
1336 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 26, NO. 6, DECEMBER 2022

Automated Benchmark-Driven Design and
Explanation of Hyperparameter Optimizers

Julia Moosbauer , Martin Binder, Lennart Schneider , Florian Pfisterer , Marc Becker,
Michel Lang, Lars Kotthoff , and Bernd Bischl

Abstract—Automated hyperparameter optimization (HPO) has
gained great popularity and is an important component of most
automated machine learning frameworks. However, the process
of designing HPO algorithms is still an unsystematic and man-
ual process: new algorithms are often built on top of prior work,
where limitations are identified and improvements are proposed.
Even though this approach is guided by expert knowledge, it is
still somewhat arbitrary. The process rarely allows for gaining
a holistic understanding of which algorithmic components drive
performance and carries the risk of overlooking good algorithmic
design choices. We present a principled approach to automated
benchmark-driven algorithm design applied to multifidelity HPO
(MF-HPO). First, we formalize a rich space of MF-HPO candi-
dates that includes, but is not limited to, common existing HPO
algorithms and then present a configurable framework covering
this space. To find the best candidate automatically and sys-
tematically, we follow a programming-by-optimization approach
and search over the space of algorithm candidates via Bayesian
optimization. We challenge whether the found design choices
are necessary or could be replaced by more naive and simpler
ones by performing an ablation analysis. We observe that using
a relatively simple configuration (in some ways, simpler than
established methods) performs very well as long as some critical
configuration parameters are set to the right value.

Index Terms—Algorithm analysis, algorithm design, auto-
mated machine learning (AutoML), hyperparameter optimization
(HPO), multifidelity.

Manuscript received 21 September 2021; revised 15 March 2022 and 28
July 2022; accepted 15 September 2022. Date of publication 6 October 2022;
date of current version 1 December 2022. The work of Lennart Schneider
was supported by the Bavarian Ministry of Economic Affairs, Regional
Development and Energy through the Center for Analytics-Data-Applications
(ADACenter) within the Framework of BAYERN DIGITAL II under Grant 20-
3410-2-9-8. The work of Michel Lang was supported in part by the Research
Center Trustworthy Data Science and Security (https://rc-trust.ai). The work of
Lars Kotthoff was supported by NSF under Grant 1813537. (Julia Moosbauer
and Martin Binder contributed equally to this work.) (Corresponding author:
Julia Moosbauer.)

Julia Moosbauer, Martin Binder, Lennart Schneider, Florian Pfisterer,
Marc Becker, and Bernd Bischl are with the Department of Statistics,
Ludwig-Maximilians-Universität München, 80539 Munich, Germany
(e-mail: julia.moosbauer@stat.uni-muenchen.de; martin.binder@stat.uni-
muenchen.de; lennart.schneider@stat.uni-muenchen.de; florian.pfisterer@
stat.uni-muenchen.de; marc.becker@stat.uni-muenchen.de; bernd.bischl@
stat.uni-muenchen.de).

Michel Lang is with the Research Center Trustworthy Data Science and
Security, 44227 Dortmund, Germany (e-mail: michel.lang@tu-dortmund.de).

Lars Kotthoff is with the Department of Computer Science, University of
Wyoming, Laramie, WY 82071 USA (e-mail: larsko@uwyo.edu).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TEVC.2022.3211336, provided by the authors.

Digital Object Identifier 10.1109/TEVC.2022.3211336

I. INTRODUCTION

MACHINE learning (ML) is, in many regards, an
optimization problem, and many ML methods can be

expressed as algorithms that perform loss minimization with
respect to a given objective function. The higher-level task of
selecting the ML method and its configuration is often framed
as an optimization problem as well, sometimes referred to as
a hyperparameter optimization (HPO) [1] or combined algo-
rithm selection and HPO (CASH) problem [2]. Successfully
addressing this problem can lead to large performance gains
compared to simply using defaults, and in the context of auto-
mated ML (AutoML), the use of HPO can make ML more
accessible to nonexperts. Because of their potential benefits to
ML performance and usability, it is of particular interest to
design optimization algorithms that perform particularly well
on the HPO problem.

Optimization problems arise in many fields of science and
engineering, but as the no-free-lunch theorem states, there is
no one optimization algorithm that solves all problems equally
well [3]. To design suitable optimizers, it is therefore important
to understand the characteristics of HPO.

1) Black-Box: The objective usually provides no analytical
information [4], such as a gradient. Thus, the applica-
tion of many traditional optimization methods, such as
BFGS, is rendered inappropriate or at least questionable.

2) Complex Search Space: The search space of the
optimization problem is often high-dimensional and
may contain continuous, integer-valued, and categori-
cal dimensions. Often, there are dependencies between
dimensions or even specific hyperparameter values [5].

3) Expensive: A single evaluation of the objective function
may take hours or days. Thus, the total number of pos-
sible function evaluations is often severely limited [4].

4) Low-Fidelity Approximations Possible: An approxima-
tion of the true objective value at lower expense can
often be obtained, for example, through a partial evalu-
ation [6].

5) Low Effective Dimensionality: The landscape of the
objective function can usually be approximated well by
a function of a small subset of all dimensions [7].

Recent HPO and AutoML research has focused on finding
and improving optimization algorithms that work particu-
larly well under these conditions. A common approach is to
tackle HPO by estimating a local or global structure of the
objective landscape by some form of the predictive model.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-0000-9297
https://orcid.org/0000-0003-4152-5308
https://orcid.org/0000-0001-8867-762X
https://orcid.org/0000-0003-4635-6873
https://orcid.org/0000-0001-6002-6980

MOOSBAUER et al.: AUTOMATED BENCHMARK-DRIVEN DESIGN AND EXPLANATION 1337

This introduces additional overhead and complexity with the
aim of reducing the overall number of expensive objective
evaluations necessary to find an approximate optimum. Typical
representatives of this approach are Bayesian optimization
(BO) [8] algorithms and frameworks based on BO, which
are global optimization schemes based on a nonlinear regres-
sion model, e.g., a Gaussian process or random forest. They
have shown significant improvements in performance com-
pared to other methods [9] but carry a significant overhead.
Furthermore, BO is somewhat difficult to parallelize due to
its sequential nature, although many variants exist (e.g., [10],
[11], [12], and [13]).

