Damage condition, the meta-objective is based
on the average performance of the archive M on a set of
obstacles:

Fobstacle(M) =
1

|O||M|
∑
g∈M

∑
o∈O

f(g; o) , (8)

5A tight normalisation in [0, 1]50 is obtained by dividing at each step the
relative change from the previous step by the maximal deviations; for example,
to compute x2 as a feature, x2 ← 0.5 + 0.5x2−x1

∆x
is computed where ∆x

is an empirical estimate of the maximal absolute value of x.

where O defines a set of 5 obstacles selected at random
out of the full obstacle set at the start of the evolutionary
experiment. The full obstacle set comprises 9 obstacle courses
(see Figure S2 in Supplemental Materials): a) a large sphere
interrupting the normal trajectory; b) a continuing upward stairs;
c) a slope; d) a large pile of rubble forming a rough terrain;
e) downward stairs followed by upward stairs; f) several small
pipes evenly spaced across the forward trajectory; g) a ditch;
h) a thick pipe; and i) a thin pipe. To avoid selecting problems
that are not solvable, the obstacle courses were adjusted to
meet a target optimal performance between 3 m and 5 m, which
was confirmed by obstacle-specific runs with a traditional EA.

b) Test phase: In the test phase, the archives are assessed
on obstacles and damages not known a priori by any of the
algorithms. The Obstacle test assesses rapid performance
receovery on obstacles not experienced during meta-evolution
while the Damage test assesses rapid performance recovery
on damages not experienced during meta-evolution. In both
cases, recovery is done by performing random search (without
replacement) in no more than 50 function evaluations. To
assess the overall robustness of solutions, we also perform a
Generalisation test in which all controllers are assessed for
their average performance over all environments.

IV. RESULTS

This section analyses the comparative performance of QD-
Meta and the baseline algorithms on the function optimisation
and RHex robot experiments. For each benchmark, we eval-
uate the evolutionary development, including the number of
solutions in the archive and their fitness over time, as well as
their performance on the consequent test. A further qualitative
analysis probes into the behavioural differences observed when
comparing different meta-objectives.

A. Rastrigin function optimisation

In the evolution phase, the quality-diversity statistics can
be observed from Figure 3. All QD algorithms yield a high
number of solutions although there is a difference between
CVT-MAP-Elites, which yields just below 3,000 solutions, and
AURORA and QD-Meta conditions, which yield about 10,000
solutions. The difference is explained by AURORA setting
10,000 as an explicit target for the proportional container size
control and by QD-Meta conditions having a meta-fitness bonus
for the number of solutions. All algorithms converge to a global
fitness of around −70. The largest difference observed is that
QD-Meta scores highest on the average fitness, with a score
of −100, followed by CVT-MAP-Elites with a score of −170,
and finally AURORA, −300. The higher average fitness of
QD-Meta conditions is explained by the meta-fitness bonus
for covering significant peaks of the fitness landscape (i.e.
those peaks that can become top-performers after translation
or dimensionality change) rather than covering the behaviour
space evenly. The population-based methodology of evolving
multiple feature-maps as meta-genotypes is validated by an
analysis comparing the results for QD-Meta Translation with
different population sizes λ ∈ {1, 2, 5, 10, 20} (see Fig. S1 in
Supplemental Materials; dynamic parameter control disabled
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(c) Global fitness

Fig. 3. Quality-diversity statistics (Mean ± SE) of the different included
QD algorithms across 20 replicates on the Rastrigin function optimisation,
including (a) the total number of solutions in the archive; (b) the average
fitness across the archive; and (c) the maximal fitness across the archive. For
QD-Meta, Mean and SE statistics are aggregated across replicates and the
different archives within the meta-population.
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(b) Translation test

Fig. 4. Test performance (Mean ± SE) of the different included QD algorithms
across 20 replicates of the Rastrigin function optimisation benchmark. The
y-axis shows the best solution so far after performing random search over the
behavioural archive for the number of function evaluations indicated on the x-
axis. For each replicate of QD-Meta, the archive with the highest meta-fitness
at the end of meta-evolution is chosen.

for simplicity), which shows that a population size of 1 has
low performance on meta-fitness and QD metrics.

In the test phase, a random search across the QD archives
allowing at most 100 function evaluations (see Figure 4)
demonstrates that QD-Meta algorithms significantly outperform
other algorithms. Both meta-fitness conditions, QD-Meta Di-
mension and QD-Meta Translation, have a beneficial effect on
generalisation, allowing rapid adaptation on both the Dimension
test and the Translation test.

