
Impact of boundary control methods on bound-
constrained optimization benchmarking

Citation
KADAVÝ, Tomáš, Adam VIKTORIN, Anežka KAZÍKOVÁ, Michal PLUHÁČEK, and Roman ŠENKEŘÍK.
Impact of boundary control methods on bound-constrained optimization benchmarking. IEEE
Transactions on Evolutionary Computation [online]. vol. 26, iss. 6, Institute of Electrical and
Electronics Engineers, 2022, p. 1271 - 1280 [cit. 2024-02-01]. ISSN 1089-778X. Available at
https://ieeexplore.ieee.org/document/9878135

DOI
https://doi.org/10.1109/TEVC.2022.3204412

Permanent link
https://publikace.k.utb.cz/handle/10563/1011139

This document is the Accepted Manuscipt version of the
article that can be shared via institutional repository.

publikace.k.utb.cz

https://ieeexplore.ieee.org/document/9878135
https://doi.org/10.1109/TEVC.2022.3204412
https://publikace.k.utb.cz/handle/10563/1011139
https://publikace.k.utb.cz/

Impact of Boundary Control Methods on Bound-constrained

Optimization Benchmarking

Tomas Kadavy, Adam Viktorin, Anezka Kazikova, Michal Pluhacek, Member, IEEE, and Roman

Senkerik, Member, IEEE

Faculty of Applied Informatics, Tomas Bata University in Zlin, nam. T. G. Masaryka 5555, Zlin 76001,

Czech Republic {kadavy, aviktorin, kazikova, pluhacek, senkerik} @utb.cz

Abstract

Benchmarking various metaheuristics and their new enhancements, strategies, and adaptation

mechanisms has become standard in computational intelligence research. Recently, many challenges

and issues regarding fair comparisons and recommendations towards good practices for benchmarking

of metaheuristic algorithms, have been identified. This paper is aimed at an important issues in

metaheuristics design and benchmarking, which are boundary strategies or boundary control methods

(BCM). This work aims to investigate whether the choice of a BCM could significantly influence the

performance of competitive algorithms. The experiments encompass the top three performing

algorithms from IEEE CEC competitions 2017 and 2020 with six different boundary control methods.

We provide extensive statistical analysis and rankings resulting in conclusions and recommendations

for metaheuristics researchers and possibly also for the future direction of benchmark definitions. We

conclude that the BCM should be considered another vital metaheuristics input variable for

unambiguous reproducibility of results in benchmarking and for a better understanding of population

dynamics, since the BCM setting could impact the optimization method performance.

Index Terms—Evolutionary computation, computational intelligence, performance evaluation,

benchmark testing, boundary control method, optimization.

I. Introduction

In recent decades, metaheuristic algorithms have become popular and frequently used tools for

solving optimization tasks of various levels of complexity in both real and discrete domains. Ongoing

research in metaheuristic [1] is undoubtedly focused on expanding the theories, hybridizations [2],

hyperparameters tuning [3], implementing new learning and adaptive mechanisms, and of course,

benchmarking [4].

Any newly introduced improvements or new strategies of metaheuristic algorithms typically prove

their efficiency and robustness on a set of test problems with various characteristics. Popular official

benchmarking testbeds are IEEE CEC benchmarks1 [5] and COCO2 platform [6] BBOB testbed. The

results of benchmarking competitions impact the design, comparisons, and modifications direction of

metaheuristic algorithms in the next few years.

Recently, challenges and questions have been raised regarding good practices for benchmarking of

metaheuristic algorithms [7], and fair comparisons with more in-depth insights into statistics [8].

1https://github.com/P-N-Suganthan

2https://coco.gforge.inria.fr/

Best practices in benchmarking represent a significant open issue nowadays when metaheuristic

algorithms are used for increasingly more complex optimization problems, and it is beneficial to

improve the comprehensibility of the results and resulting recommendations. That is why researchers,

independently and with the support of an IEEE professional organization, have recently set up a

benchmarking network3 and taskforce4.

This paper aims at an important matter in metaheuristics design and benchmarking, which are the

boundary control methods (BCM). We provide extensive analysis resulting in conclusions and

recommendations for metaheuristics researchers and possibly also for the future direction of

benchmark testbeds profiling.

Regardless of the origin of the optimization task, one of the common attributes is that the optimized

parameters are subject to certain limits (bounds). The specified parameter bounds are often caused

by real-world limitations or the test function(s) definition. Because of the inherent presence of

randomness in metaheuristic algorithms, a trial solution could arise outside of the set parameter

boundaries. Such a situation may represent a significant hurdle for solving a particular optimization

task. The straightforward approach to handle box constraints lies in the checking of each newly

generated solution if such a solution still meets the criteria of parameter bounds. In case that the newly

created parameters are located outside the space of feasible solutions, specific corrections have to be

made.

The motivation for this research is based on the findings in several of the authors’ papers [9], [10], [11]

(details are given later in this section), where the influence of BCMs on the performance of selected

basic versions of metaheuristic algorithms was examined. Thus, a research question arose as to

whether the choice of a BCM could significantly influence other competitive algorithms, especially the

CEC competition winners. Furthermore, it was motivating to find out whether just changing the BCM

can help achieve even better results for the top three performing algorithms from a given year of the

competition, possibly changing their final order. The results presented here showed that the impact

on the empirical performance of the top 3 algorithms from CEC17 is affected by choice of BCMs.

