
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 26, NO. 6, DECEMBER 2022 1293

Anytime Performance Assessment in Blackbox
Optimization Benchmarking

Nikolaus Hansen, Anne Auger, Dimo Brockhoff , and Tea Tušar

Abstract—We present concepts and recipes for the anytime
performance assessment when benchmarking optimization algo-
rithms in a blackbox scenario. We consider runtime—oftentimes
measured in the number of blackbox evaluations needed to
reach a target quality—to be a universally measurable cost for
solving a problem. Starting from the graph that depicts the solu-
tion quality versus runtime, we argue that runtime is the only
performance measure with a generic, meaningful, and quanti-
tative interpretation. Hence, our assessment is solely based on
runtime measurements. We discuss proper choices for solution
quality indicators in single- and multi-objective optimization, as
well as in the presence of noise and constraints. We also dis-
cuss the choice of the target values, budget-based targets, and
the aggregation of runtimes by using simulated restarts, aver-
ages, and empirical cumulative distributions which generalize
convergence graphs of single runs. The presented performance
assessment is to a large extent implemented in the compar-
ing continuous optimizers (COCO) platform freely available at
https://github.com/numbbo/coco.

Index Terms—Anytime optimization, benchmarking, blackbox
optimization, performance assessment, quality indicator.

I. INTRODUCTION

WE PRESENT practical concepts and ideas for the
performance assessment of optimization algorithms

when benchmarked in a blackbox and anytime scenario. Going
beyond a simple ranking of algorithms, we aim to provide a
quantitative and meaningful performance assessment, which
allows for conclusions like algorithm A is seven times faster
than algorithm B in solving a given problem or in solv-
ing problems with certain characteristics. To achieve this end
in a comparative and timeless manner, we argue that we
should measure the number of blackbox evaluations to reach a
predefined quality indicator value (a target). More generally,
we argue to measure a cost that is defined on a ratio scale
and is comparable across publications. We call this measure

Manuscript received 18 September 2021; revised 16 February 2022
and 16 June 2022; accepted 14 September 2022. Date of publication
29 September 2022; date of current version 1 December 2022. This work
was supported in part by the French National Research Agency (NumBBO)
under Grant ANR-12-MONU-0009, and in part by the Slovenian Research
Agency under Grant P2-0209 and Grant N2-0254. (Corresponding author:
Dimo Brockhoff.)

Nikolaus Hansen, Anne Auger, and Dimo Brockhoff are with Inria and
Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
(e-mail: dimo.brockhoff@inria.fr).

Tea Tušar is with the Department of Intelligent Systems, Jožef Stefan
Institute, 1000 Ljubljana, Slovenia.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TEVC.2022.3210897.

Digital Object Identifier 10.1109/TEVC.2022.3210897

the runtime of the algorithm to reach a given target. Yet, our
assessment methodology does not depend on any specific cost
measure, as long as the costs are quantitative and comparable.1

In this article, we formalize the optimization goal by a
so-called quality indicator. Its definition may heavily depend
on the optimization scenario, e.g., the number of objectives
or constraints. Broadly speaking, a quality indicator is based
on the sequence of all so-far visited solutions. In the sim-
plest case, it is the objective function value of the last visited
solution.

Runtimes represent the cost of optimization. Compared to
the quality indicator, the definition of costs depends to a
lesser extent on the specific optimization scenario. To sus-
tain reproducibility and comparability across publications, we
recommend against CPU or wall-clock time as cost measure2

(see also Hooker [22] for a further discussion on the unwanted
consequences of benchmarking based on CPU time).

Benchmarking is usually computationally expensive and
benchmarking for a single budget seems vastly inefficient by
1) addressing only one of many possible budget scenarios
(scenarios heavily depend on the software and hardware envi-
ronment) and 2) throwing away most of the data generated
during the experiment. An anytime approach to benchmark-
ing prevents these drawbacks. To allow for a budget-free
performance assessment even for non-anytime algorithms that
have a maximum or timeout budget as decisive or manda-
tory input parameter (decided by the user), we collect data
with an any-budget experimental procedure that runs repeated
experiments with increasing input budget [31].3 Non-anytime
algorithms that do not take a maximum budget as an input
parameter can be accurately assessed only by the time of their
final solution proposal.

In this article, we advocate to routinely use (anytime)
empirical runtime distributions to assess the performance
of optimization algorithms. We demonstrate how to directly
compare the runtime distributions of algorithms that have

1We are grateful to the anonymous reviewer pointing this out to us.
2An exploratory CPU timing experiment to get an estimate of the internal

time complexity of the algorithm is still advisable, like it is prescribed in the
comparing continuous optimizer (COCO) platform [20].

3We can stop the procedure when the last budget was not fully exhausted.
Increasing the budget each time by a factor of r > 1 adds to the overall com-
putational costs for the experimentation less than

∑∞
i=0 1/ri = r/(r − 1)

times the last consumed budget. For the performance assessment, always
the data from the smallest eligible budget is used. The performance assess-
ment will be too optimistic by tacitly assuming that the budget can be
set properly without additional costs. On the other hand, runtimes may be
overestimated (by less than a factor of r). A code example is provided in
example_experiment_non_anytime.py.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0003-3566-9989
https://orcid.org/0000-0002-6495-006X

1294 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 26, NO. 6, DECEMBER 2022

vastly different success rates via simulated restarts and
bootstrapping.

The performance assessment aspects discussed in this article
are rather generic and, for example, independent of the search
domain. Most of them are implemented in the benchmark-
ing platform COCO [18] for continuous and mixed-integer
optimization and have stood the test of time in our bench-
marking practice. Most elements presented here were touched
upon already in [17] where a general benchmarking framework
is presented. The purpose of this article is to lay out specifics
and caveats of the performance assessment aspect. We also
introduce a new quality indicator for noisy optimization and
graphically present the direct link between the lower envelope
of convergence graphs and empirical runtime distributions.

This article is structured as follows. Section II intro-
duces necessary terminology and basic definitions. Section III
discusses performance measures in general and specific
aspects like quality indicators, fixed-budget versus fixed-
target measurements, missing values, and setting up targets.
Section IV formalizes the runtime measurement and touches
upon alternative costs measures and different instances.
Section V discusses aggregating measures like expected run-
times and simulated restarts via bootstrapping. Section VI
introduces empirical cumulative distribution functions (ECDF)
of recorded or simulated runtimes and shows examples of these
empirical runtime distributions (RTD). Section VII discusses
relation to previous works and Section VIII summarizes main
aspects and concludes this article.

II. TERMINOLOGY AND DEFINITIONS

We consider a set of parametrized benchmark functions
fθ : S → R

m to be minimized, where S = S1 × · · · × Sn and
each Si is a set of numbers, for example, {0, 1} or Z or R, and
θ ∈ � parametrizes a function instance. This formulation can
also accommodate constraints as components of the vector-
valued fθ which are strictly positive for infeasible solutions,
nonpositive for feasible solutions, and only to be minimized
in the infeasible domain (down to zero).

We define a specific problem in the form of an instance
quadruple, p(4) = (n, m, fθ , θ), by the search space dimen-
sion n, the number of objective (and constraint) functions m,
the objective (and constraint) function f , and its instance
parameters θ [17].4

The instance notion is introduced to allow for simple repeti-
tions when benchmarking deterministic algorithms. Instances
also prevent that any lucky or unlucky coincidental match
between function and algorithm can dominate the outcome.
Instance generation may remove artificial function properties
like the location of the optimum in all-zero or separability.
Different instances, θ , have different locations of the optimal
solution, may have different rotations applied to continuous

4An optimization algorithm has access to the value of n, the number of
objectives and constraints, the definition of S, regions of interest in S and
in the image of fθ , a feasible initial solution in S, and it can acquire return
values of fθ for any candidate solution in S, for example, by calling a coded
function. Because the algorithm is not allowed to use any other information,
in particular on the character or inner workings of fθ , the scenario is called
blackbox optimization.

variables, have different optimal f -values, etc. [19]. The sep-
aration of dimension and instance parameters in the notation
is convenient because we never aggregate over dimension but
usually aggregate over all θ -values for which experimental
results are available (see also Section V).

In the performance assessment setting, we associate to
a problem instance p(4) a quality indicator mapping (see
Section III-A) and a target value τ which depends on a target
precision ε (see Section III-F). Then, a problem is expressed
as a quintuple p(5) = (n, m, fθ , θ, τ (ε)). The quality indica-
tor usually remains the same for all problems of a problem
suite (and is thus omitted from the quintuple), while we have
subsets of problems which only differ in their target value.