Multifidelity HPO (MF-HPO) algorithms aim to accelerate
the optimization process by exploiting cheaper proxy func-
tions of the objective function itself (e.g., by training ML
models on a smaller subsample of the available training data,
or by running fewer training iterations). Bandit-based algo-
rithms like Hyperband (HB) [14] have become particularly
popular because of their good tradeoff between optimization
performance and simplicity.

Progress in the field of HPO often consists of iterative
improvements of established algorithms. Considerable work
exists, for example, to improve the limitations of HB: asyn-
chronous successive halving (ASHA) [15] proposes a sophis-
ticated way to make efficient use of parallel resources, BO HB
(BOHB) [16] improves performance during later parts of
a run by incorporating surrogate assistance into HB, and
asynchronous BOHB (A-BOHB) [17] unites a bandit-based
optimization scheme using model-based guidance with asyn-
chronous parallelization.

While these conceptual extensions of HPO all have their
respective merit, it is often somewhat overlooked that the
simplicity of an optimization algorithm (i.e., how difficult
modifications and extensions are, and on how many depen-
dencies a system relies [18]) heavily influences its adoption
in practice. Random search (RS), for example, still enjoys
great popularity, as it is extremely simple to implement and
parallelize, has almost no overhead, and is able to take
advantage of the aforementioned low effective dimensional-
ity [7]. Furthermore, algorithmic developments identify and
address limitations of prior research, but rarely question core
algorithmic choices that have been made in the original imple-
mentation. Many multifidelity algorithms, for example, are
extensions and further developments of HB that take the fixed
successive halving (SH) schedule [19] for granted. The pro-
cess of designing a good MF-HPO optimizer in practice—and
many other algorithmic solutions in science in general—can
therefore often feel somewhat like a “manual stochastic local
search on the meta level.” The drawback of this manual pro-
cedure is that the design space of all HPO algorithms is
not systematically searched, and parts of the design space
are excluded by prior algorithmic decisions. If “established”
algorithms are not challenged, there is a risk that algo-
rithms that work well will be overlooked, and it is often
hard to identify what algorithmic components make a dif-
ference. In particular, it is possible that overly complicated
algorithms are developed by extending “established” designs,
only some of which contribute meaningfully to performance

gains. Sometimes certain technical components of an algo-
rithm, which are neither exposed nor discussed in detail, may
also influence performance significantly.

A. Contributions

We make a principled demonstration of how HPO algorithm
design can be performed systematically and automatically with
a benchmark-driven approach following the programming-by-
optimization paradigm [20]. In particular, the contributions of
this work are as follows.

1) Formalization: We formalize the design space of MF-
HPO algorithms and demonstrate that established MF-
HPO algorithms represent instances within this space.

2) Framework: Based on this formalization, we present
a rich, configurable framework for MF-HPO algo-
rithms, whose software implementation we call surro-
gate model-assisted HB (SMASHY).

3) Configuration: Based on the formalization and frame-
work, we follow an empirical approach to design an
MF-HPO algorithm by optimization, given a large
benchmark suite. This configuration procedure does not
only consider performance but also, e.g., the simplicity
of the design.

4) Benchmark: As in general any HPO algorithm will be
applied in a diverse set of application scenarios, we
evaluate the performance of our newly designed algo-
rithm on a representative set of problems that were not
previously used for its configuration (i.e., a clean test-
set approach on the meta-level) and compare them with
established implementations of HPO methods.

5) Explanation: For the resulting MF-HPO system, we
systematically assess and explain the effect of differ-
ent design choices on overall algorithmic performance.
Furthermore, we investigate the behavior of algorithmic
design components in the context of specific problem
scenarios; i.e., we investigate which algorithmic com-
ponents lead to performance improvements for simple
HPO with numeric hyperparameters, AutoML pipeline
configuration, and neural architecture search.

II. RELATED WORK

HPO is one of the most essential components of current
AutoML methods [1], and MF-HPO has recently become
more prominent, given that cheap, low-fidelity evaluations
have proven useful to speed up optimization, especially for
expensive HPO of complex ML algorithms on larger data
sets [14]. While AutoML tools have historically relied on a
limited set of HPO methods, we argue that the optimal HPO
method depends on problem characteristics, and therefore a
systematic development of HPO methods under consideration
of problem characteristics is required. Approaches toward such
systematic development have often relied on a high-level lan-
guage or template that allows expressing solution algorithms
for a given problem class, e.g., to solve constraint satisfaction
problems [21], [22], [23], satisfiability problems [24], schedul-
ing problems [25], or general multiobjective combinatorial
problems [26], [27].

1338 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 26, NO. 6, DECEMBER 2022

Even if a high-level language is available, manual config-
uration of such frameworks is laborious and requires expert
knowledge. This motivates the design philosophy of “pro-
gramming by optimization” [20] (PBO), which advocates for
allowing algorithmic choices in a software system (instead
of fixing them at the time of implementation) and automatic
configuration by optimization for a given problem context.

As one approach to automatic and efficient algorithm con-
figuration, racing-based strategies have been used to design
optimization algorithms. For example, iterated F-RACE [28]
has been used for the automatic design of multiobjective ant
colony optimization algorithms [26]. Similarly, IRACE [29]
has been used for the automatic design multiobjective evo-
lutionary algorithms [27] or to meta-configure the parame-
ters IRACE itself [30]. Another commonly used framework
is SMAC [5], which extends the sequential model-based
optimization paradigm (SMBO, see also Section IV-A2) to an
algorithm configuration setting. This is achieved through the
use of an intensification procedure that governs across how
many problem instances each configuration is evaluated, trad-
ing off computational cost against confidence regarding the
superiority of a given configuration. While such intensification
mechanisms have been used in other work before [31], [32],
SMAC also uses instance features describing properties of a
problem instance are used to train the empirical performance
model predicting the performance of a configuration on a new
problem instance. Besides racing and sequential model-based
approaches, genetic algorithms have also been used to evolve
optimal solvers [33].

We argue that the design of HPO algorithms can be seen
as an instance of PBO. However, while there are many
approaches that focus on individual algorithmic choices (e.g.,
the choice of a surrogate model for BO [34]), we are not
aware of many cases where PBO is applied to designing
HPO systems themselves. One exception is [35], who use
SMACv3 [36] to automatically configure BO for HPO from
a flexible search space of components. We take a similar
approach here in that the algorithmic choices are exposed as
hyperparameters that can be tuned. However, unlike [35], we
do not configure an established HPO method (such as BO)
with a predefined structure and associated control parame-
ters (e.g., varying the surrogate model of BO). Instead, we
introduce a new configurable algorithmic framework, which
covers many different MF-HPO structures, including well-
established principles for multifidelity handling (e.g., SH)
as well as new approaches (e.g., equal batch size in all
proposals).