It is our intention for the boundary control methods to be considered as one of the hyperparameters

of metaheuristics, which must not only be carefully optimized and selected but must also be included

in the description of the algorithm for unambiguous reproducibility of benchmarking results and a

better understanding of population dynamics of metaheuristics.

The problem of BCMs is covered in a number of research publications with different levels of problem

coverage. For the Particle Swarm Optimization (PSO) algorithms, the experimental analysis of bound

handling techniques written by Helwig, Branke, and Mostaghim in 2012 [12] compare several BCMs

used for the PSO algorithm and concluded that such methods can have a major impact on the algorithm

performance and may introduce a significant search bias. The comparison also took into account

various aspects of PSO, such as the velocity of individual particles and the variables of the best position.

Oldewage, Engelbrecht, and Cleghorn published a similar extensive study of BCMs aimed at PSO

algorithm in 2018 [13]. The study concluded that the bestperforming method was hyperbolic (the

method uses one of the main characteristics of PSO, the velocity vector), which is, however, limited

only to PSO. Another, slightly less detailed, research done by Clerc in 2006 [14] represents the BCMs

as ”confinements” in PSO and describes and tests several of them on a limited data set. A similar study,

but with a different set of compared methods was done in 2004 by Zhang et al. [15].

3https://sites.google.com/view/benchmarking-network/home

4https://cmte.ieee.org/cis-benchmarking/

 Michalewicz and Koziel published the comprehensive study on parameter bounds, mixed with

constrained numerical optimization for Genetic Algorithms (GA) in [16], [17]. The paper by Mostaghim

et al. in 2006 [18] is focused on a multiobjective version of PSO, and although the main focus is devoted

to objective function constraints, part of the work summarizes the BCMs of a previous work, which

was focused primarily on objective function constraints. Four boundary handling techniques were also

discussed in the tutorial paper for the Covariance Matrix Adaptation Evolution Strategy algorithm

(CMA-ES) by Hansen [19]. However, the influence of these methods on the performance of CMA-ES

was not part of the tutorial paper. A recent study [20] investigated the BCM for CMA-ES more

thoroughly. The article by Ronkkonen et al. [21] concerning the DE algorithm describes a BCM where

the trial solution is reflected from the bound by the amount of the violation. A similar technique is

used in papers by Brest et al. [22], [23] by Price and Storn, in [24] by Guo et al., and in [25] by Zhang et

al. More detailed work on a structural bias (mainly caused by boundary constraints) with detailed

results and discussion was done by Caraffini et al. in [26]. A detailed study about BCM for DE can be

found in the recent paper [27].

Obtained results and suggestions from the collected works imply that the boundary control methods

might have a direct impact on the overall performance of a metaheuristic algorithm; however, many

newly introduced algorithms, tutorials, or overviews omitted or neglected this fact. Just to mention a

few: a tutorial for PSO [28], general paper for Evolutionary Algorithms (EA) [29], articles focused on

the Firefly Algorithm (FA) [30], [31], publication on the Cuckoo Algorithm [32], or the paper that

introduced new mechanics for Differential Evolution (DE) [33].

The following quote comes from an article on experimental analysis of BCMs in Particle Swarm

Optimization by Helwig et al. [12]:

”As was shown, the bound handling technique has a huge impact on the performance of PSO, especially

if the number of dimensions of the search space is high, as this dramatically increases the probability

of a particle leaving the feasible area.”

Alongside the researched articles, the authors own previous work also confirms the described general

conclusion. A study published in 2017 [9] concluded that a selection of used BCMs affects the

performance of an algorithm. The study compared Clipping, Random, Periodic, and Soft methods on

the generic version of PSO and the more advanced variant called Attractive and Repulsive PSO (ARPSO)

[34]. A paper from 2018 [10] compared Clipping, Random, Reflection, and Periodic methods on the

FireFly Algorithm (FA) and on a hybrid of FA and PSO, called FFPSO [35]. The experiments were

performed on CEC 2017 benchmark set [36]. A recent study published in 2019 [11] examined the

influence of BCM on SOMA All-To-One and All-To-All. The study compared Clipping, Random,

Reflection, and Periodic methods on the CEC 2017 benchmark set and concluded that for both tested

versions of SOMA, the BCMs Random and Periodic achieved better results than other two BCMs.

To conclude the introduction, the motivation behind the paper is to establish if the BCM can influence

the algorithm performance from the competition results point of view. Thus, raise awareness about

the need for careful selection of the BCM, similar to other hyperparameters of the metaheuristic

algorithms. The presented results confirm that ill-selected BCM can negatively influence the

algorithm's overall performance.

II. Boundary Control Methods

This section contains summarized list of commonly used boundary control methods (BCM). The list

consists of strategies that can be applied to a generic metaheuristic algorithm; therefore, it is not a

complete overview of all existing strategies. The selected BCMs are frequently used among the

algorithms submitted for studied competitions (CEC17 and CEC20).

The following list contains mathematical representations of BCMs; hence, the recapitulation and

meaning of the variables used in individual equations are included here. One individual solution 𝑋 =

 {𝑥1,𝑥2, ⋯ ,𝑥D} is a vector of real-valued parameters of length 𝐷, which stands for the dimensionality

of the search space. Each parameter 𝑥j (dimension) has defined bounds, which delimit the space of

feasible solutions. The parameter bounds are defined as 𝑋𝐽
𝐿 ≤ 𝑥j ≤ 𝑋𝐽

𝐻, where 𝑋𝐽
𝐿 is the lower bound

and 𝑥𝐽
𝐻 is the upper bound for 𝑗-th dimension.

1) Clipping: The first listed method is rather simple in principle, as well as quite easy to implement and

probably often one of the first choices. Each individual solution x cannot cross the given boundaries in

any dimension; the individuals are instead ’’clipped” to the given parameter bounds. The equation

describing the clipping method is given in (1).

TABLE III: Friedman ranks for CEC17. The values in each BCM column represent the Friedman rank in a particular row; the

lower the value, the better rank of the algorithm. The p-values are accompanied by the symbol representing different

significance levels: ∗ = 0.1, †= 0.05, ∗∗ = 0.01, ∗∗∗ = 0.001. The last column CD stands for Nemenyi Critical Difference -if

two BCM ranks differ more than CD value, they are significantly different.

TABLE IV: Friedman ranks for CEC20. The values in each BCM column represent the Friedman rank in a particular row; the

lower the value, the better rank of the algorithm. The p-values are accompanied by the symbol representing different

significance levels: * = 0.1, †= 0.05, ** = 0.01, *** = 0.001. The last column CD stands for Nemenyi Critical Difference -if two

BCM ranks differ more than CD value, they are significantly different.

The 𝑋ⅈ,𝐽
𝑘+1 is the 𝑖-th individual in 𝑗-th dimension in 𝑘 + 1 calculation step, and the pair 𝑋𝐽

𝐻 and 𝑋𝐽
𝐿

represents the parameter bounds, maximum and minimum respectively.

2) Random: If a trial solution violates the boundary in any dimension, the position for this individual

in a particular dimension is reinitialized inside the lower and upper bounds (with a pseudo-random

number generator using uniform distribution - 𝑈). Again, this technique is simple to implement, as

the equation (2) shows.

3) Reflection: As the name suggests, the reflection method reflects the individual back to the feasible

space of solution if it tries to violate the defined borders. This technique resembles the reflection

characteristic of a mirror. The correction of a position of an individual in the violated dimension is

computed as (3).

4) Periodic: This possible solution to prevent the infeasibility takes advantages of an infinite space of

solution (infinite copies of the optimized hyper-space). This method involves only mapping the

individual back to the space of available solutions using the modulo function.

5) Halving the Distance: The principle of this method is to halve the distance between the original

position and the crossed bound. The implementation is slightly more complicated than previous

techniques because the algorithm must keep track of the starting position of an individual 𝑋ⅈ,𝐽
𝑘−1.

TABLE I: CEC17 - Algorithm overview

III. Experiment setup

Since 2005 [37], a new benchmark set for single-objective optimization for continuous problem domain

as a special session in IEEE Congress on Evolutionary Computation (CEC) is announced regularly. The

composition of included test functions is periodically updated over the years. The series of CEC

benchmark, therefore, represents a substantial pool of the most suitable test functions. Recent CEC

benchmark test suites [5] encompass four groups of test functions: unimodal, multimodal, hybrid, and

composition functions. An advantageous feature of the CEC benchmark is the fact that all incorporated

test functions are defined with equal and static (same values across all dimensions) search range for

all parameters. The original implementation also supports a shift of the global optimum and rotation

of each function.

One exception among the CEC benchmarks is the CEC19 [38] , which consists of 10 test functions, each

of a different search range of parameters.

This paper is focused on the three top ranking participants of two recent benchmark competitions:

CEC17 [36], and CEC20 [39]. The goals for both testbeds are to:

• determine which BCM was used by the three winning algorithms,

• examine if there is a better choice of a BCM for a particular algorithm,

• if the algorithms used a different BCM, could it have changed the final order?

The description of each benchmark is summarized in the following subsections alongside the

descriptions of the three top ranking algorithms of each benchmark.

A. CEC17

The testbed CEC17 published in 2016 [36] encompasses 30 test functions for dimension sizes of 10, 30,

50, and 100. The following subsections briefly describe the top three performing algorithms according

to the official results [40]. Table I contains a list of all participants, including the used boundary control

method, and if the BCM was mentioned in the accompanying paper.

1) EBOwithCMAR: An algorithm originally proposed for the CEC17 benchmark and successfully

obtained the first position among 11 competitors. The hybrid algorithm is based on the Effective

Butterfly Optimizer (EBO) and Covariance Matrix Adapted Retreat phase (CMAR), which improves the

local search capability of EBO. The paper [41] does not specify any used BCM; however the analysis of

the code of the algorithm showed that EBOwithCMAR uses two BCMs, Halving for EBO and Clipping

for CMAR.

TABLE II: CEC20 - Algorithm overview

2) jSO: The jSO [43] represents an improved variant of the iL-SHADE algorithm [53] and ranked in

second place. The improvement lies predominantly in the new version of the mutation strategy. The

jSO uses Halving BCM, which is referred in the paper as a “repeat mechanism” without any detailed

description or citation.

3) LSHADE-cnEpSin: The third algorithm used in this study represents extension to the LSHADE-EpSin

[54], which was ranked as the joint winner in competition IEEE CEC 2016. The enhancement lies in the

ensemble of sinusoidal approaches and covariance matrix learning for the crossover operator. The

LSHADE-cnEpSin [42] ranked third in the CEC17 competition and uses Halving BCM, which is

unfortunately not mentioned in the paper by the authors.

B. CEC20

The CEC20 benchmark [39] introduced in 2019 includes 10 test functions for dimension sizes of 5, 10,

15, and 20. Again, the following subsections briefly describe the top three performing algorithms

according to the official results [55], and Table II contains a list of all participants, what boundary

control method they used, and if the BCM was mentioned in the related paper.