III. ON PERFORMANCE MEASURES

Assessing performance is necessarily based on performance
measures, the definition of which plays a crucial role for the
evaluation. Here, we introduce a list of desired properties for
a performance measure in general, as well as in the context
of blackbox optimization specifically. Ideally, a performance
measure should be:

1) quantitative, as opposed to a simple ranking of entrants
(e.g., algorithms); ideally, the measure should be defined
on a ratio scale5 (as opposed to an interval or ordinal
scale) [29], which allows to state that “entrant A is a
factor α times better than entrant B” for some α > 0;

2) assuming a wide variation of values in that typical values
do not only range between, say, 0.98 and 1.0;6

3) well interpretable, in particular by having meaning and
semantics for the measured numbers;

4) relevant and meaningful with respect to the “real
world”;7

5) available for most targeted algorithms and problems;8

6) readily reproducible independently of specific experi-
mental settings, for example, the machine on which
experiments have been run;

7) comparable across different problems;
8) as simple and comprehensible as possible.
As we will see in the following sections, measurements

derived from the runtime to reach a target value, measured
in the number of evaluations of candidate solutions, appear
to be the only obvious candidate measurements with all the
desired properties in the context of blackbox optimization.
Runtime is well interpretable and meaningful with respect
to the real world, representing the time needed to solve a
problem. Measuring the number of evaluations avoids the
shortcomings of CPU or wall-clock time measurements which

5A variable that is defined on a ratio scale has a meaningful zero, allows for
division and hence for the statement “A is α times better” based on B/A = α,
and can be taken to the logarithm in a meaningful way [29].

6A transformation like x �→ ln(1 − x) or, similarly, the logit transformation
x �→ ln(x/(1−x)) could alleviate the problem in this case, given that zooming
in on values close to 1 is relevant and meaningful.

7As a counterexample, minimizing the third decimal digit of the quality
indicator would be a well defined and achievable goal but neither relevant
nor meaningful in practice, unless also the preceding digits are minimal.

8For example, minimizing the norm of the gradient is meaningful and
relevant on unimodal differentiable functions, but the gradient is often not
available in the blackbox optimization setting.

HANSEN et al.: ANYTIME PERFORMANCE ASSESSMENT IN BLACKBOX OPTIMIZATION BENCHMARKING 1295

depend on the programming language, coding style, machine
used to run the experiment, etc.—parameters that are difficult,
impractical, or even impossible to control.2

Additionally, even if algorithm-internal computations domi-
nate the wall-clock time in a practical application, comparative
runtime results in the number of evaluations can usually still
be converted a posteriori to reflect the practical scenario. This
also holds true for a speed-up from parallelization.

A. Quality Indicators

Let us assume that an algorithm optimizes a problem
instance, p(4), in a blackbox setting. After each evaluation of
the problem, that is, after each time step t = 1, 2, . . . the
algorithm obtains new information on the problem. Using this
information, the algorithm can generate a new proposal solu-
tion, xt, to solve the problem at time step t. For example, the
proposal can be the current best estimate of the optimum, or
an element of an estimated Pareto set or the most recently
evaluated solution (by default). In the remainder, we assume
this sequence of proposal solutions is given. We assess the
solution quality of the sequence with a quality indicator and
define various indicators for different optimization scenarios.

A quality indicator I maps at each time step t the sequence
(x1, . . . , xt) of proposal solutions to a real value, the quality
indicator value. We provide a few examples.

For single-objective unconstrained noiseless optimization,
the quality indicator usually outputs the function value of the
last solution in the sequence. Taking the best solution is equiv-
alent in the following, because both indicator value sequences
trigger the same first hitting time.

For single-objective noisy optimization, a deterministic qual-
ity indicator must operate on a noiseless value, for example,
the 50%-ile of the true f -value distribution for any given
solution.9 Based on this deterministic f -value, we propose as
quality indicator at time step t the 1%-ile worst of the last
�ln2(t+3)/2� values in the sequence.10 Taking the worst from
an increasing number of the most recent solutions makes it
virtually impossible to obtain a good indicator value just by
chance.11 The formula is crafted to give 100%, 40%, 11%,
and 2% from 1, 10, 100, and 1000 values, respectively, and
1061 values of 1020. This appears to be both, large enough to
make exploitation very difficult and small enough to represent
a reasonably recent algorithm state and be easily manageable.
The 1%-ile worst is taken (instead of the worst) to yield a
measure that is independent of data size.

For constrained optimization, the quality indicator can be
the value of the last feasible solution. This is however not

9The ordering between indicator values is independent of the chosen
percentile if and only if for every pair of f -value distributions either one
stochastically dominates the other or they are the same, as it is implemented
in the bbob-noisy test suite of COCO.

10As discussed at https://github.com/numbbo/coco/issues/168 but not yet
implemented in COCO.

11In the noisy scenario, a trustworthy algorithm cannot rely on a single
f -measurement to pick its return value. The probability to obtain a good solu-
tion by pure chance also quickly decreases with increasing dimension and
increasing target difficulty roughly like 1/

√
ε

n such that hitting a target as
given in (1) indicates that the algorithm must be able to locate solutions of
according quality by design.

a meaningful indicator for algorithms that converge from the
infeasible domain toward the feasible optimum. Hence, we
propose a somewhat arbitrary quality indicator mapping of
the sequence of solutions (x1, . . . , xt) to the value |f (xt) −
fopt|+ +∑i λi|gi(xt)|+ for constraints gi(x) : S → R which are
nonpositive in the feasible domain, where fopt is the f -value
of the feasible optimum, |.|+ clips the argument to positive
values, and λi are positive weights for the constraints.12

For multiobjective optimization, we propose a quality indi-
cator based on the hypervolume indicator [9], given in detail
in the Appendix.

B. Alternative Cost Measures

Generally, we proposed to count (blackbox) function eval-
uations to measure cost or runtime. Without losing desired
properties of the performance assessment, we can also count
constraints evaluations or any combination of function and
constraints evaluations (as implemented in COCO). Even fur-
ther, instead of incrementing the count by one, the increment
can be the actually measured and recorded cost of each eval-
uation such that the cumulative cost value becomes a positive
real number. This can account for varying costs, for example,
due to partial evaluations or due to correlations between costs
and location of the evaluated solution or between costs and
number of already evaluated solutions. Replacing the count
with any cumulative cost value does not change the assess-
ment methodology.1 The caveat is to ensure that the computed
costs remain generically comparable between different func-
tions (to allow for aggregation) and different algorithms ideally
also across publications.

C. Fixed-Budget Versus Fixed-Target Approach

For a given quality indicator, the basic but comprehensive
performance display plots the indicator value against the num-
ber of evaluations in a single graph, that is, “quality” against
costs (see Fig. 1). There are essentially only two ways to mea-
sure performance now (and aggregates thereof, representing
certain areas under the graph).

We can measure the reached quality indicator values after
exhausting a fixed budget of evaluations. The fixed budget can
be illustrated as a vertical line in Fig. 1. Alternatively, we can
measure the number of evaluations, the runtime, to reach a
fixed target quality indicator value. The fixed target can be
illustrated as a horizontal line in Fig. 1. In both cases, we

12The indicator remains applicable even if the value of fopt is unknown and
approximated only after obtaining the experimental data. Generally, it seems
preferable to put the weights λi in the definition of gi such that they are also
exposed to the algorithm. Setting the weights a posteriori seems to allow for
a somewhat arbitrary and undesirable tuning of the performance assessment.
Apart from setting λi = 1, that is, using the constraints as presented to the
algorithm, we see arguments for two further weight settings to be meaningful.
1) Setting λi = ∞, that is, disallowing infeasible solutions as valuable all
together. Consequently, any value between 1 and ∞ could be justified as
putting an increasing weight on feasibility in comparison to f . 2) If the gi
are differentiable, we may set λi proportional to the Lagrange multipliers at
the global optimum of the constrained problem (as suggested to us by Paul
Dufossé in personal communications). These multipliers are unique when the
gradients of the active constraints in the optimum are linearly independent
[26, p. 321] and can be approximated by an optimization algorithm [1], [2].
In COCO, we use λi = 1 for all constraints i.

1296 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 26, NO. 6, DECEMBER 2022

Fig. 1. Illustration of the fixed-budget (dashed vertical line) and the fixed-
target (dashed horizontal line) approach to measure performance. Black lines
depict the best quality indicator value plotted versus the number of black-
box evaluations. Stars depict the measurements used for the performance
assessment. Triangles depict an imprecise or bounding measurement.

can also collect several measurements for different budgets or
different targets in a single run. If the discretization is fine
enough, we collect in both cases a loss-free representation of
the convergence graph, see below.