In addition to designing well-performing algorithms, it is
equally important to facilitate an understanding of the effects
of all considered design choices. The field of sensitivity anal-
ysis (SA) comprises a multitude of methods to assess the
importance of input factors on the output of a mathematical
model [37]. Functional ANOVA (fANOVA) methods, which
decompose the response of a (mathematical) model or func-
tion into lower-order components, are a widely studied method
in the field of SA, dating back to [38]. This class of methods
has also become popular in the field of ML to analyze the
importance of hyperparameters [39].

Popular ways of analyzing effects of algorithmic effects
in ML and algorithm configuration are ablation studies [40].
This involves measuring the performance when removing
one or more of algorithmic subcomponents to understand
the relative contribution of the ablated components to over-
all performance. There are different ways of performing an
ablation analysis; probably the most common approach is
leave-one-component-out (LOCO) ablation [41]. In the context
of algorithm configuration, Fawcett and Hoos [40] proposed
an ablation approach that links a source configuration (e.g., the
default) to a target (e.g., the optimized configuration) through
an ablation path.

Nevertheless, many existing works that propose or improve
HPO or algorithm configuration systems do not analyze the
algorithmic choices of an optimized system, and the ones
that do perform relatively straightforward analyses. For exam-
ple, Minton [21] compared the designs and their approach
finds automatically to the designs expert humans generated.
López-Ibáñez and Stützle [42] performed ANOVA and non-
parametric Friedman tests to investigate in detail the effects
that algorithmic choices, found through automatic configura-
tion [26], have on the performance of multiobjective ant colony
optimization algorithms. de Nobel et al. [43] presented a mod-
ular framework for CMA-ES variants on which they perform
optimization; in particular, they investigate how the optimized
configuration changes when the search space is enlarged by
introducing new components.

III. METHODOLOGY

A. Supervised Machine Learning

Supervised ML typically deals with a dataset (which is,
mathematically speaking, a tuple) D = ((x(i), y(i))) ∈ (X×Y)n

of n observations, assumed to be drawn i.i.d. from a data-
generating distribution Pxy. An ML model is a function
f̂ : X → Rg that assigns a prediction to a feature vector
from X .1 f̂ is itself constructed by an inducer function I, i.e.,
the model-fitting algorithm. The inducer I : (D,λ) �→ f̂ uses
training data D and a vector of hyperparameters λ ∈ � that
govern its behavior. The overall goal of supervised ML is to
derive a model f̂ from a data set D so that f̂ predicts data sam-
pled from Pxy best. The quality of a prediction is measured
as the discrepancy between predictions and ground truth. This
is operationalized by the loss function L : Y × Rg → R+0 ,
which is to be minimized during model fitting. In contrast to
the optimization problems that we will define in Sections III-B
and III-C, we term this the “first-level” optimization problem.

The expectation of the loss value of predictions made for
data samples drawn from Pxy is the generalization error

GE := E(x,y)∼Pxy

[
L
(

y, f̂ (x)
)]

(1)

which cannot be computed directly if Pxy is not known beyond
the available data D. Therefore, one often uses so-called
resampling techniques that fit models on Niter subsamples
D[Jj] and evaluate them on complements D[−Jj] of these

1where g allows handling of multioutput regression, as well as multiclass
classification with g classes by returning decision scores.

MOOSBAUER et al.: AUTOMATED BENCHMARK-DRIVEN DESIGN AND EXPLANATION 1339

subsets to obtain an estimate of the generalization error

ĜE(I,λ, J) = 1

Niter

Niter∑
j=1

L
(
y
[−Jj

]
, I(D[

Jj
]
,λ

)(
x
[−Jj

]))
. (2)

Depending on the resampling method, the inducer I, and
the quantity of data in D, estimating the generalization
error ĜE(I,λ, J) can require large amounts of computational
resources.

B. Hyperparameter Optimization

The goal of HPO is to identify a hyperparameter configura-
tion that performs well in terms of the estimated generalization
error in (2). Often, optimization only concerns a subspace
of available hyperparameters because some hyperparameters
might be set based on prior knowledge or due to other
constraints. One would therefore split up the space of hyperpa-
rameters � into a subspace of hyperparameters �S over which
optimization takes place, and the remaining hyperparameters
�C = �/�S for which values λC are given exogenously. We
define the HPO problem as

λ∗S ∈ argmin
λS∈�S

c(λS) = argmin
λS∈�S

ĜE(I, (λS,λC), J). (3)

Here, λ∗S denotes a theoretical optimum, and c(λS) is a short-
hand for the estimated generalization error in (2). We refer to
Problem 3 as the “second-level” optimization problem.

Hyperparameters can be either continuous, discrete, or cat-
egorical, and search spaces are often a mix of the different
types. The search space may be hierarchical, i.e., some sub-
ordinate hyperparameters can only be set in a meaningful
way if another parent hyperparameter takes a certain value. In
particular, many AutoML frameworks perform optimization
over a hierarchical hyperparameter space that represents the
components of a complex ML pipeline [1].

Many HPO algorithms can be characterized by how they
handle two different tradeoffs: 1) the exploration versus
exploitation tradeoff refers to how much budget an optimizer
spends on either trying to directly exploit the currently avail-
able knowledge base by evaluating very close to the currently
best candidates (e.g., local search) or whether it explores the
search space to gather new knowledge (e.g., RS) and 2) the
inference versus search tradeoff refers to how much time and
overhead is spent to induce a model from the currently avail-
able archive data in order to exploit past evaluations as much
as possible. Other relevant aspects that HPO algorithms differ
in are: Parallelizability, i.e., how many configurations a tuner
can (reasonably) propose at the same time; global versus local
behavior of the optimizer, i.e., if updates are always quite close
to already evaluated configurations; noise handling, i.e., if the
optimizer takes into account that the estimated generalization
error is noisy; search space complexity, i.e., if and how hier-
archical search spaces can be handled; multifidelity, i.e., if the
optimizer uses cheaper evaluations to infer performance on the
full data.