1) IMODE: This Differential Evolution (DE) based algorithm ranked as the winner in the CEC20

competition. IMODE [56] benefits from multiple differential evolution operators, with more emphasis

placed on the best-performing operator. The algorithm employ two BCMs: Clipping and Halving,

selected randomly each time it is used. Unfortunately, BCMs are not mentioned in the paper.

2) AGSK: The AGSK is the second-best performing algorithm in the CEC20 competition. AGSK [57] is the

enhanced version of the Gaining Sharing Knowledge-based algorithm (GSK) [67], which uses adaptive

settings to its control parameters. The algorithm utilizes Halving BCM; however, this is not specified by

the authors.

3) j2020: The algorithm [58] ranked third place in the competition and it is based on the two self-

adaptive DE algorithms jDE [68], and jDE100 [69]. The used BCM is Periodic, which is mentioned in the

paper.

The source codes of the three top ranking algorithms of both CEC competitions were provided by the

organizer of the competitions via GitHub5.

It was found out that algorithms implemented in the programming platform Matlab and belonging

mainly to the DE family of algorithms used the same, or similar, library for BCM, which contains the

implementation of the Halving BCM. This probably encourages the researchers to use it, as it is already

prepared.

IV. Results

This section presents the results of both experiments performed for benchmarks CEC17 and CEC20.

Each test scenario used a different number of independent runs as defined by the used benchmark.

CEC 17 testbed defines 51 independent runs, while CEC20 testbed requires 30 independent runs.

This section is divided into three subsections. Each subsection describes one used methodology:

Friedman rank test, CEC scoring system, and selection of the best performing BCM variant for the

algorithms.

A. Friedman rank test

As a first step, each algorithm was tested and evaluated while using different BCMs. The evaluation

was performed by Friedman rank test [70] and the results are presented in Table III for CEC17 and

Table IV for CEC20. The values in cells are the rankings for each algorithm for particular dimension size.

The columns indicate the tested BCM. If the algorithm used different BCM than the selected (Clipping,

Random, Periodic, Reflection, Halving), the column Default was used. Otherwise, this column states

the name of the used BCM of the algorithm. The last column contains p-values of the Friedman rank

test. The tested significance levels are 0.1, 0.05, 0.01, and 0.001. Each level corresponds to a certain

symbol: *, †, **, and *** respectively. Therefore, a symbol represents the significance level of the

result. The last row of each algorithm also contains the mean rank (given in bold) across the dimension

sizes for a particular BCM. The last column CD stands for Nemenyi Critical Difference - if the difference

between a pair of BCMs’ ranks is higher than CD value, they are significantly different. For example, in

Table III, the Periodic BCM in LSHADE-cnEpSin in 10D is significantly different (better according to rank)

from Clipping BCM. But the same Periodic BCM is not significantly different from Random BCM.

Table III contains higher number of results with statistically significant difference than Table IV. The

likely reasons are that: the CEC20 benchmark contains only 10 test functions, lower dimensionality

might cause a lower number of BCM use (see [12] - low dimensionality leads to a lower probability of

creation of an infeasible trial solution), and the top ranking algorithms in the competition are robust

and similar in the performance.

B. CEC scoring systém

The second step was to use the scoring system employed by the CEC competitions. The motivation for

this test was to determine if a change of BCM may cause a change in the order of the algorithms. The

CEC scoring system is in detail provided in the technical reports accompanying the CEC benchmarks

[36], [39].

The algorithms are sorted by the final score value, and the higher this Score is, the better the

performance of the algorithm. This Score is a sum of two partial scores, Score 1 and Score 2. Score 2 is

based on the weighted rank values, and Score 1 is computed from the normalized error values for

CEC20 or mean (not normalized) error values for CEC17. Score 1 is computed using equations (6) and

(7).

Where 𝑒 𝑓 is the mean error value for certain dimension size and 𝑆𝐸min is the minimal sum of errors

among all algorithms. The Score 2 is then computed based on equations equations (8) and (9).

The final score is then defined as (10).

The equations (6) - (10) describes the computation of the score for CEC17. The CEC20 score is

computed by the same equations but uses a different dimension sizes.

Tables V(a) - V(f) contain the Score and rank of BCMs used for a particular algorithm. The default BCM

is in bold. From the given results, not once did the default BCM ranked as the best performing variant;

therefore, potentially better results for the algorithm may be achieved using the BCM with the highest

Score. The parentheses under the score display percentual contribution of each dimensional setting to

the score. The significant disproportion in values of Score 1 for dimension size 50 for CEC17 was caused

by the last test function f30, Since this disproportion is observed across all tested algorithms and their

BCMs, the obtained results are still comparable, however further investigation is needed to find the

cause of such behavior.

Friedman ranks suggest that higher dimension size has a more significant impact on the final score, as

can be seen in Table V.

TABLE V: Score and rank of BCMs used for a particular algorithm. The rank is based on the final Score, which is a sum of

partial scores 1 and 2. The default BCM of the algorithm is in bold. The parentheses under the score display percentual

contribution of each dimensional setting to the score (CEC17 - {10D, 30D, 50D, 100D}, CEC20 - {5D, 10D, 15D, 20D}).

TABLE VI: CEC17 - Score - Default BCM

TABLE VII: CEC17 - Score – EBOwithCMAR

However, the higher impact of higher dimension sizes is also implicit due to the weighting of dimension

parts of the score computation in (6) and (8).

