
1

Knowledge Transfer Genetic Programming with
Auxiliary Population for Solving Uncertain

Capacitated Arc Routing Problem
Mazhar Ansari Ardeh∗, Yi Mei∗ and Mengjie Zhang∗ and Xin Yao†

∗School of Engineering and Computer Science, Victoria University of Wellington
Wellington, New Zealand

†Department of Computer Science and Engineering, Southern University of Science and Technology
Shenzhen, China

Abstract—The uncertain capacitated arc routing problem is an
NP-hard combinatorial optimisation problem with a wide range
of applications in logistics domains. Genetic programming hyper-
heuristic has been successfully applied to evolve routing policies
to effectively handle the uncertain environment in this problem.
The real world usually encounters different but related instances
due to events like season change and vehicle breakdowns, and it is
desirable to transfer knowledge gained from solving one instance
to help solve another related one. However, the solutions found
by the genetic programming process can lack diversity, and the
existing methods use the transferred knowledge mainly during
initialisation. Thus, they cannot sufficiently handle the change
from the source to the target instance. To address this issue, we
develop a novel knowledge transfer genetic programming with
an auxiliary population. In addition to the main population for
the target instance, we initialise an auxiliary population using
the transferred knowledge and evolve it alongside the main
population. We develop a novel scheme to carefully exchange the
knowledge between the two populations, and a surrogate model
to evaluate the auxiliary population efficiently. The experimental
results confirm that the proposed method performed significantly
better than the state-of-the-art genetic programming approaches
for a wide range of uncertain arc routing instances, in terms of
both final performance and convergence speed.

Index Terms—Arc Routing, Genetic Programming, Hyper-
Heuristics, Transfer Optimisation

I. INTRODUCTION

The Uncertain Capacitated Arc Routing Problem (UCARP)
is an important optimisation problem [1], [2] that models
a collection of vehicles that are assigned to serve a set of
required edges in a graph. UCARP has important real-world
applications in logistic systems, such as road maintenance [3],
snow removal and ice control [4], waste collection [5].

As an extension of CARP, UCARP is also NP-hard [6], [7]
and, the uncertain nature of UCARP increases the difficulty
even further, as the solution may become worse or infeasible
when the actual environment is different from expected. Tradi-
tional optimisation algorithms such as mathematical program-
ming and genetic algorithms cannot solve UCARP effectively
[8], since the preplanned solutions are not flexible enough
and may incur large recourse cost in some situations. In
contrast, Genetic Programming (GP) is a promising approach
to solving UCARP [8], [9]. One of the primary advantages of
using GP is to evolve routing policies instead of actual routes

themselves. Such an indirect method for routing provides
much better flexibility and applicability of policies in uncertain
environments. GP has shown to outperform existing proactive
methods [10] and other policy learning methods including
linear models and neural networks [11], due to its flexible
representation and low demand on the amount of training data.
GPHH has shown to outperform other robustness optimisation
methods [10] and other policy learning methods including
linear models and neural networks [11], due to its flexibility
and low demand on the amount of training data [11].

The effectiveness of routing policies is sensitive to the
characteristics of the UCARP instance (e.g., graph topology,
number of vehicles and distributions of the random variables),
and can dramatically deteriorate even with a slight change such
as adding/removing one vehicle in the same UCARP instance
[9]. Therefore, new routing policies have to be retrained after
every slight change in the UCARP instance.

In reality, problems rarely exist in isolation [12], [13].
In the case of UCARP, different related instances could be
encountered when expanding the fleet size or a vehicle breaks
down, or changing from one season to another. Routing
policies are an indirect and higher abstraction of actual routes.
Policies are not dependent on any particular maps and hence
are a better representation of knowledge about good routing
by ignoring details specific to any particular map. Policies
can capture knowledge (e.g., sub-tree structures or probability
models) transferable across different problem instances better.
Therefore, it is desirable to develop transfer optimisation
techniques [13] to improve the effectiveness and efficiency
by discovering and transferring the knowledge in the policies
for previous related UCARP instances.

GP-based transfer learning and optimisation has been ap-
plied to a range of problems including symbolic regression
[14], [15] and UCARP [16], [17]. However, previous studies
have found that the GP process can lose its population diversity
[16], [18], [19]. For example, the final GP population can con-
tain many duplicated individuals with the same (good) fitness
and common building blocks (i.e., sub-trees). The existing
knowledge transfer methods that simply transfer knowledge
from the top individuals tend to transfer many duplicated
building blocks, and make the GP search in the target instance
easily stuck into poor local optima. In addition, the exist-

2

ing GP-based transfer learning and optimisation methods are
mostly limited to reusing the transferred building blocks (e.g.,
sub-trees or tree structure) to initialise the target population
[16], [17], [19], [20], [21], [22] which leads to a trade-off
to consider. On one hand, the use of the building blocks can
help the GP process start from a better-than-random initial
population. On the other hand, the initial population may be
too restricted in the local region of the transferred individuals,
especially when they have many duplicated building blocks
due to the loss of diversity. As a result, the GP search for the
target instance can hardly jump out of the initial local region
to find better regions for the target instance.

To address the above issues, we aim to propose a novel
GP-based transfer optimisation algorithm to evolve routing
policies for UCARP. The new algorithm is named as GP
with Auxiliary-Population for knowledge Transfer (APTGP).
In our algorithm, all the individuals evaluated for solving the
source problem form the pool of transferred knowledge. To
fight off the issue of diversity loss, APTGP clears duplicate
individuals from the knowledge pool and utilises the cleared
pool to initialise the GP population for solving the target
problem. Furthermore, after the initialisation, the transferred
knowledge is utilised to help GP handle the issue of diversity
loss during the process of solving the target problem. For this
purpose, the transferred pool is preserved as a second auxiliary
population that evolves alongside the main population based
on a surrogate model that is learned from and update by the
main population. The main purpose of the auxiliary population
is to help GP maintain its population diversity and for this
matter, we devise an elaborate immigrant exchange mechanism
between the main and the auxiliary populations.

Hence, our research objectives in this paper are as below.
• To handle the potential presence of duplicates in the

transferred knowledge, we develop a new initialisation
mechanism that removes duplicates from the knowledge
pool and transfers unique individuals in the GP for
UCARP.

• To reuse the transferred knowledge after the initialisa-
tion phase, we propose a mechanism for adapting the
transferred knowledge to the target UCARP problem and
reusing it more efficiently.

• To prevent the GP for UCARP from losing its population
diversity, we devise an elaborate immigrant exchange
mechanism between the main and the auxiliary popula-
tions that reduces duplicates in the population.

II. BACKGROUND

A. Uncertain Capacitated Arc Routing Problem

The static CARP [7], [6] aims to find a set of routes to
serve a collection of required edges (tasks) in a graph G(V, E).
Initially, all the vehicles are stationed at a depot node. Each
edge e ∈ E has a demand d(e), indicating the amount of work
to be done to the edge. If d(e) > 0, then e is also called a task.
The task set is denoted as ET ⊆ E . Serving a task e incurs a
serving cost sc(e) > 0. Traversing an edge e without serving
it will incur a deadheading cost dc(e) > 0. Each vehicle has
a limited capacity of the demand q.

By taking into account the uncertain environment, in
UCARP, the demand of each task e ∈ ET is a random variable
D(e), and the deadheading cost of each edge e ∈ E is a
random variable DC(e). Due to the random task demands
and deadheading costs, the following two types of failure can
occur when executing a solution in UCARP.

1) A route failure occurs if the actual demand of the next
served task is larger than expected, and exceeds the
remaining capacity of the vehicle. The route needs to be
repaired by going back to the depot to replenish.

2) An edge failure occurs when the next edge becomes
inaccessible (deadheading cost becomes infinity). In this
case, a detour needs to be found.

A UCARP instance can be denoted as a tuple I =
〈G, D(·), sc(·), DC(·), q〉, where G is the graph, D(·) indicates
the random task demands, sc(·) represents the deterministic
serving costs, DC(·) indicates the random deadheading costs,
and q is the capacity.

Note that a UCARP instance contains a number of random
variables, and can generate a large (if not infinite) number of
instance samples by sampling a value for each random vari-
able. Given a UCARP instance I = 〈G, D(·), sc(·), DC(·), q〉,
we denote the instance sample Iξ = 〈G, dξ(·), sc(·), dcξ(·), q〉,
where dξ(e) (dcξ(e)) is the sampled demand (deadheading
cost) of e using the random seed ξ.

A UCARP instance Iξ looks similar to a static CARP
instance. The main difference is that in Iξ, the sampled values
dξ(·) and dcξ(·) are unknown during the optimisation, but
gradually realised during the execution process as follows.
• The sampled demand of a task dξ(e) is realised after the

task is served.
• The sampled deadheading cost of an edge dcξ(e) is

realised after the edge is traversed.
A solution to a UCARP instance I is denoted as a mapping

hI(·), which can generate a feasible solution SIξ = hI(ξ) for
each instance sample Iξ. Here, a solution SIξ is feasible if it
satisfies the following constraints.
(C1) Each route starts and ends at the depot.
(C2) Each task is served exactly once by one vehicle. An

exception is that when route failure occurs, the failed
vehicle returns to the depot to replenish in the middle of
the service, and then resumes the remaining service.

(C3) The total demand served between two adjacent depot
visits cannot exceed its capacity q.

Below are two examples of possible UCARP solutions.
• A UCARP solution can contain a preplanned robust

solution SI along with a recourse operator RO(·) that
transforms SI to a feasible solution for each sample Iξ.
In this case, hI(ξ) = RO(SI , Iξ).

• The UCARP solution can be a routing policy RP(·)
that generates a feasible solution for each sample Iξ
by making real-time reactive decisions. In this case,
hI(ξ) = RP(Iξ). In this study, a UCARP solution is
represented as a routing policy.

UCARP is to find a solution hI(·) that can generate feasible
solutions for all possible samples Iξ, and the expected total

3

cost is minimised. It can be stated as follows.

min
hI(·)∈HI(·)

E[tc(hI(ξ))|ξ ∈ Ξ], (1)

s.t. : hI(ξ) satisfies constraints (C1)–(C3) (2)

where HI(·) is the domain of possible UCARP solutions.
hI(ξ) = SIξ is the feasible solution for Iξ, and Ξ is a set
of unseen test samples of the possible future situation.

It may seem that there exist some degree of similarity
between UCARP and the body of dynamic optimisation prob-
lems [23], [24]. Nevertheless, the characteristic property of
dynamic optimisation problems is that these problem change
with time [23], [24]. UCARP, however, does not have time-
dependent component and hence, it does not belong to the set
of dynamic problems.

B. Related Work

1) Methods for UCARP: The existing approaches for solv-
ing UCARP can be divided into the proactive and reactive
methods. The proactive algorithms [1], [25], [26], [27] focus
on finding the direct routes that demonstrate the best ro-
bustness. These methods take the environmental uncertainties
into account indirectly, and find the routes based on some
robustness measures. The reactive approaches [8], [9], on the
other hand, utilise routing policies that can create the solutions
in real-time and hence, react more flexibly to the uncertainties.