B. Hexapod robot locomotion

In robotics applications, a key challenge is to adapt to
environmenal changes within a limited number of trials without
trying out low-quality controllers that may cause performance
loss or even safety violations. The results of the RHex robot
study highlight how QD-Meta can provide archives with a lower
number of solutions but a much higher average performance
in unforeseen circumstances.

As observable in Figure 5, rather than increasing the archive
coverage, QD-Meta actually decreases the archive coverage
over time, yielding around 100 controllers (compare to 3,000
to 4,000 controllers for AURORA and CVT-MAP-Elites).
At the same time, QD-Meta increases the average fitness

in the normal environment up to between 6 and 8 meters,
outperforming in this regard CVT-MAP-Elites (5 m) and
AURORA (2 m). This points out the ability of QD-Meta
to determine the optimal archive size for the specified
meta-objective: since the behaviour space is optimised
to allow high average performance of controllers across
different obstacles and damages, QD-Meta results in smaller
archives with only high-quality solutions. Given that the
meta-fitness is biased for average fitness across a variety of
environments related to the normal evolutionary environment,
the higher average fitness in the normal environment is
perhaps unsurprising. However, further analysis shows that
all algorithms have comparable global fitness, though a small
advantage of QD-Meta and AURORA (both around 9.5 m)
over CVT-MAP-Elites (9.4 m) can be observed; therefore,
QD-Meta’s lower number of solutions and bias for average
performance does not come at the cost of global fitness in the
normal evolutionary environment. Furthermore, QD-Meta’s
smaller archives with high-quality solutions are beneficial
for adapting to a priori unknown environments in two ways.
First, QD-Meta archives have improved performance on
the Generalisation test compared to CVT-MAP-Elites and
AURORA (see Table II). This improvement is seen whether
or not the damages or obstacles were experienced in the
meta-fitness evaluations. Second, in both the Obstacle and
Damage test, when performing a search across the archive
for the best controller for a particular environment, the
QD-Meta archives require only a few function evaluations
to reach a near-optimal solution (see Figure 6). However, a
trade-off of the smaller archives is that QD-Meta archives
do not always result in highest global test performance;
with a large number of solutions, even a low-quality archive
can eventually yield a high maximum as long as there is
one solution well suited to that particular environmental change.
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Fig. 5. Quality-diversity statistics (Mean ± SE) of the different included QD
algorithms across 4 replicates on the RHex robot platform, including (a) the
total number of solutions in the archive; (b) the average fitness across the
archive; and (c) the maximal fitness across the archive. For QD-Meta, Mean
and SE statistics are aggregated across replicates and the different archives
within the meta-population.

A qualitative analysis using slow-motion video material (see
http://tiny.cc/QD-Meta) demonstrates the different behaviour of
QD-Meta Obstacle conditions compared to QD-Meta Damage
conditions. In particular, the behaviours evolved by QD-Meta
Damage appear to less balanced with more roll motion. In the
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exemplary videos included for QD-Meta Damage (see videos
with QD-Meta-Damage prefix), one of the legs has its stance
phase facing upwards, which is comparable to disabling the
leg as if it is damaged. In the exemplary videos included for
QD-Meta Obstacle (see videos with QD-Meta-Obstacle prefix),
one can observe jumpy behaviours, which help to navigate
over obstacles such as pipes and stairs. The mentioned QD-
Meta Damage behaviours are rather specific in comparison;
as they seem to disable one or more legs, they result in
shaky behaviours that particularly perform well when the
disabled leg is damaged but that do not generalise well to
other environments. This explains why QD-Meta Damage does
not generalise as well as QD-Meta Obstacle to new obstacles or
new damages (see Table II). In particular, one can observe the
larger generalisation drop from Training to Test for Damage
conditions and the consistent top ranking of QD-Meta Obstacle
Feature-sets.

A further analysis reveals the nature of the benefits of
dynamic parameter control with RL. A meta-fitness comparison
(see Fig. S4 in Supplementary materials) finds that the benefit
is typically limited although the Obstacle Trajectory condition
with RL obtains larger and smoother meta-fitness improvements
than the version without RL. By further analysing each run
separately and comparing the evolution of the meta-fitness
to the controlled parameter (i.e. the generations per meta-
generation; see Fig. S5 in Supplementary), a pattern is observed
in which the number of generations is high initially, declines
sharply, and finally levels off or increases slightly as evolution
progresses. This is in line with the hypothesis that initially
the algorithm should generate a large number of behaviourally
diverse and high-performing solutions – using ME iterations –
to be able to get reliable evaluations of the behaviour space –
using meta-fitness evaluations. Low (resp. high) meta-fitness
after the initial phase results in a low (resp. high) ratio of
generations per meta-generation. This indicates that: for regions
around the global optimum, high-reliability evaluations are
required; for local optima, evaluating many feature-maps helps
to rapidly escape to a higher-performing region.