Multifidelity methods make use of the fact that the resam-
pling procedure in (2) can be modified in multiple ways to
make evaluation cheaper: one can 1) reduce the training sizes

|Jj| via subsampling, as model evaluation complexity is often
at least linear in training set size or 2) change some compo-
nents in λ in a way that makes model fits cheaper. Examples
of 2) are reducing the overall number of training cycles per-
formed by a neural network fitting process or reducing the
number of base learner fits in a bagging or boosting method.
These modifications can both increase the variance of ĜE and
introduce an (often pessimistic) bias, as models trained on
smaller datasets or with values of λ that make fitting cheaper
often have worse generalization errors.

We introduce a fidelity parameter r ∈ (0, 1] that influences
the resource requirements of the evaluation of ĜE and define

c(λS; r) := ĜE(I, (λS,λC(r)), J(r)). (4)

With this definition, we make the choice that r should influence
the evaluation cost of ĜE only by modifying the resampling,
J(r) or by modifying a hyperparameter λC(r). Typically, r only
affects one of these aspects at a time, and if it affects λC, it
only affects a single hyperparameter dimension.

Note that we normally assume that a higher fidelity r
returns a better model in terms of the estimate of the gener-
alization error, and the best estimate is returned for r = 1.
Therefore, r enters the expression in a way where it can
influence performance but is not searched over. We define
c(λS) := c(λS; 1) as in [44], and the optimization problem
remains as in (3).

This assumption may be violated in some scenarios,
and model performance could worsen for a higher value
of r (e.g., a neural network, which may overfit on a
small dataset if trained for too many epochs). In this
case, we define the optimization problem as (λ∗S, r∗) ∈
argminλS∈�S,r∈(0,1] c(λS; r).

The resource requirements of evaluating c(λ; r) can have a
complicated relationship with λ and r; in practice, r is chosen
in such a way that it has an overwhelming and linear influence
on resource demand. The overall cost of optimization up to a
given point in the optimization process is therefore assumed to
be the cumulative sum of the values of r of all evaluations of
c(λ; r) up to that point. We can also interpret r as the fraction
of the budget of a single full fidelity model evaluation that
must be spent for evaluating c(λ; r).

Given the definition of the HPO problem, we present an
(MF-)HPO algorithm for a single, synchronous worker in its
most generic form in Algorithm 1. Until a predetermined bud-
get is exhausted, such an algorithm decides in every iteration
1) which configuration(s) λS to evaluate next and 2) which
fidelity r to use for evaluation; nonmultifidelity algorithms set
this to r = 1 as default. The algorithm makes use of an archive
A, a database recording previously proposed hyperparameter
configurations and, if available, their evaluation results. This
database can be shared among multiple worker processes that
optimize concurrently.

The optimization process can be accelerated by making
efficient use of parallel resources. We distinguish between
synchronous and asynchronous scheduling. The former starts
multiple evaluations synchronously at the same time and waits
until all of these have finished. To be more precise, a number
of k > 1 configurations are proposed in line 2 and evaluated

1340 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 26, NO. 6, DECEMBER 2022

Algorithm 1 Generic HPO Algorithm
1: while budget is not exhausted do
2: Propose

(
λ
(i)
S , r(i)

)
, i = 1, ..., k, based on archive A

3: Write proposals into a shared archive A
4: Estimate generalization error(s) c

(
λ
(i)
S ; r(i)

)

5: Write results into shared archive A
6: end while
7: Wait for workers to synchronize
8: Return best configuration in archive A

in parallel in line 4, all within the inner loop of Algorithm 1.
Given K available parallel resources, it should be ensured that
the number k of configurations scheduled in parallel is not
significantly smaller than K and that the evaluation runtimes
amongst these k configurations do not differ significantly in
order to avoid unnecessarily idling single parallel resources.
In contrast, for asynchronous scheduling, Algorithm 1 is
run individually in K separate worker processes. Given a
shared archive that is synchronized between the workers,
every worker can independently schedule new configurations
to evaluate.

C. Algorithm Design and Configuration

Our goal will be to design and configure a new HPO
algorithm based on a superset of design choices included in
previously published HPO methods. We are interested in find-
ing a configuration (or making design choices) based on a set
of training instances that works across a broad set of future
problem instances. This problem is called algorithm configu-
ration [5], [45]. It is quite similar to HPO; a major difference
is that algorithm configuration optimizes the configuration of
an arbitrary algorithm over a diverse set of often heteroge-
neous instances for optimal average performance, while HPO
performs a per-instance configuration of an ML inducer for
a single data set. We introduce the following notation for
consistency with the relevant literature: γ denotes configura-
tion parameters controlling our optimizer A, while λ denotes
hyperparameters optimized by our optimizer, controlling our
inducer I. The algorithm configuration problem can be for-
mally stated as follows. Given an algorithm A : �× � → �

parameterized by γ ∈ � and a distribution P� over problem
instances � together with a cost metric ζ , we must find
a parameter setting γ ∗ that minimizes the expected ζ(A)

over P�

γ ∗ ∈ argmin
γ∈�

Eω∼P�

[
ζ (A(ω, γ))

]
. (5)

In our example, � corresponds to the space of possible com-
ponents of our HPO method and � corresponds to a class of
HPO problems (i.e., ML methods and datasets on which they
are evaluated) for which their configuration should be optimal.
Based on a training set of representative instances {ωi} drawn
from P�, a configuration γ ∗ that minimizes c across these
instances should be chosen through optimization. When nec-
essary, we refer to this process as the “third-level” optimization
problem to distinguish it from the optimization performed by
the HPO algorithm A, i.e., the second-level optimization.

Algorithm 2 SMASHY Algorithm
Configuration Parameters: batch size schedule μ(b), number

of fidelity stages s, survival rate ηsurv, fidelity rate ηfid, SAMPLE
method (either SAMPLETOURNAMENT or SAMPLEPROGRESSIVE),
batch_method (one of equal, SH, or HB), total budget B; fur-
ther configuration parameters of SAMPLE: Ifsurr , Pλ(A), ρ(t),(

N0
s (t), N1

s (t)
)

, ntrn.