1) Discussion of the Fixed-Budget Approach: The major
advantage of a fixed-budget approach is the straightforward
experimental setup and execution. A meaningful budget is easy
to choose and the overall time needed to run the experiment
is straightforward to predict.

However, there is a caveat with larger budgets: algorithms
may naturally terminate before the budget is exhausted. In
this case, independent randomized restarts could be applied.13

However, terminated algorithms may return a sufficiently good
solution long before the budget is exhausted, as, for example,
in the leftmost graph in Fig. 1 (blue triangle). In a fixed-budget
setup, exceptionally good algorithms cannot be directly dis-
tinguished from algorithms that reach the global optimum just
within the given budget.

The measurement outcome in the fixed-budget approach is
a set of quality indicator values. Without specific knowledge
of the function and the quality indicator mapping, only the
order of these values can be interpreted in a meaningful way.
The observation that, say, an Algorithm A reaches a two times
smaller quality indicator value than Algorithm B can in gen-
eral not be interpreted such that Algorithm A is two times
better than Algorithm B. There is no a priori way to quantify
how much better or more difficult it is to reach a two times
smaller indicator value. Even a mean indicator value may not
be admissible as it requires data with interval scale [29]. A
fixed-budget measure exhibits in general only an ordinal (rank)
scale. Whether any higher level quantification is meaningful
depends on the function, the definition of the quality indicator
and may even depend on the specific indicator values that are
compared. Finally, aggregating or mixing results from differ-
ent functions arguably introduces the issue of mixing different
units of measurement.

13Restarts can sometimes be favorably combined with a parameter sweep,
for example, for the population size in an evolutionary algorithm [4], [21].

2) Discussion of the Fixed-Target Approach: The exper-
imental setup in the fixed-target approach requires to find
appropriate target values for the quality indicator. Although
any well-posed definition of an optimization problem should
entail a definition of the target,14 setting up targets can be dif-
ficult with new or scarcely studied functions and may require
preliminary experiments. The choice of the target value(s) is
however instrumental: it determines the difficulty and often
the characteristic of the problem to be solved.15

The measurement outcome in the fixed-target approach is
a set of runtimes. The major advantage of this setup is that
this measurement allows conclusions of the type Algorithm A
is two (or ten, or a hundred) times faster than Algorithm B in
solving this problem. That is, the assessed measure is quantita-
tive on a ratio scale. Runtimes from different target values or
different functions are measured in the very same unit and can
in general be meaningfully aggregated. Additionally, runtimes
can be understood and interpreted without problem-specific
knowledge.

3) Comparing Both Approaches: In the fixed-budget
approach, we use a simple-to-interpret measure for the setup
and leave the more difficult to interpret measure to be assessed
by the examiner. In the fixed-target approach, we must invest in
a more involved setup for getting a simple-to-interpret measure
in the assessment. The main obstacle has in both approaches
the same origin: to determine or interpret quality indicator
values. This difficulty has to be resolved in the fixed-target
setup before data can be displayed, ideally by exploiting all
available domain expertise and engaging domain experts. In
the fixed-budget setup, the obstacle appears only when results
are displayed and remains in essence unresolved. An inexperi-
enced examiner is often unaware of the low measurement scale
of such data which may lead to decisive misinterpretations.

In conclusion, the fixed-budget approach is preferable for
a quick and simple experimental setup which can be useful
for explorative experimentation. Yet, plotting the ensemble of
indicator graphs over time is in this case usually the method
of choice. The fixed-target approach is superior for assessing
the measurement outcome because it gives quantitatively and
meaningfully interpretable results.

D. Imprecise Values

In both cases, the fixed-budget and fixed-target approach, we
can encounter an “imprecise value situation”: in Fig. 1, not all
graphs intersect with either the vertical or the horizontal line
(red and blue triangles). As already mentioned, an algorithm
might solve the function long before the budget is exhausted.
This algorithm performs “optimally” and better than the fixed-
budget measurement is able to reflect precisely, which can
lead to significant misjudgments of what the best performing

14“Optimizing a function” without defining the target quality of the solution
is not a well-posed problem, unless we tacitly assume that the global optimum
is desired. In continuous search spaces, the best we can generally hope for
is a close approximation of the global optimum which likewise requires a
specification of the meaning of “close.”

15For example, the well-known Rastrigin function is highly multimodal in
the vicinity of the global optimum but it has no local optima and is easy
to optimize outside of the domain [−10π, 10π]n, that is, for target f -values
greater than 103n where n is the search space dimension.

HANSEN et al.: ANYTIME PERFORMANCE ASSESSMENT IN BLACKBOX OPTIMIZATION BENCHMARKING 1297

(a) (b) (c) (d)

Fig. 2. Construction of the (anytime) empirical runtime distribution (RTD) from the quality indicator convergence graph and equally spaced target values.
The lengths of the horizontal lines in (a) represent the runtime measurements for different target values taken from the quality indicator convergence graph,
as do the stars in (a)–(c). When the target values are evenly spaced on the given y-axis, the RTD reconstructs, up to discretization, the lower envelope of the
convergence graph flipped upside down (c). The areas above the RTD in (d) represent average runtimes, where the logarithm of the geometric average of a
fraction of the smallest runtimes equals the area size divided by the trim fraction. The dark area corresponds to the shortest 60%, and dark plus light area
correspond to the fraction of all solved problems.

algorithm is. A remedy is to define a final target value and
measure the runtime when the final target is hit.16

On the other hand, an algorithm may never hit a (difficult)
target under the given experimental conditions, giving raise
to a missing runtime value in the fixed-target approach (red
triangle in Fig. 1). The observed runlength is a lower bound
for this “missing” runtime measurement. To reduce the num-
ber of imprecise or missing runtime values, we can 1) run
the algorithm longer, depending on the observed termination
conditions with or without restarts; 2) use the final quality indi-
cator value as an additional (inferior) measurement; or 3) apply
simulated restarts based on the existing or added repetitions
(see Section V-A).

E. First Hitting Time

The runtime connected to a given target value is the
intersection between a quality indicator graph and the hor-
izontal target line, as depicted in Fig. 1. The intersection
is however not necessarily unique and we adopt the first
intersection (first hitting time) to measure the runtime. This
has the advantage that prolonging a run (increasing the bud-
get) cannot lead to a worse outcome which is consistent with
the expectation that algorithms should not achieve, in general
or on average, worse results when run with a larger time-
out budget. A non-monotone measure may disincentivize the
use of larger experimental budgets and is not likely to reflect
reality well.

Using the first hitting time implies that the approach
becomes budget-free: increasing the budget can fill missing
values, but it cannot change measurements that are already
obtained with a smaller budget. Based on this insight, in
practice, we often repeat an entire experiment with succes-
sively increasing budgets by a factor between two and five.
Such a scheme has comparatively little time overhead, but

16This is also advisable from a practical perspective because an algorithm
which approximates the optimum with a tight error of, say, 10−50 is usually
not preferable to an algorithm which approximates the optimum with the
error of, say, 10−20: achieving the tighter error mainly indicates a lack of
practical termination conditions, hence the algorithm is arguably even worse.
In continuous domain, the solution set that conclusively solves a problem
(numerically or practically) contains almost always a small neighborhood of
the global optimum or a compact set containing the optimum.

allows to investigate results early on and fix potential bugs
earlier. A similar scheme can also be applied to benchmark
budget-dependent algorithms [31] as mentioned above.

Fig. 2 illustrates collecting several runtime measurements
from a single run by setting several target values. We also see
the missing values for targets below 10−2.7 [Fig. 2(a)]. As the
timeout budget is the lower bound for these missing runtime
values, terminating an algorithm when it stagnates decreases
this lower bound. The figure also visualizes the construction
of the runtime distribution from equally spaced targets in three
steps, see the caption for details.

Collecting runtimes from several targets in the same runtime
distribution graph is a main distinction to data profiles [25].

F. Target Value Settings

As noticed in Section III-C, the requirement to define tar-
get values for the quality indicator is the main disadvantage of
the fixed-target approach. Here, we discuss different method-
ologies to establish these values.17 Generally, targets should
neither be so easy to allow trivial algorithms to hit them within
a few iterations nor be so difficult that they cannot be achieved
at all. Exploratory experiments can at least easily confirm the
first condition. We describe the target values τ(ε) by a refer-
ence value that depends on the problem instance p and one or
several offsets or target precision values ε

τ(ε) = lpref + ε (1)

where in some cases also the precision ε may depend on p. The
reference value, lpref, is either the true optimal (here minimal)
indicator value, or an estimate of the optimal value, or the
best value observed from running a set of algorithms up to
a given budget. Different ε are usually placed equidistant on
the log-scale. Often, the same ε-values are used across all
functions. We also exploit comparability across instances of
the same function: for a given ε, we assume that the problems
p(5) = (n, m, fθ , θ, τ (ε)) are similar for varying θ . We give
a few specific examples for setting target values for different
problem classes.

17We only discuss the methodological aspect. A technical aspect is how to
keep the amount of data that needs to be logged and processed manageable.
Storing data at each time step is often impractical or even prohibitive.

1298 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 26, NO. 6, DECEMBER 2022

1) Moré and Wild, introducing data profiles [25], bench-
mark a set of algorithms and set lpref to the smallest
value achieved by any of the algorithms (within the
given budget). They set ε depending on the initial point
x0 as ε = 10−k(f (x0) − lpref) and show results for
k ∈ {1, 3, 5, 7} each in a different graph. The targets
represent the reduction from the first value to the best
observed value up to ε × 100%. All targets are reached
by at least one algorithm which can be considered as an
advantage of this approach to set lpref.

2) In the single-objective benchmark suites of COCO [17],
lpref is set to the f -value of the true optimum and ε = 10k

for k ∈ {kmin, kmin+0.2, . . . , 1.8, 2}, where kmin is either
−8 or −6. The wide range of target values echoes the
anytime aspect of this approach. All measured runtimes
are presented in a single graph. To present results for
single targets, k is chosen similarly to −k in 1). To
apply this approach on a suite of functions, we recom-
mend to scale each function such that the same target
precision values cover the meaningful range of each
function topography [30, Sec. 3.1.3].

3) In the biobjective benchmark suite, bbob-biobj, of
COCO, lpref is the quality indicator of an approx-
imation of the Pareto front [9], based on running
many algorithms with a large budget. Here, ε ∈
{−10k | k ∈ {−4,−4.2, . . . ,−5}} + {0} + {10k | k ∈
{−5,−4.9, . . . , 1}}. Targets with negative ε are achieved
and useful when algorithms find a better than the cur-
rently known approximation. They make it less likely
that a change of targets becomes necessary, thereby
breaking comparability across runtime data sets and
publications.

4) Budget-based targets (also called runlength-based tar-
gets) are based on algorithm performance data. Loosely
speaking, for any given budget, it is the easiest (largest)
target that no reference algorithm can reliably reach
within this budget.18,19 They generalize the targets used
in data profiles 1): budget-based targets separate refer-
ence algorithms from the investigated algorithms and
allow for any number of different budgets. Setting
budget-based targets does not require any knowledge
about the function (apart from empirical data obtained
on the function) or any particular expertise of a human
designer, because only the reference budgets have to be

18More concisely, we determine the budget-based target by taking the set
of all target values and remove those targets for which the expected runtime
(ERT, see Section V-B) of any reference algorithm stays within the budget.
The easiest target (the maximum, the supremum) in the remaining set is the
sought-after budget-based target, or, if the set is empty, it is the most difficult
of all targets. When we want to prevent duplicates, for example, for “single-
target presentations,” we start with the smallest budget and never reset the
considered set of target values in the iterative process.

19Budget-based targets are available for the single-objective bbob bench-
mark suite [19] of COCO in the so-called expensive optimization scenario.
They are based on data of the reference algorithms from [16] and, due to
the available data, on the target “discretization” described in 2). The 31 bud-
gets 10k × n/2 with k ∈ {0, 1/15, . . . , 29/15, 2} were used to create, once
and for all, sets of 31 target precision values that depend on n and f but
not on θ .

chosen a priori. Reference budgets, as runtimes, are intu-
itively meaningful quantities which are fairly easy to set.
Budget-based targets however depend on the choice of
a reference data set and hence on a set of reference
algorithms.

We highlight two main distinctions between these four spe-
cific approaches. First, only 2) does not use data to determine
the target values and hence provides a faithful indication
whether the global optimum was found. Second, results are
inherently comparable across publications except with data
profiles 1).

IV. RUNTIME COMPUTATION

From a single run of an algorithm on the problem instance
p(4) = (n, m, fθ , θ), as shown in Fig. 2(a), we attempt to
measure the runtime for each target precision ε, that is, for
each problem p(5) = (n, m, fθ , θ, τ (ε)). Choosing many tar-
gets reflects the anytime aspect of the performance evaluation.
When the quality indicator value drops below the target for
the first time, the problem p(5) is considered as solved and the
runtime on p(5) is measured as the current evaluation count.
If the problem is not solved the runtime remains undefined
and “missing.” In every single run, the measured runtime is
nondecreasing with increasing target difficulty (decreasing ε).

A. Runs on Different Instances

Different instantiations of the parametrized functions fθ are
a natural way to represent randomized independent repeti-
tions. Similarly, randomized restarts can be conducted from
different initial points. For translation invariant algorithms,
translating the instance or the initial point are equivalent and
hence mutually exchangeable.

For the aggregating measures in the next section, we
interpret runs performed on different instances θ1, . . . , θK as
repetitions of the same problem. Thereby, we assume that
instances of the same parametrized function fθ are similar to
each other and have similar landscape features, or, more con-
cisely, could reasonably well model randomized restarts on a
single problem in the real world. For example, the benchmark
suites of the COCO framework have for each parametrized
problem a set of K ≈ 15 instances. When independent restarts
are practically meaningful, runs on these instances are used to
compute artificial runtimes of a conceptual restart algorithm.
To see at least seven successes for algorithms with a success
rate smaller than 1/2, we recommend, with decreasing pref-
erence, to either conduct several trials on each instance (e.g.,
run the benchmark several times on the concerned functions)
or use more instances (both is possible in COCO) or simply
apply within-trial restarts.

B. Runtime as Random Variable

Formally, the runtime RTs(p(5)), simply denoted as RTs(p)

in the following, is a random variable that represents the num-
ber of evaluations needed to reach the quality indicator target
value for the first time. A run or trial that reached the target

HANSEN et al.: ANYTIME PERFORMANCE ASSESSMENT IN BLACKBOX OPTIMIZATION BENCHMARKING 1299

value is called successful.20 For unsuccessful trials, the run-
time is not defined, but the overall number of evaluations in
the given trial is the associated random variable and denoted
by EVus(p). In a single run, the value of EVus is the same for
all failed targets.

We consider the conceptual restart algorithm. Given an
algorithm has a strictly positive probability ps to solve a
problem, independent restarts of the algorithm solve the
problem with probability one and exhibit the runtime

RT(p) =
J∑

j=1

EVus
j (p) + RTs(p) (2)

where J ∼ NB(1, 1 − ps) is a random variable with negative
binomial distribution that models the number of unsuccessful
runs until one success is observed and EVus

j are indepen-
dent random variables corresponding to the evaluations in
unsuccessful runs [3].

Generally, the above equation for RT(p) expresses the run-
time from repeated (randomized) independent runs on the
same problem instance (while the instance θ is not given
explicitly). By drawing instances θ of p(5) uniformly at
random, we can apply the equation to runs on different
instances θ . In order to model independent restarts, as desired
in Sections V-A and V-B, instances should always come from
the same function with the same dimension and the same tar-
get precision value ε in (1) which hence must be comparable
between these instances.

V. AGGREGATING MEASURES

When benchmarking, we often collect tens of thousands of
single performance data [17] which need to be assembled to
become amenable to the user. The semantic idea behind aggre-
gation is to combine performance results from problems for
which 1) we presume a uniform distribution (they are simi-
lar likely to appear in practice) and 2) there is no cheap way
to distinguish them, like by dimension or other properties or
attributes or cheap probing features. Empirical runtime distri-
butions (RTD) are a generic way to aggregate data into single
graphs without literally combining them. They are discussed
in Section VI.

In this section, we first present two aggregating mea-
sures that directly combine successful and unsuccessful runs.
Assuming uniform instances, as described in Section IV-A,
this aggregation rigorously solves the problem to compare
algorithms whose runtimes and success rates are different.
Both aggregating measures have a natural caveat: if only a few
successes are observed, we will see large variations without
statistical significance.

Section V-C recalls the geometric average and its ratios as
a prominent tool to aggregate results from different functions
into a single number.