C. Selection of the BCM

The third and the last step was to implement the best performing BCM variant for the algorithms and

check if the final order of the competition will be different. Table VI and Table X contain the Score and

rank if the algorithms used their default BCMs. Unfortunately, the complete results of all competitors

are available for the CEC17 benchmark only; therefore the Table X encompasses only the three top

ranking algorithms of the CEC20 competition. The best BCM for each algorithm was selected according

to the ranks in Tables Va -Vf.

TABLE VIII: CEC17 - Score – jSO

TABLE IX: CEC17 - Score - LSHADE-cnEpSin

TABLE X: CEC20 - Score - Default BCM

TABLE XI: CEC20 - Score – IMODE

TABLE XII: CEC20 - Score – AGSK

TABLE XIII: CEC20 - Score - j2020

TABLE XIV: CEC17 – Score

TABLE XV: CEC20 – Score

For the CEC17, tables VII, VIII, and IX represent the situations when only one algorithm selects its best

variant of the BCM. If the rank is changed against Table VI, the original rank is shown in parentheses.

The most noticeable difference is in Table IX, where the LSHADE-cnEpSin obtained the first rank. Table

XIV then contains the ranks accomplished if all three algorithms had used the best performing variant

of the BCM, and again, the LSHADE-cnEpSin would have achieved the first position.

For the CEC20, the process is the same as for CEC17. The results are presented in Table X - XV and no

change in the algorithms order was observed.

V. Conclusion

While the boundary control methods (BCM) are often an overlooked part of the experiment design in

metaheuristics benchmarking, our work aims to highlight the importance of understanding the

boundary control method as necessary input for results reproducibility.

Further, we bring to the attention the possibility of performance improvement by the use of alternate

boundary control methods, as presented in the results of CEC17 benchmark participants, where:

• The LSHADE-cnEpSin algorithm would have won the CEC17 competition, if it did employ the

random boundary control method.

• According to the scores as defined by the CEC17 benchmark, none of the three tested

algorithms achieved best results with the original BCM. In other words, it was possible to

improve the results of any of these algorithms by using a different BCM.

• Only five of the 12 participants reported on the employed BCM in the papers (albeit in two

cases only partially, see Table I). Moreover, the results of the two best performing algorithms

would be irreproducible without a detailed study of the source code.

The results of the second experiment, using the CEC20 benchmark seem to be less conclusive, as only

three scenarios show statistically significant difference in performance (see Table IV). However, the

scoring (Tables V(d), V(e) and V(f)) seems to indicate not only a difference in performance, but a

possible benefit of using other than default BCM.

While the seemingly lower impact of BCM selection in the case of CEC20 might be related to the lower

dimensionality of the problems (in accordance with the findings of Helwig et al. in [12]), more data and

evaluation will be needed to confirm this in the future.

The authors of this paper would like to express their regret that their own proposed algorithms (DISH-

XX and SOMA-CL) are among the algorithms with non-specified BCM at the CEC20 competition. Due to

this unfortunate error, the number of algorithms with specified BCM in the CEC20 competition was

five out of 11.

The examined algorithms and their results are available at A.I.Lab GitHub page 6.

To conclude, according to our findings, many competition entries lack the information about used

BCM, leading to poor reproducibility of the results. Further, the designers of competitive

metaheuristics should take advantage of the possible performance improvements, by moving their

attention towards BCMs.

The importance of future research of BCMs lies in their universal applicability and impact on the whole

field of metaheuristic optimizers in bound-constrained scenarios.

6https://github.com/TBU-AILab/ResourceFiles_TEVC2021

References

[1] W. Wong and C. I. Ming, “A review on metaheuristic algorithms: recent trends, benchmarking

and applications,” in 2019 7th International Conference on Smart Computing &

Communications (ICSCC). IEEE, 2019, pp. 1-5.

[2] G. R. Raidl, “A unified view on hybrid metaheuristics,” in International workshop on hybrid

metaheuristics. Springer, 2006, pp. 1-12.

[3] A. Kazikova, M. Pluhacek, and R. Senkerik, “Why tuning the control parameters of

metaheuristic algorithms is so important for fair comparison?” MENDEL, vol. 26, no. 2, pp. 9-

16, Dec. 2020. [Online]. Available: http://ib-

b2b.test.infv.eu/index.php/mendel/article/view/120

[4] —, “How does the number of objective function evaluations impact our understanding of

metaheuristics behavior?” IEEE Access, vol. 9, pp. 44032-44048, 2021.

[5] A. Wagdy, A. A. Hadi, A. K. Mohamed, P. Agrawal, A. Kumar, and P. N. Suganthan, “Problem

definitions and evaluation criteria for the cec 2021 special session and competition on single

objective bound constrained numerical optimization.” Technical Report, Nanyang

Technological University, Singapore, 2020.

[6] N. Hansen, A. Auger, R. Ros, O. Mersmann, T. Tusar, and D. Brockhoff, “Coco: A platform for

comparing continuous optimizers in a black-box setting,” Optimization Methods and Software,

vol. 36, no. 1, pp. 114144, 2021.

[7] T. Bartz-Beielstein, C. Doerr, J. Bossek, S. Chandrasekaran, T. Eftimov, A. Fischbach, P. Kerschke,

M. Lopez-Ibanez, K. M. Malan, J. H. Moore, B. Naujoks, P. Orzechowski, V. Volz, M. Wagner,

and T. Weise, “Benchmarking in optimization: Best practice and open issues,” 2020.