State Variables: Expended budget fraction t ← 0, bracket
counter b ← 1 (remains 1 for batch_method ∈ {equal, SH}),
current fidelity r← 1, batch of proposed configurations C ← ∅

1: while t < 1 do

2: if r = 1 then 	 Generate new batch of configurations
3: r← (ηfid)b−s

4: C← SAMPLE
(A, μ(b), r;Ifsur ,Pλ(A),

ρ(t),
(

N0
s (t), N1

s (t)
)
, ntrn

)
5: if batch_method = HB then
6: b← (b mod s) + 1
7: end if
8: else 	 Progress fidelity
9: r← r · ηfid

10: C← SELECT_TOP(C, |C|/ηsurv)
11: if batch_method = equal then
12: μ̃← μ(b)− |C|
13: C← C ∪ SAMPLE

(A, μ̃, r;Ifsur ,Pλ(A),

ρ(t),
(

N0
s (t), N1

s (t)
)
, ntrn

)
14: end if
15: end if

16: Evaluate configuration(s) c(λS; r) for all λS ∈ C
17: Write results into shared archive A
18: t← t + r · |C|/B 	 Update budget spent
19: end while

IV. FORMALIZING BROAD CLASS OF

MF-HPO ALGORITHMS

We aim to find an HPO algorithm that performs particu-
larly well in the multifidelity setting. To design an algorithm
by optimization, we propose a framework and search space of
HPO algorithm candidates that cover a large class of possible
algorithms and focus on a subclass of algorithms similar to HB
because of their favorable properties. This subclass focuses on
multifidelity algorithms that use a predefined schedule of geo-
metrically increasing fidelity evaluations containing algorithms
like HB [14] and BOHB [16].

The basis of this framework is presented in Algorithm 2,
which can be configured by combining algorithmic building
blocks in novel ways. The main difference to Algorithm 1
is that the Propose part is specified more explicitly. At its
core, Algorithm 2 consists of two parts: 1) sampling new con-
figurations at low fidelities (lines 2–7) and 2) increasing the
fidelity for existing configurations (lines 8–14). In contrast to
Algorithm 1, Algorithm 2 makes use of state variables t, b,
and r to account for optimization progress. However, these
variables are only shown in Algorithm 2 for clarity and can,
in principle, be inferred from the archive A. As argued in
Section III, every single worker instance of Algorithm 1 can, in
principle, be scheduled asynchronously, but we do not consider
this in this work.

MOOSBAUER et al.: AUTOMATED BENCHMARK-DRIVEN DESIGN AND EXPLANATION 1341

TABLE I
RS, BO, SH, HB, AND BOHB AS INSTANCES OF ALGORITHM 2. η, ρ , AND Ns ARE CONFIGURATION PARAMETERS OF THE RESPECTIVE ALGORITHMS.

“—” DENOTES THAT THE VALUE HAS NO INFLUENCE ON THE ALGORITHM IN THIS CONFIGURATION. *: BO AND BOHB USE INDUCERS THAT

PRODUCE NONSTANDARD MODEL FUNCTIONS, WHICH DO NOT AIM TO PREDICT THE ACTUAL PERFORMANCE OF CONFIGURATIONS, AND INSTEAD

CALCULATE THE VALUE OF AN ACQUISITION FUNCTION SUCH AS EI [4] (FOR BO) OR THE RATIO OF TWO KERNEL DENSITY ESTIMATOR (KDE)
MODELS (FOR BOHB). †: IN A SMALL DEPARTURE FROM BOHB, ALGORITHM 2 USES THE KDE ESTIMATE OF GOOD POINTS FOR ALL SAMPLED

POINTS, EVEN WHEN RANDOMLY INTERLEAVED. BOHB RANDOMLY INTERLEAVES FROM A UNIFORM DISTRIBUTION

In its first iteration, Algorithm 2 uses a SAMPLE-subroutine
to initialize the initial batch C of μ solution candidates. The
fidelity of the evaluation of the proposed configurations is
refined iteratively; when all configurations in the batch have
been evaluated with given fidelity r, the top 1/ηsurv fraction of
configurations is evaluated with a fidelity that is increased by
a factor of ηfid. When the fidelity cannot be further increased
for a batch because all of its configurations were evaluated
at full fidelity r = 1, they are set aside, and a new batch of
configurations is sampled.

The SAMPLE subroutine creates new configurations to
be evaluated, possibly using information from the archive
to propose points that are likely to perform well. We allow
that any inducer Ifsur that produces a surrogate model fsur
can be used for model-assisted sampling. The subroutine
works by at first sampling a number of points from a given
generating distribution Pλ(A). The performance of these
points is then predicted using the surrogate model, and
points with unfavorable predictions are discarded in a process
we refer to as filtering. This process is repeated until the
requested number μ of nondiscarded points is obtained. Ns

and ρ have the same function as in [16] (see Section IV-A5),
with the filter factor Ns controlling the number of sampled
points needed for each of the μ points returned, and ρ

controlling the fraction of points that are not filtered. Thus,
the configuration space of sampling methods also includes
purely random sampling, as in HB, by setting ρ = 1. The
influence of the surrogate model on sampled candidates
is larger when 1) the number of sampled configurations
Ns is large or 2) the fraction ρ of candidates sampled at
random is small. We present two slightly different SAMPLE

algorithms: SAMPLETOURNAMENT (Algorithm 3) and
SAMPLEPROGRESSIVE (Algorithm 4) based on this principle
(see Appendix A in the supplementary material). Both allow
to use different Ns values for different points they sample,
parameterized by N0

s and N1
s .

While hyperparameters λS are proposed by one of the two
SAMPLE methods, the fidelity hyperparameter r follows a fixed
schedule similar to SH [19] and HB [14], with a few exten-
sions. For one, the survivor factor ηsurv can be a different value
from the fidelity scaling factor ηfid. Furthermore, the algorithm
allows three scheduling modes, controlled by batch_method:
SH does SH. The HB mode evaluates brackets, as performed by
HB. While μ(b) is, in principle, a free configuration parameter

for every value of b, we choose to set μ(b) so that total bud-
get expenditure is approximately equal between all brackets.
This follows the principle used in HB, but the dependency on
ηsurv and ηfid is more complex and determined dynamically.
Finally, equal batch_method uses equal batch sizes for every
evaluation. Individuals that perform badly at low fidelity are
removed, as in SH, but new individuals are sampled to fill up
batches to the original size. Because new individuals are added
to the batches at all fidelity steps, it is not necessary to use
brackets with different initial fidelities, and therefore, only a
single repeating bracket b = 1 is used. The equal method is
an original contribution of this work and was designed to be
similar to HB while using parallel resources more efficiently;
the two batch scheduling methods are illustrated in Fig. 1.