20The success notion is directly linked to a target value. A run can be
successful with respect to some target values (some problems) and unsuc-
cessful with respect to others. Success sometimes refers to the final, most
difficult (smallest) target value, which implies success for all other targets in
this run.

A. Simulated Restarts for Simulated Runtimes

Based on the conceptual restart algorithm as given in (2),
simulated restarts generate randomized empirical runtimes
from measured data that contain both, successful and unsuc-
cessful runs. These runtimes must be interpreted with great
caution when manually set budgets were exhausted (in unsuc-
cessful runs) or when only few successful runs were recorded.

We use K different runs on the same function and dimen-
sion with a fixed target precision ε, that is, a set of problems
{p(5) = (n, m, fθi , θi, τ (ε))|i = 1, . . . , K} to simulate virtual
restarts. We need to have at least one successful run: otherwise,
the runtime remains undefined because the virtual procedure
would never stop. Then, we construct artificial, simulated runs
from the available empirical data: we repeatedly pick, uni-
formly at random with replacement, one of the K trials until
we encounter a successful trial. This procedure simulates a sin-
gle sample of the virtually restarted algorithm from the given
data. Given in (2) as RT(p), the acquired simulated runtime is
the sum of the number of evaluations from the unsuccessful
trials added to the runtime of the last and successful trial.21

When all K runs were successful, no restarts are simulated.
When all runs were either successful or terminated by stan-
dard termination conditions in the benchmarked algorithms,
simulated restarts reflect the original algorithm with indepen-
dent restarts and their expected runtime equals to the ERT as
defined in Section V-B [16].

1) Bootstrapping: In practice, we repeat the above proce-
dure hundreds or thousands of times, thereby sampling N
simulated runtimes from the same underlying distribution,
resembling the bootstrap algorithm [11]. To reduce the vari-
ance in this procedure, when desired, the first trials for each
sample are picked without replacement22 and only further
trials are picked uniformly at random from all data.

2) Rationales and Limitations: Simulated restarts aggre-
gate some of the available data and thereby extend their range
of interpretation.

1) Simulated restarts allow in particular to compare algo-
rithms with vastly different success probabilities by
a single performance measure. Likewise, conducting
restarts is often a valuable approach when addressing
difficult optimization problems in practice.

2) Simulated restarts assume that independent restarts,
without a memory, are suitable in the considered
optimization scenario (and for the algorithms). A coun-
terexample is the maximization of hypervolume on
multiobjective problems where competitive search algo-
rithms need to take into account all so-far evaluated non-
dominated solutions. Hence, independent and memory-
less restarts do not suit this scenario. Additionally,
measuring the hypervolume in the assessment requires

21That is, we apply (2) such that RTs is uniformly distributed over all
measured runtimes from successful instances θi, RTus is uniformly distributed
over all evaluations seen in unsuccessful instances θi, and J has a negative
binomial distribution NB(1, q), where q is the ratio of unsuccessful instances.

22The variance reducing effect is best seen in the case where all runs are
successful and N = K, in which case each data is picked exactly once. This
technique is not suited to estimate the deviation of the given data set from
the original underlying distribution [11].

1300 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 26, NO. 6, DECEMBER 2022

to keep and merge all recorded function values from
previous trials to maintain a nondominated archive. For
these reasons, simulated restarts are not applied with the
biobjective benchmark suites of COCO [7].

3) Simulated restarts rely on the assumption that the
instances have similar landscape features. When this is
not the case, performance measures based on simulated
restarts are more difficult to interpret and should rather
be avoided.

4) Simulated restarts rely on the definition of comparable
target precision values, ε in (1), for all instances θi.

5) The runtime of simulated restarts heavily depends on
termination conditions applied in the benchmarked algo-
rithm, due to the evaluations spent in unsuccessful trials,
compare (2). This can be considered as disadvantage,
when termination is a cumbersome but trivial detail
in the implementation23—or as an advantage, when
termination should be considered a relevant algorithm
component in a practical application. Omitting to acti-
vate termination settings can lead to long stagnations
and hence a too pessimistic assessment through simu-
lated restarts. Fortunately, such stagnations can be easily
identified in the empirical runtime distribution graphs
discussed below.

6) The maximal runtime for which simulated restarts are
meaningful and representative also depends on the
experimental conditions and the outcome. If a tight
maximum budget was imposed for the purpose of
benchmarking, simulated restarts do not reliably reflect
true performance, in particular, when very few or no
successes are observed.

B. Expected Runtime

The average or expected runtime (ERT, [15]), introduced
as ENES [27] and analyzed as success performance SP2 [3],
estimates the expected runtime of the restart algorithm given
in (2). If the success rate is one, ERT reduces to the (arith-
metic) average runtime. Generally, as for simulated restarts,
the set of trials over which the average is taken varies in θ

only (and not in ε).
The expectation of the runtime of the restart algorithm given

in (2) writes [3]

E(RT) = E
(
RTs)+ 1 − ps

ps
E(EVus) (3)

where ps > 0 is the success probability of the algorithm.
Given a data set with ns ≥ 1 successful runs with run-

times RTs
i , and nus unsuccessful runs with EVus

j evaluations,
an estimate of E(RT), referred to as expected runtime, reads

ERT := 1

ns

∑

i

RTs
i + 1 − ps

ps

1

nus

∑

j

EVus
j

=
∑

i RTs
i +∑

j EVus
j

ns
= #evals

ns

23A quick fix is the so-called SP1 [3] or Q-measure [12] which considers
EVus to be distributed as RTs.

where ps is now the fraction of successful trials, i.e.,
ps = ns/(ns + nus) estimating the success probability used
in (3), 0/0 is understood as zero and #evals is the number of
evaluations conducted in all trials before reaching the given
target precision. The ERT is an unbiased estimator of the
expected value of the simulated runtimes [16].24 Assuming the
runtime increases (slower than exponentially) with dimension,
plotting the ERT divided by dimension against dimension in
a log–log plot is our recommended generic way to investigate
the scaling behavior.

Rationale and Limitations: The arithmetic average over
instances is only advisable if each instance obeys a simi-
lar distribution without heavy tails. If the distribution has a
heavy tail, the average will suffer from large variations. If one
instance is considerably harder than the others, the average is
dominated by this instance. In such cases, we advise against
the arithmetic average in favor of the geometric average.

C. Geometric Average Runtime Ratio

We consider the geometric average runtime, as represented
by the area above the graph in Fig. 2(d), to be a measure of
central importance. Providing a quantitative comparison, the
geometric average ratio between two data sets (A1, . . . , Ak)

and (B1, . . . , Bk) is defined as

exp

(
1

k

k∑

i=1

log

(
Ai

Bi

))

=
k
√∏k

i=1 Ai

k
√∏k

i=1 Bi

. (4)

When the data are runtimes, this equation reflects the differ-
ence area between two empirical runtime distributions when
the x-axis is in log-scale. The RHS of (4) reveals that this ratio
is invariant to reordering of the data and to renormalization
of according data in both sets (like for so-called performance
profiles [10]), and that it can easily be accommodated to dif-
ferent numbers of data, k, in each set. If

∏k
i=1 Bi = 1, (4) is

the geometric average of (A1, . . . , Ak).
In contrast to the arithmetic average, the geometric average

is not dominated by the variation of the largest values (and it
is not hampered by values close to zero in our scenario). It
can be meaningfully used with data from different functions
and with widely different expected runtimes.

VI. EMPIRICAL RUNTIME DISTRIBUTIONS

Runtime, as random variable, is fully described by its dis-
tribution and we generally recommend to display the ECDF of
a set of measured runtimes or simulated runtimes—in short,
empirical runtime distributions (RTD) [23], [24]. Empirical
runtime distributions display on the y-axis, the proportion of
problems solved within the budget specified on the x-axis. As
importantly in our context, RTDs give for each fraction of
problems (given on the y-axis) the largest measured runtime
on the x-axis.

24Randomness here comes from sampling uniformly among the measured
runtimes whereas ps = ns/(ns + nus) is then the true probability to sample a
successful among the measured runtimes.

HANSEN et al.: ANYTIME PERFORMANCE ASSESSMENT IN BLACKBOX OPTIMIZATION BENCHMARKING 1301

Fig. 3. Empirical runtime distributions (RTD) for random search on various 5-D problems. Left and middle: for the separable functions f1–f5 from the bbob
suite for the single target precision ε = 10 (left) and for 51 target precisions, equidistant on the log-scale between 100 and 10−8 (middle). Right: Empirical
runtime distribution of the same data as in the middle plot aggregated for all five functions in one graph. Crosses indicate the median runlength of unsuccessful
runs which equals the maximum budget when all runs exhausted this budget. Then, increments of the graphs beyond the cross stem from simulated restarts.
Small dots on the right are the fraction of all function–target pairs for which at least one instance was successful. After this point, the runtime distribution
stays flat. Without annotation in gray are RTDs of 30 further algorithms [16]. The “best 2009” depicts a portfolio algorithm from all shown RTDs (see text).