A routing policy is a mathematical function that can calcu-
late the priority of each unserved task based on the information
about the state of tasks, vehicles and the environment. With the
help of a routing policy, it is fairly straightforward to construct
UCARP solutions in real-time. At first, all vehicles are idle
and stationed at the depot. Whenever a vehicle becomes idle,
it considers the set of available tasks, calculates their priorities
and selects the tasks with the highest priority to serve next.
As the vehicle serves the selected task, it may encounter edge
and route failures which it needs to handle appropriately until
the task is served. At this point, the vehicle becomes idle. If
all the tasks are served, then the vehicle returns to the depot
and a complete solution is obtained; otherwise, the process
of selecting and serving tasks is repeated [8]. Since routing
policies are heuristics that generate the final solutions, GP can
be utilised as a hyper-heuristic to evolve them automatically.

2) Genetic Programming Hyper Heuristics: GP evolves a
population of computer programs, abstracted as mathematical
expressions, iteratively [28], [29]. It first creates an initial
population of programs randomly. Then, it repeatedly creates
new individuals with the crossover, mutation and reproduction
operators, until some stopping criteria are met. GP is a
powerful search mechanism that has been successfully applied
to various problems [30], [14]. Since computer heuristics are
computer programs in nature, GP can be utilised as a Hyper
Heuristics (GPHH) for evolving them automatically.

UCARP routing policies are basically mathematical expres-
sions that are used as heuristics for building UCARP solutions.
Liu et al. [8] proposed a GPHH based on a tree-based GP
to evolve routing policies for a single vehicle. Mei et al. [9]
extended [8] to evolve routing policies for multiple vehicles.

Maclachlan et al. [10] showed that allowing collaborations
between the vehicles can improve the performance of the
evolved policies. Wang et al. [31], [32], [33] proposed methods
to evolve effective and small (thus potentially more inter-
pretable) routing policies for UCARP. Liu et al. [34] combined
the reactive and proactive approaches in which the proactive
component of the algorithm evolves the sequence of vehicle
routes and the reactive component evolves a routing policy that
navigates the vehicle to the depot in case of route failures.

3) Evolutionary Transfer Optimisation: Problems rarely
exist in isolation [13]. Most often, a family of problems share
some common properties, generally referred to as knowledge.
In the EA domain, Transfer optimisation methods are a set of
algorithms that aim at benefiting from this fact by extracting
the common knowledge from a previously-solved problem and
reusing it to solve related problems more effectively [13].

In transfer optimisation, the concept of knowledge is usually
defined based on the problem to solve and the algorithm to
use. In early transfer optimisation attempts, the knowledge
was defined as the genetic materials that were discovered
during the course of solving the source problem. Consequently,
transfer optimisation was performed with the injection of
genetic materials into the population of the algorithm that
searches for the solutions of the target problem. Koçer et
al. [35] proposed a method, called GATL, that selected the
best and median individuals found at each generation of the
source to initialise the target EA. Dinh et al. [21] devised
three injection methods that selected some genetic materials
from a source population to initialise k% of the target GP.
Their FullTree selects the best individuals of the source final
population. In BestGen, the best individuals of each source
generation are chosen. The SubTree method considers the final
source population and selects a root subtree of individuals
randomly as the transferable genetic material.

Subtrees are also effective transferable knowledge. Partic-
ularly, Iqbal et al. [36] proposed the TLGPC algorithm that
considered the high-quality solutions of the source domain
and extracted their subtrees into a pool. For initialising the
target problem, the individual’s root subtree was either selected
created randomly or selected from the pool. Also, for mutating
an individual, a randomly selected subtree of the individual
was either replaced with a subtree created randomly or a
subtree from the pool. While most of the aforementioned
methods selected transferable subtrees randomly or based on
the fitness of their individuals, other methods defined an
importance measure for selecting the subtrees [37], [16].

Another approach to knowledge transfer is to learn a struc-
ture that models important information about the source prob-
lem. Such model-based algorithms then utilise the extracted
model to guide the evolution for solving the target problem.
In [38], [39], [40], the model is an autoencoder [41] that maps
the search space of a source to that of a target problem. In
[42], [43], the model is defined as a positive semi-definite
matrix that provides a mapping between problem instances
and their solutions. The probability distributions of the good
source solutions are also capable models for transferring useful
knowledge [18], [20], [44], [45].

Ardeh et al. [16] were the first to apply transfer optimi-

4

Fig. 1: The APTGP framework.

sation for solving UCARP who analysed the performance
of several existing methods, as well as their own algorithm.
They observed that the existence of duplicates and possible
convergence to local optima of the source problem can have a
significant negative impact on the effectiveness of knowledge
transfer. This finding was later confirmed in [18], [19], [20],
[46]. Consequently and to increase the diversity in the pool
of transferred knowledge, Ardeh et al. [17], [47] proposed the
SUFullTree algorithm that achieved a significant improvement
in the effectiveness of knowledge transfer by learning a
surrogate model [48], [49], [50] from the source solutions,
creating a large pool of unique individuals that were created
from the good transferred individuals, evaluating them with
the surrogate and selecting the best ones for transfer.

The act of knowledge sharing for solving related problems
is also a fundamental part of Multi-task Optimisation (MTO)
[51], [13] which solves multiple related tasks together. Gupta
et al. [51], [52] firstly proposed a Multi-Factorial Evolutionary
Algorithm (MFEA) to solve multiple tasks with a single
population, which shares knowledge implicitly through the
crossover operator between individuals solving different tasks.
This work was extended later by Bali et al. [53]. Zhou et al.
[54] improved MFEA by proposing an adaptive knowledge
sharing mechanism. Feng et al. [55] proposed an MTO al-
gorithm for solving CARP using autoencoders. Zhong et al.
[56] incorporated MFEA with GP to solve symbolic regression
problems. Ardeh et. al. [57] developed a multi-task GP for
solving multiple related UCARP scenarios together.

III. PROPOSED ALGORITHM

A. Overall Framework

Figure 1 presents the overall framework of APTGP. The
inputs of the algorithm include the target UCARP instance to
be solved, as well as the knowledge gained from solving the
source instance. In this study, we consider that the knowledge
simply includes all the examined routing policies by GP when
solving the source instance. Additionally, APTGP is based on
the assumption that the source and target problems are related.

To solve the target instance, APTGP first initialises the main
and auxiliary populations using the transferred knowledge, in
order to have a better-than-random initial population. Then, the
main and auxiliary populations are evolved in parallel. Since
the auxiliary population aims to assist the evolution of the main

population, all the individuals in the auxiliary population are
evaluated by surrogate. Here, we use the KNN surrogate [49],
which will be described in Section III-D.

At each generation, the individuals in the main population
are first evaluated with the full evaluation (i.e., UCARP
simulations). Then, the surrogate model is updated by the
newly evaluated individuals. Afterwards, the individuals in the
auxiliary population are evaluated using the updated surro-
gate. Then, the two populations select immigrants and breed
offspring using the standard tree-based crossover, mutation
and reproduction operators [28]. Finally, the information is
exchanged between the populations by sending the immigrants
from one population to the other. As a result, the main
difference between the main and auxiliary populations are the
fitness evaluation, as well as the individuals within them.

The pseudocode of APTGP is presented in Algorithm 1.
In addition to the common GP parameters, APTGP has two
parameters η and ϑ for knowledge exchange. For initialisation,
the routing policies in KS are first split into the subsets of
unique routing policies Kuni and duplicated policies Kdup,
based on their phenotypic behaviours (details are given in
Section III-C). Then, the main pop1 and auxiliary populations
pop2 are both initialised with the best popsize unique routing
policies. Since there are a large number of routing policies
in KS (e.g., 50 generations and 1024 routing policies per
generation), it is safe to assume that there are always enough
unique routing policies in KS .

At each generation, the two populations are first evaluated
using the full simulations and surrogate, respectively, and the
best routing policy rp∗ is updated by the best individual in
pop1. Then, the immigrants Ψ1 and Ψ2 for the two popu-
lations are selected (details in Section III-E). After that, the
new populations are generated by the standard GP breeding
process. Specifically, one or two parents are selected from
the population by the size-7 tournament selection, and the
tree-based crossover, mutation or reproduction operator is
applied to the parents to generate the offspring. Finally, the
two populations exchange knowledge with each other by the
ExchangeImmigrants() function (details in Section III-F).

B. Representation and Fitness Function
In APTGP, a routing policy is represented as a tree, which is

essentially a priority function. Fig. 2 shows an example routing
policy 105 ∗CFH−DEM/SC, where CFH is the cost from the
current location to the candidate task, DEM is the expected
demand of the candidate task, and SC is the serving cost of the
candidate task. This example routing policy is the well-known
path-scanning heuristic [58], which selects the task closest to
the current location, and selects the task with the smallest
demand over serving cost to break the tie.

The fitness function of a routing policy is defined based on
a set of training instance samples Ξtrain. Based on Eq. (1), the
fitness function is defined as

fit(rp) =
1

|Ξtrain|
∑
ξ∈Ξtrain

tc(rp(Iξ)), (3)

where the solution SIξ = rp(Iξ) is generated by Algorithm 2.
It is a simulation of applying the routing policy to an instance

5

Algorithm 1: The proposed APTGP
Input: KS : routing policies examined by GP for the source instance
Input: Ig : the target UCARP instance to solve
Input: Parameters η and ϑ
Output: rp∗: the best routing policy for the target instance
// Initialisation

1 Kuni,Kdup = PhenotypicSplit(KS);
2 pop1 = Kuni[1 : popsize]; // main population
3 pop2 = Kuni[1 : popsize]; // auxiliary population
4 rp∗ = null, gen = 0;
// Search loop

5 while gen < MaxGen do
6 Evaluate the routing policies in pop1;
7 Update rp∗ with pop1;
8 Update the surrogate model Υ with pop1;
9 Evaluate the routing policies in pop2 using the surrogate Υ ;

10 Ψ1 = Immigrants(pop1, η); // Select immigrants
11 Ψ2 = Immigrants(pop2, η);

/* Breeding with standard GP crossover,
mutation and reproduction */

12 pop1 = Breed(pop1);
13 pop2 = Breed(pop2);

// Exchange Knowledge
14 pop1 = ExchangeImmigrants(pop1,Ψ2, η, ϑ);
15 pop2 = ExchangeImmigrants(pop2,Ψ1, η, ϑ);
16 gen = gen+ 1;
17 end
18 return rp∗;

sample to generate a solution. Initially, all the vehicles are
at the depot, and all the tasks are unserved. Once a vehicle
becomes idle, the routing policy calculates the priority of each
unserved task that is expected to be feasible, and selects the
next task based on the priority. The simulation stops when all
the tasks are served, and all the vehicles return to the depot.