If the exploration–exploitation tradeoff is not balanced
properly, the optimization progress can either stagnate or func-
tion evaluations are wasted due to too much exploration of
uninteresting regions of the search space. However, the rel-
ative importance of exploration and exploitation can change
throughout the course of optimization, where exploration per-
formed later during the optimization is not as useful as during
the beginning. The given configuration space makes it pos-
sible to make the exploration–exploitation tradeoff dependent
on optimization progress by providing the option to make ρ(t)
and (N0

s (t), N1
s (t)) dependent on the proportion of exhausted

total budget at every configuration proposal step. It is likely
that large values of ρ(t)/small values of N·s(t) perform better
when t is small. Conversely, it is likely that small ρ(t)/large
N·s(t) work well for large t.

A. Common MF-HPO Algorithms Covered by Algorithm 2

The following describes a few common HPO algorithms
that can be instantiated within this framework; see Table I for
specific configuration parameter settings within Algorithm 2
that correspond to these algorithms.

1) Random Search: Configurations λS are drawn (uni-
formly) at random, and every configuration is evaluated with
full fidelity r = 1. Parallelization is straightforward, as
configurations are drawn independently.

2) Bayesian Optimization [8]: The configuration that max-
imizes an acquisition function a(λ) (e.g., expected improve-
ment, EI [4]) is proposed and evaluated with the full fidelity
r = 1. a(λ) is based on a surrogate model trained on the

1342 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 26, NO. 6, DECEMBER 2022

(a) (b)

(c)

(d) (e)

Fig. 1. Illustration of the different batch_methods used, corresponding to the values of ηfid = ηsurv = 2, s = 4, and μ = 8. The tables show the (a) HB method
and (b) equal method. Shown are the number |C| and fidelity value r of configurations being evaluated in the iterations i of the various brackets counted
by b. Except for i, the variables are the same as in Algorithm 2. Subfigures (c)–(e) illustrate resource utilization by the batch methods, given availability of
parallel resources. (c) Naively scheduling the configuration evaluations one batch after another can make use of available parallel resources but leaves many
of them idle. (d) Hypothetical way of scheduling configuration evaluations of different brackets at the same time so that all configurations with the same
r-value are scheduled together utilizes resources more efficiently, but the number of evaluations in each batch still varies. (e) Simpler equal batch scheduling
method always evaluates the same number of configurations within each batch and, therefore, makes optimal use of available parallel resources.

archive A. BO can be parallelized by either using methods
that can propose multiple points at the same time using a
single surrogate model or, alternatively, by fitting a surrogate
model on the anticipated outcome of configurations that were
proposed but not yet evaluated [11]. BO can be represented in
Algorithm 2 by using an inducer Ifsurr that produces a function
fsurr equal to the composition of model prediction and acqui-
sition function. In its basic form, BO is not an MF algorithm
and therefore always sets r = 1.

3) Successive Halving [19]: SH, also called sequential
halving [46], is a simple multifidelity optimization algorithm
that combines the random sampling of configurations with a
fixed schedule for r. At the beginning, a batch of μ configura-
tions is sampled randomly and evaluated with an initial fidelity
rmin < 1. This is followed by repeated “halving” steps, where
the top fraction η−1 of configurations is kept and evaluated
after r is increased by a factor of η, until the maximum fidelity
value is reached. The schedule is chosen to keep the total sum
of all evaluated r constant in each batch. Both ηsurv and ηfid
in Algorithm 2 correspond to SH’s η-parameter.

4) Hyperband [14]: Similar to SH, HB uses a fixed sched-
ule for the fidelity parameter r, but it augments SH by
using multiple brackets b of SH runs starting at different
rmin(b) and with different μ(b). The number of brackets is

set to

s = ⌊
logη(1/rmin)

⌋+ 1 (6)

which coincides with the number of fidelity steps that can
be performed on a geometric scale on the interval [rmin, 1].
In bracket b ∈ {1, 2, . . . , s}, a number of μ(b) samples are
initially sampled and evaluated with initial fidelity r = ηs−b.
μ(b) is chosen such that each bracket needs an approximately
similar amount of budget: μ(b) = �s · (ηs−b/s− b+ 1)�.

5) Bayesian Optimization Hyperband [16]: Model-based
methods outperform HB when a relatively large amount of
budget is available and many objective function evaluations
can be performed. BOHB was created to overcome this draw-
back. This method iterates through SH brackets like HB,
but, instead of sampling new configurations randomly, it uses
information from the archive to propose points that are likely
to perform well. A total number of Ns configurations are
proposed for evaluation; ρ are sampled at random, and the
rest are chosen based on a surrogate model induced on the
evaluated configurations in A. The models used by BOHB
are a pair of KDEs of the top and bottom configurations in
A, similar to the process in [47]. To implement BOHB in
Algorithm 2, one, therefore, needs to use an inducer Ifsurr that

MOOSBAUER et al.: AUTOMATED BENCHMARK-DRIVEN DESIGN AND EXPLANATION 1343

TABLE II
THREE BENCHMARK COLLECTIONS OF YAHPO GYM USED IN OUR BENCHMARK

produces a function that calculates the ratio of kernel densities,
an unusual kind of regression model.

B. Limitations and Further MF-HPO Algorithms

The following lists notable HPO algorithms not currently
covered by the optimization space of Algorithm 1. They were
excluded because they differ in too substantial ways from the
other algorithms considered here.

1) FABOLAS [48]: Fabolas is a continuous multifidelity
BO method, where the conditional validation error is mod-
eled as a Gaussian process using a complex kernel-capturing
covariance with the training set fraction r ∈ (0, 1] to allow for
adaptive evaluation at different resource levels.

2) Asynchronous Successive Halving [15] and
Asynchronous Hyperband: HB, as well as SH, have the
drawback that batch sizes decrease throughout the stages
of an SH run, preventing efficient utilization of parallel
resources. ASHA is an effective method to parallelize SH
by an asynchronous parallelization scheme. A shared archive
across a number of different workers is maintained. Instead
of waiting until all n configurations of a batch have been
evaluated for fidelity r, every free worker queries the shared
archive A for “promotable” configurations (i.e., configurations
that belong to the fraction of top η−1 configurations evaluated
with the same fidelity). Asynchronous HB works similarly.

3) Asynchronous BOHB [17]: A-BOHB, an asynchronous
extension of BOHB where configurations are sampled from a
joint Gaussian Process, explicitly capturing correlations across
fidelities. In contrast to ASHA and asynchronous versions of
BOHB in the original BOHB publication [16], A-BOHB does
not perform synchronization after each stage but instead uses
a stopping rule [49] to asynchronously determine whether a
configuration should continue to run or be terminated.