[8] A. LaTorre, D. Molina, E. Osaba, J. Poyatos, J. Del Ser, and F. Herrera, “A prescription of

methodological guidelines for comparing bio-inspired optimization algorithms,” Swarm and

Evolutionary Computation, p. 100973, 2021.

[9] T. Kadavy, M. Pluhacek, A. Viktorin, and R. Senkerik, “Comparing strategies for search space

boundaries violation in pso,” in International Conference on Artificial Intelligence and Soft

Computing. Springer, 2017, pp. 655-664.

[10] —, “Boundary strategies for firefly algorithm analysed using cec’17 benchmark.” in ECMS,

2018, pp. 170-175.

[11] T. Kadavy, M. Pluhacek, R. Senkerik, and A. Viktorin, “Boundary strategies for self-organizing

migrating algorithm analyzed using cec’17 benchmark,” in Swarm, Evolutionary, and Memetic

Computing and Fuzzy and Neural Computing. Springer, 2019, pp. 58-69.

[12] S. Helwig, J. Branke, and S. Mostaghim, “Experimental analysis of bound handling techniques

in particle swarm optimization,” IEEE Transactions on Evolutionary computation, vol. 17, no.

2, pp. 259-271, 2012.

[13] E. T. Oldewage, A. P. Engelbrecht, and C. W. Cleghorn, “Boundary constraint handling

techniques for particle swarm optimization in high dimensional problem spaces,” in

International Conference on Swarm Intelligence. Springer, 2018, pp. 333-341.

[14] M. Clerc, “Confinements and biases in particle swarm optimisation,” 2006.

[15] W.-J. Zhang, X.-F. Xie, and D.-C. Bi, “Handling boundary constraints for numerical optimization

by particle swarm flying in periodic search space,” in Proceedings of the 2004 Congress on

Evolutionary Computation (IEEE Cat. No. 04TH8753), vol. 2. IEEE, 2004, pp. 2307-2311.

[16] Z. Michalewicz and M. Schoenauer, “Evolutionary algorithms for constrained parameter

optimization problems,” Evolutionary computation, vol. 4, no. 1, pp. 1-32, 1996.

[17] S. Koziel and Z. Michalewicz, “Evolutionary algorithms, homomorphous mappings, and

constrained parameter optimization,” Evolutionary computation, vol. 7, no. 1, pp. 19-44, 1999.

[18] M. Sanaz, H. Werner, and W. Anja, “Linear multi-objective particle swarm optimization,” in

Stigmergic Optimization. Springer, 2006, pp. 209-238.

[19] N. Hansen, “The cma evolution strategy: A tutorial,” arXiv preprint arXiv:1604.00772, 2016.

[20] J. de Nobel, D. Vermetten, H. Wang, C. Doerr, and T. Back, Tuning as a Means of Assessing the

Benefits of New Ideas in Interplay with Existing Algorithmic Modules. New York, NY, USA:

Association for Computing Machinery, 2021, p. 1375-1384. [Online]. Available:

https://doi.org/10.1145/3449726.3463167

[21] J. Ronkkonen, S. Kukkonen, and K. V. Price, “Real-parameter optimization with differential

evolution,” in 2005 IEEE congress on evolutionary computation, vol. 1. IEEE, 2005, pp. 506-513.

[22] J. Brest, V. Zumer, and M. S. Maucec, “Self-adaptive differential evolution algorithm in

constrained real-parameter optimization,” in 2006 IEEE international conference on

evolutionary computation. IEEE, 2006, pp. 215-222.

[23] K. Price, R. M. Storn, and J. A. Lampinen, Differential evolution: a practical approach to global

optimization. Springer Science & Business Media, 2006.

[24] S.-M. Guo, J. S.-H. Tsai, C.-C. Yang, and P.-H. Hsu, “A self-optimization approach for l-shade

incorporated with eigenvector-based crossover and successful-parent-selecting framework on

cec 2015 benchmark set,” in 2015 IEEE congress on evolutionary computation (CEC). IEEE,

2015, pp. 1003-1010.

[25] J. Zhang and A. C. Sanderson, “Jade: adaptive differential evolution with optional external

archive,” IEEE Transactions on evolutionary computation, vol. 13, no. 5, pp. 945-958, 2009.

[26] F. Caraffini, A. V. Kononova, and D. Corne, “Infeasibility and structural bias in differential

evolution,” Information Sciences, vol. 496, pp. 161179, 2019.

[27] R. Boks, A. V. Kononova, and H. Wang, Quantifying the Impact of Boundary Constraint Handling

Methods on Differential Evolution. New York, NY, USA: Association for Computing Machinery,

2021, p. 1199-1207. [Online]. Available: https://doi.org/10.1145/3449726.3463214

[28] F. Marini and B. Walczak, “Particle swarm optimization (pso). a tutorial,” Chemometrics and

Intelligent Laboratory Systems, vol. 149, pp. 153-165, 2015.

[29] A. E. Eiben, J. E. Smith et al., Introduction to evolutionary computing. Springer, 2003.

[30] X.-S. Yang, “Firefly algorithm, stochastic test functions and design optimisation,” International

journal of bio-inspired computation, vol. 2, no. 2, pp. 78-84, 2010.

[31] —— , “Firefly algorithms for multimodal optimization,” in International symposium on

stochastic algorithms. Springer, 2009, pp. 169-178.

[32] X.-S. Yang and S. Deb, “Engineering optimisation by cuckoo search,” International Journal of

Mathematical Modelling and Numerical Optimisation, vol. 1, no. 4, pp. 330-343, 2010.