Algorithm 2: SIξ = rp(Iξ)

Input: rp: a routing policy
Input: Iξ: a UCARP instance sample
Output: SIξ : a feasible solution

1 All vehicles are at the depot, all task are unserved;
2 while not all tasks are served do
3 Find the earliest idle vehicle veh∗ (break the tie randomly);
4 Find all the unserved tasks E∗T whose expected demand do not

exceed the remaining capacity of veh∗;
5 for task e ∈ E∗T do
6 Calculate the priority value rp(e);
7 end
8 Select next task e∗ = arg mine∈E∗

T
rp(e);

9 Send veh∗ to serve e∗;
10 Repair if route/edge failur occurs;
11 end
12 return the generated solution;

C. Initialisation

The main and auxiliary populations are initialised by the top
unique routing policies from the source knowledge KS . For
this, KS is first split into the subsets of unique and duplicated
routing policies based on their phenotypic behaviours, by the
PhenotypicSplit() function, described in Algorithm 3. Note
that it takes any set of routing policies as input, and is used
by the ExchangeImmigrants() function as well.

1) Phenotypic Characterisation: In Algorithm 3, the rout-
ing policies in RP are first sorted by fitness. Here RP = KS ,

and we use the source fitness for the sorting. Then, we
calculate the phenotypic behaviour vector b(rp) for each
routing policy. This calculation is similar to the phenotypic
characterisation in [49], which characterises a routing policy
by its selected tasks in a range of decision situations Ω. Fig.
2 shows an example of the characterisation of a policy using
three decision situations Ω = {Ω1,Ω2,Ω3}. The first situation
has two candidate tasks (Ω11 and Ω12), the second has two
(Ω21 and Ω22) and the third contains three (Ω31, Ω32 and Ω33).
Based on the attributes of the tasks, we can see that the indices
of the tasks selected by the routing policy in the situations are
2, 1, and 3. This forms the phenotypic vector [2, 1, 3].

Knowledge transfer can be very expensive if not done
carefully [59], [60]. The complexity of Algorithm 3 depends
on the sorting operation (line 2) and the the main loop (lines
3–11). As a sorting algorithm, SortByFitness has a time
complexity of O(|RP)| log(|RP)|)). During the main loop,
the complexity of each iteration is dominated by the pheno-
typic characterisation (line 4), whose complexity is O(|Ω|).
If RPuni is implemented with a hash set data structure, then
the uniqueness check at line 6 has a complexity of O(1), the
complexity of the main loop is O(|RP)| · |Ω|). Considering
that usually log(|RP|) � |Ω|. Thus, the complexity of
Algorithm 3 is O(|RP)| log(|RP)|).

Fig. 2: An example of the path-scanning heuristic and its
phenotypic characterisation.

Algorithm 3: PhenotypicSplit(RP)

Input: RP: a set of routing policies
Output: RPuni: the unique routing policies
Output: RPdup: the duplicated routing policies

1 RPuni = ∅, RPdup = ∅;
2 RP = SortByFitness(RP);
3 for routing policy rp ∈ RP do
4 Calculate the phenotypic behaviour b(rp);
5 Calculate the hash value h(rp) = Hash(b(rp));
6 if h(rp) 6= h(rp′), ∀ rp′ ∈ RPuni then
7 RPuni = RPuni ∪ {rp};
8 else
9 RPdup = RPdup ∪ {rp};

10 end
11 end
12 return RPuni, RPdup;

2) Hashing for Duplicate Checking: For duplicate check-
ing, we need to compare the phenotypic vectors between rout-
ing policies, which can be time consuming if a larger number
of decision situations are used to capture the behaviours of
the routing policy accurately. To handle this issue, we create
a hash value for each behaviour vector, and use this single

6

hash value for the duplicate checking. Here we use the well
known LSHash function [61], which is given in Algorithm 4.
Given a behaviour vector b, LSHash calculates the hash value
using the formula in line 2, where << is the bitwise left-shit
operator. The Hash function has a time complexity of O(|Ω|),
which depends on the number of decision situations.

Algorithm 4: Hash(b)

Input: A behaviour vector b
Output: The hash value of the behaviour vector

1 h = 1;
2 for i = 1→ |b| do h = h << 5− h+ bi;
3 return h;

D. Surrogate Model for Auxiliary Population

We use the KNN-based surrogate model [49] to estimate
the fitness of the individuals in the auxiliary population.
Specifically, the surrogate model Υ = {(b : fit)} contains
the pairs of phenotypic behaviour vector and fitness. The
surrogate fitness of a routing policy is assigned as the fitness
corresponding to the phenotypic vector in Υ , which is closest
to that of the routing policy based on Euclidean distance.

Initially, Υ is set to empty. In each generation, after evalu-
ating pop1, all the phenotypically unique individuals in pop2

will be added into Υ . The maximal size of Υ is 2 ∗ popsize.
If the number of elements exceeds the maximal size, Υ is
trimmed by removing the oldest elements.

E. Immigrants Selection

Before the breeding, for each population, we select η
immigrants preparing to be transferred to the other population.
Each immigrant is selected by the size-7 tournament selection.
The pseudocode is shown in Algorithm 5.

Algorithm 5: Immigrants(pop, η)

Input: pop: a population of routing policies
Input: η: number of immigrants
Output: Ψ: the immigrants from pop

1 Ψ = ∅;
2 while |Ψ| < η do

// Common tournament size for GP is 7
3 Randomly select 7 individuals from pop;
4 Add the best selected individual into Ψ;
5 end
6 return Ψ;

F. Knowledge Exchange

After breeding, the main and auxiliary populations exchange
knowledge by transferring the selected immigrants to each
other. When transferring, the following two factors are consid-
ered: (1) to maintain diversity, the immigrants should not be a
duplicate in the goal population, and (2) the immigrants should
replace the less useful individuals in the goal population.

Algorithm 6 shows the pseudocode of the knowledge ex-
change. First, it splits the goal population pop into the unique
(uni) and duplicated individuals (dup). The individuals to be

replaced (replaced) is first set to all the duplicated individuals,
as they are expected to contribute little to the population.
If there are not enough duplicates (i.e. |replaced| < η),
we fill in the remaining places by the size-7 reverse tour-
nament selection to uni. Then, we sort replaced by fitness
from worst to best (ReverseSortByFitness()). Note that
ExchangeImmigrants() is called between the breeding and
evaluation, and the newly generated individuals are not evalu-
ated yet. In this case, we simply use the fitness inherited from
the parent for the sorting.

Next, the immigrants are refined to make sure they are not
duplicates of the goal population. For each immigrant, if it is a
duplicate of the goal population, then we mutate it to generate
a different immigrant. We keep mutating the immigrant until
it becomes a non-duplicate or the maximal number of trials
ϑ is reached, and Ψ is refined to Ψ′. Finally, we select the
worse individuals (either duplicates or worst fitness) in pop
and replace them with Ψ′.

Algorithm 6: ExchangeImmigrants(pop,Ψ, η, ϑ)

Input: pop: the goal population
Input: Ψ: the immigrants from the source population
Input: η: number of immigrants
Input: ϑ: number of trials
Output: The new goal population pop
// Select individuals to be replaced in pop

1 uni, dup = PhenotypicSplit(pop);
2 replaced = dup;
3 while |replaced| < η do

// Common tournament size for GP is 7
4 Randomly select 7 individuals from uni;
5 Add the worst selected individual into replaced;
6 end
7 replaced = ReverseSortByFitness(replaced);
// Refine the immigrants

8 Ψ′ = ∅;
9 for i = 1→ η do

10 for tries = 1→ ϑ do
11 if ∃rp ∈ uni, h(Ψ[i]) = h(rp) then
12 Ψ[i] = Mutate(Ψ[i]);
13 Calculate the phenotypic behaviour b(Ψ[i]);
14 Calculate the hash value h(Ψ[i]) = Hash(b(Ψ[i]));
15 else
16 Ψ′ = Ψ′ ∪ {Ψ[i]};
17 break;
18 end
19 end
20 end

// Transfer immigrants
21 replaced[1 : |Ψ′|] = Ψ′;
22 return pop;

The time complexity of Algorithm 6 is dominated by the
phenotypic split (line 1) and the operations in lines 9–20.
The phenotypic split has a complexity of O(|pop| log(|pop|),
and the operations in lines 9–20 have a complexity of
O(ηϑ|Ω|). Thus, Algorithm 6 has a time complexity of
O(|pop| log(|pop|) + ηϑ|Ω|).

Overall, the overhead of APTGP for knowledge transfer is
O(|RP| log(|RP|) +MaxGen · (|pop| log(|pop|) + ηϑ|Ω|)).
This is much smaller than the complexity of GPHH, which
is O(MaxGen · |pop| · sim), where sim is the complexity of
the training simulations, which is typically much larger than
log(|pop|) and ηϑ|Ω|.

7

G. Summary

The main idea of APTGP is to maintain two populations in
the target instance and interact with each other to improve the
search effectiveness. First, the main population is initialised
by the unique individuals from the source knowledge, which
can make the search start from a better region. Second,
the auxiliary population starts from the same region as the
main population, and evolves alongside the main population
but towards different directions (e.g., by using the surrogate
fitness). Third, the main population regularly receives non-
duplicate immigrants from the auxiliary population, which can
help it jump out of the initial local region and handle the
concept drift from the source to the target instance. Finally, the
main population migrates its best individuals to the auxiliary
population to influence its search towards the best solutions
that have been found so far.

It should be noted that our algorithm bears some similarities
with the cultural algorithms [62], [63]. However, the cultural
algorithms focuses on solving a single problem, while APTGP
focuses on transfer optimisation and takes advantage of the
source individuals during the search process in the target prob-
lem. None of the populations in APTGP act as a belief space
like in the cultural algorithms, and the auxiliary population in
APTGP is evolved with a surrogate.

Finally, it is important to note that, despite resembling multi-
task learning algorithms, the proposed algorithm does not
solve multiple problems at the same time. In this sense, the
APTGP method in this paper is more similar to the works
by Ruan et al. [59], [60] in the sense that it assumes the
source task is solved first and therefore, the main and auxiliary
populations of APTGP are focused on solving one target
problem.

IV. EXPERIMENT SETUP

A. Datasets

Table I shows the source and target instances used in the
experiments. The UCARP instances are extended from the
well-known static CARP instances (converting the determin-
istic variables into random ones with normal distribution),
and have been commonly used in previous studies [8], [9],
[16], [17]. Some of these datasets are based on real-world
road network from Lancashire, UK [10]. In the table, the
presence of the dm1 (dm2) suffix at the end of of dataset
name, e.g. Ugdb11dm2, highlights that the dataset is created
by increasing the mean of the random demands by 1 (2).
Each row is called a transfer scenario with a source instance
and a target instance. The last column “Sim.” (between −1
and 1) indicates the similarity between the source and target
instances. To calculate the similarity, we generate 1024 unique
routing policies randomly, and evaluate them on both the
source and target instances (200 samples each). The similarity
is then measured by the Kendall’s rank correlation coefficient
[64] between the fitness of the 1024 random individuals on the
source and target instances. If the similarity is closer to 1, then
the source and target instances are more similar. It should be
noted that in practice, most UCARP instances are likely to be
related to each others because all the UCARP problems aim

to minimise the total cost, thus they have common desirable
routing decisions such as selecting the nearest tasks. Therefore,
it is unlikely to have negative or very close to zero similarity
values and hence, the scenarios in Table I present a diverse
range of similarity values.