V. EXPERIMENTAL ANALYSIS

Given the formalization of the framework in Section IV, our
goal is to find the best representative (out of this class of algo-
rithms) by solving the third-level optimization problem in (5),
and explain the role of specific algorithmic components in a
benchmark-driven approach. We aim to answer the following
research questions.
RQ1: How does the optimal configuration of our MF-HPO

framework differ between problem scenarios, i.e., do
different problem scenarios benefit from different HPO
algorithms?

RQ2: How does our optimized MF-HPO algorithm compare
to other established HPO implementations?

RQ3: Does the successive-halving fidelity schedule have an
advantage over the simpler equal-batch-size schedule?

RQ4: What is the effect of using multifidelity methods in
general?

RQ5a: Does changing SAMPLE configuration parameters
throughout the optimization process offer an advan-
tage?

RQ5b: Does (more complicated) surrogate-assisted sampling
in SAMPLE provide an advantage over using simple
random sampling with surrogate filtering?

RQ6: What effect do different surrogate models (or using no
model at all) have on performance?

RQ7: Does the equal-batch-size schedule give an advantage
over established methods when parallel resources are
available?

We rely on benchmark scenarios of the YAHPO Gym bench-
mark suite [50], each of which provides a number of related
instances of optimization problems. The benchmark scenar-
ios we have chosen cover three important application areas
of AutoML: HPO of a neural network (lcbench), AutoML
pipeline configuration (rbv2_super), and neural architecture
search (nb301). These classes of problems do not only repre-
sent common and relevant tasks for researchers and practitioners
in the field; as presented in Table II, they are also quite differ-
ent with regards to: 1) the dimensionality of the search space;
2) hyperparameter types (categorical, integer, and continuous);
and 3) whether there are hierarchical dependencies between
hyperparameters. More details on the characteristics of the
problem classes are given in Appendix B in the supplementary
material. To avoid an optimistic bias in the analysis caused
by over-adaption to the random peculiarities of the particular
instances used during configuration, we are using meta-holdout
splits on the level of HPO problem instances (see Appendix D
in the supplementary material). This means that for analyzing
the performance of a configured candidate of Algorithm 2,
we are evaluating this candidate by running it on instances
that were not seen during configuration. Algorithm 2 is always
run with a budget limit corresponding to 30 · d full fidelity
evaluations (where d is the dimension of the problem instance).

A. Algorithm Design via Configuration

First, we describe the experiments we conducted to config-
ure Algorithm 2 via optimization.

We follow the PBO principle and configure Algorithm 2
by optimizing separately for different HPO scenarios, namely,
for lcbench and rbv2_super, resulting in two optimized con-
figurations γ ∗lcbench and γ ∗rbv2_super, respectively. The nb301
scenario is not used for configuration, but exclusively for
subsequent analysis.

For the algorithm configuration of our framework (third
level), the performance objective Eω∼P�

[ζ(A(ω, γ))] for a

1344 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 26, NO. 6, DECEMBER 2022

TABLE III
SUMMARY OF EXPERIMENT. SHOWN ARE THE VARIOUS OPTIMIZER CONFIGURATIONS γ THAT WERE OBTAINED FROM OPTIMIZATIONS WITH

DIFFERENT CONSTRAINTS. “NAME”: THE NAME BY WHICH WE REFER TO THE CONFIGURATION IN THE TEXT. “RQ”: THE RESEARCH QUESTION

THAT MAINLY RELATES TO THE CONFIGURATION. “OPTIMIZE”: WHETHER THE GIVEN CONFIGURATION WAS OBTAINED BY CONDUCTING A

(POSSIBLY CONSTRAINED) OPTIMIZATION (�), OR BY SUBSTITUTING VALUES INTO THE GLOBAL OPTIMUM γ ∗

configuration γ in (5) is estimated by running Algorithm 2
(i.e., second-level optimization) configured by γ on a set of
problem instances and taking the average of observed per-
formances. For this, all problem instances included in the
respective benchmark scenario that has not been held out for
subsequent analysis are used. As a configuration for our frame-
work, we use BO with the lower confidence bound acquisition
function [51] with interleaved random configurations every
three evaluations.2 Configuration is repeated three times for
each scenario, each running for 60 h, with different random
seeds. To get the overall best configuration, the set of all
evaluated configurations γ (i.e., the third-level optimization
archive) is combined into a single data set for each scenario.
To estimate the actual best configuration, a common identi-
fication criterion [52] is used: a surrogate model is fitted on
the combined datasets and the optimum among the in-sample
predictions of this model is used (γ ∗lcbench and γ ∗rbv2_super,
respectively). We also store the (surrogate-smoothed) optima
of all three individual optimization runs and record the range
of configuration parameter values to obtain an estimate of the
uncertainty of the overall optimal configurations.

The search space used for the optimization of Algorithm 2
is shown in Table V in Appendix C in the supplemen-
tary material. While the batch size μ is constant in the
equal batch_method, it changes for every bracket when
batch_method is HB. The batch sizes μ(2), μ(3), . . . are con-
structed from μ(1) dynamically as described in Section IV.
The search space contains several surrogate learners: Random
forests [53] (RF), K-nearest-neighbors with k set to 1 (KNN1),
kernelized K-nearest-neighbors with “optimal” weighting [54]
(KKNN7), and the ratio of density predictions of good and bad
points, similar to tree parzen estimators [47] without a hierar-
chical structure as in BOHB [16] (TPE). For the prefiltering
sample distribution Pλ(A), we evaluate both uniform sampling
(uniform), and sampling from the estimated density of good
points as done in BOHB [16] (KDE). filter_mb determines
whether the surrogate model makes predictions assuming the
highest fidelity value r observed (TRUE), as opposed to assum-
ing the fidelity of the points being sampled; in the framework
of the SAMPLE Algorithms 3 and 4 in Appendix A in the
supplementary material, this influences the behavior of Ifsurr .

2Note that this optimizer used for third-level optimization is not an instance
of Algorithm 2.

Note that the maximum number of fidelity steps per batch s is
not part of the search space and instead inferred automatically
from ηfid and the lower bound for r that is given as part of
the optimization problem instance. As in HB, it is set to the
largest number of stages that is possible given ηfid and the
lower bound on r according to (6).