A. Rationale, Interpretation, and Limitations

ECDFs are a universal technique to display unlabeled data
in a condensed way without losing information, because each
data point is “separately” displayed. They remain entirely
meaningful under monotonous transformations (e.g., taking the
logarithm) of the data (here runtimes).

1) As shown in Fig. 2, the empirical distribution func-
tion of a set of runtimes from problems p(5) =
(n, m, fθ , θ, τ (ε)) where only the target precision value
ε varies in a uniform way recovers the lower envelope
of the convergence graph upside-down with the reso-
lution defined by the targets [16]. In this scenario, we
can identify the associated target values in the displayed
data.

2) When runs from several instances are aggregated, the
association to the single runs (and to the targets) is lost.
Likewise, the association to the functions is lost when
aggregating over several functions.

3) Single target RTDs are a common, legitimate display.
Multitarget RTDs use benchmarking data more compre-
hensively and could be characterized as anytime runtime
distributions.

The ECDF can be read in two distinct ways.
1) x-Axis as Independent Variable: for any budget

(x-value), we see the fraction of problems solved within
the budget as y-value, where the limit value to the right
is the fraction of problems solved within the maximal
budget.25 The resulting value satisfies the desired prop-
erties of a measurement listed in Section III except that
it may often not assume a wide range of values, because
it is by definition between 0 and 1.

2) y-Axis as inDependent Variable: for any fraction of
shortest runtimes (y-value), we read the maximal run-
time observed on these problems on the x-axis. The area
below the y-value and above the graph reflects the
average runtime on this subset of problems. When the

25With simulated restarts, the limit value beyond the maximal budget is
the average fraction of target precisions solved at least once in all respective
instances. A high discrepancy between this limit and the (lower or equal) limit
without simulated restarts indicates a high variation of the number of solved
targets between instances.

x-axis is plotted on a log-scale, it is the logarithm of
the geometric average and a horizontal shift indicates
a runtime difference (ratio) by the respective factor,
quantifiable, e.g., as “five times faster.”

The second interpretation is, to our estimate, lesser known but
more informative in our context.

B. Examples

We show examples generated with the COCO frame-
work [17]. Fig. 3 shows various empirical runtime distribu-
tions (RTDs with simulated restarts and 1000 bootstraps) for
uniform random search in [−5, 5]n on problems given by 15
instances of the first five functions of the bbob test suite [19]
in dimension n = 5.

The left plot shows the RTD for each single function with
a single target precision ε = 10. On the Sphere Function f1,
the target precision is reached in all runs within 100 × n eval-
uations. On the Separable Ellipsoidal Function f2, the target
precision is never reached within 106 × n evaluations.

The middle plot shows the runtimes for 51 target precisions
between 102 and 10−8, see Section III-F Item 2.26 On the
Sphere Function f1, almost 20% of the problems are solved
within 1000 × n evaluations. Runtimes to the right of the
crosses at 106 ×n have at least one unsuccessful run and their
further increase beyond this budget is induced by simulated
restarts. This can be concluded, because pure random search
exploited in all runs the same maximum budget. The small
dot beyond 107 × n evaluations depicts the fraction of target
precisions that were reached at least once.

Empirical runtime distributions of single functions, in par-
ticular comparing different algorithms, are in our experience
the most important data to scrutinize when investigating
performance results.

The COCO framework defines subgroups of functions shar-
ing similar properties (for instance, separability, unimodality,
etc.). The five functions plotted in Fig. 3 belong to the
separable function group. The right plot shows the same run-
times as in the middle but in a single graph (where the

26In contrast to Fig. 2, these RTDs aggregate convergence graphs from 15
instances.

1302 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 26, NO. 6, DECEMBER 2022

Fig. 4. Empirical runtime distribution over all functions and all targets for several algorithms benchmarked for the BBOB 2009 workshop in dimension 5
(left) and in dimension 20 (right) when aggregating over all functions of the bbob suite.

y-steps are respectively normalized). The runtime distribution
is compared with 30 other algorithms (without annotations)
and with the “best” portfolio algorithm from all displayed
algorithms. The “best 2009” portfolio algorithm [16] picks for
all problems with the same function, dimension, and target
precision the algorithm with the smallest ERT.27 This port-
folio algorithm is artificial because only with varying θ in
p(5) = (n, m, fθ , θ, τ (ε)) it always uses data from the same
algorithm whereas otherwise data are chosen a posteriori based
onperformance.

Fig. 4 shows runtime distributions of the 31 algorithms
from [16] aggregated over all functions and 51 targets of the
bbob test suite, that is, most of the available performance data
from these algorithms in dimension 5 and 20. The artificial
best 2009 algorithm is about two to three times faster than
the left envelope of all single algorithm RTDs and solves all
problems in about 107 × n evaluations.

Although we highly recommend displaying results in graphs
as above, numbers as well as statistical tests are occasion-
ally useful to complement the visual comparison. To this end,
COCO provides tables with ERT values relative to a reference
algorithm, such as the best 2009, see Table I. For effortless
readability, the tables provide runtime ratios, with the abso-
lute baselines given in the respective first row. The tables also
show the order of magnitude of the two-sided p-values of a
rank sum test.28

27The best 2009 curve is not guaranteed to be an upper left envelope of
the RTDs of all algorithms from which it is constructed, that is, the RTD of
an algorithm from BBOB-2009 can cross the best 2009 curve. This typically
happens if an algorithm has, for some of the easier problems, a large runtime
variation and its ERT is not the best but the short runtimes show up to the
left of the best 2009 graph.

28The rank-sum test is based on data truncated to the largest budget for
which all concerned unsuccessful trials (w.r.t. the respective target, without
restarts) of both algorithms have a data record. The ranks (smaller are better)
for unsuccessful trials are based on the exponential of the best achieved indi-
cator value and for still successful trials on the negative of the inverse of the
measured runtime. Significance is only concluded when also the ERT values
identify the same algorithm as better.

TABLE I
EXPECTED RUNTIMES (ERT) TO REACH TARGETS fOPT + ε, FOR THE

ALGORITHMS BFGS AND BIPOP-CMA-ES DIVIDED BY THE ERT OF

THE “BEST 2009” ARTIFICIAL REFERENCE ALGORITHM AS SHOWN IN

THE FIRST ROWS FOR THREE BBOB FUNCTIONS IN DIMENSION 5.
NUMBERS IN BRACKETS ARE THE HALF DIFFERENCE BETWEEN 10TH

AND 90TH-TILE OF BOOTSTRAPPED RUNTIMES. #SUCC IS THE NUMBER

OF TRIALS THAT REACHED THE (FINAL) TARGET fOPT + 10−8. THE

MEDIAN NUMBER OF CONDUCTED EVALUATIONS IS GIVEN IN

ITALICS IF THE LAST COLUMN’S TARGET WAS NEVER REACHED.
ENTRIES SUCCEEDED BY A STAR ARE STATISTICALLY SIGNIFICANTLY

BETTER IN A TWO-SIDED RANK-SUM TEST WITH p = 0.05 OR

p = 10−k WHEN THE NUMBER k FOLLOWS THE STAR, WITH

BONFERRONI CORRECTION BY THE NUMBER OF FUNCTIONS (24).
BEST RESULTS ARE IN BOLD

VII. RELATION TO PREVIOUS WORK

Recent reviews on benchmarking in optimization can be
found in [5] and [6]. More closely related to the presented
work are empirical runtime distributions [24] that have been
explored already in the late 1990s in the context of combi-
natorial optimization [23]. They were proposed in the setting
of stochastic repetitions for finding the optimal solutions or a
close approximation.

In the domain of continuous optimization, empirical runtime
distributions were reinvented as data profiles [25], with the
interpretation of measuring a deterministic success ratio from
a set of different functions (rather than stochastic repetitions),
plotted over a varying budget. Data profiles are commonly
used for aggregating results from different functions and dif-
ferent dimensions to reach a single target precision [28]. They
have been derived from the previously introduced performance
profiles [10] which show distributions of runtime ratios.

HANSEN et al.: ANYTIME PERFORMANCE ASSESSMENT IN BLACKBOX OPTIMIZATION BENCHMARKING 1303

Performance profiles are still considered as Gold standard in
deterministic continuous optimization [6].

The idea to collect runtimes from several targets in a single
empirical distribution [16] lead to the insight that runtime dis-
tributions generalize convergence graphs. In contrast to data
profiles, aggregation over dimension was omitted and targets
were chosen to be comparable across publications as presented
in this article.

In multiobjective optimization, the well-known empirical
attainment functions [13] are a direct generalization of the
fixed-budget approach where the empirical success probability
is displayed over the f -vectors instead of a single f -value for a
given budget [8]. Relaxing the fixed-budget constraint, the dis-
play can represent expected runtimes (instead of probabilities)
to attain each vector in objective space [8].

VIII. SUMMARY AND CONCLUSION

The presented paper examines anytime performance assess-
ments for blackbox optimization emphasizing the impor-
tance of using quantitative performance measures on a ratio
scale. We first construct a quality indicator which formal-
izes the optimization goal for the problems at hand. This
is exemplified for single-objective unconstrained and con-
strained optimization, noisy optimization and multiobjective
optimization. Then, the methodology is not only independent
of the search domain but also applies in the same way to a
wide range of different optimization scenarios.

Starting from the indicator convergence graph, we can col-
lect comparable data by either fixing a target or a budget.
We discuss advantages and disadvantages of both approaches
and conclude that for drawing meaningful quantitative conclu-
sions, the fixed-target setup, where runtimes are measured for a
single or several target indicator values, is strongly preferable.

Our approach is anytime, because we collect data for many
different target values of the same function. It is budget-free
(apart from a “timeout” budget), because running an algorithm
longer does not change already measured runtimes. Anytime
performance assessment however does not equal anytime
optimization: runtime distributions reveal not only the num-
ber of evaluations an algorithm needed to attain a sought-after
target (or solve a problem), they also reveal the performance
for any fixed budget as the percentage of solved problems (or
achieved targets). The latter allows to find the best candidate
algorithm for a fixed budget in practice. Furthermore, we can
assess also non-anytime algorithms that take a budget as input
parameter by accommodating the experimental setup [31].

We emphasize the usage of empirical runtime distributions
which provide a visual and quantitative display of performance
with minimal loss of information allowing to faithfully display
a large amount of data in a comprehensive way. Empirical
runtime distributions generalize indicator convergence graphs
by aggregating data across functions and targets. They present
a superior alternative to presenting tables of indicator values
at a given budget, which is still a common standard in the
domain of multiobjective optimization. Yet, we found tables
that present runtime ratios, similar to performance profiles,

together with the baseline runtime denominator consistently
useful.

One should generally be cautious when aggregating data:
we do not recommend to aggregate over decisive variables
that can be measured cheaply and used for algorithm selec-
tion (e.g., search or objective space dimension or number of
constraints). Aggregation can also lead to biases: aggregat-
ing over dimension often overemphasizes the more frequent
low-dimensional (test) functions.

Finally, most of the presented methodology is implemented
in the open-source platform COCO that also comes with hun-
dreds of data sets of already benchmarked algorithms [17]
which can be directly used in the cocopp module for com-
parison. Importantly, the implemented methodology allows for
comparison also across publications. Additionally, new bench-
marking data can be provided in online repositories.29 Now,
researchers can spend more time on exploring new ideas
advancing science instead of reimplementing baseline algo-
rithms or known benchmarking methodology for comparison.
Additionally, the easiest way to adopt good assessment stan-
dards is by using already existing tools with these standards.

APPENDIX

MULTIOBJECTIVE QUALITY INDICATOR IHV+
This section details the quality indicator used in the case

of multiobjective optimization.30 We first clarify some of
the terms employed in its definition. The ideal point zideal
is defined as the vector in objective space that contains the
optimal (minimal) function value for each objective inde-
pendently. The nadir point znadir consists of the worst value
obtained by any Pareto-optimal solution in each objective.
It can be estimated by taking the maximum value in each
objective of all nondominated extreme points (single objective
optima) instead of all Pareto-optimal solutions (the estimate
is exact for twoobjectives). The set of points in the objec-
tive space bounded by the ideal and nadir points is called the
region of interest (ROI).

Additionally, we generalize the standard Pareto dominance
relation to sets by saying solution set A = {a1, . . . , a|A|} dom-
inates solution set B = {b1, . . . , b|B|} if and only if for all
solutions bi ∈ B there is at least one solution aj ∈ A that
dominates it.

A. Indicator Definition

At time step t, the archive At contains all mutually non-
dominated solutions of the sequence of proposal solutions.
When computing the multiobjective quality indicator IHV+, the
objective space is first normalized so that the ROI [zideal, znadir]
is mapped to [0, 1]m.

The indicator value depends on whether the archive dom-
inates the nadir point. If the nadir point is dominated by at
least one point in the archive, IHV+ is computed as the negative
normalized hypervolume of the archive using the nadir point
as the hypervolume reference point. If, on the other hand, the

29Similar to the data provided at https://numbbo.github.io/data-archive/ and
using the cocopp.archiving module.

30Not implemented in COCO for more than two objectives.

1304 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 26, NO. 6, DECEMBER 2022

Fig. 5. Illustration of the quality indicator IHV+ in two objectives when no
(left figure) or at least one solution dominates the nadir point (right figure).
Left: IHV+ equals the shortest normalized distance between the solutions and
the ROI (encircled). Right: IHV+ is the negative normalized hypervolume of
the solutions with the nadir point as the reference point, i.e., the orange area.

nadir point is not dominated by the archive, the indicator value
equals the normalized distance of the archive to the ROI.

Formally, the multiobjective quality indicator IHV+, we aim
to minimize, is a function At → R defined as

IHV+ =
{−HV(At, [zideal, znadir]), if At dominates {znadir}

dist(At, [zideal, znadir]), otherwise

where (with division understood to be the element-wise,
Hadamard division)

HV(At, [zideal, znadir]) = VOL

⎛

⎝
⋃

a∈At

[
f (a) − zideal

znadir − zideal
, 1

]
⎞

⎠

is the hypervolume of archive At normalized with respect to
the ideal and nadir points that uses the nadir point as the
reference point and

dist(At, [zideal, znadir]) = min
a∈At

min
z∈[zideal,znadir]

∥
∥
∥
∥

f (a) − z

znadir − zideal

∥
∥
∥
∥

is the smallest normalized Euclidean distance between a solu-
tion in the archive and the ROI [zideal, znadir]. See Fig. 5 for
an illustration of the IHV+ indicator in the biobjective case.

B. Properties

Solutions that are dominated by the archive do not change
the value of IHV+. Therefore, using the entire sequence of
proposal solutions instead of the archive would result in the
same indicator value.

The indicator value of an archive that contains the nadir
point is 0. The indicator values are bounded from below by
−1, which is the quality of an archive that contains the ideal
point.

C. Rationales

Computing the multiobjective indicator on an archive
instead of the current population has the advantage that
no population size needs to be prescribed and algorithms
with different or even changing population sizes can be
easily compared. Furthermore, we believe that keeping an
archive of nondominated solutions is relevant in real-world
applications, in particular when blackbox evaluations are
expensive.

Although other quality indicators could be used in place
of the hypervolume, the monotonicity of the hypervolume is
a strong theoretical argument for using it in the performance
assessment: the hypervolume indicator value of the archive
improves if and only if a new nondominated solution is
generated [32].

D. Limitations

Because computing the hypervolume is time consuming, it
is best done incrementally when possible. There are now effi-
cient ways to do so in the case of two and three objectives [14].

Not knowing the optimal quality indicator value can be
an issue in the multiobjective case, even if the objectives’
individual optima are known. In this case, we collect the non-
dominated solutions from as many preliminary experiments
as possible and use their IHV+ value as an upper bound for
the optimal indicator value. Archiving the evaluated nondom-
inated solutions of new algorithm runs could then be used to
improve the approximations of the Pareto sets and the optimal
indicator values from time to time.

ACKNOWLEDGMENT

The authors would like to thank Steffen Finck, Tobias
Glasmachers, Oswin Krause, Ilya Loshchilov, Olaf Mersmann,
Petr Pošík, Raymond Ros, Marc Schoenauer, Thanh-Do Tran,
and Dejan Tušar for their many invaluable contributions to the
COCO platform.

REFERENCES

[1] D. V. Arnold and J. Porter, “Towards an augmented Lagrangian con-
straint handling approach for the (1+1)-ES,” in Proc. Annu. Conf. Genet.
Evol. Comput., 2015, pp. 249–256.