As shown in Table I, the experiments include source and
target instances with varying similarities (from 0.46 to 0.99).
Note that we have calculated a large number of source and
target instances, and most of them show decent similarities
with each other. A similarity of 0.46 is already a weak
relatedness between different UCARP instances.

TABLE I: The transfer scenarios used in the experiments

Scn. Source Instance Target Instance Sim.

1 Uval4A with 2 vehicles Ugdb17 with 3 vehicles 0.46
2 Ugdb17 with 5 vehicles Ugdb12 with 5 vehicles 0.46
3 Ugdb17 with 5 vehicles Ugdb12 with 7 vehicles 0.48
4 Ugdb17 with 5 vehicles Ugdb12 with 8 vehicles 0.49
5 Uval6B with 5 vehicles Ugdb15 with 3 vehicles 0.56
6 Ugdb17 with 5 vehicles Ugdb11 with 3 vehicles 0.57
7 Ugdb17 with 5 vehicles Ugdb11 with 4 vehicles 0.59
8 Ugdb17 with 5 vehicles Ugdb11 with 5 vehicles 0.61
9 Uegl-e1-C with 8 vehicles Ugdb13 with 5 vehicles 0.65
10 Uval4A with 2 vehicles Ugdb6 with 5 vehicles 0.65
11 Uval4A with 2 vehicles Ugdb6 with 4 vehicles 0.66
12 Ugdb23 with 10 vehicles Ugdb12 with 5 vehicles 0.67
13 Ugdb23 with 10 vehicles Ugdb12 with 7 vehicles 0.69
14 Ugdb23 with 10 vehicles Ugdb12 with 8 vehicles 0.7
15 Uval6B with 5 vehicles Ugdb6 with 5 vehicles 0.7
16 Ugdb21 with 5 vehicles Ugdb5 with 4 vehicles 0.76
17 Ugdb4 with 4 vehicles Ugdb4 with 2 vehicles 0.89
18 Ugdb7 with 5 vehicles Ugdb1 with 6 vehicles 0.9
19 Ugdb4 with 4 vehicles Ugdb4 with 6 vehicles 0.9
20 Ugdb3 with 5 vehicles Ugdb3 with 7 vehicles 0.91
21 Ugdb4 with 4 vehicles Ugdb4 with 3 vehicles 0.91
22 Ugdb1 with 5 vehicles Ugdb1 with 3 vehicles 0.92
23 Ugdb6 with 5 vehicles Ugdb7 with 6 vehicles 0.92
24 Ugdb3 with 5 vehicles Ugdb3 with 3 vehicles 0.92
25 Ugdb7 with 5 vehicles Ugdb7 with 7 vehicles 0.92
26 Ugdb7 with 5 vehicles Ugdb7 with 3 vehicles 0.93
27 Ugdb6 with 5 vehicles Ugdb6 with 3 vehicles 0.93
28 Ugdb1 with 5 vehicles Ugdb1 with 7 vehicles 0.93
29 Ugdb1 with 5 vehicles Ugdb2 with 7 vehicles 0.93
30 Ugdb2 with 6 vehicles Ugdb6 with 6 vehicles 0.94
31 Ugdb3 with 5 vehicles Ugdb3 with 6 vehicles 0.94
32 Ugdb5 with 6 vehicles Ugdb5 with 4 vehicles 0.94
33 Ugdb5 with 6 vehicles Ugdb5 with 8 vehicles 0.94
34 Ugdb2 with 6 vehicles Ugdb2 with 4 vehicles 0.94
35 Ugdb6 with 5 vehicles Ugdb6 with 7 vehicles 0.94
36 Ugdb4 with 4 vehicles Ugdb4 with 5 vehicles 0.94
37 Ugdb21 with 6 vehicles Ugdb21 with 4 vehicles 0.95
38 Ugdb7 with 5 vehicles Ugdb7 with 4 vehicles 0.95
39 Ugdb2 with 6 vehicles Ugdb2 with 8 vehicles 0.95
40 Ugdb6 with 5 vehicles Ugdb6 with 4 vehicles 0.95
41 Ugdb6 with 5 vehicles Ugdb6 with 6 vehicles 0.96
42 Ugdb21 with 6 vehicles Ugdb21 with 5 vehicles 0.97
43 Ugdb11dm2 with 5 vehicles Ugdb11dm1 with 5 vehicles 0.98
44 Uval8A with 3 vehicles Uval8Adm1 with 3 vehicles 0.99
45 Uval5Adm1 with 3 vehicles Uval5Adm2 with 3 vehicles 0.99

B. Parameter Settings

Table II gives the terminal, function and GP parameter sets
which are commonly used in literature [8], [9], [16], [17]. In
the function set, the protected division returns 1 if divided by
zero. All the parameter settings in Table II, except η and ϑ,
are commonly used in literature of using GPHH for solving
UCARP [8], [9], [16], [17] and to remain consistent with the

8

previous studies, the values of these parameters are the same
as the previous studies. We conducted parameter sensitivity
analysis on the two new η and ϑ parameters, and achieved
the best results with η = 300 and ϑ = 10. In Algorithm
3, a set of decision situations is required for calculating the
phenotypic behaviour. For each scenario (a row in Table I), we
apply the path scanning heuristic to a target instance sample
and arbitrarily select 20 decision situations during the process.

For each transfer scenario, the source instance is first solved
by running GP once with the setting in Table II. This produces
1024 × 50 = 51200 examined routing policies as the trans-
ferred knowledge. Then, we run APTGP (or the compared GP
with knowledge transfer) based on the transferred knowledge
on the target instance to train the routing policy. During the
training, we use 5 instance samples, and rotate the samples at
each generation to reduce overfitting [8]. The trained routing
policy is then tested on 500 unseen samples. Each algorithm
is run 30 times independently.

TABLE II: The GP parameter settings.

Terminal Description

CFH Cost From Here
CFR1 Cost From the closest alternative Route
CR Cost to Refill
CTD Cost To Depot
CTT1 Cost To the closest Task
DEM DEMand
DEM1 DEMand of the closest unserved task
FRT Fraction of Remaining Tasks
FUT Fraction of Unassigned Tasks
FULL FULLness (vehicle load over capacity)
RQ Remaining Capacity

RQ1 Remaining Capacity of closest
alternative route

SC Serving Cost
ERC Ephemeral Random Constant number
DC Deadheading Cost

Parameter Value Function Description

Population 1024 + Addition
Crossover rate 80% − Subtraction
Mutation rate 15% ∗ Multiplication
Reproduction rate 5% / Protected Division
Number of generations 50 min Minimum
Number of Elitists 10 max Maximum
Max depth 8
η (for APTGP) 300
ϑ (for APTGP) 10

C. Compared Algorithms

The comparison is made with GPHH, since it has been
demonstrated to be a state-of-the-art approach for solving
UCARP, even when considering non-GP methods [10]. Table
III shows the state-of-the-art GP with knowledge transfer
compared in the experiments. It also briefly describes the
knowledge transfer mechanism of each algorithm. In the
papers we compared with, they had compared these algorithms
against other methods from other groups [16], [21], [36] and
found them to be generally less effective. Hence we did not
compare against them again in this paper.

TABLE III: The compared GP with knowledge transfer.

Algorithm Knowledge transfer mechanism

GATL
[35]

Select the best and median trees of each generation into a
pool. Choose randomly from the pool to initialise the target
GP population.

TLGPC
[36]

Select random subtrees of the better-than-average final indi-
viduals into a pool. During initialisation and mutation, create
a root or subtree randomly or select randomly from the pool.

SUFullTree
[47]

Select the best individuals of all the generations into a
pool. Expand the pool with policies created from the good
individuals and evaluate them with a surrogate. Choose the
best from the pool to initialise the target GP population.

V. RESULTS AND DISCUSSIONS

In this section, we compare different aspects of the APTGP
performance against the set of existing methods. In order
to investigate how the proposed algorithm performs on test
datasets, we conduct experiments in Section V-A. To analyse
how the proposed algorithm affects the complexity of the
evolved policies, we investigate the GP tree sizes in Section V-
B. Finally, to the overhead of proposed knowledge transfer we
examine the training time of the algorithms in Section V-C.

A. Test Performance

Table IV presents the test performance of the compared
algorithms, where the best results are highlighted in boldface.
As is evident, in almost all cases, APTGP had a best test
performance among the compared ones. The Friedman test is
also conducted to verify statistical significance. The calculated
rank and p-value are given in the bottom rows of Table IV. We
can see that APTGP has the best rank and the p-value shows
that the difference between the results is significant. APTGP
obtained the best mean test performance for all the scenarios in
the experiments. To pinpoint the difference, the Conover post-
hoc analysis [65] is performed and the p-value of the pairwise
comparisons are given in Table V after being adjusted with the
Benjamini-Hochberg method [66]. The very small p-values in
the last column of the table show that the difference between
APTGP and all other algorithm is significant and, considering
its rank, this indicates its superiority to the other methods.

Upon investigating Table IV, it could be noted that APTGP
has a larger variance on some problems which weakens
the justification for using the mean value to compare the
algorithms’ performances. Hence, to check the existence of
significant difference between the algorithm performances on
each problem, we performed a Wilcoxon rank-sum test on the
results of each problem and confirmed that APTGP is superior
to all the compared algorithms in the majority of the scenarios.

Figure 3 presents the convergence curve of the algorithms
for a few scenarios. As is evident, APTGP starts with a better
initial state and manages to maintain a better performance
throughout the entire evolutionary process. We observed sim-
ilar patterns in almost all other scenarios. In Figure 4, the
distribution of the fitness value of the solutions obtained with
each algorithm is given as violin plots for a few scenarios. It
can be seen that APTGP obtained the best (lowest) distribu-
tions. Similar patterns were observed in other scenarios too.

9

(a) from Ugdb23, from 10 to Ugdb12 with 8
vehicles (Scn. 14)

(b) from Ugdb7 with 5 vehicles to Ugdb1, 6
vehicles (Scn. 18)

(c) Ugdb3, from 5 to 7 vehicles (Scn. 20)

(d) Ugdb6, from 5 to 7 vehicles (Scn. 35) (e) Ugdb21, from 6 to 4 vehicles (Scn. 37) (f) Ugdb7, from 5 to 4 vehicles (Scn. 38)

Fig. 3: Convergence curve of APTGP and some existing transfer methods.

(a) from Uegl-1-C with 8 vehicles to Ugdb13,
5 vehicles (Scn. 9)

(b) Ugdb3, from 5 to 6 vehicles (Scn. 31) (c) Ugdb21, from 6 to 5 vehicles (Scn. 42)

Fig. 4: Performance violin plots of APTGP and the compared transfer algorithms.