V. DISCUSSION

This paper demonstrates QD-Meta as a promising framework
for the automated design of low-dimensional behaviour spaces
for QD optimisation. We present results showing that QD-
Meta archives improve rapid adaptation to fitness landscapes
not experienced during evolution, further establishing QD-
Meta as a widely applicable QD framework with state-of-
the-art performance. QD-Meta compares favourably to state-
of-the-art QD algorithms for automated behaviour spaces,
namely AURORA [20] and CVT-MAP-Elites [18], not only
in adaptation to new environments but also on traditional QD
metrics; that is, the average fitness and the number of solutions
are improved when they are rewarded for in the meta-fitness.
Additionally, the archives evolved by QD-Meta further confer
unique qualitative benefits depending on the meta-objective:
behaviours adapted to various damages are quite distinct and
specialised compared to behaviours adapted to various obstacles.
Furthermore, in experiments on the Rastrigin function, the
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(b) Damage test

Fig. 6. Test performance (Mean ± SE) of the different included QD algorithms
on the RHex robot platform across 4 replicates. The y-axis shows the best
solution so far after performing random search without replacement over
the behavioural archive for the number of function evaluations indicated on
the x-axis. For comparability, the lines are continued when the archive is
exhausted, even though no further function evaluations are performed. For
each replicate of QD-Meta, the archive with the highest meta-fitness at the
end of meta-evolution is chosen.

population-based nature of QD-Meta is shown to be essential
for meta-fitness as well as standard QD metrics. With the
exception of the global fitness, which requires a relatively
large meta-population of 10 to 20 meta-individuals, a meta-
population size of 2 is sufficient to achieve this effect. Finally, it
is shown that hand-crafted feature-sets can usually be replaced
by high-dimensional trajectories without performance loss
although these require more evolutionary function evaluations
due to the high dimensionality of the meta-genotype.

The findings on function optimisation show that QD-Meta
allows to evolve archives that are robust to dimensionality
decreases and translations. This is of interest on a wide variety
of applications as the data that an algorithm is trained on
does not always reflect the real distribution of the data or
the function may even change dynamically over time. While
both meta-fitness formulations in the Rastrigin have a positive
effect on both tests, the effect of the drop of dimensionality
of the inputs is stronger. One interpretation is that performing
dimensionality reductions in the meta-fitness has an effect
on the feature-map similar to Dropout [37], which improves
generalisation in neural networks by randomly dropping out
the activation of some of its neurons, typically including input
neurons.

Traditionally, quality-diversity optimisation has assumed that
a large number of solutions is better. However, smaller archives
can provide key benefits for adaptation and greater transparency.
In this context, QD-Meta has the unique benefit of being
able to tailor the behaviour space, including the number of
solutions as well as the behavioural features, to a meta-objective
rather than being unsupervised [20] or unadaptive [18]. This
benefit can be exploited to suit the domain. If an end-user is
interested in multi-modal function optimisation domains, and
in particular covering the peaks of the fitness function despite
dynamic changes, then the meta-fitness could provide a bonus
for archive size as in the present Rastrigin experiments. In
domains such as multi-legged robot locomotion, the same gait
can overcome different types of obstacles near-optimally, and
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TABLE II
GENERALISATION TEST PERFORMANCE (MEAN ± SD) ON THE TRAINING AND TEST ENVIRONMENTS OF THE RHEX ROBOT PLATFORM. BOLD INDICATES
THE BEST PERFORMANCE FOR THE GIVEN ENVIRONMENT. PERFORMANCE IS THE AVERAGE ACROSS THE SOLUTIONS IN THE ARCHIVE AND THE DIFFERENT
INCLUDED TEST ENVIRONMENTS. MEAN AND STANDARD DEVIATION ARE AGGREGATED ACROSS 4 REPLICATES. FOR EACH REPLICATE OF QD-META, THE
ARCHIVE WITH THE HIGHEST META-FITNESS AT THE END OF META-EVOLUTION IS CHOSEN. UNDERLINE INDICATES THE OBSTACLES OR DAMAGES ARE

EXPERIENCED DURING META-EVOLUTION.