[33] R. Mallipeddi, P. N. Suganthan, Q.-K. Pan, and M. F. Tasgetiren, “Differential evolution

algorithm with ensemble of parameters and mutation strategies,” Applied soft computing, vol.

11, no. 2, pp. 16791696, 2011.

[34] J. Riget and J. S. Vesterstrpm, “A diversity-guided particle swarm optimizer-the arpso,” Dept.

Comput. Sci., Univ. of Aarhus, Aarhus, Denmark, Tech. Rep, vol. 2, p. 2002, 2002.

[35] P. Kora and K. S. R. Krishna, “Hybrid firefly and particle swarm optimization algorithm for the

detection of bundle branch block,” International Journal of the Cardiovascular Academy, vol.

2, no. 1, pp. 44-48, 2016.

[36] N. Awad, M. Ali, J. Liang, B. Qu, and P. Suganthan, “Problem definitions and evaluation criteria

for the cec 2017 special sessionand competition on single objective real-parameter numerical

optimization. nanyang technologial university, jordan university of science and technology and

zhengzhou university, singapore and zhenzhou,” Nanyang Technological University, Jordan

University of Science and Technology and Zhengzhou University, Singapore and Zhenzhou,

China, Tech. Rep, vol. 201611, 2016.

[37] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.-P. Chen, A. Auger, and S. Tiwari, “Problem

definitions and evaluation criteria for the cec 2005 special session on real-parameter

optimization,” KanGAL report, vol. 2005005, no. 2005, p. 2005, 2005.

[38] K. Price, N. Awad, M. Ali, and P. Suganthan, “Problem definitions and evaluation criteria for the

100-digit challenge special session and competition on single objective numerical

optimization,” in Technical Report. Nanyang Technological University, 2018.

[39] C. T. Yue, K. V. Price, P. N. Suganthan, J. J. Liang, M. Z. Ali, B. Y. Qu, N. H. Awad, and P. P. Biswas,

“Problem definitions and evaluation criteria for the cec 2020 special session and competition

on single objective bound constrained numerical optimization,” Technical Report 201911,

2019.

[40] N. H. Awad, M. Z. Ali, J. J. Liang, B. Y. Qu, and P. N. Suganthan, “Cec 2017 special session on

single objective numerical optimization single bound constrained real-parameter numerical

optimization,” Jul 2019. [Online]. Available: https://github.com/P-N-Suganthan/CEC2017-

BoundContrained/blob/master/Bound-Constrained-Comparisons.pdf

[41] A. Kumar, R. K. Misra, and D. Singh, “Improving the local search capability of effective butterfly

optimizer using covariance matrix adapted retreat phase,” in 2017 IEEE congress on

evolutionary computation (CEC). IEEE, 2017, pp. 1835-1842.

[42] N. H. Awad, M. Z. Ali, and P. N. Suganthan, “Ensemble sinusoidal differential covariance matrix

adaptation with euclidean neighborhood for solving cec2017 benchmark problems,” in 2017

IEEE Congress on Evolutionary Computation (CEC). IEEE, 2017, pp. 372-379.

[43] J. Brest, M. S. Maucec, and B. Boskovic, “Single objective real-parameter optimization:

Algorithm jso,” in 2017 IEEE congress on evolutionary computation (CEC). IEEE, 2017, pp. 1311-

1318.

[44] D. Jagodzinski and J. Arabas, “A differential evolution strategy,” in 2017 IEEE Congress on

Evolutionary Computation (CEC). IEEE, 2017, pp. 1872-1876.

[45] D. Maharana, R. Kommadath, and P. Kotecha, “Dynamic yin-yang pair optimization and its

performance on single objective real parameter problems of cec 2017,” in 2017 IEEE Congress

on Evolutionary Computation (CEC). IEEE, 2017, pp. 2390-2396.

[46] P. Bujok and J. Tvrdik, “Enhanced individual-dependent differential evolution with population

size adaptation,” in 2017 IEEE congress on evolutionary computation (CEC). IEEE, 2017, pp.

1358-1365.

[47] A. W. Mohamed, A. A. Hadi, A. M. Fattouh, and K. M. Jambi, “Lshade with semi-parameter

adaptation hybrid with cma-es for solving cec 2017 benchmark problems,” in 2017 IEEE

Congress on evolutionary computation (CEC). IEEE, 2017, pp. 145-152.

[48] K. M. Sallam, S. M. Elsayed, R. A. Sarker, and D. L. Essam, “Multimethod based orthogonal

experimental design algorithm for solving cec2017 competition problems,” in 2017 IEEE

Congress on Evolutionary Computation (CEC). IEEE, 2017, pp. 1350-1357.

[49] A. LaTorre and J.-M. Pena, “A comparison of three large-scale global optimizers on the cec 2017

single objective real parameter numerical optimization benchmark,” in 2017 IEEE Congress on

Evolutionary Computation (CEC). IEEE, 2017, pp. 1063-1070.

[50] A. Tangherloni, L. Rundo, and M. S. Nobile, “Proactive particles in swarm optimization: A

settings-free algorithm for real-parameter single objective optimization problems,” in 2017

IEEE Congress on Evolutionary Computation (CEC). IEEE, 2017, pp. 1940-1947.

[51] R. Biedrzycki, “A version of ipop-cma-es algorithm with midpoint for cec 2017 single objective

bound constrained problems,” in 2017 IEEE Congress on Evolutionary Computation (CEC). IEEE,

2017, pp. 14891494.