B. Algorithm Analysis

Our goal in this work is not only to determine configu-
rations of Algorithm 2 that perform well on the respective
benchmarking scenarios but also to determine what effect indi-
vidual components have on performance. However, performing
a complete SA would be prohibitively computationally expen-
sive, as it would require evaluation of the objective (i.e.,
running Algorithm 2) in an experimental design of differ-
ent configurations. Instead, we evaluate the performance of
the candidate configurations found in Section V-A and alter-
native configurations—which are chosen in a way to allow
for answering our research questions—on the benchmark test
instances which were held out during configuration. A sim-
ple method to answer many of these questions is to take the
optimized configuration of Algorithm 2 and swap components
of it for simpler components (or removing them completely),
thereby performing a one-factor-at-a-time analysis or an abla-
tion study. However, the optimal values of some components
may interact strongly with other components. We, therefore,
auto-configure the framework several times under certain con-
straints dictated by our particular research question at hand.
For example, to investigate the effect of varying ntrn and Ns

over t, we run the optimization of Algorithm 2 with the con-
straint n(0) to be equal to n(1) and compare the resulting
configuration to the overall optimum γ . Table III lists the dif-
ferent values of γ we generate under different constraints. For
each value of γ , we run the, respectively, configured HPO
algorithm on both the lcbench and the rbv2_super scenario,
and (unless stated otherwise) once each for batch_method set
to equal and HB. We refer to an optimized configuration that
was obtained on the lcbench scenario with batch_method set to
equal as γ ∗lcbench[equal], and to the overall optimum (i.e.,
the better of γ ∗lcbench[equal] and γ ∗lcbench[HB]) as γ ∗lcbench;
similar for rbv2_super.

MOOSBAUER et al.: AUTOMATED BENCHMARK-DRIVEN DESIGN AND EXPLANATION 1345

Fig. 2. Beeswarm plot of the best configurations according to the surrogate model over the meta-optimization archive of γ ∗. Shown are the top 80
configuration points (according to the surrogate-model-predicted performance) that were evaluated during optimization. Levels of discrete parameters are
shown. Most numeric parameters are on a log-scale (left axis), except for ρ(0) and ρ(1), which are on a linear scale (right axis). Instead of showing both
N0

s (t) and N1
s (t), their geometric mean Ns(t) is shown. The highlighted large points are γ ∗[HB] and γ ∗[EQUAL], which were found on both benchmark

scenarios.

Every evaluation of a framework configuration, i.e., a com-
plete HPO run on a problem instance, is repeated 30 times
(with different random seeds) to allow for statistical analysis.

The analysis of our research questions is based on the fol-
lowing tables and visualizations. Table VI in Appendix D in
the supplementary material shows the configuration parameters
that were selected for each benchmark scenario with various
search space restrictions. We perform all optimization runs con-
strained to the fidelity scheduling equal and HB, respectively,
and denote the resulting optimal configurations γ ∗[equal] and
γ ∗[HB]. Fig. 2 shows the configuration values of the top 80 eval-
uated points according to their surrogate-predicted performance.
The ranges covered by the bee swarms are again an indica-
tor of approximate ranges of configuration values that can be
expected to work well. Fig. 4 shows the final performance at
30 ·d full-budget evaluations for all optimization runs that were
performed. The standard error shown is the estimated standard
deviation of the mean of benchmark-instance-wise performance,
representing uncertainty about the “true” performance mean if
an infinite number of benchmark instances of the given class
of problems were available.

We now describe in more detail how we operational-
ize each of the research question RQ1–RQ7 and report
results.

RQ1: How does the optimal configuration differ between
problem scenarios, i.e., do different problem scenarios benefit
from different HPO algorithms?

Setup: We investigate the difference in the values that
γ ∗lcbench and γ ∗rbv2_super take, and put this difference in per-
spective by comparing it to the uncertainty of these values.

To evaluate how well γ ∗lcbench and γ ∗rbv2_super generalize to
other problem scenarios, we evaluate them on the respective
instances of scenarios that they were not configured on.

Results: As can be seen in Table VI in the supplementary
material and in Fig. 2, many of the selected components of the
γ ∗ are relatively close to each other across the two scenarios
on which they were optimized, relative to their uncertainty
ranges. Ifsurr is chosen as KNN1 on rbv2_super, but can also
use KKNN7 on lcbench, which in fact seems to be slightly
preferred. This is interesting as KNN-based models are rarely
considered in surrogate-based HPO; the typically preferred
random forest model was not selected. Pλ(A) takes any of the
two values for rbv2_super, but is chosen to be KDE in lcbench.
Finally, ρ(0) is close to 1 in the beginning on rbv2_super,
and closer to 0 (although still greater than ρ(1)) for
lcbench.

The degree to which the differences in γ ∗ influence the
outcome can be observed in Fig. 4. The optimized results gen-
eralize well to test instances from the same scenario as they
were configured on. Fig. 3 shows the optimization progress
(on unseen test instances) of configurations if configured on
the same scenario versus configurations that were configured
on a different scenario. We see, for example, a clear advantage
of the configurations that we obtained by optimizing directly
on lcbench when we evaluate them on their respective held out
test instances. We suspect that this difference in performance is
mainly due to the different choices of surrogate model classes
Ifsurr as well as the random interleave fraction ρ (cf. Fig. 2),
and that specific settings for these two algorithmic components
are needed for lcbench to reach optimal performance.

1346 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 26, NO. 6, DECEMBER 2022

Fig. 3. Optimization progress (mean normalized regret) of serial evaluation on each benchmark scenario as well as 32× parallel evaluation on lcbench.
Different configurations of Algorithm 2 are executed on benchmark functions that have not been used for the meta-optimization itself, and the progress of
these algorithm runs is shown. “γ ∗(lcbench bm equal)” is the configuration obtained from optimizing on lcbench with batch_method equal, other labels
are constructed similarly. Shown is the mean over 30 evaluations, averaged over all available test benchmark instances for each of the three scenarios. The
uncertainty bands show the standard error over the test instances. Note the log-scale on the x-axis. Regret is calculated as the difference between the best
evaluation performance so far and the overall best value found on each benchmark instance over all experiments; normalized such that 1 corresponds to
the median of the performance of all randomly sampled full-fidelity evaluations. We plot performance values observed by the HPO algorithm which depend
on evaluation fidelity. This is the reason for the initially “slow” convergence of algorithms that makes their first full-fidelity evaluation late. Note that μ of
γ ∗[equal] was set to 32 for the parallel evaluations, and HB and BOHB were only naïvely parallelized to simulate a synchronous “single optimizer, multiple
workers” environment. See Fig. 6 in Appendix E in the supplementary material for a larger version.

Fig. 4. