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Abstract—Feature-based algorithm selection aims to automati-
cally find the best one from a portfolio of optimization algorithms
on an unseen problem based on its landscape features. Feature-
based algorithm selection has recently received attention in the
research field of black-box numerical optimization. However,
there is still room for analysis of algorithm selection for black-box
optimization. Most previous studies have focused only on whether
an algorithm selection system can outperform the single-best
solver in a portfolio. In addition, a benchmarking methodology
for algorithm selection systems has not been well investigated in
the literature. In this context, this paper analyzes algorithm se-
lection systems on the 24 noiseless black-box optimization bench-
marking functions. First, we demonstrate that the first successful
performance measure is more reliable than the expected runtime
measure for benchmarking algorithm selection systems. Then,
we examine the influence of randomness on the performance of
algorithm selection systems. We also show that the performance
of algorithm selection systems can be significantly improved by
using sequential least squares programming as a pre-solver. We
point out that the difficulty of outperforming the single-best
solver depends on algorithm portfolios, cross-validation methods,
and dimensions. Finally, we demonstrate that the effectiveness of
algorithm portfolios depends on various factors. These findings
provide fundamental insights for algorithm selection for black-
box optimization.

Index Terms—Feature-based algorithm selection, black-box
numerical optimization, bechmarking

I. INTRODUCTION

LACK-BOX numerical optimization aims to find a so-
lution & € R™ with an objective value f(x) as small
as possible without any explicit knowledge of the objective
function f : R™ — R. Here, n is the dimension of the solution
space. This paper considers only single-objective noiseless
black-box optimization. A number of derivative-free black-
box optimizers have been proposed in the literature, including
mathematical optimization approaches, Bayesian optimization
approaches, and evolutionary optimization approaches. In gen-
eral, the best optimizer depends on the characteristics of a
given problem [1]]. It is also difficult for a user to select an
appropriate optimizer for her/his problem through a trial-and-
error process. Thus, automatic algorithm selection is essential
for practical black-box optimization.
The algorithm selection problem [2], [3] involves selecting
the best one from a portfolio of & algorithms A = {ay, ..., ax}
on a set of problem instances Z in terms of a performance
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measure m : AXZ — R. The algorithm selection problem is a
fundamental research topic in the fields of artificial intelligence
and evolutionary computation [4]-[6].

Feature-based offline algorithm selection is one of the most
popular approaches for the algorithm selection problem [4]—
[6]]. First, a feature-based algorithm selection approach com-
putes numerical features of a given problem. It is desirable that
the features well capture the characteristics of the problem.
Then, the approach predicts the most promising algorithm
aPest from a pre-defined portfolio A based on the features.
Machine learning techniques are generally employed to build
a selection model. Finally, ¢ is applied to the problem.
Feature-based algorithm selection has demonstrated its ef-
fectiveness on a wide range of problem domains, including
the propositional satisfiability problem (SAT) [7]], the travel-
ing salesperson problem (TSP) [8]], answer set programming
(ASP) [9], and multi-objective optimization [10].

Six recent studies [11]-[16] have reported promising results
of feature-based algorithm selection for black-box numerical
optimization'. All of them performed algorithm selection
on the 24 noiseless BBOB functions [17]. Throughout this
paper, we denote the noiseless BBOB functions as the BBOB
functions. Except for [12], these studies used exploratory
landscape analysis (ELA) [|18]] for feature computation, where
ELA computes a set of numerical features of a given problem
based on a set of solutions. In addition to ELA, the study
[13] proposed a feature computation method based on the tree
constructed by simultaneous optimistic optimization (SOO)
[19]. The study [13]] also investigated the effectiveness of
the SOO-based features. The results in the previous studies
showed that feature-based algorithm selection systems could
potentially outperform the single-best solver (SBS) on the
BBOB function suite, where SBS is the best optimizer in a
portfolio A across all function instances. Here, we use the term
“an algorithm selection system” to represent a whole system
that includes, e.g., a feature computation method, an algorithm
selection method, and an algorithm portfolio.

In other words, the previous studies have mainly focused
only on whether an algorithm selection system can perform
better than the SBS. Although an algorithm selection system
consists of many elements, their influence has not been investi-
gated in the literature. A better understanding of algorithm se-
lection systems is needed for the next step. More importantly,
a benchmarking methodology has not been well standardized

'We say that a previous study relates to algorithm selection only when
it actually performed algorithm selection. Although some previous studies
identified “performance prediction” with “algorithm selection”, we strictly
distinguish the two different tasks.



in the field of algorithm selection for black-box optimization.
Table in the supplementary file shows the experimental
settings in the five previous studies [11]], [|13]-[/16]], except for
[12]. We do not explain Table due to the paper length
limitation, but the experimental settings in the five previous
studies are different, including a cross-validation method and
an algorithm portfolio. Thus, none of the five previous studies
[11]], [13]-[16] adopted the same experimental setting.
Contributions

In this context, this paper analyzes feature-based offline
algorithm selection systems for black-box numerical optimiza-
tion. Through a benchmarking study, this paper addresses the
following six research questions.
RQ1 Is the expected runtime reliable for benchmarking algo-
rithm selection systems? The expected runtime (ERT) [20] is a
general performance measure for benchmarking black-box op-
timizers in the fixed-target scenario [[21]. Most previous studies
also evaluated the performance of algorithm selection systems
by using the ERT. However, as discussed in [13]], the ERT is
sensitive to the maximum number of function evaluations for
an unsuccessful run. When different optimizers in a portfolio
use different termination conditions, the ERT may incorrectly
evaluate the performance of algorithm selection systems.
RQ2 How does the performance of algorithm selection sys-
tems depend on randomness? Most operations in algorithm se-
lection systems include randomness, e.g., the generation of the
sample and the computation of features. However, the previous
studies for black-box optimization [11]-[[16] performed only
a single run of an algorithm selection system. In [3|], Lindauer
et al. demonstrated that the performance of the winner of the
algorithm selection competition in 2017 significantly depends
on a random seed. Thus, it is necessary to understand the
influence of randomness on the performance of algorithm
selection systems for black-box optimization. The previous
studies [[16]], [22] focused on randomness in the sampling
phase. The study [23|] pointed out that the VBS performance
of a portfolio can be overestimated when the portfolio includes
randomized solvers. The study [24] investigated the influence
of the runtime variation of randomized SAT solvers on the
accuracy of runtime predictors. In contrast, we are interested
in randomness in the whole process of algorithm selection.
RQ3 How much can a pre-solver improve the performance
of an algorithm selection system? Which optimizer is suitable
for a pre-solver? Some modern algorithm selection systems
in the field of artificial intelligence (e.g., SATZILLA [7]]
and 3S [25]) adopt the concept of pre-solving. Here, pre-
solving is an approach that aims to solve easy problem
instances quickly before the algorithm selection process starts.
In contrast, no previous study has used a pre-solver for black-
box optimization. As investigated in [14]], algorithm selection
systems generally perform poorly on easy function instances,
e.g., fi1 (the Sphere function) in the BBOB function set. This
issue can potentially be addressed by using a pre-solver.
RQ4 Which algorithm selection method is the best? As re-
viewed in [26]], various algorithm selection methods have been
proposed in the filed of artificial intelligence. For example, the
regression-based method [7] constructs a performance model
for each algorithm and selects the best one from .4 in terms of

the predicted performance. However, it is not clear which algo-
rithm selection method is the best for black-box optimization.
Although the study [14] evaluated the performance of three
selection methods, it did not show details of the comparison
results. Unlike [15], we are interested in the performance of
algorithm selection methods rather than the performance of
machine learning models.
RQS How difficult is it to outperform the SBS? The studies
[11]-[16] discussed the effectiveness of algorithm selection
systems by comparing them with the SBS. They also compared
algorithm selection systems with the virtual best solver (VBS),
which is an oracle that always selects the best optimizer from
A on any given problem. A comparison with SBS and VBS
allows understanding “how far” an algorithm selection system
is from them using, e.g., a relative deviation. If an algorithm
selection system S outperforms the SBS in A, the previous
studies concluded that S is effective. However, the difficulty
of outperforming the SBS has not been well understood.
RQ6 How does the choice of algorithm portfolios influence
the overall performance of algorithm selection systems? The
study [14] gave the following rule of thumb to construct a
portfolio A: “Ideally, the considered set should be as small
and as complementary as possible and should include state-
of-the art optimizers”. Since it is difficult to select the best one
from too many candidates, the portfolio size should be as small
as possible. The performance of the VBS of A should also be
as good as possible. However, the influence of the VBS and the
size of portfolios on the performance of algorithm selection
systems is unclear for black-box optimization. It is also unclear
which algorithm portfolio should be used in practice.
Outline

Section [[I] provides some preliminaries. Section [ITI] reviews
previous studies. Section explains our approaches for
benchmarking algorithm selection systems. Section de-
scribes our experimental setting. Section shows analysis
results. Section concludes this paper.
Supplementary file

This paper refers to a figure and a table in the supplementary
file as Figure S.x and Table S.x, respectively.
Code availability

The source code used in this study is available at https:
//github.com/ryojitanabe/as_bbo.

II. PRELIMINARIES

First, Section describes the BBOB function set
[17] and the COCO data archive (https://numbbo.github.io/
data-archive). Then, Section [[I-B] explains the following three
performance measures for black-box optimization: the ex-
pected runtime (ERT) [20], the relative ERT (relERT) [11]],
[14], and the successful performance 1 (SP1) [20]]. Section
II-B| also explains other performance measures.

A. The BBOB function set and the COCO data archive

The (noiseless) BBOB function set [17]] consists of the 24
parameterized functions, which are grouped into the follow-
ing five categories: separable functions (f1, ..., f5), functions
with low or moderate conditioning (fg, ..., f9), functions with
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high conditioning and unimodal (fig, ..., f14), multimodal
functions with adequate global structure (fis,..., f19), and
multimodal functions with weak global structure (faq, ..., fo4)-
Each BBOB function represents one or more difficulties in
real-world black-box optimization. Each BBOB function is
instantiated with different parameters.

The BBOB workshop is held at the GECCO conference
almost every year. COCO [27] is a platform for benchmarking
black-box optimizers. The COCO data archive provides the
benchmarking results of almost all optimizers that participated
in the BBOB workshop. Currently, except for incomplete re-
sults, the benchmarking results of 209 optimizers are available
at the COCO data archive. The number of instances for each
BBOB function is fixed to 15 for all years. However, as
summarized in [14], only the first 5 out of 15 instances are
commonly used in all years. For this reason, most previous
studies on algorithm selection used only the first five instances
whose instance IDs are 1, 2, 3, 4, and 5.

B. Performance measures for black-box optimization

1) ERT: In the context of black-box numerical optimiza-
tion, the runtime is generally measured in terms of the number
of function evaluations rather than the computation time.
The ERT [20] measures the expected number of function
evaluations needed to reach a target value fiarger = f(2*)+¢,
where «* is the optimal solution, and € is a precision level.
See Section |V| for the € value used in this study. Note that
most black-box optimizers (e.g., DE [28]] and CMA-ES [29])
are invariant in terms of order-preserving transformations of
the objective function value [30].

Suppose that an independent run of an optimizer a is
performed for each of instances of a function f. In this case,
the ERT value of a is calculated as follows:
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where FE; is the number of all function evaluations conducted
in the ¢-th function instance until a terminates. Here, a
immediately terminates when a reaches fiarges. V™™ in (@ is
the number of runs, where N™" also represents the number
of function instances in this study. N°"°¢ is the number of
successful runs. We say that a run of a on the i-th function
instance is successful if a reaches fiarget.

2) relERT: The relERT [11], [14] is a normalized ERT
using the ERT value of the best optimizer (bestERT) in A
as follows: relERT=ERT/bestERT. Here, the best optimizer
is determined based on its ERT value for all instances of the
corresponding function. The ERT values significantly differ
depending on the difficulty of a function. The relERT aims to
evaluate the performance of optimizers on the same scale.

The ERT value in and the relERT value are not com-
putable when all runs of a are unsuccessful (i.e., N°"°¢ = 0).
The previous studies [[I1]]-[14]] imputed the missing relERT
value using the penalized average runtime (PAR10) score
[3]. Since PAR10 was used in many previous studies for
algorithm selection (e.g., [3[, [8l1, [11], [13], [14], [31]),
we adopted PARI10. Similarly, we replaced the missing rel-
ERT value with ten times the worst relERT (relERT™°™")

value of all optimizers in A for each n. Precisely, for each
dimension 7, we defined the relERTY°™' value based on
the relERT values of all algorithms in A on all the 24
BBOB functions (fi,..., fas) as follows: relERTVOs*
MaXae A, fe{fy,.... f20} LTIERT (a, f)}, where relERT(a, f) is
the relERT value of a on the n-dimensional f.

3) SPI: Similar to the ERT, the SP1 [20] estimates the
expected number of function evaluations to reach fiarget. The
SP1 assumes that the expected number of function evaluations
for unsuccessful runs equals that for successful runs [32].
Unlike the ERT, the SP1 is not sensitive to the maximum
number of function evaluations. The SP1 is defined as follows:
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where FE*® is the average number of function evaluations for
successful runs. In @]) p°U°¢ is the success probability, which
is the number of successful runs N3"“ divided by the number
of runs NTun (i.e., psucc — Nsucc/Nrun).

4) Notes on ERT, relERT, and SP1: Here, we describe
some notes on ERT, relERT, and SP1. The three measures
require fiarget, Which can depend on f(x*). Since f(x*) is
unknown in most real-world problems, the three measures
are not always available. Each optimizer has one or more
stopping conditions, e.g., the maximum budget of evaluations
b™#*. Since the ERT in takes into account the number
of function evaluations used in an unsuccessful run, the ERT
is sensitive to a stopping condition of an optimizer. Section
3.3.2 in [13]] shows how sensitive the ERT is to b™?* using
an intuitive example. The same is true for the relERT. An
optimizer can possibly reach fiarget When setting 6™ to a
sufficiently large number, and vice versa. In other words, the
results of an optimizer depend on b™2*. Thus, any performance
measure (including the SP1) is influenced by b™#* even when
considering the same optimizer.

5) Other performance measures: The ERT, relERT, and
SP1 measures are for the fixed-target scenario, which is
representative in the BBOB community. The performance for
the fixed-budget scenario is generally evaluated by the quality
of the best-so-far solution [33]]. The study [34]] proposed a
hybrid measure of the ERT and the error value.

Some previous studies (e.g., [35], [36]]) proposed anytime
performance measures. Roughly speaking, this kind of mea-
sure commonly aims to evaluate the anytime performance of
an optimizer by calculating the “volume” of its performance
profile. For example, the IOHprofiler platform [37] provides
an anytime performance measure based on the area under the
curve of the empirical cumulative distribution function.

III. LITERATURE REVIEW

This section reviews previous studies on algorithm selection
for black-box optimization problems as well as other problems.
First, Section describes features for algorithm selection
only for black-box numerical optimization. Then, Section [II-B
introduces methods for constructing algorithm portfolios. Sec-
tion describes selection methods. Section explains
cross-validation methods. Section describes pre-solvers.
Finally, Section describes related work in other domains.



A. Features

Feature-based algorithm selection systems require a set of
domain-dependent features, which represent the characteristics
of a given problem. It is challenging to design helpful features
for black-box optimization. As discussed in [|12]], unlike other
problems (e.g., SAT), only scarce information about a problem
is available from its definition. For this reason, features need
to be computed based on a set of s solutions X = {x;}7_,
and their objective values f(X'), where the s solutions can
be generated by any method, e.g., random sampling and
local search. However, the evaluation of solutions by the
objective function f is generally computationally expensive.
Thus, features should be computed based on a small-size X.

The ELA approach [18] is generally used to compute
features for black-box optimization. ELA computes a set of
numerical features from X and f(X). Most previous studies
used the R-package flacco [38] to compute ELA features.
Table shows 17 feature classes currently provided by
flacco. Each feature class consists of more than one feature.
In total, 342 features are available in £1acco. However, three
feature classes (ela_conv, ela_curv, and ela_local)
have not been used in most recent studies since they need
additional function evaluations apart from X'. Since the five
cell mapping feature classes (e.g., cm_angle) are computable
only for n < 5, they have not been generally used.

Each feature class characterizes the properties of a problem
in a different way. For example, the ela_meta feature class
builds multiple regression models based on X and f(X). The
model-fitting results are the ela_meta features, e.g., how
well the regression models can fit the given data set. The disp
features are computed by the dispersion metric [[39]], which was
designed for quantifying the degree of the global structure.

B. Construction methods of algorithm portfolios

Since no optimizer can perform the best on all function
instances, it is necessary to select the most promising op-
timizer from a portfolio on a given instance. We explain
three methods [6], [[11]], [40] for constructing a portfolio of &
algorithms A = {aq, ..., a; } for algorithm selection. We do not
describe methods for construing parallel algorithm portfolio
approaches (e.g., [41]). The three construction methods aim
to construct a portfolio whose optimizer can solve at least one
BBOB function. Even when a portfolio includes “a correct
answer”’, algorithm selection systems cannot know it due to the
exclusive property of the cross-validation methods (see Section
[II-D). In real-world applications, an algorithm selection sys-
tem selects the most promising algorithm from a portfolio on
a given problem. HYDRA [42], [43] is an efficient automatic
configurator for algorithm portfolios for the combinatorial
domain. Although HYDRA requires a parameterized system,
how to construct it in the continuous domain is unclear. An
extension of HYDRA to the continuous domain is also beyond
the scope of this paper. Section investigates the influence
of k on the performance of algorithm selection systems later.

In [11f], first, a set of candidates R are selected so that
each algorithm in R performs the best on at least one BBOB
function in terms of the ERT. Then, k& algorithms in A are

further selected from R so that A minimizes the worst-case
performance of the VBS on the 24 BBOB functions. Here,
the study [11] did not explain how to get A from R. A
method proposed in [40] first constructs R as in [11]]. Then,
the method iteratively selects an algorithm from R based
on a voting strategy. Here, the method uses the ERT as a
performance measure. A method proposed in [6] constructs a
portfolio on the BBOB functions with n € {2,3,5,10}. First,
all candidates are ranked based on their ERT values. Then, four
candidate sets Rs, R3, Rs5, and R1g are constructed for 2, 3,
5, and 10 dimensions, respectively. R,, contains algorithms
ranked within the top 3 of at least one n-dimensional BBOB
function. Finally, the method selects algorithms that commonly
belong to the four sets, i.e., A = ﬂne{2,3,5,10} R.

C. Algorithm selection methods

An algorithm selection method aims to find a mapping
from features to k algorithms in a portfolio A = {ay, ..., ax}
by machine learning. As reviewed in [26], various algorithm
selection methods have been proposed in the field of artificial
intelligence. In [26]], Lindauer et al. proposed AUTOFOLIO,
which is a highly-parameterized algorithm selection frame-
work for combinatorial optimization problems, including SAT
and ASP. They generalized existing algorithm selection meth-
ods for AUTOFOLIO. Inspired by [26], this paper considers
the following five general algorithm selection methods:

1) Classification: The classification-based method was
used in LLAMA [44]] and previous studies for black-box
optimization [[11]], [14]]. The classification-based method builds
a classification model to directly predict the best algorithm
from the k algorithms in A based on a given feature set,
where the best algorithm is determined for each function based
on a given performance measure. As pointed out in [[14]], the
classification-based method does not consider the performance
rankings of the other k£ — 1 algorithms.

2) Regression: The regression-based method was used in
SATzZILLA’09 [7]] and recent studies for black-box optimiza-
tion [13]-[15]. First, the regression-based method constructs
k regression models for k algorithms in A, respectively. Then,
the regression-based method selects the best one from k&
algorithms based on their predicted performance.

3) Pairwise classification: The pairwise classification-
based method was used in SATZILLA’11 [43]. The study
[26] reported the promising performance of the pairwise
classification-based method for combinatorial optimization. A
similar selection method was also adopted by a study for
black-box optimization [[16]. In the training phase, the pairwise
classification-based method builds a classification model for
each pair of k algorithms in .A. In the testing phase, the method
evaluates all (]2“) models. Then, the method selects the best one
out of k algorithms in terms of the number of votes. In this
study, ties are broken randomly.

4) Pairwise regression: Although the pairwise regression-
based method was originally proposed for the TSP [§], it has
been used for black-box optimization [[14f]. First, the method
constructs a regression model for each pair of k algorithms
in A, where the model predicts the performance difference



between two algorithms for each pair. Then, the method selects
the best one from k algorithms based on the sum of predicted
performance differences.

5) Clustering: The clustering-based method was used in
ISAC [45]. In the training phase, for each feature, feature val-
ues of function instances are normalized in the range [—1,1].
Then, the g-means [46] clustering of function instances is
performed based on their normalized feature values, where
g-means automatically determines an appropriate number of
clusters. In the testing phase, an unseen function instance
is assigned to the nearest cluster based on its normalized
feature values. Finally, the best algorithm in the nearest
cluster is selected. This study determines the best algorithm
in each cluster according to the average ranking based on a
performance measure.

D. Cross-validation methods

Algorithm selection will be ultimately performed on a real-
world problem. Thus, the performance of algorithm selection
systems should be evaluated in an unbiased manner. For
this purpose, most previous studies (e.g., [L1]], [13]-[16])
used cross-validation methods for benchmarking algorithm
selection systems for black-box optimization.

Below, we explain the following four cross-validation
methods used in the literature: leave-one-instance-out cross-
validation (LOIO-CV) [I11], [15], leave-one-problem-out
cross-validation (LOPO-CV) [11], [13]], leave-one-problem-
out-across-dimensions cross-validation (LOPOAD-CV) [14],
and 10-fold randomized-instance cross-validation (RI-CV).