[52] R. Kommadath and P. Kotecha, “Teaching learning based optimization with focused learning

and its performance on cec2017 functions,” in 2017 IEEE congress on evolutionary

computation (CEC). IEEE, 2017, pp. 2397-2403.

[53] R. Tanabe and A. S. Fukunaga, “Improving the search performance of shade using linear

population size reduction,” in 2014 IEEE congress on evolutionary computation (CEC). IEEE,

2014, pp. 1658-1665.

[54] N. H. Awad, M. Z. Ali, P. N. Suganthan, and R. G. Reynolds, “An ensemble sinusoidal parameter

adaptation incorporated with l-shade for solving cec2014 benchmark problems,” in 2016 IEEE

congress on evolutionary computation (CEC). IEEE, 2016, pp. 2958-2965.

[55] C. T. Yue, K. V. Price, P. N. Suganthan, J. J. Liang, M. Z. Ali, B. Y. Qu, N. H. Awad, and P. P. Biswas,

“Competition on single objective bound constrained numerical optimization,” Sep 2020.

[Online]. Available: https://github.com/P-N-Suganthan/2020-Bound-Constrained-Opt-

Benchmark/blob/master/CEC2020 BCC Results Analysis_R_Aug.16.pdf

[56] K. M. Sallam, S. M. Elsayed, R. K. Chakrabortty, and M. J. Ryan, “Improved multi-operator

differential evolution algorithm for solving unconstrained problems,” in 2020 IEEE Congress on

Evolutionary Computation (CEC). IEEE, 2020, pp. 1-8.

[57] A. W. Mohamed, A. A. Hadi, A. K. Mohamed, and N. H. Awad, “Evaluating the performance of

adaptive gainingsharing knowledge based algorithm on cec 2020 benchmark problems,” in

2020 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2020, pp. 18.

[58] J. Brest, M. S. Maucec, and B. Boskovic, “Differential evolution algorithm for single objective

bound-constrained optimization: Algorithm j2020,” in 2020 IEEE Congress on Evolutionary

Computation (CEC). IEEE, 2020, pp. 1-8.

[59] R. Salgotra, U. Singh, S. Saha, and A. H. Gandomi, “Improving cuckoo search: Incorporating

changes for cec 2017 and cec 2020 benchmark problems,” in 2020 IEEE Congress on

Evolutionary Computation (CEC). IEEE, 2020, pp. 1-7.

[60] A. Bolufe-Rohler and S. Chen, “A multi-population exploration-only exploitation-only hybrid on

cec-2020 single objective bound constrained problems,” in 2020 IEEE Congress on Evolutionary

Computation (CEC). IEEE, 2020, pp. 1-8.

[61] V. Stanovov, S. Akhmedova, and E. Semenkin, “Ranked archive differential evolution with

selective pressure for cec 2020 numerical optimization,” in 2020 IEEE Congress on Evolutionary

Computation (CEC). IEEE, 2020, pp. 1-7.

[62] A. Viktorin, R. Senkerik, M. Pluhacek, T. Kadavy, and A. Zamuda, “Dish-xx solving cec2020 single

objective bound constrained numerical optimization benchmark,” in 2020 IEEE Congress on

Evolutionary Computation (CEC). IEEE, 2020, pp. 1-8.

[63] P Bujok, P Kolenovsky, and V. Janisch, “Eigenvector crossover in jde100 algorithm,” in 2020

IEEE Congress on Evolutionary Computation (CEC). IEEE, 2020, pp. 1-6.

[64] P. P. Biswas and P. N. Suganthan, “Large initial population and neighborhood search

incorporated in lshade to solve cec2020 benchmark problems,” in 2020 IEEE Congress on

Evolutionary Computation (CEC). IEEE, 2020, pp. 1-7.

[65] Y.-C. Jou, S.-Y. Wang, J.-F. Yeh, and T.-C. Chiang, “Multi-population modified l-shade for single

objective bound constrained optimization,” in 2020 IEEE Congress on Evolutionary

Computation (CEC). IEEE, 2020, pp. 1-8.

[66] T. Kadavy, M. Pluhacek, A. Viktorin, and R. Senkerik, “Self-organizing migrating algorithm with

clustering-aided migration,” in Proceedings of the 2020 Genetic and Evolutionary Computation

Conference Companion, ser. GECCO ’20. New York, NY, USA: Association for Computing

Machinery, 2020, p. 1441-1447. [Online]. Available:

https://doi.org/10.1145/3377929.3398129

[67] A. W. Mohamed, A. A. Hadi, and A. K. Mohamed, “Gaining-sharing knowledge based algorithm

for solving optimization problems: a novel nature-inspired algorithm,” International Journal of

Machine Learning and Cybernetics, vol. 11, no. 7, pp. 1501-1529, 2020.

[68] J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer, “Self-adapting control parameters

in differential evolution: A comparative study on numerical benchmark problems,” IEEE

transactions on evolutionary computation, vol. 10, no. 6, pp. 646-657, 2006.

[69] J. Brest, M. S. Maucec, and B. Boskovic, “The 100-digit challenge: Algorithm jde100,” in 2019

IEEE Congress on Evolutionary Computation (CEC). IEEE, 2019, pp. 19-26.

[70] M. Friedman, “The use of ranks to avoid the assumption of normality implicit in the analysis of

variance,” Journal of the american statistical association, vol. 32, no. 200, pp. 675-701, 1937.