Fig. 5: Size of the programs evolved with the compared
algorithms.

B. Program Size

Figure 5 presents the distribution of the program sizes
(i.e., number of nodes in the tree) in the final population
obtained by the compared algorithms, which indicate that
APTGP evolved larger trees (65 nodes on average versus 58

nodes by GPHH). A possible reason for this could be that
APTGP removes duplicates from the GP population, which
prevents the computational resources from being wasted on
evaluating the duplicates. As a result, APTGP can spend the
saved computational resources on discovering more effective
policies, which tend to be larger and more complex.

Figure 6 presents an example of the evolved routing policies.
As is evident, the policy does not have a trivial size which
makes it difficult to interpret but at the same time, it represents
the complexity of the processing it performs on the state of the
environment. Nevertheless, it is possible to gain some high-
level insights from this policy. In this policy, the most frequent
terminals is CR (Cost to Refill). This indicates that this policy
considers this information about the environmental state to be
more important. This is consistent with our domain expertise
that during the course of serving tasks, a majority of the total
cost pertains to the cost returning to depot to refill.

C. Training Time
Figure 7 presents the summary of the training time for each

of the examined algorithms. According to this figure, the train-

10

Fig. 6: A programs evolved with the compared algorithms.

TABLE IV: Test performance of 30 independent runs of the
compared algorithms (mean ± std).

Scn. GPHH GATL [35] TLGPC [36] SUFullTree [47] APTGP

1 91.2±0.1 91.2±0.1 91.2±0.1 91.2±0.1 91.1±0.01
2 551.0±10.3 550.8±8.1 552.7±9.0 551.5±9.4 542.9±10.7
3 598.6±8.8 599.6±9.5 603.5±10.3 601.9±11.0 595.0±9.7
4 639.5±11.3 636.0±10.7 638.5±13.1 644.1±15.8 632.6±7.3
5 58.2±0.1 58.3±0.1 58.2±0.1 58.2±0.1 58.1±0.1
6 424.8±8.5 424.5±8.1 426.8±9.1 423.3±8.5 417.6±7.2
7 432.1±7.1 431.0±6.7 432.9±7.2 431.8±8.3 427.6±5.8
8 432.6±5.5 432.2±5.2 431.8±6.3 430.0±6.1 423.3±5.5
9 576.2±3.9 576.7±3.8 578.6±4.6 576.4±3.3 572.0±4.6
10 340.5±4.7 338.1±4.2 338.7±3.1 337.2±2.1 335.1±4.0
11 347.2±6.1 347.1±6.0 349.3±6.4 344.4±5.1 340.6±4.1
12 551.0±10.3 553.7±10.5 554.4±11.4 552.7±8.9 544.8±8.0
13 598.6±8.8 598.5±7.5 608.7±11.2 600.2±10.3 595.4±6.2
14 639.5±11.3 640.1±12.2 640.0±11.5 640.8±14.8 630.9±5.7
15 340.5±4.7 339.8±3.5 340.4±5.1 337.0±3.3 334.4±3.2
16 444.4±4.7 444.5±5.6 446.6±6.4 444.1±4.9 441.4±5.6
17 324.3±6.2 322.4±5.7 325.0±5.2 319.8±4.6 317.1±3.8
18 360.3±3.1 359.4±4.5 360.9±3.0 356.2±4.2 352.2±2.4
19 358.3±2.6 358.2±3.4 358.5±3.7 357.6±5.3 354.8±2.6
20 359.0±1.8 359.0±1.3 359.2±1.6 358.3±1.1 356.6±1.2
21 340.8±4.4 340.9±4.6 341.0±3.2 337.6±4.6 332.6±5.9
22 351.9±3.5 353.1±4.8 352.1±3.8 350.2±3.3 349.7±2.4
23 356.6±1.6 356.7±1.7 356.7±1.7 356.3±1.4 355.7±0.7
24 310.9±0.5 311.0±0.5 310.7±2.3 308.8±2.8 307.9±4.0
25 389.2±0.2 389.1±0.2 389.1±0.2 389.1±0.2 389.0±0.1
26 363.1±2.8 363.2±4.1 363.3±4.0 362.2±3.1 357.8±4.9
27 342.1±6.2 341.9±5.1 343.9±6.8 338.6±4.7 335.1±4.6
28 382.0±5.5 380.2±6.0 381.2±7.5 384.7±6.0 378.3±6.5
29 382.8±3.3 382.6±2.2 383.7±6.4 382.1±3.2 381.0±2.7
30 351.5±2.5 351.4±1.1 351.5±1.3 351.0±1.6 349.9±3.2
31 326.0±4.7 323.5±4.4 326.2±4.8 322.8±4.9 320.1±4.7
32 444.4±4.7 445.2±6.8 446.2±7.6 441.2±5.8 439.9±6.4
33 448.2±0.5 448.4±0.8 448.8±1.5 448.9±1.8 448.0±0.6
34 384.6±4.4 385.8±6.5 386.2±5.2 384.3±5.1 382.9±4.6
35 369.3±1.8 369.2±2.8 369.5±2.7 368.4±2.6 367.1±1.9
36 321.4±5.2 323.7±5.5 325.2±5.7 321.1±2.5 319.5±1.7
37 166.2±2.0 166.0±1.4 165.8±2.2 165.1±2.0 163.8±1.4
38 376.1±7.6 379.8±7.8 378.7±5.6 372.0±9.2 366.6±5.9
39 415.7±9.2 416.6±8.4 417.2±6.3 412.3±7.4 409.0±8.3
40 347.2±6.1 347.1±6.7 350.3±11.5 344.5±5.0 340.8±4.9
41 351.5±2.5 351.7±2.3 351.9±3.9 351.2±1.9 350.3±3.1
42 165.9±1.8 165.7±1.5 165.7±1.7 165.2±1.2 163.9±1.4
43 462.6±6.0 460.8±5.3 460.3±6.6 456.7±6.5 451.8±7.3
44 426.6±3.3 427.1±2.5 427.3±1.6 425.8±3.8 424.3±4.3
45 499.0±3.9 498.8±4.5 499.4±4.3 497.5±3.3 496.5±3.4

Rank 3.58 3.48 4.48 2.47 1

Friedman’s p-value 3.42e-25

TABLE V: Post-hoc comparison of the compared existing
algorithms with adjusted p-values

GATL TLGPC SUFullTree APTGP

GPHH 0.76 7.8e-03 1.0e-03 9.2e-13
GATL – 3.2e-03 2.8e-03 5.2e-12
TLGPC – – 1.04e-08 4.9e-20
SUFullTree – – – 2.0e-05

ing time of APTGP is slightly longer than the existing meth-
ods. In APTGP, the initialisation operator and the knowledge
exchange mechanism incur an additional computational cost
and hence, the increased training time is expected. However,
the increment in time does not hinder the applicability of
the algorithm and, considering its superior performance, the
additional cost can be considered acceptable.

Fig. 7: Training time of the compared algorithms.

VI. FURTHER ANALYSIS

After confirming the superior performance of APTGP in
Section V, we conduct further analysis in this section. First,
to investigate the effect of each new component in APTGP
on its overall performance, we consider different variants of
APTGP and examine their performances in Section VI-A. One
of the main goals of this work is to maintain the population
diversity and we investigate this in Sections VI-B and VI-C.
Finally, Section VI-D investigates the quality of the knowledge
source in terms of the number of unique individuals it contains
and the effect it can have on the quality of knowledge transfer.

11

A. Component Analysis

APTGP consists of the following main novel components:
1) Initialisation with the transferred knowledge;
2) An auxiliary population that is evolved alongside the

main population;
3) A knowledge exchange mechanism that promotes diver-

sity and quality of the populations;
4) A surrogate model that allows the algorithm to evaluate

more individuals;
5) A duplicate removal mechanism that removes redundant

individuals when exchanging immigrants.
In order to investigate the contributions of each component to
the effectiveness of APTGP, we conducted additional experi-
ments with the following versions of APTGP in which one or
more of the components were disabled.
• APTGP-NT: the APTGP with No knowledge Transfer

in initialisation. It randomly generates the initial GP
population for the target instance.

• APTGP-NA: the APTGP with No Auxiliary population.
After the initialisation with transfer, it runs the traditional
GP for the target instance.

• APTGP-SE: the APTGP with a Simple Exchange scheme,
which replaces all the low-quality individuals with the
immigrants from the other population;

• APTGP-ND: the APTGP with No Duplicate removal
when initialising APTGP;

• APTGP-SA: the Surrogate Assisted APTGP, which has
no explicit auxiliary population, but generates an extra
1024 offspring from the main population in each gener-
ation as the auxiliary population.

All the variants of APTGP except APTGP-NA generates 2000
offspring in each generation, evaluate 1024 offspring by the
actual evaluation, while the other 1024 offspring by the KNN
surrogate model. APTGP-NA uses a traditional GPHH process
in the target instance, which generates and evaluates 1024
offspring in each generation.

Table VI presents the test performance of APTGP and its
variants. For each scenario (row), the entry with the best
mean value is highlighted in boldface. We also conducted the
Friedman test, and show the ranks of each compared algorithm
and the p-value at the bottom of the table. As can be seen,
APTGP has the best test performance (lowest rank of 1.68)
and the p-value is close to zero, indicating that the differences
among the compared algorithms are statistically significant.
For post-hoc pairwise comparison, the adjusted p-values of the
Conover pairwise comparisons [65] are given in Table VII.

From the table, it can be seen that APTGP significantly
outperformed APTGP-NA, APTGP-SE and APTGP-ND. The
advantage of APTGP over APTGP-NA indicates that without
using the auxiliary population in the search process, the perfor-
mance of APTGP degrades significantly. This is an indicator
of the important role that the auxiliary population plays in
the algorithm. On the other hand, using an auxiliary popu-
lation with a simple knowledge exchange mechanism is not
enough for achieving significant improvements, since APTGP-
SE and APTGP-NA are statistically similar and APTGP-SE
was ranked even worse than APTGP-NA.

The advantage of APTGP over APTGP-ND indicates that
duplicate removal increases the amount of useful knowledge
that is inherited from the source which in turn, highlights the
negative impact that the presence of duplicates in the source
knowledge can have on the performance on the target instance.

Compared with APTGP-NT, the p-value was 0.02, which is
very close to the significance level of the Bonferroni correction
(0.05/4 = 0.0125 for the four comparisons between APTGP
and other four algorithms). From Table VI, we see that the
rank of APTGP-NT is 2.62, closer to the rank of APTGP than
APTGP-NA, APTGP-SE and APTGP-ND, and obtained the
best test performance on 10 scenarios. This shows that even
without the initial transfer, APTGP can still be quite effective
due to the use of auxiliary population for knowledge transfer
during the search process. Meanwhile, the considerable dif-
ference between APTGP and APTGP-NT (rank 1.68 vs rank
2.62) shows the effectiveness of the knowledge transfer in the
initial population of the target instance.

APTGP-SA showed the closest test performance to APTGP.
Its rank was 2.6, and the p-value was 0.02, slightly larger than
the corrected significance level of 0.0125. It achieved the best
test performance on 11 scenarios. However, we can still see
the advantage of APTGP over APTGP-SA, as APTGP still has
a much better rank (1.68 vs 2.6) and performed the best on 21
scenarios. This verifies the effectiveness of using the auxiliary
population instead of directly generating extra offspring and
evaluate using the surrogate model.

It should also be noted that APTGP-NA and APTGP-SE had
similar performances. Both algorithms transfer unique individ-
uals, but APTGP-SE additionally performs a simple knowl-
edge exchange that does not consider the possible presence of
duplicates. Hence, not only the algorithm does not benefit from
the exchange of knowledge, its slightly inferior performance
indicates that the exchange was even harmful. This could be
attributed to possibility that the exchange mechanism may
have increased duplicates in the main population. The damage
of this effect is to the point that APTGP-NT, which does not
utilise any transferred knowledge, has a significantly better
performance than APTGP-SE. On the other hand, APTGP-NT
performs rather similarly to APTGP-NA.

B. Phenotypic Diversity

The GPHH method for solving UCARP is known to suffer
from the loss of population diversity during the evolutionary
process [16], [19]. This property can negatively impact the
quality of knowledge transfer since the transfer of duplicates
reduces the amount of useful knowledge that can be transferred
and may run into the risk of trapping the search process in poor
local optima. This understanding was one of the key consider-
ations for designing APTGP. In this subsection, we investigate
how effective APTGP was in maintaining and increasing the
diversity during the search process. For this purpose, we
employ the entropy measure [67] for calculating the population
diversity. To compute the entropy of the population Pop, we
grouped the similar individuals into a set of clusters C using
the DBScan clustering algorithm [68], where each individual
is characterised by the phenotypic vector [49] and the cluster

12

TABLE VI: Test performance of 30 independent runs of
APTGP and its variants (mean ± std).

Scn. APTGP-NT APTGP-NA APTGP-SE APTGP-ND APTGP-SA APTGP

1 91.1±0.1 91.1±0.1 91.1±0.1 91.1±0.1 91.1±0.1 91.1±0.0
2 544.7±5.2 554.3±9.4 556.8±10.2 547.4±7.2 546.7±9.0 542.9±10.7
3 595.8±6.4 604.6±9.2 604.2±9.4 594.6±8.4 596.0±10.1 595.0±9.7
4 627.8±5.4 647.8±13.8 648.4±16.6 634.0±7.7 633.0±9.8 632.6±7.3
5 58.1±0.1 58.2±0.1 58.3±0.2 58.1±0.1 58.1±0.1 58.1±0.1
6 417.7±7.0 424.3±9.5 426.0±8.9 419.8±7.6 418.4±7.6 417.6±7.2
7 425.0±5.5 430.6±7.7 432.3±7.4 427.8±5.5 428.2±5.6 427.6±5.8
8 425.8±4.6 431.8±5.5 431.0±6.8 423.6±7.6 425.1±7.0 423.3±5.5
9 572.6±3.0 576.3±3.0 578.1±3.8 573.4±3.9 574.7±11.0 572.0±4.6
10 335.0±4.4 337.4±2.0 338.0±1.8 335.3±3.4 335.3±3.5 335.1±4.0
11 341.1±3.9 343.1±3.9 345.4±4.4 341.8±5.1 339.9±4.1 340.6±4.1
12 544.7±5.2 550.6±8.2 557.4±11.8 549.0±7.0 545.0±7.6 544.8±8.0
13 595.8±6.4 604.0±9.3 604.7±11.2 596.1±9.8 595.6±9.2 595.4±6.2
14 627.8±5.4 642.0±11.6 649.8±13.1 634.5±8.3 631.4±9.1 630.9±5.7
15 335.0±4.4 337.5±2.1 337.9±3.3 334.5±4.0 335.2±3.1 334.4±3.2
16 442.2±4.0 444.7±5.6 443.5±7.6 442.5±4.3 439.7±8.5 441.4±5.6
17 317.0±3.4 321.0±5.1 321.8±5.0 318.0±4.3 317.6±4.3 317.1±3.8
18 354.5±3.8 356.9±4.2 356.4±3.8 352.3±3.0 352.0±4.0 352.2±2.4
19 355.9±2.9 359.1±5.5 358.5±5.0 357.3±3.8 355.9±4.1 354.8±2.6
20 356.8±1.6 358.0±1.3 358.3±1.1 356.9±1.5 356.6±2.3 356.6±1.2
21 337.2±5.3 338.1±5.0 340.5±3.4 336.7±5.8 334.2±5.6 332.6±5.9
22 349.8±1.8 350.6±3.2 350.9±2.3 350.8±2.9 349.0±2.9 349.7±2.4
23 355.6±0.1 356.4±1.5 356.7±1.7 355.6±0.1 355.8±1.0 355.7±0.7
24 310.9±0.8 308.8±2.9 309.7±1.3 309.1±2.6 307.8±3.1 307.9±4.0
25 389.0±0.1 389.1±0.1 389.1±0.2 389.0±0.1 389.1±0.1 389.0±0.1
26 359.0±3.1 362.0±2.6 362.8±2.6 361.1±3.1 359.5±3.9 357.8±4.9
27 335.7±3.9 339.9±6.8 340.3±6.1 337.2±8.5 335.5±4.6 335.1±4.6
28 379.8±5.2 382.9±6.6 385.1±5.3 379.9±8.8 379.7±6.2 378.3±6.5
29 382.1±2.0 381.3±4.0 383.8±3.5 381.4±3.9 378.9±5.2 381.0±2.7
30 350.7±2.3 351.1±1.1 351.0±1.6 350.8±1.6 350.8±2.2 349.9±3.2
31 323.5±4.9 324.0±4.6 323.9±4.5 320.6±5.6 321.2±5.2 320.1±4.7
32 442.2±4.0 439.6±6.3 442.6±4.4 439.3±6.3 438.9±6.7 439.9±6.4
33 448.0±0.5 448.5±1.3 448.6±1.4 448.2±1.4 447.8±0.5 448.0±0.6
34 382.7±3.4 384.6±5.2 385.6±4.9 384.6±5.5 381.1±4.1 382.9±4.6
35 367.8±0.9 369.2±2.9 369.1±2.5 367.8±2.2 367.7±2.0 367.1±1.9
36 318.5±1.2 322.5±3.8 322.9±4.2 320.3±2.2 320.2±1.9 319.5±1.7
37 163.8±1.3 165.1±1.4 165.6±1.7 164.5±1.3 163.7±1.4 163.8±1.4
38 366.6±5.7 374.7±7.6 375.5±7.3 369.5±6.0 369.8±6.4 366.6±5.9
39 407.7±7.1 412.4±7.1 415.7±7.1 411.6±5.6 409.6±6.8 409.0±8.3
40 341.1±3.9 346.8±5.9 346.7±5.1 341.9±4.9 341.4±4.8 340.8±4.9
41 350.7±2.3 351.6±2.6 351.7±2.5 350.5±4.2 351.1±1.7 350.3±3.1
42 164.6±1.0 164.7±1.6 165.4±1.6 164.5±1.5 164.0±1.4 163.9±1.4
43 457.4±7.4 456.9±7.8 458.9±6.2 453.8±7.4 453.8±6.8 451.8±7.3
44 424.2±4.3 426.0±2.9 426.1±3.3 425.9±2.3 424.7±3.9 424.3±4.3
45 496.2±3.4 497.7±3.4 497.3±3.9 496.5±3.7 496.8±2.7 496.5±3.4

Rank 2.62 5.1 5.72 3.37 2.6 1.68

Friedman’s p-value 1.11e-16

TABLE VII: Post-hoc comparison of the APTGP and its
variants.

APTGP-NA APTGP-SE APTGP-ND APTGP-SA APTGP

APTGP-NT 1.7e-08 7.8e-13 0.07 0.95 0.02
APTGP-NA – 0.079 7.8e-05 1.5e-08 3.7e-14
APTGP-SE – – 2.2e-08 7.40e-13 4.1e-19
APTGP-ND – – – 0.067 5.6e-05
APTGP-SA – – – – 0.02

radius was set to zero. Then, the entropy of the population is
calculated as entropy(Pop) = −

∑
c∈C

|c|
|Pop| log |c|

|Pop| .
Figure 8 presents the distribution of the entropy of the

populations during the evolutionary process of the compared
algorithms. For each algorithm, the entropy of the populations
in all the generations of all the 30 runs are taken into account.
From Figure 8, we can clearly see that APTGP managed
to reach a much higher entropy (better diversity) of the
populations than the other algorithms.

To understand how the population entropy changed over the

Fig. 8: Population entropy of the compared algorithms.

course of evolution, the average population entropy over the
30 runs is plotted in Figure 9 against GP generation for a few
scenarios (we observed similar patterns for other scenarios as
well). As can be easily seen from the figure, all the compared
algorithms started with a high degree of diversity. However,
as the evolution proceeded, all the other algorithms except
APTGP lost their diversity in the population rather quickly.
On the other hand, although APTGP also lost some of its
diversity, it managed to maintain a high entropy (diversity)
over time. Another interesting observation in Figure 9 is that
the initial entropy of APTGP and SUFullTree is higher that
other methods. This can be explained by considering the fact
that both APTGP and SUFullTree algorithms place a high
emphasis on creating a very diverse initial population.

Fig. 9: The curve of the population entropy of the compared
algorithms for some representative scenarios.

C. Duplicate Removal

In the knowledge exchange phase of APTGP (i.e. Algorithm
6), when selecting individuals in a population to be replaced
with the incoming immigrants from the other population, the
duplicates in the population are first considered for replace-
ment. If the population does not contain enough duplicates,
then low-quality unique individuals are selected to be replaced.
Figure 10a presents the number of duplicates selected and
replaced in each population over the generations of APTGP,
averaged over all runs on all the scenarios. As can be seen,

13

throughout the evolutionary process, there exist a large number
of duplicates in the population. The number of duplicates
decrease slowly throughout the evolution as is suggested by
the downward trend of the plot and the increased standard
deviation. On average, 298.67 duplicates were replaced in
each generation of APTGP, with a standard deviation of 7.14.
Overall, we can see that there are a large amount of duplicates
in the population of APTGP, despite the pressure of the
duplicate removal mechanism in APTGP.

According to Algorithm 1, the duplicate replacement is
performed after the breeding operation. Since the population
diversity is maintained at a high level at the end of each
generation, as discussed in Subsection VI-B, the breeding
operator is the main reason for introducing duplicates. This
observation indicates the need for designing more effective
breeding operators for solving UCARP.