Environment Condition

QD-Meta Baseline
Damage Feature-sets Damage Trajectory Obstacle Feature-sets Obstacle Trajectory AURORA CVT-ME

Training-Damages 6.779± 0.89 6.882± 1.06 6.876± 1.14 5.093± 1.26 3.072± 0.19 4.451± 0.25
Training-Obstacles 3.789± 0.77 3.017± 0.90 4.059± 0.66 3.895± 0.45 2.060± 0.11 2.660± 0.11
Test-Damages 4.491± 0.99 4.193± 0.66 4.782± 0.88 4.063± 0.64 3.404± 0.11 3.422± 0.24
Test-Obstacles 3.628± 0.50 2.733± 0.61 4.161± 0.72 2.831± 0.20 2.400± 0.26 2.642± 0.16

therefore only a few solutions may be required so a meta-fitness
bonus for archive size is not necessary. Indeed, in the RHex
robot study, QD-Meta demonstrates the benefits of having a
lower number of solutions with strong generalisation across
different environments: 1) all of the solutions have a high
performance even when the environment changes so there is
often no need for adaptation; 2) all the controllers can safely
be deployed during adaptation without too much risk of low
performance or otherwise unsafe behaviours; and 3) as there is
only a need to try a dozen solutions, the archives allow rapid
adaptation. A further benefit of smaller archives may be in
transparency and verification: if the number of solutions in the
archive is limited, then the end-user can easily verify and assess
the solutions to prevent undesirable consequences from their
application. That said, if the number of trialled solutions is not
of critical concern but instead the maximal performance, then
a meta-fitness bonus for larger archives would be preferable.

In previous work QD-Meta relied on hand-crafted feature-
sets. While in most robotics applications feature-sets can
be given to the user or constructed with only minor effort,
the trajectory of the robot is a generic choice that requires
limited to no prior knowledge; for this reason it has been
the base-behavioural space of choice in methods such as
AURORA and CVT-MAP-Elites. The present study shows
that while there is a benefit to feature-sets, QD-Meta can
achieve a comparable performance using the robot’s trajectories.
A difficulty observed is that the meta-optimisation problem
becomes more challenging due to the increased dimensionality
and the authors recommend research into scaling up the
approach to even higher-dimensional base-behavioural spaces,
such as (sequences of) raw pixel data. To improve database
storage capacity as well as the optimisation of the feature-map
in the meta-genotypic space, one suggested approach is to
first apply traditional dimensionality reduction methods [38] to
yield a low-dimensional “latent” base-behavioural space which
is then provided as input to the feature-map.

Evolving a meta-population of QD archives rather than a
single meta-individual is shown to be essential for the search
for high meta-fitness feature-maps, with meta-fitness and QD
metrics improving as the meta-population size is increased
to 10. Two explanations are proposed for its benefits. First,
population-based optimisation algorithms are less prone to get
stuck in local optima due to being distributed across the search
space; this is crucial in large multi-modal search spaces such

as the 522-dimensional space of feature-maps in QD-Meta.
Second, each meta-individual comes with its own behaviour
space, affecting which elites are selected for reproduction,
and therefore QD-Meta generates new solutions from different
sources. Beyond the earlier meta-evolution works [22], [23], a
similar reasoning can be found in recent works in the literature.
Multi-emitter MAP-Elites uses different “emitters”, each of
which provide a different reproduction operator based on
different heuristics to explore the search space, for example
based on fitness or a random direction in the behaviour space
[39]. Multi-container AURORA maintains a number of feature-
maps at the same time to yield improvements to the QD-score,
which is the [0, 1]-normalised archive-summed fitness [40].
These improvements were minor compared to the average
fitness improvements in our Rastrigin function optimisation
results. Future research is advised to compare and integrate
these strategies to yield new insights into QD optimisation.

VI. CONCLUSION

This paper demonstrates Quality-Diversity Meta-evolution
as a promising framework for quality-diversity optimisation.
Quality-diversity metrics as well as tests on changed fitness
landscapes demonstrate that QD-Meta outperforms CVT-MAP-
Elites as well as AURORA, two state-of-the-art algorithms for
automated behaviour spaces from high-dimensional trajectories.
The study shows improved adaptation to linear transformations
and dimensionality changes in function optimisation as well
as adaptation of multilegged locomotion gaits to various
robot damages and various obstacle courses. Compared to
existing methods, QD-Meta derives its adaptation capability
to customising the behaviour space to a generalisation-based
meta-objective. The study also demonstrates that QD-Meta
can yield similar benefits with high-dimensional observation
trajectories without requiring the user to hand-craft feature-sets.
For future research, an investigation into further scalability
to even higher-dimensional base-behaviour spaces (e.g. raw
pixel data streams) is advised, as is a study integrating and
comparing multi-emitter and multi-container QD algorithms to
QD-Meta variants.
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