As explained in Section this study considers only the
first five instances for each BBOB function, i.e., |Z;| = 5 for f;
(t € {1,...,24}). As in [14], this paper sets n to 2, 3, 5, and 10.
Let Z%" be a set of function instances used in the training
phase. Let also Z'*s' be a set of function instances used in
the testing phase. Note that setting described here depends
on previous benchmarking studies on the BBOB function
set. Note also that the LOIO-CV, the LOPO-CV, and the
LOPOAD-CV cannot always be applied to any function set.
For example, the LOIO-CV is inapplicable when the number
of instances for each function is only one.

1) LOIO-CV: A 5-fold cross-validation is performed on the
24 BBOB functions for each dimension n. In the ¢-th fold,
't is the set of the 24 i-th instances Z;, where |[Z'*'| =
24 x 1 = 24. Thus, %" is 7, U- - -UZ5 \ Z;, where |Zt71%] =
24 x 4 = 96. Since function instances used in the training and
testing phases are relatively similar, the LOIO-CV is likely
easier than the LOPO-CV explained later.

For the LOIO-CYV, the calculation of a performance measure
value needs special care to avoid “data leakage”. Let us
consider the calculation of the ERT value on a function f
in the i-th fold, where i € {1,...,5}. Generally, test datasets
should not be available in the training phase. For this reason,
the ERT value in the training phase should be calculated based
only on the remaining four instances ({1,...,5} \ 7).

2) LOPO-CV: A 24-fold cross-validation is performed on
the 24 BBOB functions for each dimension n. In the i-th fold,
Ztst is the set of the five instances of the i-th function f;,

where |Z%*| =1 x 5 = 5. Thus, Z%# is Z; U - - - UZgy \ Z;,
where [Zt#1"| = 23 x 5 = 115. Since the 24 BBOB functions
have different properties, instances used in the training and
testing phases can be quite dissimilar for the LOPO-CV. For
this reason, it is expected that algorithm selection for the
LOPO-CV is challenging.

3) LOPOAD-CV: While the LOPO-CV is performed for
each n, the LOPOAD-CYV is performed across all four dimen-
sions (n € {2, 3,5,10}). In the LOPOAD-CYV, a 96-fold cross-
validation is conducted on the 24 BBOB functions with all 4
dimensions, where 24 x 4 = 96. Let Z;; be the set of the five
instances of the j-th function f; with the /-th dimension. In the
(4 x 1)-th fold, %" is Z; ;, where |Z°***| = 1 x 5 = 5. Thus,
Itrain is 1-171 U-- 'UIQ474\IJ‘,Z, where |Itrain| =95 x5 = 475.

Unlike the LOPO-CV and the LOIO-CV, the LOPOAD-CV
evaluates the performance of algorithm selection systems on
multiple dimensions. If both the performance of algorithms
in A and features have good scalability with respect to
dimension, the LOPOAD-CV may be easier than the LOPO-
CV. This is because both Zts* and Z*"#™ include instances of
the same function.

4) RI-CV: A 10-fold random cross-validation is performed
on the 24 BBOB functions for each dimension n. The 120
function instances (24 x 5 = 120) are randomly grouped into
10 subsets of size 12 as follows: Zi, ..., Z1¢. In the i-th fold,
't is the i-th subset Z;, where |Z'*5*| = 12 x 1 = 12. Thus,
Ttrain s T, U- - -UZy9\Z;, where | I = 12x9 = 108. A 10-
fold random cross-validation method has been generally used
for algorithm selection in the combinatorial domain [31]. In
contrast, only the study [12]] used the 10-fold random cross-
validation method for black-box optimization, where it did
not describe details of the cross-validation method. In the best
case, function instances used in the training and testing phases
can be similar as in the LOIO-CV.

E. Pre-solvers

The concept of pre-solving was first adopted in SATZILLA
[7l, which is a representative algorithm selection system for
SAT. Pre-solving was also incorporated into some modern
algorithm selection systems for combinatorial optimization,
e.g., CLASPFOLIO 2 [9] and 3S [25].

Before starting the algorithm selection process, SATZILLA
runs two pre-defined pre-solvers on a given SAT instance
within a short amount of time. Only when the pre-solvers
cannot solve the instance, SATZILLA performs algorithm se-
lection. If the pre-solvers can quickly solve easy instances, an
algorithm selection system can focus only on hard instances.
For some easy instances, the computation time of the algorithm
selection process (including feature computation) dominates
the runtime of a selected algorithm. The use of the pre-solvers
can avoid such unnecessary computation time for algorithm
selection on easy instances.

F. Related work in other problem domains

Below, we explain difficulties in algorithm selection for
black-box optimization. A review of all previous studies for al-
gorithm selection is beyond the scope of this paper. Interested
readers can refer to exhaustive survey papers [4]-[6].



It is difficult to compare the performance of algorithm
selection systems on across different problem domains (e.g.,
SAT and ASP) in a common platform. A benchmark library
for algorithm selection (ASlib) [31] addresses this issue by
providing scenarios for various problem domains, which are
represented in a standardized format. ASlib was used in the
algorithm selection competitions in 2015 and 2017 [3].

In addition to the performance sensitivity of optimizers and
features (see the beginning of Sections [I| and respec-
tively), the similarity of problem instances in the training and
testing phases may be the main difference between algorithm
selection for black-box numerical optimization and that for
combinatorial optimization. In most scenarios (e.g., for SAT
and the TSP), at least some problem instances in the training
and testing phases were taken from the same distribution of
problem instances even when using heterogeneous instance
distribution. In contrast, as in the LOPO-CV, function in-
stances used in the training and testing phases can be quite
dissimilar for algorithm selection for black-box numerical
optimization. We discuss the rational reason to adopt the
LOPO-CV in Section later.

IV. OUR APPROACHES

First, Section discussed the importance of considering
the number of function evaluations in the sampling phase.
Then, Section explains that the relERT can overestimate
the performance of algorithm selection systems. Section
presents a local search method for constructing an algorithm
portfolio of any size k. Finally, Section describes pre-
solvers for black-box optimization.

A. Necessity of considering the number of function evaluations
in the sampling phase

As explained in Section the sample of s solutions
X = {x;};_; and their objective values f(X') are needed to
compute landscape features. Thus, the sampling phase requires
s function evaluations. As shown in Table the previous
studies [[11]], [13]]-[16] set s to different numbers. For example,
the two previous studies [[11] and [14] set s to 500 x n and
50 x n, respectively. The start of the run of a selected optimizer
should be delayed by s function evaluations used in the
sampling phase. When s is too large, the overall performance
of an algorithm selection system can deteriorate. For this
reason, s is an important factor for benchmarking of algorithm
selection systems. However, except for [[14f], most previous
studies did not include the number of s evaluations in the
total number of function evaluations. Note that most previous
studies for algorithm selection in the combinatorial domain
(e.g., [7], [9]) included the computation time of features in
the total computation time of algorithm selection.

On the one hand, as discussed in [14], the sample X
can be reused for the initial population of a population-
based evolutionary algorithm (e.g., DE [28]). The number
of s function evaluations may be negligibly small when a
selected optimizer requires a much large number of function
evaluations, e.g., on hard instances. On the other hand, X
cannot be reused when an algorithm selection system selects

a non-evolutionary algorithm or a model-based evolutionary
algorithm (e.g., CMA-ES [29]). The number of s function
evaluations is not negligible when a selected optimizer requires
a small number of function evaluations, e.g., on easy instances.
In any case, there is no rational reason to ignore s function
evaluations in the sampling phase. Based on the above discus-
sions, as in [[14], this study includes the number of s function
evaluations in the total number of function evaluations. In this
case, the setting of s influences the overall performance of
algorithm selection systems.

B. Undesirable property of the relERT

Except for [15]], all the previous studies used the relERT for
evaluating the performance of algorithm selection systems in
the fixed-target scenario. It has been believed that the lower
bound of the relERT value is 1. However, we point out that
the true lower bound of the relERT value is 1/bestERT. There
are three cases where the relERT value is less than 1.

First, it has been assumed that f(x) > fiarges for any x
in the sample X. In addition, none of the previous studies
considered a pre-solver. When the sample X" or a pre-solver
reaches fiaget faster than the best optimizer in a portfolio A,
an algorithm selection system obtains a lower ERT value than
the bestERT value. In this case, it is possible to achieve a
relERT value of less than 1.

Second, it has been assumed that the same optimizer is
selected from A for all the five instances of a function f.
In contrast, it is possible that different optimizers are selected
from A for the five instances, respectively. Note that the best
optimizer mentioned here is determined based on the number
of function evaluations to reach fiarget ON €ach instance. When
an algorithm selection system selects the best optimizer for
each function instance in terms of the number of function
evaluations, it obtains a relERT value of less than 1.

Third, apart from the above two “nice mistakes”, a relERT
value can accidentally be less than 1. Let us consider a
portfolio A of two algorithms a; and as. While the maximum
number of function evaluations in a; is 50, that in ay is 5.
Suppose that a; reached fiarget Within 30 and 20 on the first
two out of the five instances of f respectively, and a; failed
to reach fiarger On the other three instances. Suppose also
that all five runs of as were unsuccessful. In this case, the
ERT value of ay is (30 + 20 4+ 50 x 3)/2 = 100, and that
of a9 is not computable. Note that the missing relERT value
of ay is imputed by the PAR10 score described in Section
Thus, the bestERT value is 100. If an algorithm selection
system selects a; on the first instance and ay on the other four
instances, the ERT value of the system is (30+5x4)/1 = 50.
As a result, the system achieves the relERT value of 0.5
(= 50/100), even though it actually failed to select the best
algorithm. One may incorrectly conclude that the system is
two times faster than a in solving f. Section shows a
practical example later.

The third undesirable case is due to the sensitivity of
the ERT to the maximum number of function evaluations
for an unsuccessful run. When all algorithms in 4 use the
same maximum number of function evaluations, the third case



never occurs. However, it is not realistic to assume such a
termination condition.

Based on the above discussion, this study uses the SPI,
instead of the ERT. As explained in Section the SP1
is robust to the maximum number of function evaluations.
We do not claim that the SP1 is a better measure than the
ERT for any purpose. Instead, we claim that the SP1 is
more appropriate than the ERT for benchmarking algorithm
selection systems. Inspired by the relERT, this study uses the
relative SP1 (relSP1), which is the SP1 value of an algorithm
in A divided by the SP1 value of the best algorithm in .A on
a function. This is the same as the procedure for obtaining the
best ERT described in Section This study also applies
the PAR10 to a missing relSP1 value.

C. Local search for constructing algorithm portfolios

To analyze the influence of the portfolio size on the per-
formance of algorithm selection systems, this study requires
algorithm portfolios of any size k. Although the three con-
struction methods reviewed in Section are available,
they are not appropriate for this purpose. The two methods
proposed in [14], [40] cannot control the size of .A. Unlike
the method proposed in [11], our method aims to optimize
the VBS performance of 4. Note that our method is only for
an analysis of algorithm portfolios. Thus, we do not claim that
our method is more effective than the three existing methods.

Let R be a set of [ optimizers, where [ = 209 in this study.
Let also .4 be a portfolio of k optimizers, where k < [. As
pointed out in [40]], constructing .4 can be defined as a subset
selection problem. The goal of the problem is to select A C R
that minimizes a quality measure m : A X Z — R on a set
of problem instances Z. Fortunately, a general local search
method for the subset selection problem can be applied to this
portfolio construction problem in a straightforward manner.
This study uses a first-improvement local search method [47]],
which was proposed for the hypervolume subset selection
problem. Algorithm shows the local search method. First,
the local search method initializes .A by randomly selecting k
optimizers from R. Then, for each iteration, the local search
method swaps a pair of optimizers a € A and o’ € R\ A. The
swap operation is performed until there is no pair to improve
the following ranking-based quality measure m:

mA) = > > score(A,f), )
ne{2,3,5,10} ie{1,...,24}
¢ X min{rank(a, ifda solves
score(A, f) = ‘IGA{ (@ )} / NG
1 otherwise

where fI' in equation (3) is the n-dimensional i-th BBOB
function. We rank [ optimizers in R based on their SP1 values
for each f. In equation (@), rank(a, f) is a ranking of a
on f in R. In equation @]) c is a coefficient value. We set
cto 1/(1 x 24 x 4) for the 24 BBOB functions with n €
{2,3,5,10}. If no a in A reaches the target value, a penalty
value of 1 is assigned to score(A, f). If m(A) > 1 in equation
(3), it means that no optimizer in A could reach the target
value fiarget for at least one function.

D. Pre-solvers for black-box optimization

It is straightforward to incorporate the concept of pre-
solving into an algorithm selection system for black-box
optimization. In the pre-solving phase, a pre-solver is applied
to a given problem with a small budget of function evaluations
(e.g., 50xn evaluations) before the algorithm selection process
starts. Note that it is possible to use more than one pre-
solvers as in SATZILLA [7]. When the pre-solver reaches the
target value fiarger ON the problem, algorithm selection is not
performed. In this case, the algorithm selection system does
not need to generate the sample X = {x;};_, of size s to
compute features. In other words, s function evaluations can
be saved. We expect that using a pre-solver can improve the
performance of algorithm selection systems on easy instances.

It is desirable that a pre-solver can reach fiarget ON an easy
instance with a small number of function evaluations. This
study uses SLSQP [48] and SMAC [49] as pre-solvers. Since
evolutionary algorithms (e.g., DE and CMA-ES) generally
require a relatively large number of function evaluations
to find a good solution, they are not appropriate as pre-
solvers. In [50]], Hansen showed the excellent performance
of SLSQP on the BBOB functions for a small number of
function evaluations. SMAC is also a representative Bayesian
optimization approach, which performs particularly well for
computationally expensive optimization. Thus, SLSQP and
SMAC are reasonable first choices.

V. EXPERIMENTAL SETUP

This section explains the experimental setup. Unlike pre-
vious studies, we performed 31 independent runs of al-
gorithm selection systems, including pre-solving, sampling,
feature computation, and cross-validation. We conducted all
experiments on a workstation with an Intel(R) 52-Core Xeon
Platinum 8270 (26-Corex2) 2.7GHz and 768GB RAM using
Ubuntu 18.04. As in [14]], we used the 24 noiseless BBOB
functions [[17] with dimensions n € {2,3,5,10}. We con-
ducted our experiment by using the COCO platform [27]. We
also used the benchmarking results of 209 optimizers provided
by the COCO data archive. As in [13]], [14], we set a precision
level € to 1072 for the ERT and SP1 calculations. Note that
the same e value is used for pre-solvers. The study [51]]
showed that the setting of e does not significantly influence
the accuracy of performance predictors.

We used the following nine non-expensive and scal-
able flacco feature classes in Table ela_distr,
ela_level, ela_meta, nbc, disp, ic, basic, 1imo,
and pca. We employed pflacco, which is the Python
interface of £lacco (https://github.com/Reiyan/pflacco). Our
preliminary results showed that feature selection deteriorates
the performance of algorithm selection systems in some cases.
This is consistent with the results reported in [52f]. Except
for the classification-based selection method, wrapper feature
selection approaches require extremely high computational
cost as the portfolio size increases. For these reasons, as in
[T1]-[13], [15], [16], we did not perform feature selection.

As in most previous studies, we used the improved Latin
hypercube sampling [53] to generate the sample X = {x;}7_,
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for feature computation. We employed the 1hs function in
the flacco package. As in [[14], we set s to 50 X n unless
explicitly noted, where the study [[14]] selected this s value
based on the results in [54]. For pre-solvers, we employed the
SciPy implementation of SLSQP and the SMAC3 implemen-
tation [55] of SMAC. We used the default parameter settings,
including the termination criteria for SLSQP. The maximum
number of function evaluations was set to 50 x n, which is
the same as the sampling phase.

We used random forest [[56] for the four supervised learning-
based algorithm selection methods explained in Section [[II-C|
The random forest is a representative ensemble machine
learning method that uses multiple decision trees. Each tree
is fitted to a subset of randomly selected features. Then, the
prediction is performed based on the number of votes by the
trees. Typical hyperparameters in the random forest include the
number of trees (n_estimators) and the feature subset size
(max_features). As in ISAC [45], we used g-means [46]
for the clustering-based selection method. We employed the
scikit-learn implementation of random forest and the pyclus-
tering implementation of g-means with the default parameters,
e.g., n_estimators= 100 and max_features=auto.

Table [S.9] shows 14 algorithm portfolios used in Section
The first five portfolios (A, ..., Amx) were used in the
previous studies [11]], [[13[]-[[16]], respectively. We named each
portfolio by taking the initial letters of the authors of the
corresponding paper. For each of the nine portfolios (Ajs2,
..., Ais1s), we performed 31 runs of the local search method
explained in Section Then, the best portfolio is selected
in terms of m in equation (3). We confirmed that all the nine
portfolios achieve m values less than 1.

Sections and use the performance score [57] to
rank multiple algorithm selection systems. For each dimension
n, let us consider a comparison of [ algorithm selection
systems S1, ..., S; based on their 31 mean relSP1 values from
31 independent runs. For ¢ € {1,...,l} and j € {1,...,i}\ {i},
if §; performs significantly better than S; using the Wilcoxon
rank-sum test with p < 0.05, then §;; = 1; otherwise,
d;; = 0. The score P(S;) is defined as follows: P(S;) =
>jeq1,.. (i} 0i,j- The score P(S;) is the number of systems
that outperform S; for each n. A small P(S;) means that S;
has a better performance among the [ systems.

In addition, we calculated the average rankings of algo-
rithm selection systems by the Friedman test [58]. We used
the CONTROLTEST package (https://sci2s.ugr.es/sicidm) to
calculate the rankings. However, the rankings by the Friedman
test were generally consistent with those by the performance
score. For this reason, this paper shows only the latter results.

VI. RESULTS

This section analyzes algorithm selection systems to answer
the six research questions RQ1-RQ6 discussed in Section [I]
First, Section shows a comparison of the ERT and the
SP1 (RQ1). Then, Section examines the influence of
randomness on results of algorithm selection, including pre-
solving, sampling, feature computation, and cross-validation
(RQ2). Section investigates the effectiveness of SLSQP

TABLE I: Comparison of HCMA, HMLSL, and the regression-
based algorithm selection system (AS) using Ayt on the 5-
dimensional f24 for the LOPO-CV. If the corresponding run was
successful, the number in parentheses is 1. Otherwise, it is 0.

HCMA HMLSL AS #1 AS #2
FEsoni; 3097698 (1) 100021 (0) 3097948 (1) 3097948 (1)
FEsoni, 2254446 (1) 100002 (0) 2254696 (1) 100252 (0)
FEsoniz 5001954 (0) 100206 (0) 100456 (0) 100 456 (0)
FEsonis 5001015(0) 100008 (0) 100258 (0) 100 258 (0)
FEsonis 5001872 (0) 100006 (0) 100256 (0) 100 256 (0)
ERT 10178 492.50 Na 2826807 3499170
SP1 6690 180 Na 6 690 805 15489 740
relERT 1 Na 0.28 0.34
relSP1 1 Na 1.00009 2.32

and SMAC as a pre-solver (RQ3). Based on results shown
in Section [VI-C] Sections [VI-D} [VI-E} and [VI-H use SLSQP
as a pre-solver. Section shows a comparison of the five
algorithm selection methods (RQ4). Sectionanalyzes the
difficulty of outperforming the SBS (RQS). Finally, Section
VI-F|examines the performance of algorithm selection systems
with the 14 algorithm portfolios shown in Table (RQ6).

The influence of cross-validation methods on the results of
algorithm selection systems is unclear. For this reason, we
here investigate it by using the four cross-validation methods.
We essentially aim to analyze the influence of the similarity
of function instances used in the training and testing phases.
However, it would be misleading to make conclusions based
on the results achieved by multiple cross-validation methods.
Thus, we answer each question based only on the representa-
tive results for the LOPO-CV, which is the most practical (see
the discussion in Section [VI-E).

A. Comparison of the ERT and the SPI (RQI)

Table [I| shows a comparison of HCMA, HMLSL, and the
regression-based algorithm selection system using Ay on the
5-dimensional fy4 for the LOPO-CV. Note that only this
section uses the relERT, instead of the relSP1. Table E] reports
the number of function evaluations (FEs) used in the search
on each of the five instances. Table [I| also reports the ERT,
SP1, relERT, and relSP1 values. HCMA performs the best on
f24 with n = 5. All five runs of HMLSL are unsuccessful on
foq with n. = 5. Table [I| shows results of the best run (AS
#1) and the second best run (AS #2) out of the 31 runs of the
system in terms the ERT (not the SP1). For AS #1 and AS
#2, the number of function evaluations includes 50 x 5 = 250
function evaluations in the sampling phase.

As shown in Table[[} AS #1 selected HCMA on the first two
instances and HMLSL on the other instances. In contrast, AS
#2 selected HCMA on the first instance and HMLSL on the
other instances. Thus, both AS #1 and AS #2 failed to select
HCMA on all five instances. Nevertheless, AS #1 and AS #2
perform significantly better than HCMA in terms of the ERT.
AS #1 and AS #2 also achieve relERT values of less than
1. As seen from Table [[j the maximum number of function
evaluations of HCMA is approximately 50 times larger than
that of HMLSL. For this reason, when HMLSL is selected for
unsuccessful runs, a better ERT value can be obtained. This
is exactly the third case explained in Section [[V-B]
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We observed the undesirable ERT (and relERT) results due
to the third case only on fay, where no optimizer in Ay can
solve all the five instances of fo4. However, as demonstrated
here, the ERT and the relERT can possibly overestimate the
performance of algorithm selection systems. In contrast, as
shown in Table [} the SP1 and the relSP1 do not overestimate
the performance of AS #1 and AS #2. AS #1 performs quite
slightly worse than HCMA in terms of the SP1 and the relSP1.
The relSP1 of AS #2 is 2.32 due to the unsuccessful run on
the second instance.

Answers to RQ1 We suggest using the SP1 and the relSP1
for benchmarking algorithm selection systems, instead of the
ERT and the relERT. It should be highly noted that the above-
discussed issue of the ERT never occurs for benchmarking a
single optimizer and multiple optimizers with exactly the same
termination conditions.

B. Influence of randomness (RQ2)

The previous studies [11]-[14] discussed the performance
of algorithm selection systems based on the mean of the
performance measure values (e.g., the relERT value) on the 24
BBOB functions for a single run. In contrast, Fig. |l shows the
distributions of 31 “mean relSP1” values, which were obtained
by 31 runs of the pairwise classification-based system with
Ay for the four cross-validation methods. Figs. [S.4HS.§] show
results of the five systems with the five portfolios, respectively.
We do not explain the results in Figs. here, but they
are almost consistent with Fig. |1} Figs. [S.94S.13| also show
the non-log scale versions of Figs. [S.4HS.8] respectively.

As shown in Fig. (1] the distribution of 31 “mean relSP1”
values depends on the cross-validation method. While the
dispersion in the distribution of the “mean relSP1” values
is relatively small for the LOIO-CV (except for the results
on n = 3), that is relatively large for the LOPO-CV, the
LOPOAD-CYV, and the RI-CV (except for the results on n =
5). For example, the minimum “mean relSP1” value on n = 10
for the LOPO-CV is 7.10, but the maximum one is 542.62.
Thus, the best-case performance of the algorithm selection
system is approximately 76 times better than the worst-case
one. Figs. S.17| show the distribution of “relSP1” (not
“mean relSP1”) values on the 24 BBOB functions for the
four cross-validation methods, respectively. Figs. [S.14]
indicate that large variations in relSP1 values are due to
unsuccessful selection on multimodal functions.

Note that we cannot generalize our observation in Fig. [I]

for any portfolio. For example, as seen from Fig. c), when
using Apmtp, the dispersion in the distribution of the “mean
relSP1” values is relatively large for the LOIO-CV. Thus, our
observations in Figs. [I] and [S.7(c) are inconsistent with each
other. However, we can say that the influence of randomness
is not negligible in any case.
Answers to RQ2 We demonstrated that randomness influ-
ences results of algorithm selection systems in most cases.
This observation is consistent with the results for combinato-
rial optimization investigated in [3]]. Because the best-case and
worst-case results can be significantly different, we suggest
performing multiple runs of algorithm selection systems.
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Fig. 1: Distributions of 31 mean relSP1 values of the pairwise
classification-based algorithm selection system with Ayg.

C. Effectiveness of a pre-solver (RQ3)

Table [l shows results of the pairwise classification-based
system with and without a pre-solver. In Table [I[I} AS (50 x n)
and AS (100 x n) are the systems with the sample size
50 x n and 100 x n, respectively. Recall that the default
sample size is 50 x n. SLSQP-AS and SMAC-AS are the
system using SLSQP and SMAC as pre-solvers, respectively.
Tables [[[(a) and [ll{b) show the median of 31 “mean relSP1”
values when using Ay, and Ay, as algorithm portfolios,
respectively. Table [lI| does not show the results for the RI-
CV, but they are similar to the results for the LOIO-CV.
Tables [S.10HS.14|show results of the five systems with the five
portfolios (A, ..., Amk), respectively. The symbols + and
— indicate that a given system performs significantly better
(+) and significantly worse (—) than AS (50 x n) according
to the Wilcoxon rank-sum test with p < 0.05. Apart from the
comparison with AS (50 x n), results that are better than those
of the SBS are highlighted in dark gray. The comparison with
the SBS is discussed later in Section

As seen from Table SLSQP-AS performs significantly
better than AS (50 x n) for the three cross-validation methods
in most cases. Tables also show that SLSQP-AS
does not perform significantly worse than AS (50 x n) in
this study. These results suggest that the performance of
algorithm selection systems can be significantly improved by
using SLSQP as a pre-solver.

Fig. 2] shows a comparison of AS (50 x n) and SLSQP-
AS on the 24 BBOB functions with n = 5. Fig. 2| shows
the results of a single run with a median “mean relSP1”
value among 31 runs. Fig. [S.I§| also shows the distribution
of the number of function evaluations used by SLSQP in
the pre-solving phase. Recall that the maximum number of
function evaluations in the pre-solving phase is 50 x n. As
shown in Fig. 2l SLSQP-AS obtains much smaller values of
the relSP1 than AS (50 X n) on f; (the Sphere function),
f5 (the Linear Slope function), and f14 (the different powers
function). These results demonstrate that the use of SLSQP is
highly effective on some unimodal functions. In other words,
s function evaluations can be saved by using SLSQP as the
pre-solver. As noted in [50], the poor performance of SLSQP
on fg (the Attractive Sector function) is mainly due to a
small number of function evaluations. In contrast, SLSQP does
not reach the target value within 50 x n function evaluations
on the 12 multimodal functions f3, f1, f15, ---, f24, €xcept for
some instances of fo; (the Gallagher’s Gaussian 101-me Peaks
function). Since the initial 50 x n function evaluations in the



TABLE II: Results of the pairwise classification-based algorithm selection system with and without the pre-solvers.

(a) LOIO-CV (Axkt)

(b) LOPO-CV (Awy)

(¢) LOPOAD-CV (Ay;)

System n=2n=3 n=>5 n=10 System n=2 n=3 n=5 n=10 System n=2 n=3 n=5n=10
AS (50 x n) 5.94 [SHBE 5.01 AS (50 x n) 1575 3337.17 14683 36362  AS (50 x m) 976 13142 542
AS (100 X n) 8.75— 11.33— 7.88— 859—  AS (100 x n) 16.66 334090 149.85— 36678  AS (100 x n) 11.22— 124.18 8.01— 8.60—
SLSQP-AS SLSQP-AS  11.58+ 3334.35 144.06+ 36035  SLSQP-AS  7.364+ 128.10
SMAC-AS  6.18 707— 860—  SMAC-AS 1559 333837 148.80— 366.99— SMAC-AS  9.68  115.13 7.54— 8.64—
SBS 581 982 449 676 SBS 581 982 449 6.76 SBS 581 982 449 676
(d) LOIO-CV (Abmtp) (e) LOPO-CV (Abmtp) (f) LOPOAD-CV (Abmtp)
System n=2n=3 n=5 n=10 System n=2 n=3 n=>5 n=10 System n=2 n=3 n=5n=10
AS (50 X n) 36.15 AS (50 x n) 1230  947.32 109.69 323.98  AS (50 x n) 12.93
AS (100 x 1) AS (100 x ) 1423— 944.64 10629 324.18  AS (100 X n) 14.82—
SLSQP-AS SLSQP-AS 743.19 103.99 SLSQP-AS
SMAC-AS 36.83 SMAC-AS 71673 111.16 32562  SMAC-AS
SBS 1153 3592  102.10 31532  SBS 1153 3592 102.10 31532  SBS 1153 3592 102.10 31532
—~30 e 1 o 1 s < 50 x n, which is the general setting. An in-depth analysis
x 951 " v § v 1‘; of s is another future work.
A A .
3 hd Let ) be a set of all solutions found so far by a pre-
220 <« 4 4 16
215 -5 iy solver. As in [52], [59], it is possible to compute features
5 6 18 - S
= , "ol o based on the union of the sample X and ). A similar idea
70 L ) was also discussed in [I3]]. Table [S.16] shows a comparison
=4 a .
g 0 el 9 w2 of two SLSQP-AS variants that compute features based on X’
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Fig. 2: Distribution of 31 relSP1 values of the pairwise
classification-based algorithm selection system with A4y on
the 24 BBOB functions with n = 5 for the LOIO-CV.

pre-solving phase are wasted in this case, SLSQP-AS performs
slightly worse than AS (50 x n) in terms of the relSPI.
However, any optimizer requires a large number of function
evaluations for hard multimodal functions to reach the target
value. For this reason, as shown in Fig. E a small number of
additional function evaluations in the pre-solving phase does
not drastically deteriorate the performance of the system.

In contrast to SLSQP-AS, Table @ shows that the perfor-
mance of SMAC-AS is not better than that of AS (50 X n) in
most cases. Our results suggest that SMAC is not appropriate
for a pre-solver. AS (100 xn) performs significantly worse than
AS (50 x n) in most cases, except for the result for n = 2
in Table [S.10(h) and the result for n = 3 in Table [S.12(j).
Based on these results, it would be better to allocate half of
the budget (50 x n function evaluations) to the pre-solving and
sampling phases, instead of allocating all the budget (100 x n
function evaluations) to the sampling phase.

One may be interested in the influence of the sample size s
on the performance of algorithm selection systems. Table [S.13]
further shows the comparison of the five algorithm selection
system with s € {50 x n,25 x 1,100 x 1,200 x n}. Ay
was used in this comparison. As shown in Table [S.I5] s >
100 x n is less effective than s = 50 x n in most cases. In
contrast, s = 25 x n is more effective than s = 50 X n in
some cases. These results suggest that s can possibly be set to

and X U ), respectively. Ay, was used in this comparison.
Although SLSQP-AS with X U Y outperforms SLSQP-AS
with X in some cases, we cannot say that SLSQP-AS with
X U Y generally performs better than SLSQP-AS with X
Table [S.16] also shows that features computed based on X' UY
are less effective than those based on X alone in some cases.
The unpromising results may be due to the extremely biased
distribution of solutions in ). Since SLSQP terminates early
on some functions, the size of X U ) is not constant for all
the 24 BBOB functions. However, as revealed in [22], the
sample size should be the same for all the functions to obtain
effective features. Designing a method for “cleansing” ) is a
future research topic.

Answers to RQ3 Our results demonstrated that the overall
performance of algorithm selection systems can be signifi-
cantly improved by using SLSQP as a pre-solver in most
cases, especially for easy function instances. Although the
pre-solving approach has not been considered for black-box
optimization, it would be better to incorporate a pre-solver into
algorithm selection systems. We believe that our promising
findings here facilitate the use of pre-solvers to researchers in
the field of black-box numerical optimization.

D. Comparison of the five algorithm selection methods (RQ4)

Based on the results reported in Section we use
SLSQP-AS in the rest of this paper. Tables and
show performance score values of the five algorithm selection
systems using Ay, and Apmep, respectively. Tables m andm
do not show the results for the RI-CV, which are similar to
the results for the LOIO-CV. The best and second-best results
are highlighted in @afKigfayl and gray, respectively. Tables
[S-I7HS19] show results when using the 14 portfolios. Tables
S.20HS.22] also show results of the Friedman test.



TABLE III: Results of the five algorithm selection systems. Tables
(a)—(c) show performance score values of the five systems using Ayt
for the three cross-validation methods, respectively.

(a) LOIO-CV (b) LOPO-CV  (c) LOPOAD-CV
n n n
2 3 5 10 2 3 5 10 2 3 5 10
Cla. 1 17070 Cla 3 4 3 3 Cla 2 4 3 3
Reg. 2 3 2 2 Reg 1 fOO0 0] Reg. 0 0 1[0
PCla. fOT0O" 1 1 PCla. [JOO 2 1 2 PCla [0 O O O
PReg. 3 4 3 3 PReg. 3002 1| PReg 4 1 1 1
Clu. 3 2 4 4 Cl 002 3 4 Cl 00 3 4
TABLE IV: Results of the five systems using Abmtp-
n n n
2 3 5 10 2 3 5 10 2 3 5 10
Cla. 0370 2 Cla 02 3 3 C(la 30 0 0
Reg. 3 1 270 Reg 0 00 0 0 Reg 03 3 3
PCla. [fO O 1[0 PCla [0 20 2 PClaf[0 0 2 1
PReg. |0 0 1[0 PReg I 10 W00 PReg. |0 2 1 2
Clu. 4 4 4 4 Clu. 4 2 4 4 Clu. 4 4 4 4
(a) LOIO-CV (b) LOPO-CV (c) LOPOAD-CV

On the one hand, as seen from Table for the LOIO-
CV and the LOPOAD-CV, the pairwise classification-based
system performs the best in most cases when using Ay.
This observation is consistent with the results for combi-
natorial optimization shown in [26]. For the LOIO-CV, the
classification-based system also performs well. For the LOPO-
CV, the regression-based system is the best performer. The
results of the systems with Aqivas and Ajpeq are similar to
those with Ay;.

On the other hand, as seen from Table for the LOIO-
CV, the pairwise regression-based and pairwise classification-
based systems have the same performance when using Apmep.
For the LOPO-CV, the pairwise regression-based system is
competitive with the regression-based system for n € {5,10}.
These results indicate that the best algorithm selection method
depends on algorithm portfolios and cross-validation methods.

Since |Ayg| = 12 and |Appmep| = 4, one may think that the
portfolio size determines the best algorithm selection method.
To investigate the scalability of the five systems with respect
to the portfolio size, Tables [S.I8] and [S.19] show results of
the five systems with Ao, ..., Ai1s, where |A2| = 2, ...,
|Aisis] = 18. As seen from Tables and there
is no clear correlation between the portfolio size and the
performance rankings of the five systems. For example, for
the LOIO-CV, the pairwise regression-based system does not
obtain the best performance on any dimension when using 454
(Table [S.18|(d)). In contrast, for the LOPO-CV, the pairwise
regression-based system performs the best for all dimensions
when using Ajs1o (Table q)). Note that |Apmep| = |Aisa]
and | Ay;| = |Ais12|- These results suggest that components of
portfolios are more important than the portfolio size to deter-
mine the best algorithm selection method. Such an observation
has not been reported even in combinatorial optimization.

One exception is the results of the classification-based sys-
tem for the LOPOAD-CV. Tables show that

the classification-based system is the best performer for some
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Fig. 3: NSBS in which the pairwise classification-based and
regression-based systems outperform the SBS for n = 5.

dimensions when using a small-size portfolio (e.g., Abmtp
and Ajs6) In contrast, the classification-based system cannot
perform the best when using a large-size portfolio (e.g., Axt,
As105 -, As1g). The poor scalability of the classification-
based system is simply because multi-class classification with
many classes is difficult. Here, the classification-based system
uses a random forest model (see Section [[II-C).

Answers to RQ4 Our results showed that the best algo-
rithm selection method mainly depends on the components
of algorithm portfolios. For the challenging LOPO-CV, the
regression-based method is the best performer, followed by the
pairwise regression-based method. This observation suggests
that the regression-based method is likely to perform the best
when the training and testing instances are quite dissimilar as
in the LOPO-CV.

E. On the difficulty of outperforming the SBS (RQ5)

Fig. [3| shows a comparison of the SBS and the pairwise
classification-based and regression-based systems according
to their 31 mean relSP1 values for n = 5. Fig. 3] shows
the number of times (N5BS € [0,31]) in which a system
outperforms the SBS over 31 runs. We use the 14 portfolios.
We measure the difficulty of outperforming the SBS based on
NSBS_If a system with a portfolio .A achieves a small N5BS
value, we say that it is difficult for the system to outperform
the SBS in .A. Figs. [S.T9HS.23] show results of all the five
systems for n € {2,3,5,10}.

As shown in Fig. [3| for the LOIO-CV and the LOPOAD-
CV, the pairwise classification-based system outperforms the
regression-based system for most portfolios in terms of NSBS,
In contrast, for the LOPO-CV and the RI-CV, the regression-
based system achieves a better NSBS value than the pairwise
classification-based system for all the 14 portfolios. These
results based on NSBS are consistent with the results shown
in Section This is the first study to show that a system



outperforms the SBS for the LOIO-CV and the LOPO-CV
for black-box numerical optimization when considering the
number of function evaluations used in the sampling phase.

As seen from Fig. [3] NSBS depends on portfolios and cross-
validation methods. However, we cannot find the correlation
between the portfolio size and NSBS. For the LOIO-CV,
Fig. Bfa) shows that the pairwise classification-based system
performs better than the SBS for all 31 runs when using 11 out
of the 14 portfolios. The results for the LOPOAD-CYV, the RI-
CV, and the LOIO-CV are similar. For the LOPO-CV, when
using 7 out of the 14 portfolios, the pairwise classification-
based system obtains NSBS = 0. Our results show that it
is generally the most difficult to outperform the SBS for the
LOPO-CV. Of course, this is not always true. For example,
Fig. b) shows that NSBS obtained by the regression-based
system for the LOPO-CV is larger than that for the LOPOAD-
CV when using Aqivat, A2, Alss, and Ajge.

Although the above discussions are based on the results for
n = b, Figs. S.19HS.23 show that N5BS depends on the dimen-
sion n. As shown in Figs. [S.194S.23| N5BS for n € {2,3} is
generally smaller than NS5 for n € {5,10}. This is because
the SBS can reach the target value for a relatively small
number of function evaluations on low-dimensional function
instances, even including hard multimodal instances. In this
case, the budget of function evaluations used in the sampling
phase is a critical disadvantage for algorithm selection.

Below, we discuss which cross-validation method should be
used for benchmarking algorithm selection systems. In [|60]],
van Stein et al. analyzed the fitness landscape of a neural
architecture search (NAS) problem with n = 23. Their results
based on the ELA approach revealed that the fitness landscape
of the NAS problem is different from that of any BBOB
function. We do not intend to generalize their conclusion, but
it is practical to assume that problem instances in the testing
and training phases are different. The LOPO-CV is appropriate
for this purpose. In contrast to the LOPO-CYV, it would not be
better to use the LOIO-CV. In the LOIO-CYV, function instances
used in the training and testing phases are always similar. If
a researcher uses the LOIO-CV, she/he can overestimate the
performance of an algorithm selection system that does not
actually work well for any real-world setting. For a similar
reason, we do not suggest using the RI-CV.

Let f®! with n™* be an n"*-dimensional real-world

problem. It is rare that f™°2 instances with n # n'®? are
available in the training phase. It is also practical to use the
same n in the training and testing phases. Our results also
showed that the LOPOAD-CV is less challenging than the
LOPO-CV. It may be better not to use the LOPOAD-CV
without a particular reason.
Answers to RQ5 We demonstrated that the difficulty of
outperforming the SBS depends on algorithm portfolios and
dimensions. For example, even for the LOPO-CV, our results
showed that the regression-based system can often outperform
the SBS when using Apm¢p. Since a result obtained using a
single portfolio can be misleading, it would be better to use
multiple portfolios (e.g., Apmtp and Ayt) for benchmarking
algorithm selection systems. Based on the discussion, we
suggest using the LOPO-CV.

TABLE V: Mean relSP1 values of the VBS and the SBS in the 14
algorithm portfolios.

AP VBS SBS
n=2n=3n=5n=10n=2 n=3 n=5 n=10
Ayt 2.59 1.76 1.62 1.56 | 1571 14.36 6.63 9.53
Adivat 3.19 1.84 1.64 1.60 | 1571 14.36 6.63 9.53
Ajped 2.52 1.83 1.52 1.58 | 1571 14.36 6.63 9.53
Abmtp 7522 56.16 520 5.55 |115.88 174.38 40173.96 46560.09
Amk 1496 5471 6.77 8.63 | 33.06 174.38 40173.96 46560.09
Ajso 9.58 7.04 337 237 | 1571 1436 6.63 9.53
Alsa 284 575 260 171 | 1571 1436 6.63 9.53
Alse 243 4.65 1.54 1.43 | 1571 14.36 6.63 9.53
Alss 2.17 4.6l 1.24 1.67 | 1571 14.36 40205.16 23745.28
Als10 2,12 449 1.20 1.12 | 1571 14.36 40205.16 532.13
Als12 2.10  4.20 1.12 1.09 | 15.71 1436 40205.16 532.13
Als14 2.00 1.21 1.13 1.11 | 1571 1436 40156.68 532.13
Alsie 1.04 1.20 1.03 1.10 | 27.63 134.12 40156.68 532.13
Alsis 1.02 1.18 1.02 1.06 | 27.63 134.12 40156.68 532.13

F. Comparison of algorithm portfolios (RQ6)

Table [V] shows the mean relSP1 values of the VBS and the
SBS in the 14 portfolios. While the other sections calculate
the relSP1 value based on each portfolio, only this section
calculates the relSP1 value based on the union of all the 14
portfolios Ay U -+ - U Aj18. For each function, the best SP1
value for the relSP1 calculation is obtained from the results
of all optimizers in the 14 portfolios (see Table [S.9). For this
reason, the relSP1 value of even the VBS is not 1.

As shown in Table [V] a larger-size portfolio achieves better
VBS performance. While the VBS performance of Ajg is
the best for any n, that in Apme, and Ay is the worst for
n € {2,3} and n € {5, 10}, respectively. For n € {5,10},
HCMA is the SBS in Ay, Adivat, Ajpcd, A2, Ajsa, and
As¢- HCMA is also the best optimizer in the union of the 14
portfolios. Since Apmtp, Amk, Aiss, ... Aisis do not include
HCMA, their SBS performance is poor for n € {5,10}. These
results indicate that optimizing the VBS performance of A
does not always mean optimizing the SBS performance of A.

Table shows performance score values of the pairwise
classification-based system with the 14 portfolios for the three
cross-validation methods. We do not show the results for the
RI-CV, which are similar to the results for the LOIO-CV.
As in Tables and the best and second-best results
are highlighted in |dark gray and gray, respectively. Tables
show the results of the five systems, respectively.
With some exceptions, the results of the other four systems are
relatively similar to the results in Table [VI} Tables [S.28HS5.32]
also show results of the Friedman test.

As seen from Table the effectiveness of portfolios
depends on cross-validation methods. For the LOIO-CV, the
system with the three variants of Ay (Axg, Adivat, and Ajped)
performs the best for any n. For the LOPO-CV, Ajso and Ajgy
are the most effective for the system. For the LOPOAD-CV,
the system performs well when using the three variants of Ayg.
In addition, Ajso and Ay are still effective for n € {5,10}.
These results suggest that a small-size portfolio including
HCMA is effective when function instances in the training
and testing phases are significantly different. Otherwise, the



TABLE VI: Results of the pairwise classification-based algo-
rithm selection systems with the 14 algorithm portfolios for n €
{2,3,5,10}. Tables (a)—(c) show the performance score values for
the three cross-validation methods, respectively.

(a) LOIO-CV (b) LOPO-CV (c) LOPOAD-CV
n n n
2 3 5 10 2 3 5 10 2 3 5 10
Akt 00moor Ay 005 1 3 Ay 0" 17071
Adivat [0 0 0 0| Agivar 1 JOI S 3 Agivar 1 1 6 1
jped L0000 iped BOM 3 1 3 jped 1O 1 FON 1
bmtp 8 [/ 126 bmtp 8 11 5 6 bmtp 10HOH 7 6
mk 6 6 12 6 mk 1 4 9 7 mk 8§ 5 11 7
Ajso 9 5 3 4 A 000y Ao 2 5 pomo
1s4 9 7 410 1s4 0 1[0 1 1s4 3 870 1
156 11 9 5 4 1s6 05 1 1 1s6 oy 710 5
Ajss 4 4 11 6 1s8 5 5 5 8 |Ass 2 1 6 13
Alle 4 4 6 8 A]Slo 10 10 12 7 1s10 2 1 5 8
Als12 6 4 6 8 A2 10 8 12 7 Ajsi2 2 1 5 8
1s14 POON 6 8 A 5 9 6 7 Agia 17 5 8
A6 12 11 6 8  Aiig 10 10 10 7 A1 10 12 7 8
1s18 12 11 6 8  Aigis 9 10 6 7 18 10 11 7 8

variants of Ay are appropriate for algorithm selection systems.
Based on the poor performance of the system with A6 and
Ajs1s, We can say that a portfolio of size less than 16 may be
effective. Although a general rule of thumb “set the portfolio
size as small as possible” has been accepted in the literature,
this is the first study to show the correctness of the rule.

Although the VBS performance of Ay, and Ay is worst,
Table @ shows that the system with Apy¢p and A achieves
better performance score values than that with 4516 and Ajg18
in some cases. Our results also show that the system with
Apmtp and Ak performs the best in a few cases, e.g., the
result for n = 3 in Table [VI(c). Since the VBS performance
of Ajs12 is better than that of Ay except for n = 3, Ao
is likely more effective than Ay.. Unexpectedly, Table [VI| and
Tables show that Ay is more effective than Ag1o
except for a few cases. These results suggest that the VBS
performance of a portfolio .4 does not always represent the
effectiveness of .A. This is due to the difficulty of selecting the
best algorithm, especially for the LOPO-CV. Our observation
can be a useful clue to construct effective algorithm portfolios.
Answers to RQ6 We found that a small-size portfolio (i.e.,
Ao and Ajgy) is generally the most effective for the LOPO-
CV. Our results showed that the effectiveness of an algorithm
portfolio A depends not only on its size |.4| but also on its
components. We also demonstrated that a portfolio 4 with
high VBS performance is not always effective.

VII. CONCLUSION

We have investigated the performance of algorithm selection
systems for black-box numerical optimization. Through a
benchmarking study, we have answered the six research ques-
tions (RQ1-RQ6). Our findings can contribute to the design
of more efficient algorithm selection systems. For example,
we showed that using SLSQP as a pre-solver can significantly
improve the performance of algorithm selection systems. We
found that the regression-based selection method performs
well for the practical LOPO-CV. We also demonstrated that a
small-size portfolio is generally effective for the LOPO-CV.

As in previous studies [11]-[16], we fixed the target value
ftarget and the number of functions and instances. We focused

only on functions with up to n = 10. We also focused only
on the fixed-target scenario. In addition, there is room for
analysis of algorithm selection for another type of black-box
optimization, e.g., constrained black-box optimization. There
is much room for investigation of the algorithm portfolio
construction for real-world black-box numerical optimization.
An investigation of these factors is need in future research. An
analysis of the performance of algorithm selection systems on
real-world applications is also another topic for future work.

We believe that our findings contribute to the standardization
of a benchmarking methodology for black-box optimization.
Our results showed that the best algorithm selection system
depends on various factors. Since hand-tuning is difficult in
practice, automatic configuration of algorithm selection sys-
tems as in AUTOFOLIO [26] is promising. It is also interesting
to compare feature-based offline algorithm selection systems
with online ones (e.g., [61]) and rule-based ones (e.g., [62])
in the same platform.
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TABLE S.7: Experimental settings in the five previous studies [S—. This table also shows configurations of each algorithm selection

system. Since the experimental setting in [S@] is not very clear, we do not describe it here.

Ref. Dimension n S. size Feature classes Algorithm portfolio  Cross-validation
SIT 10 500 ela_distr, ela_level, LOIO-CV,
[S{LL] xXn ela_meta, ela_conv, ela_local .Abmtp LOPO-CV
[SIT14] 2,3,5,10 50 X n Features in flacco Ay LOPOAD-CV
Pairwise reg.

) 1 13 feature classes in flacco, A LOPO-CYV
[sl13) »33 00 xn SOO-based features divat OPO-C
SIT5 5 400 ela_distr, ela_level A LOIO-CV
(SI3] xm ela_meta, nbc, disp, ic jped -
S8 2.5 10. 20 00 000 ela_distr, ela_level airwise Classif A LOIO-CV,
(slie i 100 x n-1 xn ela_meta, nbc, disp, ic Pairwise Classif. mk LOPO-CV

TABLE S.8: 17 feature classes provided by £lacco.

Feature class Name Num. features
ela_conv [S/18] convexity 6
ela_curv [S/1¥] curvature 26
ela_local [S]I8] local search 16
ela_distr [S|I8]  y-distribution 5
ela_level [S/1g] levelset 20
ela_meta [S[TY] meta-model 11
nbc [S nearest better clustering (NBC) 7
disp [ dispersion 18
ic [S information content 7
basic [S38] basic 15
limo [S linear model 14
pca [SJ3E] principal component analysis 10
cm_angle [S[64] cell mapping angle 10
cm_conv [SI64] cell mapping convexity 6
cm_grad [S{64] cell mapping gradient homog. 6
gcm [S generalized cell mapping 75
bt [S{3 barrier tree 90




Algorithm S.1: First-improvement local search method [S/47]
1 Initialize a subset A C R of size k;

2 while there is a pair to improve a quality measure m do
for ' € R\ Ado

for a € A do
AW — AN\ {a} U {a'};
if m(A™") < m(A) then
L A % AneW;

w

S N




TABLE S.9: 14 algorithm portfolios used in this study. Note that
“DTS-CMA-ES18” is “DTS-CMA-ES_005-2pop_v26_1model”.

Portfolio Algorithms
BrentSTEPrr [S65], BrentSTEPqi [S[65], fmincon [S[66], fminunc [S[66],
A [S[T4] MLSL [S[67], HMLSL [S[67], MCS [S[68], IPOP400D [S[69], HCMA [S[70],

CMA-CSA [S[71], SMAC-BBOB [S[72], OQNLP [S66]

Adivat [S[13] Ax \ {BrentSTEPqi [S[65], SMAC-BBOB [S[72]}

Ajpea [S[15] Ay U {BIPOP-CMA-ES [S[73]} \ {SMAC-BBOB [S[72]}

Abmep [S[TT] BFGS [S[74], BIPOP-CMA-ES [S[73], LSfminbnd [S[75], LSstep [S[75]

Ami [S[IE]

BIPOP-CMA-ES [S[73], 1plus2mirser [S[76], LSstep [S[75],
NELDERDOERR [S

AISZ

HCMA [S[70], HMLSL [S[67]

-Als4

HCMA [S[70], HMLSL [S[67], BrentSTEPqi [S[65], HE-ES [S[78]

Aise

HCMA [S[70], HMLSL [S[67], BrentSTEPqi [S[65], CMAES-APOP-Varl [S[79],
DTS-CMA-ES18 [S[80], HE-ES [S[78]

AlsS

BIPOP-saACM-k [S[70], HMLSL [S[67], BrentSTEPqi [S/65],
DTS-CMA-ES [S[81], CMAES-APOP-Var! [S[79], DTS-CMA-ES18 [S[S0],
HE-ES [S[78], SLSQP-11-scipy [S/50]

Alle

MOS [S[82], BIPOP-saACM-k [S[70], HMLSL [S[67], SMAC-BBOB [S[72],
BrentSTEPqi [S[65], DTS-CMA-ES [S[8T], PSA-CMA-ES [S[83],
DTS-CMA-ES18 [S[80], HE-ES [S[78], SLSQP-11-scipy [S/50]

Alsl2

LSstep [S[75], MOS [S[82], BIPOP-saACM-k [S[70], fmincon [S[66],
HMLSL [S, Imm-CMA-ES [S, SMAC-BBOB [S,
BrentSTEPqi [S, PSA-CMA-ES [S, DTS-CMA-ES18 [S,
HE-ES [S[78], SLSQP-11-scipy [S/50]

Als1a

LSstep [S[75], MOS [S/82], BIPOP-saACM-k [S[70], fmincon [S[66],
HMLSL [S[67], OQNLP [S[66], SMAC-BBOB [S[72], BrentSTEPqi [S[65],
DTS-CMA-ES [S/8T], PSA-CMA-ES [S[83].DTS-CMA-ES18 [S[80],
HE-ES [S[78], lg-CMA-ES [S[50], SLSQP-11-scipy [S[50]

Aisie

LSstep [S[75], MCS [S[68], AVGNEWUOA [S[§4], MOS [S[8Z],
BIPOP-saACM-k [S[70], fmincon [S[66], MLSL [S[67], OQNLP [S[66],

P-DCN [S[85], BrentSTEPqi [S[65], DTS-CMA-ES [SBT], PSA-CMA-ES [SE3],
DTS-CMA-ESI18 [S, HE-ES [S, 1g-CMA-ES [S,

SLSQP-11-scipy [S[50]

Alsig

LSstep [S[75], MCS [S[68], AVGNEWUOA [S[84], MOS [S/82],
BIPOP-saACM-k [S[70], fmincon [S[66], Imm-CMA-ES [S[69], MLSL [S/67],
OQNLP [S[66], P-DCN [S[85], BrentSTEPqi [S[65], BrentSTEPrr [S[65],
DTS-CMA-ES [S, PSA-CMA-ES [S, DTS-CMA-ES18 [S,

HE-ES [S, 1g-CMA-ES [S, SLSQP-11-scipy [S
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Fig. S.11: Distribution of 31 mean relSP1 values of the five algorithm selection systems with A;j,eq for the LOIO-CV, the

LOPO-CYV, and the LOIO-CV.
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Fig. S.13: Distribution of 31 mean relSP1 values of the five algorithm selection systems with A, for the LOIO-CV, the
LOPO-CV, and the LOIO-CV.
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Fig. S.14: Distribution of 31 mean relSP1 values of the pairwise classification-based algorithm selection system with Ay for

the LOIO-CV.
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Fig. S.16: Distribution of 31 mean relSP1 values of the pairwise classification-based algorithm selection system with Ay for

the LOPOAD-CV.
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TABLE S.10: Median of 31 “mean relSP1” values of the classification-based algorithm selection system with and without the pre-solvers.
“AS-50n" is the algorithm selection system with the sample size 50 x n. “AS-100n” is the algorithm selection system with the sample size
100 x n. “SLSQP-AS” is the algorithm selection system using SLSQP as a pre-solver. “SMAC-AS” is the algorithm selection system using

SMAC as a pre-solver.
(a) LOIO-CV (Ayt)

(b) LOPO-CV (Aw¢)

(¢) LOPOAD-CV (Ay:)

(d) RI-CV (Axkt)

System n=2mn=3 n=5n=10 System n=2n=3 mn=>5 n=10 System n=2n=3 n =25 mn =10 System n=2n=3 n=5n=10
AS-50n  7.54 10.10 475 AS-50n 3377 6686.64 429.01 36730  AS-50n  12.07 1695.37 288.15 361.93 AS-50n  7.63
AS-100n  10.84— 12.86— 7.79— 8.39— AS-100n  33.53  6683.59  572.14— 370.59 AS-100n  13.92— 3351.36— 430.87— 365.25— AS-100n 10.15— 10.11— 7.34— 8.04—
SLSQP-AS SLSQP-AS 27.21 6682.92  426.114 363.88 SLSQP-AS 9.084 1689.36  285.64  359.00 SLSQP-AS
SMAC-AS 7.86 10.97— 6.84— 8.32— SMAC-AS 3324 5024.38+ 430.95 370.63 SMAC-AS 11.82 129.394 29042 36525 SMAC-AS 7.82 6.42— 8.05—
SBS 5.81 9.82 449  6.76 SBS 5.81 9.82 4.49 6.76 SBS 5.81 9.82 4.49 6.76 SBS 5.81 9.82 449 676
(e) LOIO-CV (Adtvat) (f) LOPO-CV (Adivat) (g) LOPOAD-CV (Adivat) (h) RI-CV (Adivat)
System n=2n=3n=>5mn=10 System n=2n=3 n=5 n=10 System n=2n=3 mn=5 n=10 System n=2n=3 n=5n=10
AS-50n  7.56 4.70 AS-50n 1520 5018.89  183.43  366.29 AS-50n  9.67 80.59 123.04  183.63 AS-50n  7.25
AS-100n  10.29— 10.78— 7.60— 6.99— AS-100n  15.19  5017.77  186.99— 368.81 AS-100n  12.68— 1687.85— 126.19— 185.97 AS-100n 9.98— 10.17— 7.12— 6.83—
SLSQP-AS SLSQP-AS 11.174 5015.52  180.67+ 363.78+ SLSQP-AS 7.18+ 74.54 120.59  181.314 SLSQP-AS
SMAC-AS 7.74 6.57— 6.98— SMAC-AS 1447  3355.69+ 184.96 368.95— SMAC-AS 9.95 30.18 124.88  186.29— SMAC-AS 7.39 6.15— 6.80—
SBS 5.58 9.79 444 6.67 SBS 5.58 9.79 4.44 6.67 SBS 5.58 9.79 4.44 6.67 SBS 558 979 444 6.67
(i) LOIO-CV (Ajped) () LOPO-CV (Ajped) (k) LOPOAD-CV (Ajpea) (1) RI-CV (Ajped)
System n=2mn=3 n=5n=10 System n=2 n=3 n=5 n=10 System n=2n=3 n=5 n =10 System n=2n=3n=5n=10
AS-50n  9.06 1012 4.92 AS-50n  768.17  5020.02 568.50  366.58 AS-50n 1434 168845 568.31 365.54  AS-50n  9.46
AS-100n  11.31— 12.69— 7.86— 7.18— AS-100n 2143+ 5019.51 572.53— 369.31 AS-100n 1641  1764.36 571.96— 542.52  AS-100n 10.93— 10.13— 7.29— 6.85—
SLSQP-AS 6.59+ SLSQP-AS 763.434 5015.93  565.784 363.81 SLSQP-AS 11.38+ 1683.78 565.89  363.18 SLSQP-AS 7.14+
SMAC-AS 9.20 11.15— 6.87— 7.14— SMAC-AS 767.13 3356914 570.32  369.31 SMAC-AS 1422 50.734+ 430.71  368.28 SMAC-AS 9.57 6.24— 6.86—
SBS 6.05 9.81 450  6.72 SBS 6.05 9.81 4.50 6.72 SBS 6.05 9.81 4.50 6.72 SBS 6.05 9.81 450 672
(m) LOIO-CV (Abmtp) (n) LOPO-CV (Abmtp) (0) LOPOAD-CV (Abmtp) (p) RI-CV (Abmip)

System n=2n=3 n=5n=10 System n=2mn=3n=>5n=10 System n=2mn=3n=>5n=10 System n=2n=3n=5n=10

AS-50n 240.63 AS-50n 1235  715.12 288.17 625.37 AS-50n  19.31 AS-50n 451.54

AS-100n 243.44— AS-100n  14.84— 714.82 291.53 626.50 AS-100m  20.78— AS-100n 246.19

SLSQP-AS 239.16 SLSQP-AS 710.52 286.30 622.694+ SLSQP-AS 17.81+4 SLSQP-AS 450.16

SMAC-AS 241.27 SMAC-AS 715.54 289.43 626.95— SMAC-AS 18.72 SMAC-AS 358.71

SBS 1153 3592 102.10 315.32 SBS 1153 3592 102.10 31532 SBS 1153 3592 102.10 31532 SBS 1153 3592 102.10 315.32

(q) LOIO-CV (Ami) () LOPO-CV (Ami) (s) LOPOAD-CV (Ami) (t) RI-CV (Amk)

System n=2n=3n=>5mn=10 System n=2n=3 m=5 n=10 System n=2n=3n=>5 n=10 System n=2n=3n=5n=10

AS-50n  3.14 AS-50n  4.18  479.53  130.76  67.63 AS-50n 3.90 AS-50n  2.80

AS-100n  4.52— AS-100n  4.93— 47990 131.60— 68.44 AS-100n  5.51— AS-100n 4.11—

SLSQP-AS 2.00+ SLSQP-AS 2.164 469.43+4 129.52+4 SLSQP-AS 2.30+ SLSQP-AS 1.67+

SMAC-AS 3.21 SMAC-AS 3.64  474.62 131.16— 68.18 SMAC-AS 3.86 SMAC-AS 2.89

SBS 1.64 3199 6874 6744 SBS 1.64  31.99 68.74 67.44 SBS 1.64 3199 6874 67.44 SBS 1.64 3199 6874 6744
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TABLE S.11: Median of 31 “mean relSP1” values of the regression-based algorithm selection system with and without the pre-solvers.
“AS-50n" is the algorithm selection system with the sample size 50 x n. “AS-100n” is the algorithm selection system with the sample size
100 x n. “SLSQP-AS” is the algorithm selection system using SLSQP as a pre-solver. “SMAC-AS” is the algorithm selection system using

SMAC as a pre-solver.
(a) LOIO-CV (Axt)

(b) LOPO-CV (Axt)

(¢) LOPOAD-CV (Aw)

(d) RI-CV (Axt)

System n=2mn=3n=5 n=10 System n=2n=3n=5 n=10 System n=2mn=3 n=>5 n=10 System n=2n=3 n=5n=10
AS-50n 948 6795 7.18 9.98 AS-50n 1673 13431 7.74 10.08 AS-50n  10.11  191.74 843 10.20 AS-50n 631 1196  6.82 998
AS-100n  10.70— 70.79 10.23— 13.21—  AS-100n 24.55— 136.81 10.81— 13.44— AS-100n 15.66— 169.12 10.17— 13.52—  AS-100n 8.99— 13.53— 9.78— 13.10—
SLSQP-AS 7.024  65.50 6.88+ SLSQP-AS 10.83+ 131.85 4.584+ 6.90+ SLSQP-AS 7.084+ 189.23 5444 6.99+ SLSQP-AS 6.86+
SMAC-AS 9.40 68.07 9.08— 13.30— SMAC-AS 1449 11950 9.75— 13.40— SMAC-AS 9.85 123.26+ 10.33— 13.52— SMAC-AS 640 1143 875— 13.30—
SBS 5.81 9.82 449 6.76 SBS 5.81 982 449 6.76 SBS 5.81 9.82 4.49 6.76 SBS 581 982 449 676
(e) LOIO-CV (Adtvat) () LOPO-CV (Aaivat) (g) LOPOAD-CV (Advat) (h) RI-CV (Adivat)
System n=2mn=3n=>5n=10 System n=2mn=3n=>5 n=10 System n=2mn=3 n=>5n=10 System n=2n=3 n=5n=10
AS-50n 847 6843 7.08 9.28 AS-50n  15.06  129.05 7.56 9.34 AS-50n  10.14  191.80 848 9.39 AS-50n 633 11.76 655 9.24
AS-100n  10.61— 70.58 9.81— 11.86— AS-100m 19.94— 13592 10.63— 12.04— AS-100n 15.00— 14431 9.83— 12.09— AS-100n 8.64— 1341— 9.44— 11.76—
SLSQP-AS 6.02+ 65.97 [H2451 6.70+ SLSQP-AS 11.024 126.60 4.524+ 6.75+ SLSQP-AS 7.45+ 189.32 5.63+ 6.78+ SLSQP-AS 6.68+
SMAC-AS 8.58 68.32 8.84— 11.93— SMAC-AS 1426 120.71 9.64— 12.00— SMAC-AS 10.05 12335+ 10.76— 12.04— SMAC-AS 6.18 11.09 845— 11.89—
SBS 5.58 9.79 444  6.67 SBS 5.58 9.79 444 6.67 SBS 5.58 9.79 4.44 6.67 SBS 558  9.79 444 6.67
(i) LOIO-CV (Ajped) () LOPO-CV (Ajped) (k) LOPOAD-CV (Ajpea) () RI-CV (Ajped)
System n=2n=3n=>5 n=10 System n=2n=3 n=>5 n=10 System n=2n=3 n=5mn=10 System n=2n=3 n=5n=10
AS-50n 893 6772 7.20 9.70 AS-50n  17.85 13454 923 9.50 AS-50n  13.77 148.09 11.87 10.17 AS-50n  6.89 1185 657 927
AS-100m  10.75— 70.79 10.19— 12.21—  AS-100n 3197 134.18 13.29— 12.25— AS-100n 18.46— 124.02 1239 1244— AS-100n 9.04— 13.49— 9.61— 9.60—
SLSQP-AS 6.49+ 6528 7.124 SLSQP-AS 1520 132.10 6.16+ 6.88+4 SLSQP-AS 10.64 14555 879+ 7.244 SLSQP-AS
SMAC-AS 9.14 6778 9.09— 1243— SMAC-AS 17.70 11525+ 11.16— 12.22— SMAC-AS 14.09 103.124 14.04 1290— SMAC-AS 6.84 11.56 8.62— 11.99—
SBS 6.05 9.81 450 6.72 SBS 6.05  9.81 4.50 6.72 SBS 6.05 9.81 450 672 SBS 6.05 9.81 450  6.72
(m) LOIO-CV (Abmtp) (n) LOPO-CV (Abmtp) (0) LOPOAD-CV (Abmtp) (p) RI-CV (Abmtp)
System n=2n=3n=>5 n=10 System n=2n=3n=>5 n=10 System n=2n=3n=5 n=10 System n=2n=3n=5n=10
AS-50n  11.94 AS-50n  13.07 37.64 103.38 AS-50n  13.53 3645 316.23 AS-50n  [9I981 37.59
AS-100n  12.67 AS-100n  15.01— 39.36— 104.37— 316.58 AS-100n 1449  38.20— 317.89— AS-100n  12.63— 39.33—
SLSQP-AS SLSQP-AS SLSQP-AS SLSQP-AS
SMAC-AS 37.79— SMAC-AS 11.99+ 37.96— 104.34— SMAC-AS 11.86+ 36.74— 102.76— 317.81 SMAC-AS 37.84—
SBS 1153 3592 102.10 31532  SBS 1153 3592 102.10 31532 SBS 1153 3592 102.10 31532 SBS 1153 3592  102.10 31532
(q) LOIO-CV (Ami) (r) LOPO-CV (Ami) (s) LOPOAD-CV (Ami) () RI-CV (Amk)
System n=2n=3n=>5 n=10 System n=2n=3n=5n=10 System n=2n=3n=>5 n=10 System n=2n=3n=5n=10
AS-50n  3.13 AS-50n  3.05  239.51 7037 67.65 AS-50n  9.02 70.64 AS-50n  3.02 69.09
AS-100n 4.57— AS-100n 4.42— 24155 70.76 AS-100n 7.20 72.36— AS-100n 4.37— 68.87
SLSQP-AS 2.01+ SLSQP-AS 1.934 23845 69.07+ SLSQP-AS 7.47+ 69.474 SLSQP-AS 1.88+
SMAC-AS 3.23— SMAC-AS 3.12— [0I00% 70.74  68.17 SMAC-AS 8.76 70.89 SMAC-AS 3.11— 69.16
SBS 1.64 3199 6874 6744 SBS 1.64 3199 68.74 67.44 SBS 1.64 3199 68.74 6744 SBS 1.64 3199 68.74 6744
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TABLE S.12: Median of 31 “mean relSP1” values of the pairwise classification-based algorithm selection system with and without the
pre-solvers. “AS-50n" is the algorithm selection system with the sample size 50 x n. “AS-100n” is the algorithm selection system with the
sample size 100 X n. “SLSQP-AS” is the algorithm selection system using SLSQP as a pre-solver. “SMAC-AS” is the algorithm selection

system using SMAC as a pre-solver.

(a) LOIO-CV (Axt)

(b) LOPO-CV (Ays)

(c) LOPOAD-CV (Ayy)

(d) RI-CV (Axt)

System n=2n=3 n=>5mn=10 System n=2n=3 n=5 n =10 System n=2mn=3n=>5n=10 System n=2n=3 n=5n=10
AS-50n 594 [BHBIN 501 [S280 AS-50n 1575 3337.17 146.83  363.62 AS-50n 9.76 13142 542 AS-50n 5.10
AS-100n  8.75— 11.33— 7.88— 8.59 AS-100n  16.66  3340.90 149.85— 366.78 AS-100n  11.22— 124.18 8.01— 8.60— AS-100n 837— 10.98— 7.85— 8.64—
SLSQP-AS SLSQP-AS 11.584 3334.35 144.064+ 360.35 SLSQP-AS 7.364+ 128.10 SLSQP-AS
SMAC-AS 6.18 7 60 SMAC-AS 1559  3338.37 148.80— 366.99— SMAC-AS 9.68 115.13 7.54— 8.64— SMAC-AS 7.29— 8.79—
SBS 581  9.82 449 676 SBS 5.81 9.82 4.49 6.76 SBS 5.81 982 449  6.76 SBS 5.81 9.82 449 676
(e) LOIO-CV (Adtvat) (f) LOPO-CV (Adivat) (g) LOPOAD-CV (Adivat) (h) RI-CV (Adivat)
System n=2n=3n=5mn=10 System n=2mn=3 n=5 n=10 System n=2mn=3n=>5 n=10 System n=2n=3n=5n=10
AS-50n  5.78 AS-50n  12.81 6192 12422  366.02 AS-50n  9.24 132.13 63.63  182.67 AS-50n  5.66
AS-100n  8.52— AS-100n  15.46— 1676.44 127.15 542.89— AS-100n 11.06— 127.44 7.94 185.24— AS-100n 8.75—
SLSQP-AS SLSQP-AS 10.04+ 59.50  121.63+ 363.43+ SLSQP-AS 6.744+ 129.94 61.16+ 180.40+ SLSQP-AS
SMAC-AS 5.94 SMAC-AS 1275 6181 126.11 368.73— SMAC-AS 8.98 115.02 65.33— 185.32— SMAC-AS 5.87
SBS 558 979 444  6.67 SBS 5.58 9.79 4.44 6.67 SBS 5.58 9.79 444 6.67 SBS 558 979 444  6.67
(1) LOIO-CV (Ajped) () LOPO-CV (Ajped) (k) LOPOAD-CV (Ajpea) (1) RI-CV (Ajpea)
System n=2n=3n=5n=10 System n=2n=23 n =25 mn =10 System n=2n=3n=>5mn=10 System n=2n=3 n=5n=10
AS-50n 5.03 AS-50n 1622 167433 14695 362.62 AS-50n  8.19 111.15 5.34 AS-50n 4.68
AS-100n  8.92— 7.84— 7.35— AS-100n  16.88  1679.97— 149.85— 192.24 AS-100n  11.36— 111.98 8.00— 7.44— AS-100n  8.50— 10.17— 7.66— 7.10—
SLSQP-AS SLSQP-AS 11.85+ 1671.79  144.19+ 359.854+ SLSQP-AS 107.28 SLSQP-AS
SMAC-AS 6.24 7.03— 7.42— SMAC-AS 1623 167528 148.80— 365.36— SMAC-AS 8.45 109.74 7.46— 7.32— SMAC-AS 6.71— 7.15—
SBS 6.05 981 450 672 SBS 6.05 9.81 4.50 6.72 SBS 6.05 981 450 672 SBS 6.05  9.81 450 672
(m) LOIO-CV (Abmtp) (n) LOPO-CV (Apmip) (0) LOPOAD-CV (Abmtp) () RI-CV (Apmip)
System n=2n=3n=>5 n=10 System n=2mn=3n=5mn=10 System n=2mn=3n=>5n=10 System n=2n=3n=5 n=10
AS-50n 36.15 AS-50n 1230 947.32 109.69 323.98 AS-50n 1293 AS-50n 95.37
AS-100n AS-100n  14.23— 944.64 106.29 324.18 AS-100n  14.82— AS-100n 239.83
SLSQP-AS SLSQP-AS 743.19 103.99 [BI4HE35 SLSQP-AS SLSQP-AS 93.95
SMAC-AS 36.83 SMAC-AS 71673 111.16 325.62 SMAC-AS SMAC-AS 45.85
SBS 1153 3592 102.10 315.32 SBS 1153 3592 102.10 315.32 SBS 1153 3592 102.10 315.32 SBS 1153 3592 102.10 31532
(q) LOIO-CV (Ami) (r) LOPO-CV (Ami) (s) LOPOAD-CV (Ami) (t) RI-CV (Amk)
System n=2n=3n=>5mn=10 System n=2n=3n=>5mn=10 System n=2n=3n=>5mn=10 System n=2n=3n=5n=10
AS-50n 320 AS-50n  3.11  240.73 131.75 164.48 AS-50n 336 AS-50n  3.01
AS-100n  4.59— AS-100n 4.46— 241.04 13236 165.14  AS-100n 4.76— 67.56— AS-100n 4.33— 67.77
SLSQP-AS 2.05+ SLSQP-AS 1.924 239.85 130.87 163.76 SLSQP-AS 221+ SLSQP-AS 1.87+
SMAC-AS 3.29 SMAC-AS 3.15  [BI535 132.13 165.03 SMAC-AS 3.42 SMAC-AS 3.07—
SBS 1.64 3199 6874 6744 SBS 1.64 3199 68.74 6744 SBS 1.64 3199 68.74 6744 SBS 1.64 3199 6874 67.44
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TABLE S.13: Median of 31 “mean relSP1” values of the pairwise regression-based algorithm selection system with and without the pre-
solvers. “AS-50n” is the algorithm selection system with the sample size 50 x n. “AS-100n” is the algorithm selection system with the
sample size 100 X n. “SLSQP-AS” is the algorithm selection system using SLSQP as a pre-solver. “SMAC-AS” is the algorithm selection
system using SMAC as a pre-solver.

(a) LOIO-CV (Axt)

(b) LOPO-CV (Axt)

(¢) LOPOAD-CV (Aw)

(d) RI-CV (Axt)

System n=2n=3n=>5 n=10 System n=2n=3 n =25 mn =10 System n=2n=3n=5n=10 System n=2n=3n=5n=10
AS-50n 1865 7291 948 11.10 AS-50n 4290 246.10 150.56  188.74 AS-50n 1930 144.11 8.74 11.35 AS-50n  16.14 7311 898 11.20
AS-100n 2546 77.57 12.19— 14.60— AS-100n 44.35 168543— 293.02— 192.32— AS-100n 19.12 14893 11.56— 1532— AS-100n 26.69— 71.44 11.99— 14.65—
SLSQP-AS 14.53+ 69.91 5454+ 7.35+ SLSQP-AS 33.00 242.60 146.98+ 185274 SLSQP-AS 14.96+ 141.01 5.07+ 7.68+ SLSQP-AS 11.25+ 68.85 5.184 7.38+
SMAC-AS 18.57 7147 11.39— 1442— SMAC-AS 42.60 30.714+  152.14— 192.05— SMAC-AS 19.33 7574+ 10.42— 14.69— SMAC-AS 1621 7191 10.88— 14.52—
SBS 5.81 9.82 449 6.76 SBS 581 9.82 4.49 6.76 SBS 5.81 9.82 449 6.76 SBS 5.81 982 449 6.76
(e) LOIO-CV (Adivat) (f) LOPO-CV (Aaivat) (g) LOPOAD-CV (Aaivat) (h) RI-CV (Adivat)
System n=2n=3 n=>5 n=10 System n=2n=3n=5 n=10 System n=2mn=3n=>5 n=10 System n=2n=3n=5n=10
AS-50n  22.17 1997 7.86 9.96 AS-50n 2553 3026 835 188.05 AS-50n  15.54 13569 9.46 10.22 AS-50n 1839 1682 797 10.07
AS-100n 2070  62.68— 10.33— 9.31 AS-100n 2943 7190 11.65— 190.84— AS-100n 17.20 13565 10.72— 13.83— AS-100n 21.33— 19.44 1047— 10.16—
SLSQP-AS 19.00 16.83 4.704+ 6.98+ SLSQP-AS 20.79 27.63 5204 185.14+ SLSQP-AS 12.624 132.79 6.07+ 7.44+ SLSQP-AS 14.87+ 14.06+ 4.78+ 6.94+
SMAC-AS 2209 17.62 9.60— 12.61— SMAC-AS 2440 18.38+ 10.02— 190.70— SMAC-AS 14.97 68774 11.20— 12.89— SMAC-AS 1680 1679 9.70— 12.73—
SBS 558 979 4.44 6.67 SBS 558 979 4.44 6.67 SBS 5.58 9.79 444 6.67 SBS 5.58 979 444 6.67
(1) LOIO-CV (Ajped) () LOPO-CV (Ajped) (k) LOPOAD-CV (Ajpea) (D) RI-CV (Ajped)
System n=2mn=3n=5 n=10 System n=2n=3n=5 n=10 System n=2mn=3 n=>5 n=10 System n=2n=3n=5n=10
AS-50n 1746 3177 1131 1049 AS-50n 2420 60.95 150.88 12.89 AS-50n  19.57  66.80 10.31  10.31 AS-50n 1742 2105 1176 875
AS-100n  23.17— 2433 14.17— 12.19— AS-100n 31.61 6191 155.07— 23.22— AS-100n 29.39— 66.42 13.84— 13.47— AS-100n 21.52— 21.39 16.29— 11.49—
SLSQP-AS 13.27+ 27.08 7.57+ 7.124 SLSQP-AS 18.58+4 57.88  147.284+ 9.60+ SLSQP-AS 15.29+4 64.18  6.67+ 6.76+ SLSQP-AS 13.844 16.80 7.854
SMAC-AS 1742 2974 12.88— 13.22— SMAC-AS 24.14  36.944 153.09— 15.63— SMAC-AS 19.05 34.54+ 1220— 13.08— SMAC-AS 1626 17.99 13.46— 11.48—
SBS 6.05 9.81 450 6.72 SBS 6.05 9.81 4.50 6.72 SBS 6.05 9.81 4.50 6.72 SBS 6.05 9.81 450 6.72
(m) LOIO-CV (Abmtp) (n) LOPO-CV (Abmtp) (0) LOPOAD-CV (Abmtp) (p) RI-CV (Abmtp)
System n=2n=3n=>5 n=10 System n=2n=3n=5 n=10 System n=2n=3n=5mn=10 System n=2n=3n=5n=10
AS-50n 36.21 AS-50n 1849 268.47 102.23 AS-50n 1238 AS-50m
AS-100n AS-100n 21.16  252.01 104.30— 318.32— AS-100n 12.65 AS-100n
SLSQP-AS SLSQP-AS 1490 265.82 SLSQP-AS SLSQP-AS
SMAC-AS 36.47 SMAC-AS 1570 26691 103.33— SMAC-AS SMAC-AS
SBS 1153 3592 102.10 31532  SBS 1153 3592 102.10 315.32 SBS 1153 3592 102.10 315.32 SBS 1153 3592 102.10 315.32
(q) LOIO-CV (Ami) (r) LOPO-CV (Apmi) (s) LOPOAD-CV (Ami) () RI-CV (Amy)
System n=2n=3 n=>5mn=10 System n=2n=3 n=>5mn=10 System n=2n=3 n=5n=10 System n=2n=3n=5n=10
AS-50n  4.74 AS-50n  5.02 24059 70.34 AS-50m 471  240.34 AS-50n  4.39
AS-100n  6.15— AS-100n  6.18— 242.67— 69.91 AS-100n 5.94— 241.88— AS-100n  6.21—
SLSQP-AS 3.29+ SLSQP-AS 3.65+ 239.51+ 69.23+4 SLSQP-AS 3.19+ 239.33+ SLSQP-AS 3.04+
SMAC-AS 4.62 SMAC-AS 4.91  [BBIFEIN 70.75 SMAC-AS 4.35 SMAC-AS 4.33
SBS 1.64 3199 68.74 67.44 SBS 1.64 3199 68.74  67.44 SBS .64 3199 68.74  67.44 SBS 1.64 3199 68.74 67.44
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TABLE S.14: Median of 31 “mean relSP1” values of the clustering-based algorithm selection system with and without the pre-solvers.
“AS-50n" is the algorithm selection system with the sample size 50 x n. “AS-100n” is the algorithm selection system with the sample size
100 x n. “SLSQP-AS” is the algorithm selection system using SLSQP as a pre-solver. “SMAC-AS” is the algorithm selection system using
SMAC as a pre-solver.

(a) LOIO-CV (Ax) (b) LOPO-CV (Axt) (c) LOPOAD-CV (Axt) (d) RI-CV (Axe)

System n=2 n=3 n=>5n=10 System n=2mn=3 n =5 mn =10 System n=2n=3 n=>5 n=10 System n=2mn=3 n=>5 n=10

AS-50n  761.68 1539  289.31 373.30 AS-50n  11.57 174519 43131  903.53 AS-50n 1279 6533 29215  728.66 AS-50n  9.94 21.44 150.46  544.56
AS-100m  764.26— 22.39— 291.94 552.62 AS-100m  14.41— 3349.86— 433.75— 743.96 AS-100n  14.86— 522.32 296.93— 909.25— AS-100n 12.52— 1673.66— 151.76— 374.35
SLSQP-AS 759.254 12.25+ 286.81 370.24 SLSQP-AS 8.65+ 1741.12  428.40+ 899.90 SLSQP-AS 9.424 62.57 289.294 725.37 SLSQP-AS 7.014+ 16.93 147.844 541.73
SMAC-AS 761.59 13.98 291.01 376.76 SMAC-AS 1145 168697 43290 906.86 SMAC-AS 1232 20.33+ 294.08 732.13 SMAC-AS 9.79 16.41 152.37  548.03

SBS 5.81 982 449 676 SBS 5.81 9.82 4.49 6.76 SBS 5.81 9.82 449 6.76 SBS 5.81 9.82 4.49 6.76

(e) LOIO-CV (Aduvat) (f) LOPO-CV (Adivat) (2) LOPOAD-CV (Adivat) (h) RI-CV (Adivat)

System n=2 n=3 n=5n=10 System n=2n=3 mn=5 n=10 System n=2n=3n=5 n=10 System n=2n=3 mn=5mn=10

AS-50n  761.19 1440 12547 37241 AS-50n  11.11  1688.18 185.85 902.62 AS-50n  12.11 6526 12837 727.80 AS-50n  9.87 21.31 68.03  543.79
AS-100n  764.49— 21.74— 127.96 548.54 AS-100n  13.74— 3348.24— 188.02 742.80 AS-100n  14.34— 521.69 133.03— 907.68— AS-100n 12.34— 1673.55— 69.72— 371.10
SLSQP-AS 758.654 12.06+ 122.98 370.04 SLSQP-AS 7.59+4 1685.66  183.06+ 899.70 SLSQP-AS 9.264+ 62.53  125.584 725.18 SLSQP-AS 7.204 16.87 65.61+ 541.54
SMAC-AS 760.88 13.24  127.12 375.20 SMAC-AS 10.38 168550  187.32  905.28 SMAC-AS 11.89  20.66+ 130.36  730.59 SMAC-AS 9.76 16.06 7037 546.53

SBS 5.58 9.79 444 6.67 SBS 5.58 9.79 4.44 6.67 SBS 5.58 9.79 4.44 6.67 SBS 5.58 9.79 4.44 6.67

(i) LOIO-CV (Ajpea) (j) LOPO-CV (Ajpea) (k) LOPOAD-CV (Ajpea) (D) RI-CV (Ajpea)

System n=2 nmn=3 n=5n=10 System n=2n=3 n=>5 mn =10 System n=2n=3n=5 n=10 System n=2n=3n=5 n=10

AS-50n  762.17 13.82 288.74 363.34 AS-50n  11.79  1732.04 43124 723.13 AS-50n  15.06  142.39 29287 728.71 AS-50n  10.15 15.68 149.28  188.46
AS-100n  764.68— 21.81— 291.68 192.17 AS-100n  14.41— 3348.73— 433.68— 561.51 AS-100n  17.38  147.02 296.18  730.28 AS-100n  12.54— 25.19— 151.08  191.96
SLSQP-AS 759.20+ 11.244 286.17 360.85 SLSQP-AS 7.99+4 1729.63  428.29+ 720.14 SLSQP-AS 11.784 139.85 289.53+ 726.02 SLSQP-AS 7.214 12.144 146.734 185.87
SMAC-AS 761.92 12.75 290.39 366.09 SMAC-AS 11.32  1686.70  432.81 725.85 SMAC-AS 14.73  21.184 29438  731.56 SMAC-AS 9.99 13.95  150.77 191.28

SBS 6.05 9.81 450  6.72 SBS 6.05 9.81 4.50 6.72 SBS 6.05 9.81 4.50 6.72 SBS 6.05 9.81 4.50 6.72

(m) LOIO-CV (Abmtp) (n) LOPO-CV (Apmtp) (0) LOPOAD-CV (Apbmtp) (p) RI-CV (Abmtp)

System n=2n=3 n=>5n=10 System n=2mn=3 n=5n=10 System n=2n=3 n=5mn=10 System n=2n=3 n=5n=10

AS-50n  18.67 24556  280.60 472.73 AS-50n 7105 71099 56192 78126  AS-50m 13526 1171.26 557.19 1089.57 AS-50n  17.96 249.09 288.69 470.16
AS-100n 2599 473.96— 284.69 471.36 AS-100n 6949 944.60— 55923 781.36  AS-100n 143.88 1403.79 568.98 1092.12 AS-100n 1949 478.87— 286.96 316.55
SLSQP-AS 16.31 243.84  279.09 468.12 SLSQP-AS 68.56 708.94  559.82 778.11 SLSQP-AS 133.05 1169.20 555.16 1086.80 SLSQP-AS 15.67 247.25 286.60 467.83
SMAC-AS 17.38 246.04 281.62 474.33 SMAC-AS 70.72 710.81  558.96 782.83 SMAC-AS 133.23 963.42 55831 1091.14 SMAC-AS 17.09 249.35 289.76 471.74

SBS 11.53 3592 102.10 315.32 SBS 11.53 3592 102.10 315.32 SBS 11.53 3592 102.10 315.32 SBS 11.53 3592 102.10 315.32
(qQ) LOIO-CV (Amy) (r) LOPO-CV (Amk) (s) LOPOAD-CV (Apmx) () RI-CV (Amk)

System n=2n=3n=5mn=10 System n=2n=3 n=5 n=10 System n=2mn=3n=>5 n=10 System n=2n=3n=5n=10

AS-50m  3.05  239.94 130.58 [661680 AS-50nm 328  240.12 19470 99.41 AS-50n 1150 100.27 AS-50n  3.09 131.70

AS-100n 4.44— [BI690 132.60 67.53—  AS-100m 4.53— 24040 256.47— 100.56 AS-100n  13.09— 32.37— 100.03 AS-100n 4.41— 134.69

SLSQP-AS 1.934 239.07 129.71 SLSQP-AS 2.02+ 239.084 193.85 98.54 SLSQP-AS 8.99+ 99.47 SLSQP-AS 1.95+ 130.69

SMAC-AS 3.13— [BI5751 131.00 SMAC-AS 323  [7955 195.10  99.92 SMAC-AS 11.05 100.78 SMAC-AS 322 132.17

SBS 1.64 3199 68.74 67.44 SBS 1.64  31.99 68.74 67.44 SBS 1.64 31.99 68.74 67.44 SBS 1.64 3199 68.74 67.44
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TABLE S.15: Median of 31 “mean relSP1” values of the five algorithm selection system with different sample size. “AS-50n", “AS-25n",
“AS-100n”, and “AS-200n” are the algorithm selection system with the sample size 50 x n, 25 x n, 100 x n, and 200 X n, respectively.

Ay was used in this comparison.

(a) LOIO-CV (Classification)

(b) LOPO-CV (Classification)

(c) LOPOAD-CV (Classification)

(d) RI-CV (Classification)

System n =2 n=3 n=>5 n=10 System n=2 nm=3 n=5 n=10 System n=2n=3 n=5 n=10 System n=2n=3 n=5 n =10
AS-50n  7.54 10.10  4.75 AS-50n  33.77 6686.64 429.01  367.30 AS-50m  12.07 169537 288.15 361.93 AS-50n  7.63
AS-25n 734 AS-25n  763.59 668324 426.90+ 364.83+ AS-25n 1143 333898 42624  360.37 AS-25n 747

AS-100n 10.84— 12.86— 7.79— 8.39—
AS-200n 16.23— 18.57— 13.72— 14.98—

AS-100n 33.53 6683.59 572.14— 370.59
AS-200n 784.39— 6688.03 578.21— 550.86—

AS-100n 13.92— 3351.36— 430.87— 365.25—
AS-200n 20.82— 3360.46— 436.98— 371.99—

AS-100n 10.15— 10.11— 7.34— 8.04—
AS-200n 1591— 15.64— 13.20— 14.67—

SBS 581 982 449 676 SBS 581 982 449 676 SBS 581 9.82 449 676 SBS 581 982 449 676
(e) LOIO-CV (Regression) (f) LOPO-CV (Regression)  (g) LOPOAD-CV (Regression) (h) RI-CV (Regression)
System n=2mn=3 n=5 n=10 System n=2n=3n=>5 n=10 System n=2mn=3n=5 n=10 System n=2n=3n=5n=10
AS-50n 948 6795 7.8  9.98 AS-50m 1673 13431 7.74 1008  AS-50m 10.11 19174 843 1020  AS-50n 631 1196 682 998
AS-25n 862  67.11 5904+ 8364+  AS-25m 2288 12051 6114 8474+  AS-25m 1332 190.08 6174+ 855+  AS-25m 1076 565+ 835+
AS-100m 10.70— 7079  10.23— 1321—  AS-100n 24.55— 136.81 10.81— 13.44— AS-100n 15.66— 169.12 10.17— 13.52— AS-100n 8.99— 13.53— 9.78— 13.10—
AS-200m 16.01— 78.58— 15.92— 19.69—  AS-200n 40.89— 93.39  16.83— 20.19—  AS-200n 23.75— 198.55 1647— 20.18—  AS-200n 14.70— 19.11— 15.75— 19.70—
SBS 581 982 449 676 SBS 581 982 449 676 SBS 581 982 449 676 SBS 581 982 449 676
(k) LOPOAD-CV (P-

(1) LOIO-CV (P-classification)  (j) LOPO-CV (P-classification) classification) (1) RI-CV (P-classification)
System n=2mn=3 n=5 n=10 System n=2n=3 n=5 n=10 System n=2n=3n=>5 n=10 System n=2n=3n=5n=10
AS-50n  5.94 5.01 AS-50n 1575 3337.17 146.83 36362  AS-50n 976 13142 542 AS-50n 5.10
AS-25n 7.96  23.61 AS-25n 1516 333694 14630 36143  AS-25nm 856  116.85 181.68— AS-257
AS-100m 875— 11.33— 7.88— 859—  AS-100n 16.66 3340.90 149.85— 366.78  AS-100m 11.22— 124.18 80I— 860—  AS-100m 8.37— 1098— 7.85— 8.64—
AS-200m 1439— 51.43— 13.82— 1508— AS-200n 23.83— 1796.86 155.72— 373.55— AS-200m 18.12— 86.35 1391— 19329— AS-200m 14.51— 15.14— 13.88— 15.25—
SBS 581 982 449 676 SBS 581 982 449 676 SBS 581 982 449 676 SBS 581 982 449 676

(m) LOIO-CV (P-regression)

(n) LOPO-CV (P-regression)

(o) LOPOAD-CV (P-regression)

(p) RI-CV (P-regression)

System n=2mn=3n=>5 n=10 System n=2 n=3 mn=5 n=10 System n=2mn=3 n=5 n=10 System n=2n=3n=5 n=10

AS-50n  18.65 7291 948 11.10 AS-50n  42.90 246.10 150.56  188.74 AS-50n 1930 14411 8.74 11.35 AS-50n  16.14  73.11 898 11.20

AS-25n 16.57 7258 7984+ 9.574 AS-25n 24514 45941 149.45+ 187354+ AS-25n  15.63 13843+ 7.57+ 10.074+ AS-25n 1690 67.00 7.44+ 9.58+4

AS-100n 2546  77.57 12.19— 14.60— AS-100n 44.35 1685.43— 293.02— 192.32— AS-100n 19.12 14893  11.56— 1532— AS-100n 26.69— 71.44 11.99— 14.65—

AS-200n 34.93— 80.70 18.57— 20.96—  AS-200n 778.91— 1694.53— 299.44— 199.00— AS-200n 25.03— 160.18— 17.91— 23.11—  AS-200n 27.46— 61.64 18.20— 21.00—

SBS 5.81 9.82 4.49 6.76 SBS 5.81 9.82 4.49 6.76 SBS 5.81 9.82 4.49 6.76 SBS 5.81 9.82 4.49 6.76

(q) LOIO-CV (Clustering) (r) LOPO-CV (Clustering) (s) LOPOAD-CV (Clustering) (t) RI-CV (Clustering)

System n=2 n=3 n =25 mn =10 System n=2mn=3 n =5 n =10 System n=2mn=3 n =25 n =10 System n=2mn=3 n=5 n=10
AS-50n  761.68 15.39 289.31 373.30 AS-50n  11.57 1745.19 43131 903.53 AS-50n 1279 65.33 292.15  728.66 AS-50n  9.94 21.44 15046  544.56
AS-25n 1459+ 1277+ 29042 907.90— AS-25n  9.75+ 1683.60+ 430.48  903.52 AS-25n  10.84 57.76 29226  903.10 AS-25n  8.53+ 16.57+ 148.58+4 551.80
AS-100n 764.26— 22.39—  291.94 552.62 AS-100n 14.41— 3349.86— 433.75— 743.96 AS-100n 14.86— 522.32 296.93— 909.25— AS-100n 12.52— 1673.66— 151.76— 374.35
AS-200n 771.55— 1681.08— 161.99 377.17 AS-200n 25.41— 3365.33— 438.28— 731.18 AS-200n 21.60— 1680.42— 302.06— 911.14 AS-200n 19.81— 1681.66— 156.30  203.05+
SBS 5.81 9.82 4.49 6.76 SBS 5.81 9.82 4.49 6.76 SBS 5.81 9.82 4.49 6.76 SBS 5.81 9.82 4.49 6.76
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TABLE S.16: Median of 31 “mean relSP1” values of the five algorithm selection systems using the sample X" and the union of X and ),
which a set of all solutions found so far by SLSQP. “S-AS” is the algorithm selection system that uses SLSQP as a pre-solver and computes
features based on X. “S-AS-U” is the algorithm selection system that uses SLSQP as a pre-solver and computes features based on X U ).
Ayt was used in this comparison.

(a) LOIO-CV (Classification)

(b) LOPO-CV (Classification)

(c) LOPOAD-CV (Classification)

(d) RI-CV (Classification)

System n=2 n=3 n=5 mn=10 System n=2 n=3 n=5 n=10 System n=2 n =23 n=5 m=10 System n=2 n=3 n=5 n=10
S-AS 75925 1225 286.81  370.24 S-AS 8.65 1741.12 428.40 899.90 S-AS 942 62.57 289.29  725.37 S-AS 7.1 1693 147.84 541.73
S-AS-U 89.33 [OWOFN 148.15+ 182.65+ S-AS-U 1325— 18.224 427.64 539.17+ S-AS-U 19.14— 1704.11— 567.81— 71744+ S-AS-U 870— 10.78+ 14629 7.99+
SBS 5.81 9.82 4.49 6.76 SBS 5.81 9.82 4.49 6.76 SBS 5.81 9.82 4.49 6.76 SBS 5.81 9.82 4.49 6.76

(e) LOIO-CV (Regression)

(f) LOPO-CV (Regression)

(g) LOPOAD-CV (Regression)

(h) RI-CV (Regression)

System n=2 n=3 n=5 n=10 System n=2 n=3 n=5 n=10 System n=2 n=3 mn=5 n=10 System n=2 n=3 n=5 n=10

S-AS 7.02 65.50 6.88 S-AS 10.83 131.85 4.58 6.90 S-AS 7.08 189.23 544 6.99 S-AS 6.86

S-AS-U 6.54 10.604 4.72— S-AS-U 30.97— 121.95 S-AS-U 10.26— 119314+ 5.01 6.96 S-AS-U

SBS 5.81 9.82 4.49 6.76 SBS 5.81 9.82 4.49 6.76 SBS 5.81 9.82 4.49 6.76 SBS 5.81 9.82 4.49 6.76
) LOPOAD-CV (P-

(i) LOIO-CV (P-classification)

(j) LOPO-CV (P-classification) classification)

(1) RI-CV (P-classification)

System n =2 n =3

System n =2 n =3

n=5 n=10

System n =2 n=3 n=5 n=10

System n =2 n=3 n=5 n=10

S-AS S-AS 1158 333435 14406 360.35  S-AS 736 128.10 S-AS
S-AS-U 107.32— S-AS-U 9.83 173036+ [BO6H 183.07+ S-AS-U 780  216.73 S-AS-U
SBS 581 982 449 676 SBS 581  9.82 449 676 SBS 581 982 449 676 SBS 581 982 449 676

(m) LOIO-CV (P-regression)

(n) LOPO-CV (P-regression)

(0) LOPOAD-CV (P-regression)

(p) RI-CV (P-regression)

System mn=2 n=3 n=5 n=10 System n=2 n=3 n=5 n=10 System n=2 n=3 n=5 n=10 System n=2 n=3 n=5 n=10

S-AS 14.53  69.91 5.45 7.35 S-AS 3300 242.60 14698 18527 S-AS 1496  141.01 5.07 7.68 S-AS 1125 6885 5.8 7.38

S-AS-U 1940 178.01— 537 7.95— S-AS-U 763.00 36594 146.72 7.674 S-AS-U 1991— 187.13 5.08 8.34— S-AS-U 16.99— 76.16 546 7.86—

SBS 5.81 9.82 4.49 6.76 SBS 5.81 9.82 4.49 6.76 SBS 5.81 9.82 4.49 6.76 SBS 5.81 9.82 4.49 6.76

(q) LOIO-CV (Clustering) (r) LOPO-CV (Clustering) (s) LOPOAD-CV (Clustering) (t) RI-CV (Clustering)
System mn=2 n=3 n=5 mn=10 System n=2 n=3 n=5 n=10 System n=2 n =3 n=5 m=10 System n=2 n=3 n=5 n=10
S-AS  759.25 1225 286.81  370.24 S-AS 8.5 1741.12 42840 899.90 S-AS 942 62.57 28929 72537 S-AS  7.01 1693 147.84 541.73
S-AS-U 89.33 [OI0FN 148.15+ 182.65+ S-AS-U 1325— 1822+ 427.64 539.17+ S-AS-U 19.14— 1704.11— 567.81— 717.44+ S-AS-U 870— 10.78+ 14629 7.99+
SBS 5.81 9.82 449 6.76 SBS 5.81 9.82 4.49 6.76 SBS 5.81 9.82 4.49 6.76 SBS 5.81 9.82 4.49 6.76
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Fig. S.18: Distribution of the number of function evaluations used in the pre-solving phase (SLSQP). For each function, the
results on 5 instances over 31 runs are shown.



TABLE S.17: Results of the five algorithm selection systems for n € {2,3,5,10}. Tables (a)—(o0) show the performance score values of
the five systems using the five algorithm portfolios (Aks, ...

(a) LOIO-CV (Axt)

(b) LOPO-CV (Axt)

(¢) LOPOAD-CV (Aw)

, Amx) for the four cross-validation methods, repectively.

(d) RI-CV (Awt)

n n n n
2 3 5 10 2 3 5 10 2 3 5 10 2 3 5 10
Classification 1 1 JOBNON Classification 3 4 3 3  Classification 2 4 3 3  Classification. 2 [JONFONION
Regression 2 3 2 2 Regression 1 Regression 1 Regression 1 2 1 2
P-classification JOMMON 1 1  P-classification 2 1 P-classification P-classification [JOf 1 1 1
P-regression 3 4 3 3  P-regression 3 2 1  P-regression 4 1 1 1 P-regression 4 3 2 3
Clustering 3 2 4 4 Clustering 2 3 Clustering JO0Y 3 4  Clustering 3 3 4 4

(e) LOIO-CV (Agivat)

() LOPO-CV (Aaivat)

(g) LOPOAD-CV (Aaivat)

(h) RI-CV (Adivat)

n n n n
2 3 5 10 2 3 5 10 2 3 5 10 2 3 5 10
Classification. 1 JOWBONION Classification. 1 4 3 2  Classification. 3 3 Classification. 2 [JONFONION
Regression 2 3 2 2 Regression 1 Regression Regression 1 2 1 2
P-classification JONNON 1 1  P-classification 1 2 P-classification P-classification O} 1 1 1
P-regression 3 3 3 3  P-regression 3 1 1  P-regression 4 1 P-regression 4 3 2 3
Clustering 3 2 4 4 Clustering 3 3 Clustering 1 4 4  Clustering 3 3 4 4

(i) LOIO-CV (Ajped)

() LOPO-CV (Ajped)

(k) LOPOAD-CV (Ajped)

(1) RI-CV (Ajpea)

n n n n

2 3 5 10 2 3 5 10 2 3 5 10 2 3 5 10

Classification 1 1 JOWNON Classification 4 4 3 3  Classification 1 4 4 3  Classification. 2 [JONIONION
Regression 1 4 2 2 Regression 1 1 JORNO0N Regression 1 1 1 Regression 1 2 2 2
P-classification JORMORION 1 P-classification 1 2 1 2  P-classification P-classification [JO 1 1 1
P-regression 3 3 3 2  P-regression 2 2 1  P-regression 2 1 P-regression 4 3 3 2
Clustering 3 2 4 3 Clustering 3 3 4 Clustering 1 3 4 Clustering 2 3 4 4

(m) LOIO-CV (Abmtp)

(n) LOPO-CV (Apmip) (0) LOPOAD-CV (Apmip)

(p) RI-CV (Abmep)

n n n n
2 3 5 10 2 3 5 10 2 3 5 10 2 3 5 10
Classification [JON 3 2 Classification 2 3 3 Classification 3 Classification. [JON 3
Regression 3 1 2 Regression Regression 3 3 3  Regression 2 1 3 1
P-classification 1 P-classification 2 2 P-classification 2 1 P-classification 1 1 1 3
P-regression 1 P-regression 1 1 P-regression 2 1 2 Pregression OO 1 1
Clustering 4 4 4 4  Clustering 4 2 4 4  Clustering 4 4 4 4  Clustering 4 3 4 4

(q) LOIO-CV (Ami)

(r) LOPO-CV (Amk)

(s) LOPOAD-CV (Amk)

() RI-CV (Ami)

n n n n

2 3 5 10 2 3 5 10 2 3 5 10 2 3 5 10

Classification 1 JOBNON 2  Classification 2 3 2 Classification [JONNONNONNON Classification. [JONTONTONTION
Regression 1 3 2 1 Regression Regression 3 2 4 1 Regression 1 2 2 2
P-classification 3 1 2 P-classification 2 3 4  P-classification JlO 1 JON 1  P-classification 1 JO§ 2 3
P-regression 4 2 1 P-regression 4 P-regression 2 4 2 1 P-regression 4 2 1 1
Clustering fON 2 4 4  Clustering 2 4 3 Clustering 4 1 2 4 Clustering 32 4 3
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TABLE S.18: Results of the five algorithm selection systems for n € {2,3,5,10}. Tables (a)—(0) show the performance score values of

the five systems using the six algorithm portfolios (Ajsz, ..., Ais12) for the four cross-validation methods, repectively.

(a) LOIO-CV (Ais2)

(b) LOPO-CV (Ais2)

(c) LOPOAD-CV (Ais2)

(d) RI-CV (Ajs2)

n n n n
2 3 5 10 2 3 5 10 2 3 5 10
Classification. Classification. 4 2 2 Classification. 2 Classification.
Regression Regression 1 1 Regression 2 2 2  Regression 1 1 2
P-classification P-classification 3 2  P-classification 2 P-classification 1 3 2
P-regression P-regression 2 1 - P-regression 2 3 2  P-regression 1 1 2
Clustering Clustering 4 2 Clustering 2 2 3 4  Clustering 4 2 3 1
(e) LOIO-CV (Ajsq) (f) LOPO-CV (Aisa) (g) LOPOAD-CV (Ajsq) (h) RI-CV (Ajs4)
n n n n
2 3 5 10 2 3 5 10 2 3 5 10 2 3 5 10
Classification. 2 [JORNONION Classification. 3 3 Classification. [JORNON 2 2  Classification. [JONFORNONION
Regression 3 2 2 3 Regression Regression 1 1 1 Regression 2 1 1 2
P-classification 1 3 JOWNON P-classification 2 2 2 Pclassification 1 1 2 P-classification O} 1 1 1
P-regression 1 4 3 3  P-regression 4 4 1 - P-regression 3 3 1 1 P-regression 4 4 2 2
Clustering [0 1 2 2 Clustering 070N 4 3 Clustering 3 1 3 4 Clustering 31 4 2
(i) LOIO-CV (Ajs6) (j) LOPO-CV (Ais) (k) LOPOAD-CV (Ajse) (1) RI-CV (Ajs6)
n n n n
2 3 5 10 2 3 5 10 2 3 5 10 2 3 5 10
Classification. 2 4 1 Classification. 4 3 4  Classification. [JONNON 4 3  Classification. [FONFORIONION
Regression 11 2 Regression 2 Regression 2 1 1 Regression 1 2 1 2
P-classification 1 1 P-classification 1 2 2 2  P-classification 1 2 P-classification 1 1 1 1
P-regression 2 3 3 P-regression 1 - 1 1  P-regression 3 1 2 1  P-regression 32 3 3
Clustering 2 4 3 Clustering 3 2 4 3 Clustering 3 2 3 4 Clustering 3 4 4 2
(m) LOIO-CV (Ajss) (n) LOPO-CV (Aig)  (0) LOPOAD-CV (Aisg) (p) RI-CV (Ajss)
n n n n
2 3 5 10 2 3 5 10 2 3 5 10 2 3 5 10
Classification. [JON 4 JOMNON Classification. 4 3 2 Classification. 3 3 2 Classification. [JONFONIONNOY
Regression 4 1 2 2 Regression 2 1 1  Regression 2 1 2 Regression 1 2 2 2
P-classification 1 JO 1 1  P-classification 1 3 2 3  P-classification 3 P-classification 2 JON 1 3
P-regression 2 2 3 1 P-regression 1 1 JORNON P-regression 31 P-regression 3 4 2 1
Clustering 3 - 3 4 Clustering 1 2 3 3 Clustering 4 3 4 4  Clustering 3 2 4 4
(q) LOIO-CV (Ais10) (r) LOPO-CV (Ais10)  (s) LOPOAD-CV (Ais10) (© RI-CV (Ais10)
n n n n
2 3 5 10 2 3 5 10 2 3 5 10 2 3 5 10
Classification. 4 Classification. 1 3 2 2  Classification. 3 3 3 2  Classification. [JONIONNONION
Regression 2 2 1  Regression 2 Regression 1 1 1 Regression 1 1 1 1
P-classification 1 3 P-classification 4 3 4 2  P-classification 2 P-classification 2 3 1 3
P-regression 3 2 3 1 P-regression P-regression 2 1 P-regression 2 3 2 2
Clustering 3 - 4 4 Clustering 2 3 2  Clustering 3 3 4 4  Clustering 2 1 4 4
(u) LOIO-CV (Ajs12) (v) LOPO-CV (Ais12) (W) LOPOAD-CV (Ajs12) (x) RI-CV (Ajs12)
n n n n
2 3 5 10 2 3 5 10 2 3 5 10 2 3 5 10
Classification. 2 4 Classification. 4 4 4 2  Classification. 3 4 3 2  Classification. 2
Regression 1 2 1 Regression 2 Regression 1 1 Regression 1 1 1
P-classification 3 P-classification 2 3 3 2  P-classification 1 2  P-classification 1 3 3
P-regression 3 3 3 1 P-regression P-regression 21 P-regression 4 3 2 1
Clustering 2 1 4 4 Clustering 2 2 4  Clustering 3 3 4 4  Clustering 2 4 4 4
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TABLE S.19: Results of the five algorithm selection systems for n € {2,3,5,10}. Tables (a)-(0) show the performance score values of
the five systems using the three algorithm portfolios (Ajsi4, ..., Ais18) for the four cross-validation methods, repectively.

(a) LOIO-CV (Ajs14)

(b) LOPO-CV (Ais14)

(c) LOPOAD-CV (Ajs14)

(d) RI-CV (Ais14)

n n n n

2 3 5 10 2 3 5 10 2 3 5 10 2 3 5 10
Classification. 2 4 JOWNON Classification. 4 4 4 2  Classification. 3 3 3 3  Classification. 2
Regression 1 1 2 1 Regression 3 Regression 1 2 Regression 2 1 1
P-classification JORN0ON 1 3  P-classification 31 P-classification 2 P-classification 1 1 3
P-regression 3 3 3 1 P-regression 1 1  P-regression 2 1 P-regression 3 4 3 1
Clustering 4 2 4 4  Clustering 2 3 3  Clustering 3 4 4 4  Clustering 2 3 4 4

(e) LOIO-CV (Aisie) (f) LOPO-CV (Ais16)  (g) LOPOAD-CV (Aisie) (h) RI-CV (Ajs16)
n n n n

2 3 5 10 2 3 5 10 2 3 5 10 2 3 5 10
Classification. 3 1 Classification. 1 3 4 2  Classification. 3 1 3 3  Classification. 2
Regression 2 1 Regression 1 FOTNONN0N Regression 1 JOWN0N Regression 11 1
P-classification 2 2 1 2  P-classification 1 2 2 3  P-classification 1 1 2 P-classification 1 3 1 3
P-regression [0 1 3 2  P-regression [JORNON 1 1  P-regression 2 1  P-regression 3 2 3 1
Clustering 3 3 4 4 Clustering 4 2 2 4  Clustering 4 4 4 4  Clustering 4 4 4 4

(i) LOIO-CV (Ais1s) (G) LOPO-CV (Ais15) (k) LOPOAD-CV (Ajs1s) () RI-CV (Ai18)
n n n n

2 3 5 10 2 3 5 10 2 3 5 10 2 3 5 10
Classification. 3 1 Classification. 1 4 4 2  Classification. 3 3 3 3  Classification. 2
Regression 2 1 Regression 1 Regression 1 JOTN0N Regression 1 1 1
P-classification 2 2 1 3  P-classification 1 2 1 2  P-classification 1 1 2 P-classification 1 3 1 3
P-regression [0 1 3 1  P-regression [JORNON 2 1  P-regression 2 [0 P-regression 32 21
Clustering 3 2 4 4  Clustering 4 2 3 4 Clustering 4 4 4 4  Clustering 4 4 4 4
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TABLE S.20: Results of the five algorithm selection systems for n € {2,3,5,10}. Tables (a)—(0) show the Friedman test-based average
., Amy) for the four cross-validation methods, repectively.

rankings of the five systems using the five algorithm portfolios (Axg, ..

(a) LOIO-CV (Axgt)

(b) LOPO-CV (Axt)

(¢) LOPOAD-CV (Aw)

(d) RI-CV (Awt)

n n n n
2 3 5 10 2 3 5 10 2 3 5 10 2 3 5 10
Classification. Classification. 4.03 4.82 2.77 2.77 Classification. 2.84 4.71 3.71 2.74 Classification. 2.02 2.24
Regression 3.47 3.79 Regression 2.94 3.16 Regression 3.00 3.03 3.06 Regression 3.27 3.77
P-classification 2.11 1.65 P-classification 2.29 2.66 2.85 P-classification 2.97 P-classification [{Ii98 1.65 4.06 3.85
P-regression 3.92 4.26 P-regression 3.47 3.21 3.90 2.74 P-regression 3.65 2.98 2.52 P-regression  4.11 4.02

Clustering 4.31 3.79 4.87 4.87

Clustering 2127 1.98 3.92 4.87

Clustering [2155] 2.56 3.92 4.81

Clustering 3.61 4.02 4.34 4.52

(e) LOIO-CV (Adivat)

() LOPO-CV (Aaivat)

(g) LOPOAD-CV (Aaivat)

(h) RI-CV (Adivat)

n n n n
2 3 5 10 2 3 5 10 2 3 5 10 2 3 5 10
Classification. Classification. 3.60 4.89 2.95 2.35 Classification. 2.68- 3.50 2.53 Classification.
Regression 3.27 3.85 Regression 2.84 3.23 Regression 2.81 3.87 2.97 Regression 3.34 3.87
P-classification 1.92 1.69 P-classification 2.87 342 2.81 P-classification 2.89 2.45 P-classification 1.74 1.61 4.06 3.85
P-regression  4.19 4.10 P-regression 3.94 3.00 2.66 3.29 P-regression  4.18 3.73 3.02 2.76  P-regression  4.76 3.71
Clustering 4.10 3.85 4.87 4.87 Clustering [Ii76  2.11 4.19 4.84 Clustering [245| 3.24 3.89 477 Clustering 3.66 4.35 4.35 4.52
(i) LOIO-CV (Ajped) () LOPO-CV (Ajped) (k) LOPOAD-CV (A;ped) (1) RI-CV (Ajpea)
n n n n
2 3 5 10 2 3 5 10 2 3 5 10 2 3 5 10
Classification. Classification. 3.52 4.90 3.05 2.82 Classification. 2.58 4.18 3.69 3.74 Classification. 1.87
Regression 3.29 4.06 3.77 2.53 Regression 3.53 3.34 Regression 3.32 3.16 3.15 2.13 Regression 3.47 3.76 3.84 2.40
P-classification 2.21 1.66 1.65 P-classification 2.52 3.00 2.89 P-classification 231 P-classification - 1.56 1.74 2.34
P-regression ~ 3.68 4.02 3.16 3.45 P-regression  3.52 2.81 2.84 2.98 P-regression  4.11 2.68 3.11 P-regression  4.23 4.15 3.15 3.27

Clustering 4.39 3.73 4.92 4.08

Clustering 1192 2.24 4.10 4.50

Clustering 2.92 3.27 3.89 4.27

Clustering 3.69 4.03 4.77 4.69

(m) LOIO-CV (Abmtp)

(n) LOPO-CV (Abmtp)

(0) LOPOAD-CV (Apmip)

(p) RI-CV (Apmtp)

n n n n

2 3 5 10 2 3 5 10 2 3 5 10 2 3 5 10

Classification. 4.37 Classification. 2.77 2.47 426 Classification. 2.81 Classification. 277
Regression 2.85 2.52 Regression 231 2.24 Regression 2.61 2.81 Regression

P-classification 2.76 2.76  P-classification 3.84 4.94 3.98 3.85 P-classification 2.85 P-classification 3.56 4.37 4.27 3.66

P-regression
Clustering

4.21 3.58 4.26 3.40

2.81 2.53
3.29 2.63 4.03 2.81

P-regression
Clustering

2.63
4.37 4.55 4.55 3.94

P-regression
Clustering

P-regression

Clustering 3.74 3.08 3.81 3.34

(9) LOIO-CV (Ami)

(r) LOPO-CV (Amk)

(s) LOPOAD-CV (Amk)

(0 RI-CV (Ami)

n n n n
2 3 5 10 2 3 5 10 2 3 5 10 2 3 5 10
Classification. 3.61 4.53 Classification. 3.84 2.98 Classification. 2.84 2.40 Classification.
Regression 3.21 2.52 2.69 2.68 Regression 245224 2.66 Regression 2163 3.31 Regression 3.37 2.18

P-classification 3.74 2.65 3.16
P-regression  2.60 2.87 235
Clustering [1584 4.65 4.61

P-classification 2.68 3.63 4.13 4.27
P-regression 2.66 3.63 2.29
Clustering 3.24 3.26 4.19 2.66

P-classification 3.65 3.15 2.87 3.08

P-regression 3.02 444
2.87 3.76 3.16

Clustering

P-classification 3.35 3.98 4.18 3.79
P-regression 2.82 2.61
Clustering 3.97 4.16 4.05 2.98
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TABLE S.21: Results of the five algorithm selection systems for n € {2,3,5,10}. Tables (a)—(0) show the Friedman test-based average
rankings of the five systems using the six algorithm portfolios (Alsz, ..., Ais12) for the four cross-validation methods, repectively.

(a) LOIO-CV (Ais2)

(b) LOPO-CV (Ais2)

(c) LOPOAD-CV (Ais2)

(d) RI-CV (Ai2)

n n n n
2 3 5 10 2 3 5 10 2 3 5 10 2 3 5 10
Classification. 3.19 2.92 Classification. 3.82 4.00 Classification. 2.82 3.32 Classification. 3.03 2.95
Regression 3.45 Regression 2.74 3.02 2.60 Regression 3.11 2.89 4.08 Regression 2.89
P-classification 3.19 2.92 P-classification 3.23 4.29 435 P-classification 2.82 3.32 P-classification 2.95 2.63 4.47 4.53
P-regression  3.40 2.40 P-regression 3.00 P-regression P-regression 2181 2.47[215502156

Clustering [Ii76 4.44 371 3.13

Clustering 2.98 3.00 3.08 2.85

Clustering

Clustering 3.32 4.65 2.89 2.77

(e) LOIO-CV (Ajsq)

() LOPO-CV (Aisa)

(g) LOPOAD-CV (Ais4)

(h) RI-CV (Ajsa)

n n n n
2 3 5 10 2 3 5 10 2 3 5 10 2 3 5 10
Classification. 3.23 Classification. 4.15 421 Classification. 3.21 4.47 3.13 Classification. 247 2.45
Regression 3.79 2.05 Regression 3.39 2.58 Regression 3.81 3.61 Regression 3.21 1.87

P-classification 3.27 2.35
P-regression 2.98 4.90
Clustering - 3.85 4.74 3.39

P-classification 2.76 3.26 3.84 3.05
P-regression 4.27 4.05 2.02 1.98
Clustering 2.73 2.92 3.47 3.85

P-classification 2.65 3.00 2.00
P-regression 3.24 3.06 2.66
Clustering 3.87 3.15 3.23 4.02

P-classification 2.60 2.34 4.19 4.65
P-regression 4.60 4.71
Clustering 3.18 4.23 3.69 3.19

(i) LOIO-CV (Aise)

(j) LOPO-CV (Aise)

(k) LOPOAD-CV (Ajs6)

(1) RI-CV (Ause)

n

n

2 3 5 10

n

n
2 3 5 10

Classification. 3.73

Regression 3.23 2.35

P-classification 3.32 2.35
P-regression  [{l60 5.00
Clustering 3.13 3.26 5.00 4.29

2 3 5 10
Classification. 3.45 4.06 431
Regression %_
P-classification 2.37 3.47 3.60 2.76
P-regression 3.35 4.00 1.77 2.23
Clustering 3.98 2.32 3.84 3.95

Classification. [JIi61] 3.60 4.63 3.00

Regression 3.95 3.02
P-classification 1.85 3.15 2.92
P-regression  3.68]2158 2.08 2.74
Clustering 3.90 2.66 3.31 4.26

2 3 5 10
Classification. 2.23 2.35
Regression m_
P-classification 2.55 3.44 3.95 4.44
P-regression 4.35 4.77
Clustering 3.92 3.42 4.47 3.66

(m) LOIO-CV (Ajss)

(n) LOPO-CV (Aiss)

(0) LOPOAD-CV (Ajes)

(p) RI-CV (Ajss)

n

2 3 5 10

n

n

n

2 3 5 10

Classification. [2108 2.27

Regression 4.15 2.29 2.56 3.58
P-classification 2.13[216 2.50 2.94
P-regression 3.13 4.97 2.50 2.45
Clustering 3.52 3.31 5.00 3.98

2 3 5 10
Classification. 4.42 3.81 3.89
Regression 3.35 2.71 2.60
P-classification 2.85 3.39 3.65 3.40
P-regression 3.23 3.39
Clustering 3.27 1.97 3.81 3.65

2 3 5 10
Classification. 2.31 4.73 4.06 3.60
Regression

4.18 2.15 2.63
P-classification 2.85 3.18 2.31

P-regression 3.76 2.45
Clustering 2.82 2.53 437 440

Classification. [JINI6 2.23 2.02 2.58

Regression 2.89 2.26 2.06[2:34
P-classification 3.00, 4.05 3.71
P-regression 4.08 4.97

Clustering 3.87 3.48 4.90 4.03

(q) LOIO-CV (Ais10)

(r) LOPO-CV (Aus10)

(s) LOPOAD-CV (As10)

(t) RI-CV (Ajs10)

n n n n
2 3 5 10 2 3 5 10 2 3 5 10 2 3 5 10
Classification. 3.02 2.19- 3.18 Classification. 4.05 4.21 3.61 4.06 Classification. 4.39 4.61 4.24 3.73 Classification. 1.90 2.03
Regression 2.44 2.61 3.18 Regression 2.79 2.16 Regression 3.44 2.32 3.18 2.94 Regression 3.06 2.08 2.50
P-classification 3.27 2.48 3.10 P-classification 3.16 4.27 3.15 3.71 P-classification 2.82 3.02 2.85 P-classification 3.18 4.11 4.00 3.87
P-regression 297 497 2.48 3.18 P-regression  [2003 2.74 237142 P-regression  3.02 P-regression  3.84 4.50 2.03

Clustering 3.63 3.27 5.0012137

Clustering 2.97 2.05 3.61 3.65

Clustering 2.56 2.95 3.50 4.34

Clustering 3.63 2.63 4.90 4.65

(u) LOIO-CV (Ajs12)

(v) LOPO-CV (Ajs12)

(w) LOPOAD-CV (Ajs12)

(x) RI-CV (Aus12)

n

2 3 5 10

n

2 3 5 10

n

2 3 5 10

Classification.
Regression

P-regression
Clustering

Classification. 4.08 3.45 3.42 3.92
Regression 2.92 3.06[234 1.97
P-classification 3.10 3.03 3.35 3.77

P-regression 3.44 247|147
2.82 3.42 3.87

Clustering

Classification. 3.40 4.58 4.15 3.84
Regression 3.65 2.94 2.71
P-classification 2.79 2.85 2.69
P-regression 3.81 2.42

Clustering 2.53 2.94 3.95 447

Classification.

Regression 3.53 2.13 2.03 2.87
P-classification 2.52 4.19 4.53 2.68
P-regression 3.77 4.31
Clustering 3.82 2.60 4.47 4.84
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TABLE S.22: Results of the five algorithm selection systems for n € {2,3,5,10}. Tables (a)-(0) show the Friedman test-based average
rankings of the five systems using the three algorithm portfolios (Aisi4, ..., Aisig) for the four cross-validation methods, repectively.

(a) LOIO-CV (Ais14)

(b) LOPO-CV (Ajs14)

(c) LOPOAD-CV (Ajs14)

(d) RI-CV (Ajs14)

n

2 3 5 10

n

2 3 5 10

n

2 3 5 10

Classification.
Regression 3.29 3.39 3.29
P-classification 2.11 1.69 1.73
P-regression  4.00 4.90 4.27
Clustering 4.31 3.65 4.32

Classification. 4.13 3.21 3.35 3.63
Regression 3.31

P-classification 2.37 3.60 2.95 3.55
P-regression  [2:08 3.11 3.77 2.39
Clustering 3.11 2.65 2.71 3.63

4.89 3.44 3.89 3.84
2.65 2.48 3.18 2.66
3.05 2.84 2.56

Classification.
Regression
P-classification
P-regression  3.52

Clustering 2.55 4.06 3.89 4.16

Classification. [[IIS5NIZ4NINIS 2.03
Regression 2.81 3.21 2.68 2.60
P-classification 2.27 1.60 3.06 3.68
P-regression  4.39 4.84 3.56[2100
Clustering 3.98 3.92 4.52 4.69

(e) LOIO-CV (Aisi6)

(f) LOPO-CV (Ais16)

(g) LOPOAD-CV (Ais16)

(h) RI-CV (Ai16)

2 3 5 10

n

2 3 5 10

n

2 3 5 10

n

2 3 5 10

Classification. 4.11

Regression 2.50 3.81 3.06
P-classification 3.53 1.74
P-regression 4.74 471
Clustering 3.10 3.32 4.03

Classification.  3.87 3.02 3.50
Regression 298 3.18

P-classification 3.44 3.19 2.71 3.42
P-regression  [i87 2.98 4.11 2.65

Clustering 3.34 3.23 2.63 3.50

Classification. 4.71 2.55 3.40 3.39
Regression 3.27 3.19 2.26 2.32
P-classification 2.82

P-regression  2.68 3.61 3.45
Clustering 2.18 4.58 3.56 3.85

Classification. [[I¥45 1.61021 2.13

Regression 1.95 3.66 2.34 2.50
P-classification 3.23[Jli58 3.03 3.60
P-regression

Clustering 4.66 3.39 4.40 4.74

3.71 4.81 4.02[2103

(i) LOIO-CV (Ajs18)

(j) LOPO-CV (Ajs1s)

(k) LOPOAD-CV (Ais18)

(1) RI-CV (As18)

n n n n
2 3 5 10 2 3 5 10 2 3 5 10 2 3 5 10

Classification. 4.06 Classification.  3.31 3.29 3.53 Classification. 4.47 2.35 3.45 3.32 Classification.
Regression 247 3.74 2.94 Regression 3.47 2.81 Regression 3.56 3.56 2.32 240 Regression 2.39 3.21 237 2.34
P-classification 3.39 1.77 P-classification 2.69 3.61 2.73 3.45 P-classification 2.81 P-classification 2.85 2.40 3.06 3.47
P-regression 4.74 4.71 P-regression  [Ii74 3.13 4.10 2.66 P-regression  2.34 345 326 P-regression  3.42 4.60 3.95 2.42
Clustering 3.15 3.45 4.10 Clustering 3.79 3.37 2.58 3.53 Clustering 2.34 4.55 3.60 3.95 Clustering 4.74 3.68 4.42 4.65
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Fig. S.19: Number of times which the classification-based algorithm selection system outperforms the SBS in each algorithm

portfolio.
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Fig. S.20: Number of times which the regression-based algorithm selection system outperforms the SBS in each algorithm

portfolio.
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Fig. S.21: Number of times which the pairwise classification-based algorithm selection system outperforms the SBS in each

algorithm portfolio.
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Fig. S.22: Number of times which the pairwise regression-based algorithm selection system outperforms the SBS in each

algorithm portfolio.
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Fig. S.23: Number of times which the clustering-based algorithm selection system outperforms the SBS in each algorithm
portfolio.
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TABLE S.23: Results of the classification-based algorithm selection systems with the 14 algorithm portfolios for n € {2,3,5,10}. Tables
(a)—(c) show the performance score values for the four cross-validation methods, respectively.

(a) LOIO-CV (b) LOPO-CV  (c) LOPOAD-CV (d) RI-CV
n n n n

2 3 5 10 2 3 5 10 2 3 5 10 2 3 5 10
Ay 2 Ayt 5 12 5 1 Ayt 4 6 3 6 Ak 6 2 4 5
Adlvat . 1 1 Adivat 4 4 5 1 Adwar 300 3 3 Aqwas 6 3 4 7
Ajpea 3 2 Ajpea 9 4 8 1 Ajpea 4 6 10 7 Ajpeqa 12 2 3 5
Abmep 8 10 13 12 bmtp 9 6 7 7  Apmep 8 1 3 bmtp 13 13 12 11
Amk 6 4 11 13 Ak 3 2 3 2 Ank 6 31 mk 7 11 13 12
Alsa 9 5 3 4  Age 2 Ajso 2 !- Alsa 4 11 10 8
Aisa 10 - 4 3 A 1 1 1 Ajsa 1 1 Aisa 37 9 8
Aise 1 9 7 5 Aise 2 2 6 Aise - 1 Aise 2 7 8 8
Alss 4 9 6 5 Asgs 1 4 3 8 | Ags 1 8 Alss . 6 3 8
Aisio 4 9 10 10 A0 7 4 3 7 Ao 9 11 Als10 6 3 1
A1z 7 9 11 7 A2 12 13 10 12 A2 6 13 A2 8 7 2
Als1a - 6 3 7 Agia 11 4 10 7 Apga 10 8 Ajs1a 5 2
A6 12 6 6 7 Aisi6 8 4 10 8 Ais16 116 Als16 5
Ap1is 13 6 6 10 Ajiis 5 6 10 12 Aigis 10 10 10 12 Aiis 6

TABLE S.24: Results of the regression-based algorithm selection systems with the 14 algorithm portfolios for n € {2,3,5,10}. Tables
(a)—(c) show the performance score values for the four cross-validation methods, respectively.

(a) LOIO-CV (b) LOPO-CV (c) LOPOAD-CV (d) RI-CV

n n n n
2 3 5 10 2 3 5 10 2 3 5 10 2 3 5 10

A 401 . Ay 1 300 A 201 1 An 2 1

Adlvat 4 1 Adivar 1 3 1 Adwat 2 100 Adwar 2 1

iped 4 1 2 jped L 5 1 iped 2 4 jped 2 1
bmtp 7 13 11 6 bmtp 3 6 11 Apmep 5 1 12 12 bmtp 13 13 12 6
mk 6 9 12 6 mk 1 10 10 11 Ak 2 1 13 6 mk 12 10 13 6
Alsa 10 3 - Ao Alsa 2 2 6 - Alsa 7 2

Alsa 10 4 1 5 Aisa 2 1 5 Alsa 12 3 1 4 Ajsa 8 1
A 12 6 1 J0] A 7 2 00 A 115 Aise 301 1 2
Ans BRI 13 Als 7 6 13 Ags 8 6 12 Aus 2 9 13
Arro 1 7 8 Awo 6 1 6 6 Ao 6 5 6 Awio 3 6 7
Als12 1 7 8 Agi2 6 6 6 6 Age 5 4 6 Agi2 10 6 6
Als14 6 8 Agia 7 10 6 6 Agiqa 2 6 6 Agia 2 6 6
A 7 7 9 8 Awe 1112 6 6 Aws 7 115 6 A 9 9 8
Ais 7 8 9 8 Aws 9 126 6 Aws 6 12 5 6  Awis 9 9 7

TABLE S.25: Results of the pairwise classification-based algorithm selection systems with the 14 algorithm portfolios for n € {2, 3,5, 10}.
Tables (a)—(c) show the performance score values for the four cross-validation methods, respectively.

(a) LOIO-CV (b) LOPO-CV  (c) LOPOAD-CV (d) RI-CV
n n n n
2 3 5 10 2 3 5 10 2 3 5 10 2 3 5 10
At Akt 5 1 3 A [JON1JON 1 A OO 1 1
Adivat Adivar | 5 3 Adqwar 1 1 6 1 Aquay 2 1 2 1
jped Ajped 3013 Ajpea 1 ! jped
bmtp 8 7 12 6 Abmtp 8 11 5 6 bmtp 10 7 6 bmtp 13 11 11 7
Amk 6 6 12 6 Anx 1 4 9 7 mk g§ 5 11 7 mk 11 9 13 12
Alsa 9 5 3 4 A Ajso 2 5 Alsa 6 5 5 5
Aws 9 7 400 A 1 1 Aw 3 8 1 Awe 3 5 21
Aise 11 9 5 4 A 5 1 1 Alse - 7 5 Aise 36 2 1
Alss 4 4 11 6 Ajss 55 5 8 Ajss 2 1 6 13 Apgs 9 4 5 12
Aisi0 4 4 6 8 A0 10 10 12 7 Ao 2 1 5 8 A0 11 9 6 7
A2 6 4 6 8 A2 10 8 12 7 A2 2 1 5 8 Aig12 4 6 115
Acs JOBO 6 8 Ay 5 9 6 7 Awa 17 5 8 Agas 20005 6
A6 12 11 6 8  Aigie 10 10 10 7 A6 10 12 7 8 A6 3 10 5 6
Ai1s 12 11 6 8 Aljs1s 9 10 6 7 Aig1g 10 11 7 8 Alsis 3 11 5 6
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TABLE S.26: Results of the pairwise regression-based algorithm selection systems with the 14 algorithm portfolios for n € {2,3,5,10}.
Tables (a)—(c) show the performance score values for the four cross-validation methods, respectively.

(a) LOIO-CV (b) LOPO-CV (c) LOPOAD-CV (d) RI-CV

n n n n
2 3 5 10 2 3 5 10 2 3 5 10 2 3 5 10
At 32 1 Ak 201 4 3 Ak 4 200 2 A 1 3 1 2
Adivar 9 1 1  Aagvae 2 . I 4 Adqvar 9 1 3 2 Agivar 9 . 1 .

Ajped 4 B0 Ajpea 2 41 Ajpea 2 [0 3 JON Ajpea 1 4
Abmep 3 5 9 7 bmtp 7 11 6 8 bmtp 2 1 3 10 bmtp 8 5 8 7
Amke BON 3 9 1 mk 1 10 8 8 mk 1 1311 8 mk 1 4 11 2
A TN A BN A B SR A S
Ags 1010 1 3 Ag 10 6 1 2 A 1212 5 Aws 1310 1 1
A 1010 5 5 Agg 8 4 3 1 Ag 101 1 1 Ag 115 4 3
Ags 7 5 138 Ag 9 5 4 10 Ag 5 1013 A 9 5 5 13
Alsio 1 5 7 9 Ais1o 2 3 4 2 Ais1o 2 1 4 6 Ais1o 4 5 8 10
Atz B0 7 5 9 Az 2 3 6 3 Ag2 4 1 3 6 Ag2 3 5 6 8
Agia 1 55 9 Agia 2 5 9 8 Aga 4 1 59 Agy 4 7 6 7
Aisie JOJ12 10 13 Ae 2 10 12 12 A 5 5 13 10 Age 1 12 11 10
Als1s 1 12 10 9 Ajgis 2 12 12 12 Ay 3 4 12 8 Als1s 1 12 11 7

TABLE S.27: Results of the clustering-based algorithm selection systems with the 14 algorithm portfolios for n € {2,3,5,10}. Tables
(a)—(c) show the performance score values for the four cross-validation methods, respectively.

(a) LOIO-CV (b) LOPO-CV (c) LOPOAD-CV (d) RI-CV
n n n n
2 3 5 10 2 3 5 10 2 3 5 10 2 3 5 10
Axt 5 3 4 Axt 6 3 4 Axt 4 4 At 1 4 2 5
Adivas 4 I 3 4 Adwat I 4 3 5  Adivat . 4 4 Adqivas 2 4 2 5
Appea 30003 3 Ajpea 43 4 Apes 4 4 Ajpea JOWION 2 3
bmtp 3 13 13 7 bmtp 10 13 13 8 bmtp 13 12 10 7 Abmep 10 13 13 10
Ak 2 10 6 3 Ak 5 2 5 3 mk 2 3 3 Ak 7 8 7 3
Ajs2 . 5 r Ais2 r Ajs2 41 Ajs2 4 [oo
Alsa 6 1 Alsa 1 1 1 Aisa 5 2 1 Alsa 5 1 1
Aise 36 2 2 Alse 6 3 2 1 Alse 5 2 1 Alse 1 9 2 1
Alss 3 35 Aiss 5 2 35 Alss 37 77 Alss 2 75
Ao 3 33 Ano 5 2 35 Ao 4 7 7 7 Awo 2 . 7 4
Az 21010 8 Ags 5 3 3 9 Aws 3 7 7 7 Ams 2 8 8 8
A4 3 3 6 Agiga 5 1010 5 Ajsi4 10 10 10 9 Aj1a 2 - 6 6
As 1110 4 11 A 12 11 3 12 Ag 1111 12 12 A 11 9 6 12
Ap1s 11 10 5 11 A 12 11 3 12 Ajas 10 11 12 12 A 11 10 6 12
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TABLE S.28: Results of the classification-based algorithm selection systems with the 14 algorithm portfolios for n € {2,3,5,10}. Tables
(a)—(c) show the Friedman test-based average rankings for the four cross-validation methods, respectively.

(a) LOIO-CV (b) LOPO-CV (c) LOPOAD-CV (d) RI-CV
n n n n
2 3 5 10 2 3 5 10 2 3 5 10 2 3 5 10
Ay, 289397 258 Ape 852 12427.74 402 Ay, 639 9.48 7.90 658 Ax,  9.52 497 6.90 6.31
Adivas 258 3.00 3.13 Adivas 7.00 7.32 7.58 410 Aqivar 5.84 4.06 6.13 545  Agivar 8.81 539 6.97 7.29
Ajpea 419 377 3.06 2.68 Ajpea 10427.87 9.68 402 Ajpea 7.00 7.74 11.528.81  Ajpea 1177439 552 631
Abmip 932 11.1913.2312.74 Apmip 739 9.06 9.06 9.61  Apmgp 877200 2.39 542 Apmp 13.4513.8412.9711.81
Amie 729 590 122613.10 Ay 5.23 3.94 548 481  Ap 748 3.65 632 265 Amie  9.39 11.6113.4812.48
2 9.06 6.87 474 497 A, 545 171 2 5.71 490 Az 5.58 11.5510.529.68
Aiea 903223 6.16 410 Ay 3.6 223 403 Apq 355406 329 297 A, 4.87 9.68 9.39 9.10
A 11.4510.818.81 639 A 3.94 326 723 A 4.65 6.65 577 A 3.13 923 9.29 9.55
As 603 11.397.87 700 Aps  3.90 7.90 7.06 10.13 Az 3.61 9.68 7.13 9.87 Aj.s 8.68 6.55 10.55
Aio 568 11.2911.1910.71 Ajg1o  9.10 829 5.52 10.65 Ajc10  8.94 10.978.45 10.13 Apqo  2.13 7.39 6.68 4.71
A1z 829971 1235881 Ao 13.10132312.2911.90 Ao 9.77 13.879.68 10.94 Ays  10.459.35 6.35 4.00
Aic1a 281 826 506 929 Aigq 1100918 11.109.77  Aigia  11.9010.3511.7710.84 Ar1a  8.23 2.61 4.77)304
Alsie 13.16829 8.00 9.13  Ajais  10.299.18 11.6110.65 A1 12.587.65 11.6111.68 Ajss 697 3.00 3.87
Als1s 1371832 7.03 11.13 Ajrs  8.84 9.39 11.3912.87 A 11.6111.2311.1012.90 Ajqs 8.74%- 5.61

TABLE S.29: Results of the regression-based algorithm selection systems with the 14 algorithm portfolios for n € {2,3,5,10}. Tables
(a)—(c) show the Friedman test-based average rankings for the four cross-validation methods, respectively.

(a) LOIO-CV (b) LOPO-CV (c) LOPOAD-CV (d) RI-CV
n n n n
2 3 5 10 2 3 5 10 2 3 5 10 2 3 5 10
A 529 666 3.84 3.1 A, 519 581 452260 A, 455 7.55 481 3.18 A, 6.29 6.03 40631
Adivas 487 7.13 397298  Adivas 5.65 556 4.03 331 Adivas 7.55 4.19 2.85 Adivas 648 623 3.52 3.52
iped 426 6.69 481 390 Ajpea 677 595555373 Ajpea 571 648 5.16 Ajpea 6.03 5.87 3.74 3.71
bmtp 810 12.8712.137.13  Apmep 7.00 6.19 10261126 Apmep 7.10 545 11.7113.00 Apmep, 13.3913.1912.398.61
mk 668 10.5212.777.58  Api 490 9.81 11.6111.68 Ay 4.97 7.81 13559.71 A 11.8410.6513.719.55
Az 10426.10 342 Ay 5.10 Az 7.03 7.06 406223 A2 8.52 632 4.69
Ajga  10.818.00 3.77 490 Ajeqs 590 648 229 7.03 Ajq 1271800 5.13 5.89 A 9.16 7.16 423 4.74
Ajgg 1181916 3.03 3.58 Ajq  9.19 677 3.48 324 Ajg  11.659.00 263 Aie 748 642 432 439
Algg 1220490 12.941245 Aig  8.71[H97 10.2613.58 Ajg  9.10 5.55 9.35 13.16 Aig  6.58 6.35 9.90 14.00
Aicio 500 445 9.10 11.13 Ao 897 632 9.77 874 Ao 8.03 6.94 832 958 Ao 7.295108 8.94 9.90
Ajgia 516 426 894 1071 Ajg1o 845 7.29 10.71848 A2 7.19 590 839 9.13 A1z 9.35 5.90 8.42 9.65
Ag14 739 11.00 Ajgrs  9.55 9.71 9.68 9.10  Ajgrq  5.19 6.94 932 9.68 Aj1q  5.74 5.26 7.77 8.55
Ajgis 832 10.1310.1911.76 Aje1e  11.0012.5211.039.69 Aiis 874 1077897 971 A 3.48 10.3211.4210.42
Ajgig 829 10.0010.4511.34 Ajys  10.8712.5210.3910.08 Ajis 8.5 11.588.39 9.10 Ais [3185 10.2311.2310.16

TABLE S.30: Results of the pairwise classification-based algorithm selection systems with the 14 algorithm portfolios for n € {2, 3,5, 10}.
Tables (a)—(c) show the Friedman test-based average rankings for the four cross-validation methods, respectively.

(a) LOIO-CV (b) LOPO-CV (c) LOPOAD-CV (d) RI-CV
n n n n
2 3 5 10 2 3 5 10 2 3 5 10 2 3 5 10
Aie 310 395 2501209 Ay,  [B08 7.40 323 482 Ak, 658 6.65 4.10 335 Ay,  [2I68 3.44 339 4.58
Adivas [228 426 2.63 3.61  Adivas 6.52 2.68 774 468  Adiva; 6.74 6.94 7.13 439 Agiva; 448 339 4.90 3.74
iped 342 3.89 242 Ajpea 5.13 408 358 418 Ajpea 565500 3.16 Ajpea 2.84 3.15
bmtp 919 10.0312.908.77  Apmep 9.65 12.007.68 694  Apmep 11.3 10.297.84  Apmep 13.0612.0011.489.61
Amie 774 8.13 13269.10  Apmx  6.06 5.81 10.2310.94 Ay 10.068.35 11.658.23 A 11.559.84 13.8112.77
Az 990 7.26 387 529 A, 442 Ao 774 845 3.03 s 826 7.10 8.48 7.26
Awa  102310.164.58 2.68 Ajoy 532 2.77 3.26 290 Ajeq  8.39 9.48 384 Apa 626 777 477 4.16
Ae 11681048674 5.10 A 429 681 4.19 329 Ay 442 9.06 494 532 Ag 745 8.06 5.10 4.35
As 655732 10681029 Ais  7.58 7.81 7.94 11.58 Aigs  6.21 5.16 9.55 1274 As  9.52 5.48 8.03 12.90
Aiio 639 694 935 1145 Ao 11.8711.9712.520.97 Ao 6.66 5.97 8.71 10.77 Ao 10.3910.168.77 9.10
A1z 7.58 7.90 10.1310.58 Ao 10.488.77 13.0311.10 Ajg12  6.61 5.84 9.03 10.77 A1z 8.13 8.45 12.267.81
Aicia 3298168 8.45 1148 Ajgq 739 974 9.10 1132 Aigia 626 8.65 7.94 1113 Aia  6.45[281 6.5 8.68
Als1e 12191016929 11.13 Ajye  12.0611.8111.291048 Ay 9.53 11.0210.3210.68 Aj16  6.81 11.618.00 8.65
Ars  11.5210.848.97 1090 A5 10.1611.688.84 10.97 A1s  10.219.85 10.3211.00 Aiys  7.13 11.848.13 8.68
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TABLE S.31: Results of the pairwise regression-based algorithm selection systems with the 14 algorithm portfolios for n € {2, 3,5, 10}.
Tables (a)—(c) show the Friedman test-based average rankings for the four cross-validation methods, respectively.

(a) LOIO-CV

(b) LOPO-CV

(c) LOPOAD-CV

(d) RI-CV

n

2 3 5 10

n

n

n

2 3 5 10

2 3 5 10

2 3 5 10

At
Adlvat
-AJ' ped
Abmtp

mk
-AISZ
Ajsa
Aise
AlsS
Alle
Als12
Ajs1a
Alsie
AlslS

6.74 4.68 3.39 4.26
9.74 2.55 3.00 3.52
4.90[197 5.26 3.97
7.03 7.68 10.657.77
5.35 11.104.10
11.942.74
11.6111.033.32 4.90
10.3210.587.45 5.48
8.39 8.19 13.529.94
532758 874 11.94
526 9.26 732 11.13
6.74 7.55 7.45 11.03
5.58 12.9011.4812.97
7.35 12.9411.2611.52

At
Adivat
-Ajped

8.84 6.03 7.68 6.32
8.65 2.84 6.42
7.32 6.35 3.81

Abmep 9.10 10.778.81 10.10

mk
A2
Aisa
Aise
AlsS
Alle
Ajs12
Aisi4
Aisie
AlslS

3.74 11.0610.5210.48 A

4.52
11.138.61 2.48 5.13
9.87 7.94 4.52 3.52
10.457.84 6.94 11.16
7.23 5.58 8.26 6.29
7.13 6.10 8.84 6.32
6.77 7.16 10.009.00
6.48 11.6813.2912.94
7.23 11.7113.3212.19

At
Adlvat
-Aj ped
Abmtp

mk
Als2
Ajsa
Aise
AlsS
Alle
Als12
As14
Alsie
AlslS

7.71 8.42 435 4.65
10.167.00 6.29 4.45
5.06]2381] 6.29 3.00
6.29 6.00 6.77 11.90
[368 13.7711.749.32
3.74 7.06 7.29
12.0310.2'3.97 6.35
10.587.35 5.45 3.52
8.00 6743194 13.32
5.74 6.68 7.39 8.29
7.5 6.55 7.52 7.39
7.23 6.00 7.55 1071
8.97 8.42 13.7411.65
8.26 7.90 12.718.58

At
Adivat
-Ajped
Abmtp
Amk
Az
Ajsa
Aise
AlsS
Alle
Als12
Ajsi4
Aisi6
AlslS

6.06 4.61 3.42 4.74
9.68 3.03 2.94 4.03
7.48 2.61 5.42 3.32
9.10 7.68 9.81 9.10
5.48 5.90 12.654.71

12.7710.873.55 4.19
11.458.65 6.94 5.52
9.29 8.35 7.45 13.71
7.42 7.45 9.68 11.90
7.13 8.29 8.55 9.39
6.84 8.97 8.23 9.32
5.71 13.1012.5511.74
5.35 13.0612.7410.35

TABLE S.32: Results of the clustering-based algorithm selection systems with the 14 algorithm portfolios for n € {2,3,5,10}. Tables

(a)—(c) show the Friedman test-based average rankings for the four cross-validation methods, respectively.

(a) LOIO-CV

(b) LOPO-CV

(c) LOPOAD-CV

(d) RI-CV

n

2 3 5 10

n

n

n

2 3 5 10

2 3 5 10

2 3 5 10

A
Adivat
-Ajped

8.32 5.97 7.63 8.26
8.58 5.21 7.60 8.00
8.48)434 7.26 5.23

Abmtp 929 12.8411.5510.35

mk
Ajs2
Alsa
AlsG
-AISS
Aisio
Ajsi2
Alsia
AlslG
AlslS

5.19 11.4510.196.32

6.77

6.55 1.82 2.32
7.90 8.16 3.68 3.27
6.65 4.73 7.53 8.71
7.00 4.44 8.47 6.84
7.56 4.94 11.3210.03
7.08 6.39 7.61 8.97
10.5511.489.16 12.74
11.0611.749.58 12.26

Axs
Adivat
Ajped

4.82 8.42 8.45 7.34
4.61 7.48 8.84 7.63
3.85 8.42 8.23 6.00

Abmep 11.2313.1613.459.74

mk
Ajs2

1s4
AlsG
AlsS
Als10
Ajsi2
Aisi4
Alsl&
AlslS

7.10 4.87 8.74 4.26

5.29 2.03 2.90 2.90
9.00 6.00 4.10 3.39
7.10 5.47 7.73 8.98
7.42 5.89 7.95 7.61
7.44 7.16 7.42 10.31
8.02 9.90 10.429.32
12.8212.027.81 12.76
12.6612.477.94 13.56

At
Adivat
Ajped
bmtp
mk
Ajs2
Alsa
AlsG
AlsS
Aisio
Alsi2
Alsia
AlslG
AlslS

3.65 6.65 6.73
3.76 6.77 6.92
4.77 4.55 6.26 6.35
12.8413.6111.659.77
4.61 4.06 4.65 4.26
6.00 4.55
7.45 5.16 1.87 2.13
6.84 5.35 3.19 3.16
7.47 9.02 7.98 8.87
7.85 9.24 8.15 8.58
6.97 7.32 9.03 9.84
9.32 9.90 10.4810.58
12.0512.6113.1613.10
11.6912.3913.5213.45

Ay
Adivat
Ajped
bmtp
mk
Ajs2
1s4
AlsG
A]sS
Als10
Ajsi2
Alsi4
AlslS
AlslS

5.61 7.26 5.40 9.13
6.42 6.61 5.34 9.29
5.29 435 4.52 5.39
10.8713.1613.1010.42
8.90 8.55 10.355.94

6.06

7.39 3.13 2.47
6.55 9.97 5.23 2.61
7.37 3.56 10.298.34
6.85[3134 10.616.47
6.16 9.32 9.26 9.74
6.10 4.16 8.24 8.39
12.449.84 9.03 12.71
12.6011.429.11 12.81
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