[2] A. Atamna, A. Auger, and N. Hansen, “Linearly convergent evolution
strategies via augmented Lagrangian constraint handling,” in Proc. 14th
ACM/SIGEVO Conf. Found. Genet. Algorithms, 2017, pp. 149–161.

[3] A. Auger and N. Hansen, “Performance evaluation of an advanced local
search evolutionary algorithm,” in Proc. IEEE Congr. Evol. Comput.
(CEC), vol. 2, 2005, pp. 1777–1784.

[4] A. Auger and N. Hansen, “A restart CMA evolution strategy with
increasing population size,” in Proc. IEEE Congr. Evol. Comput., vol. 2,
2005, pp. 1769–1776.

[5] T. Bartz-Beielstein et al., “Benchmarking in optimization: Best practice
and open issues,” 2020, arXiv:2007.03488.

[6] V. Beiranvand, W. Hare, and Y. Lucet, “Best practices for compar-
ing optimization algorithms,” Optim. Eng., vol. 18, no. 4, pp. 815–848,
2017.

[7] D. Brockhoff, A. Auger, N. Hansen, and T. Tušar, “Using well-
understood single-objective functions in multiobjective black-box
optimization test suites,” Evol. Comput., vol. 30, no. 2, pp. 165–193,
2022.

[8] D. Brockhoff, A. Auger, N. Hansen, and T. Tušar, “Quantitative
performance assessment of multiobjective optimizers: The average run-
time attainment function,” in Evolutionary Multiobjective Optimization
(EMO). Cham, Switzerland: Springer, 2017, pp. 103–119.

[9] D. Brockhoff, T. Tušar, D. Tušar, T. Wagner, N. Hansen, and A. Auger,
“Biobjective performance assessment with the COCO platform,” 2016,
arXiv:1605.01746.

[10] E. D. Dolan and J. J. Moré, “Benchmarking optimization software with
performance profiles,” Math. Program., vol. 91, no. 2, pp. 201–213,
2002.

[11] B. Efron and R. J. Tibshirani, An Introduction to the Bootstrap.
Boca Raton, FL, USA: CRC Press, 1994.

[12] V. Feoktistov, Differential Evolution. New York, NY, USA: Springer,
2006.

HANSEN et al.: ANYTIME PERFORMANCE ASSESSMENT IN BLACKBOX OPTIMIZATION BENCHMARKING 1305

[13] V. G. da Fonseca, C. M. Fonseca, and A. O. Hall, “Inferential
performance assessment of stochastic optimisers and the attain-
ment function,” in Evolutionary Multi-Criterion Optimization (EMO).
Heidelberg, Germany: Springer, 2001, pp. 213–225.

[14] A. P. Guerreiro and C. M. Fonseca, “Computing and updating hypervol-
ume contributions in up to four dimensions,” IEEE Trans. Evol. Comput.,
vol. 22, no. 3, pp. 449–463, Jun. 2018.

[15] N. Hansen, A. Auger, S. Finck, and R. Ros, “Real-parameter black-
box optimization benchmarking 2009: Experimental setup,” INRIA Res.,
Centre de Recherche INRIA Saclay, Parc Orsay Université, Orsay,
France, Rep. RR-6829, Feb. 2010.

[16] N. Hansen, A. Auger, R. Ros, S. Finck, and P. Pošík, “Comparing results
of 31 algorithms from the black-box optimization benchmarking BBOB-
2009,” in Proc. Genet. Evol. Comput. Conf. Compan. (GECCO), New
York, NY, USA, 2010, pp. 1689–1696.

[17] N. Hansen, A. Auger, R. Ros, O. Mersmann, T. Tušar, and D. Brockhoff,
“COCO: A platform for comparing continuous optimizers in a black-box
setting,” Optim. Methods Softw., vol. 36, no. 1, pp. 114–144, 2021.

[18] N. Hansen et al. “Comparing continuous optimizers: Numbbo/COCO on
Github.” Zenodo. Mar. 2019. doi: 10.5281/zenodo.2594848.

[19] N. Hansen, S. Finck, R. Ros, and A. Auger, “Real-parameter black-
box optimization benchmarking 2009: Noiseless functions definitions,”
Rep. RR-6829, Centre de Recherche INRIA Saclay, Parc Orsay
Université, Orsay, France, Feb. 2019.

[20] N. Hansen, T. Tušar, O. Mersmann, A. Auger, and D. Brockhoff,
“COCO: The experimental procedure,” 2016, arXiv:1603.08776.

[21] G. R. Harik and F. G. Lobo, “A parameter-less genetic algorithm,” in
Proc. Conf. Genet. Evol. Comput. (GECCO), 1999, pp. 258–265.

[22] J. N. Hooker, “Testing heuristics: We have it all wrong,” J. Heurist.,
vol. 1, no. 1, pp. 33–42, 1995.

[23] H. H. Hoos and T. Stützle, “Evaluating Las Vegas algorithms: Pitfalls
and remedies,” in Proc. 14th Conf. Uncertainty Artif. Intell., 1998,
pp. 238–245.

[24] H. H. Hoos and T. Stützle. Stochastic Local Search: Foundations and
Applications. San Francisco, CA, USA: Elsevier, 2004.

[25] J. J. Moré and S. M. Wild, “Benchmarking derivative-free
optimization algorithms,” SIAM J. Optim., vol. 20, no. 1, pp. 172–191,
2009.

[26] J. Nocedal and S. J. Wright. Numerical Optimization, 2nd ed. New York,
NY, USA: Springer, 2006.

[27] K. V. Price, “Differential evolution vs. the functions of the 2 nd/ICEO,”
in Proc. IEEE Int. Conf. Evol. Comput. (ICEC), 1997, pp. 153–157.

[28] L. Rios and N. Sahinidis, “Derivative-free optimization: A review of
algorithms and comparison of software implementations,” J. Global
Optim., vol. 56, no. 3, pp. 1247–1293, 2013.

[29] S. S. Stevens, “On the theory of scales of measurement,” Science,
vol. 103, no. 2684, pp. 677–680, 1946.

[30] T. Tušar, D. Brockhoff, and N. Hansen, “Mixed-integer benchmark prob-
lems for single-and bi-objective optimization,” in Proc. Genet. Evol.
Comput. Conf. (GECCO), 2019, pp. 718–726.

[31] T. Tušar, N. Hansen, and D. Brockhoff, “Anytime benchmarking of
budget-dependent algorithms with the COCO platform,” in Proc. 20th
Int. MultiConf. Inf. Soc., 2017, pp. 47–50.

[32] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and
V. G. da Fonseca, “Performance assessment of multiobjective
optimizers: An analysis and review,” IEEE Trans. Evol. Comput.,
vol. 7, no. 2, pp. 117–132, Apr. 2003.

Nikolaus Hansen studied medicine and mathemat-
ics. He received the Ph.D. degree in engineering and
the Habilitation degree in computer science in 2010.

He is a Research Director of Inria and the Institut
Polytechnique de Paris, Palaiseau, France. His main
research interests are randomized search algorithms
in continuous, higher-dimensional search spaces,
learning and adaptation, meaningful assessment and
comparison methodologies, and the development of
algorithms applicable in practice.

Anne Auger received the Diploma and Ph.D.
degrees in mathematics from Paris VI University,
Paris, France, in 2001 and 2004, respectively.

She is a Research Director of the French National
Institute for Research in Computer Science and
Control (Inria), Palaiseau, France, where she is
heading the RandOpt Team. Her main research
interest is stochastic continuous optimization,
including theoretical aspects, algorithm designs, and
benchmarking.

Dimo Brockhoff studied computer science in
Dortmund, Germany. He received the Ph.D. degree
from ETH Zurich, Zürich, Switzerland.

He has been a permanent Researcher with
Inria, Palaiseau, France, since 2011. His research
interests are focused on evolutionary multiobjective
optimization, in particular on theoretical aspects of
indicator-based search and on the benchmarking of
blackbox algorithms in general.

Tea Tušar received the B.Sc. degree in mathe-
matics, the M.Sc. degree in computer science, and
the Ph.D. degree in information and communication
technologies.

She is a Research Associate with the Department
of Intelligent Systems, Jožef Stefan Institute,
Ljubljana, Slovenia, and an Assistant Professor with
the Jožef Stefan International Postgraduate School,
Ljubljana. Her research interests include evolu-
tionary algorithms for single- and multi-objective
optimization with emphasis on visualizing and

benchmarking their results and applying them to real-world problems.

http://dx.doi.org/10.5281/zenodo.2594848

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