Figure 10a suggests that one may remove more duplicates
and achieve better performance by increasing the value of
the η parameter. However, when we investigated this pos-
sibility, we did not observe any significant improvement in
the results. On the contrary, there were cases in which the
performance became slightly worse. One possible reason for
this phenomenon is that as the value of η increases, more
unique individuals are likely to be discarded in favour of the
transferred immigrants. In such cases, APTGP does benefit
from the possible improvement in diversity that immigrants
could provide and it can just benefit from the exchange
of the knowledge that immigrants contain. However, as the
GP evolution proceeds, the quality of the population also
increases. As a result, when unique individuals are replaced
with the immigrants, it is more likely that the population
replaces good individuals with the immigrants which are not
guaranteed to be good (considering that the immigrants may
go through mutation before being transferred).

Figure 10b presents the average number of trials (mutations)
for APTGP to obtain a unique individual as an immigrant
for knowledge exchange. As we can see from the figure, in
the early generations, the algorithm is is more likely to find
out that the candidate immigrant is redundant in the target.
However, as the algorithm proceeds, this likelihood decreases
slightly because the diversity in both populations increases (as
is seen in the entropy plots in Figure 9).

D. Transferred Unique Individuals
Previous studies [16], [18], [19] have indicated that GP

may create numerous phenotypic duplicates when it solves
UCARP, which can reduce the effectiveness of knowl-
edge transfer. This finding motivated the design of the
RemoveDuplicate method in APTGP. To verify the effec-
tiveness of the RemoveDuplicate method, we recorded the
number of unique individuals that could be transferred to
the target problem. Figure 11 presents the distribution of the
unique individuals that were found in each knowledge source
over the 30 runs. It should be noted that some scenarios
share the same knowledge source. However, since the decision
situations needed for phenotypic characterisation are obtained
from the target problem, the number of duplicates varies even
when the knowledge source is the same.

(a) Average number of the removed duplicates

(b) Average number of trials to find a unique immigrant

Fig. 10: Dynamics of the duplicate removal mechanism.

Fig. 11: Number of the transferred unique individuals for each
scenario

According to our experiment settings, 1024×50 individuals
have been examined in the GP process for solving the source
problem. As can be seen in Figure 11, there were at most
roughly around 12000 unique individuals in the knowledge
source (scenario 13). There are other scenarios in which this
number falls even below 2000 individuals (e.g., scenarios 5,
6, 7, 8). Consequently, if the presence of this large number
of duplicates is not considered, then the quality of initial
knowledge transfer will degrade. The main reason for this
effect is that the duplicates which initialise GP will limit the
pool of useful information that the search can begin with. As
a consequence, GP will require more effort for investigating
the search space. To verify this, we considered APTGP-NA
that does not utilise the auxiliary population, and compared
its performance against the results obtained with the FullTree
and GPHH algorithms with Friedman’s test. The test ranked
APTGP-NA as the best and the post-hoc analysis revealed it to
be significantly better than both other methods. On the other
hand, the analysis revealed GPHH, which does not utilise any
transferred knowledge, and FullTree to be statistically similar.

For further illustration, an example of the unique transferred

14

individuals by APTGP is shown in Section S-III of the
supplementary file.

VII. CONCLUSIONS

In this work, a novel transfer optimisation algorithm for
GP, called APTGP, was proposed to evolve routing policies
for UCARP. In APTGP, all the routing policies that GP
has examined for solving a source problem are considered
as the transferable knowledge. First, we propose to remove
duplicates before using the source individuals to initialise the
GP population for the target problem. Then, during the search
process, the transferred knowledge is retained and evolved in
a separate auxiliary population alongside the main population.
The auxiliary population is evolved with a surrogate model
that is learned from the main population. The main purpose
of the auxiliary population is to help GP address the issue
of losing its population diversity and increase its exploration
capabilities. To achieve this, an elaborate knowledge exchange
mechanism is devised to share high-quality and unique indi-
viduals between the main and auxiliary populations.

The effectiveness of APTGP has been verified by comparing
with the state-of-the-art algorithms on a wide range of transfer
scenarios. Our analysis demonstrated that APTGP managed to
significantly outperform all the state-of-the-art GP algorithms
with knowledge transfer. Additionally, we demonstrated that
APTGP helped GP overcome the limitation of losing pop-
ulation diversity. Furthermore, we conducted a detailed set
of control experiments to verify the effectiveness and the
contribution of each novel component of APTGP.

There are several possible directions for future works.
First, the knowledge exchange mechanism of APTGP searches
the receiving population to ensure the candidate individual
for knowledge transfer is not present there. However, our
mechanism only considers the current population and does
not check if the candidate has been seen in earlier generations
or not. We intend to address this shortcoming in future.
Also, the knowledge exchange mechanism of APTGP does not
consider the possibility that the set of immigrants may contain
duplicates that, through transfer, may introduce duplicates in
the receiving population. Furthermore, APTGP is designed
based on the assumption that the source and target problems
are related and hence, does not have any measures to prevent
negative transfer when this assumption is not valid. Finally, the
policies evolved by APTGP tend to be large and difficult to
interpret. In future, we will improve APTGP to produce more
interpretable policies and also, we plan to test our algorithm
on larger real-world datasets, such as the real-world waste
collection datasets in [69].

REFERENCES

[1] Y. Mei, K. Tang, and X. Yao, “Capacitated arc routing problem in
uncertain environments,” in Congress on Evolutionary Computation.
IEEE, 2010, pp. 1–8.

[2] J. Liu, K. Tang, and X. Yao, “Robust Optimization in Uncertain
Capacitated Arc Routing Problems: Progresses and Perspectives,” IEEE
Computational Intelligence Magazine, vol. 16, no. 1, pp. 63–82, 2021.

[3] L. Chen, M. Gendreau, M. H. Hà, and A. Langevin, “A robust optimiza-
tion approach for the road network daily maintenance routing problem
with uncertain service time,” Transportation Research Part E: Logistics
and Transportation Review, vol. 85, pp. 40–51, 2016.

[4] J. F. Campbell and A. Langevin, Roadway Snow and Ice Control.
Boston, MA: Springer US, 2000, pp. 389–418.

[5] E. B. Tirkolaee, I. Mahdavi, M. M. S. Esfahani, and G. W. Weber, “A
hybrid augmented ant colony optimization for the multi-trip capacitated
arc routing problem under fuzzy demands for urban solid waste manage-
ment,” Waste Management and Research, vol. 38, pp. 156–172, 2020.

[6] S. Wøhlk, A Decade of Capacitated Arc Routing. Springer, 2008, pp.
29–48.

[7] B. L. Golden and R. T. Wong, “Capacitated arc routing problems,”
Networks, vol. 11, no. 3, pp. 305–315, 1981.

[8] Y. Liu and Y. Mei, “Automated Heuristic Design Using Genetic
Programming Hyper-Heuristic for Uncertain Capacitated Arc Routing
Problem,” in Proceedings of the Genetic and Evolutionary Computation
Conference. ACM, 2017, pp. 290–297.

[9] Y. Mei and M. Zhang, “Genetic Programming Hyper-heuristic for Multi-
vehicle Uncertain Capacitated Arc Routing Problem,” in Proceedings
of the Genetic and Evolutionary Computation Conference Companion.
ACM, 2018, pp. 141–142.

[10] J. MacLachlan, Y. Mei, J. Branke, and M. Zhang, “Genetic Programming
Hyper-Heuristics with Vehicle Collaboration for Uncertain Capacitated
Arc Routing Problems,” Evolutionary Computation, pp. 563–593, 2019.

[11] J. Branke, T. Hildebrandt, and B. Scholz-Reiter, “Hyper-heuristic Evo-
lution of Dispatching Rules: A Comparison of Rule Representations,”
Evolutionary Computation, vol. 23, no. 2, pp. 249–277, 06 2015.

[12] S. J. Louis and J. McDonnell, “Learning with case-injected genetic
algorithms,” IEEE Transactions on Evolutionary Computation, vol. 8,
no. 4, pp. 316–328, 2004.

[13] A. Gupta, Y. S. Ong, and L. Feng, “Insights on Transfer Optimization:
Because Experience is the Best Teacher,” IEEE Transactions on Emerg-
ing Topics in Computational Intelligence, vol. 2, no. 1, pp. 51 – 64,
2018.

[14] B. Al-Helali, Q. Chen, B. Xue, and M. Zhang, “A new imputation
method based on genetic programming and weighted KNN for symbolic
regression with incomplete data,” Soft Computing, vol. 25, no. 8, pp.
5993–6012, apr 2021.

[15] ——, “Multi-tree genetic programming with new operators for transfer
learning in symbolic regression with incomplete data,” IEEE Transac-
tions on Evolutionary Computation, vol. 25, no. 6, pp. 1049–1063, 2021.

[16] M. A. Ardeh, Y. Mei, and M. Zhang, “Transfer Learning in Genetic
Programming Hyper-heuristic for Solving Uncertain Capacitated Arc
Routing Problem,” in Congress on Evolutionary Computation, Welling-
ton, New Zealand, 2019, pp. 49–56.

[17] ——, “A GPHH with Surrogate-assisted Knowledge Transfer for Uncer-
tain Capacitated Arc Routing Problem,” in Proceedings of the Sympo-
sium Series on Computational Intelligence. IEEE, 2021, pp. 2786–2793.

[18] ——, “Genetic Programming Hyper-heuristic with Knowledge Transfer
for Uncertain Capacitated Arc Routing Problem,” in Proceedings of the
Genetic and Evolutionary Computation Conference Companion. ACM,
2019, pp. 334–335.

[19] ——, “A Novel Genetic Programming Algorithm with Knowledge
Transfer for Uncertain Capacitated Arc Routing Problem,” in PRICAI
2019: Trends in Artificial Intelligence. Springer, 2019, pp. 196–200.

[20] ——, “Genetic Programming Hyper-Heuristics with Probabilistic Pro-
totype Tree Knowledge Transfer for Uncertain Capacitated Arc Routing
Problems,” in Congress on Evolutionary Computation. Glasgow, UK:
IEEE, 2020, pp. 1–8.

[21] T. T. H. Dinh, T. H. Chu, and Q. U. Nguyen, “Transfer learning in
genetic programming,” in Congress on Evolutionary Computation, 2015,
pp. 1145–1151.

[22] E. Haslam, B. Xue, and M. Zhang, “Further investigation on genetic pro-
gramming with transfer learning for symbolic regression,” in Congress
on Evolutionary Computation. IEEE, 2016, pp. 3598–3605.

[23] K. Deb, Two Approaches for Single and Multi-Objective Dynamic
Optimization. Berlin, Heidelberg: Springer, 2013, pp. 99–116.

[24] T. T. Nguyen, S. Yang, and J. Branke, “Evolutionary Dynamic Opti-
mization: A Survey of the State of the Art,” Swarm and Evolutionary
Computation, vol. 6, pp. 1–24, oct 2012.

[25] J. Wang, K. Tang, J. A. Lozano, and X. Yao, “Estimation of the
Distribution Algorithm With a Stochastic Local Search for Uncertain
Capacitated Arc Routing Problems,” IEEE Transactions on Evolutionary
Computation, vol. 20, no. 1, pp. 96–109, 2016.

[26] J. Wang, K. Tang, and X. Yao, “A memetic algorithm for uncertain
Capacitated Arc Routing Problems,” in Proceedings of the Workshop on
Memetic Computing. IEEE, 2013, pp. 72–79.

[27] H. Tong, L. L. Minku, S. Menzel, B. Sendhoff, and X. Yao, “Towards
novel meta-heuristic algorithms for dynamic capacitated arc routing
problems,” in Parallel Problem Solving from Nature – PPSN XVI,

15

T. Bäck, M. Preuss, A. Deutz, H. Wang, C. Doerr, M. Emmerich, and
H. Trautmann, Eds. Cham: Springer, 2020, pp. 428–440.

[28] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. Cambridge, USA: MIT, 1992.

[29] A. De Lorenzo, A. Bartoli, M. Castelli, E. Medvet, and B. Xue, “Genetic
programming in the twenty-first century: a bibliometric and content-
based analysis from both sides of the fence,” Genetic Programming and
Evolvable Machines, pp. 181–204, 2019.

[30] F. Zhang, Y. Mei, S. Nguyen, and M. Zhang, “Evolving Scheduling
Heuristics via Genetic Programming With Feature Selection in Dynamic
Flexible Job-Shop Scheduling,” IEEE Transactions on Cybernetics,
2020.

[31] S. Wang, Y. Mei, and M. Zhang, “Novel ensemble genetic program-
ming hyper-heuristics for uncertain capacitated arc routing problem,” in
Proceedings of the Genetic and Evolutionary Computation Conference.
New York, USA: ACM, 2019, pp. 1093–1101.

[32] ——, “A Multi-Objective Genetic Programming Hyper-Heuristic Ap-
proach to Uncertain Capacitated Arc Routing Problems,” in IEEE
Congress on Evolutionary Computation, 2020, pp. 1–8.

[33] S. Wang, Y. Mei, M. Zhang, and X. Yao, “Genetic program-
ming with niching for uncertain capacitated arc routing prob-
lem,” IEEE Transactions on Evolutionary Computation, 2021,
doi:10.1109/TEVC.2021.3095261.

[34] Y. Liu, Y. Mei, M. Zhang, and Z. Zhang, “A predictive-reactive approach
with genetic programming and cooperative coevolution for the uncertain
capacitated arc routing problem,” Evolutionary Computation, vol. 28,
no. 2, pp. 289–316, 2019.

[35] B. Koçer and A. Arslan, “Genetic transfer learning,” Expert Systems
with Applications, vol. 37, no. 10, pp. 6997–7002, 2010.

[36] M. Iqbal, B. Xue, H. Al-Sahaf, and M. Zhang, “Cross-Domain Reuse of
Extracted Knowledge in Genetic Programming for Image Classification,”
IEEE Transactions on Evolutionary Computation, vol. 21, no. 4, pp.
569–587, 2017.

[37] D. O’Neill, H. Al-Sahaf, B. Xue, and M. Zhang, “Common subtrees
in related problems: A novel transfer learning approach for genetic
programming,” in Proceedings of IEEE Congress on Evolutionary Com-
putation, 2017, pp. 1287–1294.

[38] L. Feng, Y. S. Ong, S. Jiang, and A. Gupta, “Autoencoding evolutionary
search with learning across heterogeneous problems,” IEEE Transactions
on Evolutionary Computation, vol. 21, no. 5, pp. 760–772, oct 2017.

[39] L. Feng, L. Zhou, J. Zhong, A. Gupta, Y. S. Ong, K. C. Tan, and
A. K. Qin, “Evolutionary Multitasking via Explicit Autoencoding,” IEEE
Transactions on Cybernetics, vol. 49, no. 9, pp. 3457–3470, sep 2019.

[40] L. Feng, W. Zhou, W. Liu, Y.-S. Ong, and K. C. Tan, “Solving Dynamic
Multiobjective Problem via Autoencoding Evolutionary Search,” IEEE
Transactions on Cybernetics, pp. 1–14, oct 2020.

[41] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P. A. Manzagol,
“Stacked denoising autoencoders: Learning Useful Representations in a
Deep Network with a Local Denoising Criterion,” Journal of Machine
Learning Research, vol. 11, pp. 3371–3408, 2010.

[42] L. Feng, Y. S. Ong, M. H. Lim, and I. W. Tsang, “Memetic Search with
Interdomain Learning: A Realization between CVRP and CARP,” IEEE
Transactions on Evolutionary Computation, vol. 19, no. 5, pp. 644–658,
2015.

[43] L. Feng, Y. S. Ong, A. H. Tan, and I. W. Tsang, “Memes as building
blocks: a case study on evolutionary optimization + transfer learning
for routing problems,” Memetic Computing, vol. 7, no. 3, pp. 159–180,
2015.

[44] M. Pelikan and M. W. Hauschild, “Distance-based bias in model-directed
optimization of additively decomposable problems,” in Proceedings
of the 14th International Conference on Genetic and Evolutionary
Computation. New York, USA: ACM Press, 2012, pp. 273–280.

[45] M. W. Hauschild and M. Pelikan, “Intelligent bias of network structures
in the hierarchical BOA,” in Proceedings of the 11th Annual Genetic
and Evolutionary Computation Conference. New York, USA: ACM
Press, 2009, pp. 413–420.

[46] M. A. Ardeh, Y. Mei, and M. Zhang, “Diversity-driven Knowledge
Transfer for GPHH to Solve Uncertain Capacitated Arc Routing Prob-
lem,” in Proceedings of the Symposium Series on Computational Intel-
ligence. IEEE, 2020, pp. 2407–2414.

[47] ——, “Surrogate-Assisted Genetic Programming with Diverse Transfer
for the Uncertain Capacitated Arc Routing Problem,” in Proceedings of
the IEEE Congress on Evolutionary Computation, 2021, pp. 628–635.

[48] R. Cheng, C. He, Y. Jin, and X. Yao, “Model-based evolutionary
algorithms: a short survey,” Complex & Intelligent Systems, vol. 4, no. 4,
pp. 283–292, 2018.

[49] T. Hildebrandt and J. Branke, “On using surrogates with genetic pro-
gramming,” Evolutionary Computation, vol. 23, no. 3, pp. 343–367,
2015.

[50] H. Tong, C. Huang, L. L. Minku, and X. Yao, “Surrogate models
in evolutionary single-objective optimization: A new taxonomy and
experimental study,” Information Sciences, vol. 562, pp. 414–437, 2021.

[51] A. Gupta, Y. S. Ong, and L. Feng, “Multifactorial Evolution: Toward
Evolutionary Multitasking,” IEEE Transactions on Evolutionary Com-
putation, vol. 20, no. 3, pp. 343–357, 2016.

[52] L. Feng, L. Zhou, A. Gupta, J. Zhong, Z. Zhu, K.-C. Tan, and K. Qin,
“Solving Generalized Vehicle Routing Problem With Occasional Drivers
via Evolutionary Multitasking,” IEEE Transactions on Cybernetics,
vol. PP, pp. 1–14, 2019.

[53] K. K. Bali, Y. S. Ong, A. Gupta, and P. S. Tan, “Multifactorial
Evolutionary Algorithm with Online Transfer Parameter Estimation:
MFEA-II,” IEEE Transactions on Evolutionary Computation, vol. 24,
no. 1, pp. 69–83, feb 2020.

[54] L. Zhou, L. Feng, K. C. Tan, J. Zhong, Z. Zhu, K. Liu, and C. Chen,
“Toward Adaptive Knowledge Transfer in Multifactorial Evolutionary
Computation,” IEEE Transactions on Cybernetics, pp. 1–14, mar 2020.

[55] L. Feng, Y. Huang, L. Zhou, J. Zhong, A. Gupta, K. Tang, and K. C.
Tan, “Explicit Evolutionary Multitasking for Combinatorial Optimiza-
tion: A Case Study on Capacitated Vehicle Routing Problem,” IEEE
Transactions on Cybernetics, mar 2020.

[56] J. Zhong, L. Feng, W. Cai, and Y. Ong, “Multifactorial Genetic Pro-
gramming for Symbolic Regression Problems,” IEEE Transactions on
Systems, Man, and Cybernetics: Systems, jul 2018.

[57] M. A. Ardeh, Y. Mei, and M. Zhang, “A Novel Multi-Task Genetic
Programming Approach to Uncertain Capacitated Arc Routing Prob-
lem,” in Proceedings of the ACM Genetic and Evolutionary Computation
Conference. ACM, 2021, pp. 759—-767.

[58] R. Kendy Arakaki and F. Luiz Usberti, “An efficiency-based path-
scanning heuristic for the capacitated arc routing problem,” Computers
and Operations Research, vol. 103, pp. 288–295, mar 2019.

[59] G. Ruan, L. L. Minku, S. Menzel, B. Sendhoff, and X. Yao, “When and
How to Transfer Knowledge in Dynamic Multi-objective Optimization,”
in IEEE Symposium Series on Computational Intelligence, 2019, pp.
2034–2041.

[60] ——, “Computational Study on Effectiveness of Knowledge Transfer
in Dynamic Multi-objective Optimization,” in Proceedings of the IEEE
Congress on Evolutionary Computation, 2020, pp. 1–8.

[61] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, in Introduction
to Algorithms, 3rd ed. MIT Press and McGraw-Hill, 2009, ch. Hash
Table, p. 1320.

[62] R. G. Reynolds, “An introduction to cultural algorithms,” in Proceedings
of the Third Annual Conference on Evolutionary Programming. USA:
World Scientific Press, 1994, pp. 131–139.

[63] T.-T. Nguyen and X. Yao, “An experimental study of hybridizing cultural
algorithms and local search,” International journal of neural systems,
vol. 18 1, pp. 1–17, 2008.

[64] M. G. Kendall, “A New Measure of Rank Correlation,” Biometrika,
vol. 30, no. 1-2, pp. 81–93, jun 1938.

[65] W. J. Conover, Practical Nonparametric Statistics. John Wiley & Sons,
1998, vol. 350.

[66] Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate:
A practical and powerful approach to multiple testing,” Journal of the
Royal Statistical Society. Series B (Methodological), vol. 57, no. 1, pp.
289–300, 1995.

[67] E. K. Burke, S. Gustafson, and G. Kendall, “Diversity in Genetic
Programming: An Analysis of Measures and Correlation with Fitness,”
IEEE Transactions on Evolutionary Computation, vol. 8, no. 1, pp. 47–
62, feb 2004.

[68] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based
algorithm for discovering clusters in large spatial databases with noise,”
in Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining. AAAI Press, 1996, pp. 226–231.

[69] W. Lan, Z. Ye, P. Ruan, J. Liu, P. Yang, and X. Yao, “Region-focused
Memetic Algorithms with Smart Initialisation for Real-world Large-
scale Waste Collection Problems,” IEEE Transactions on Evolutionary
Computation, 2021, doi: 10.1109/TEVC.2021.3123960.

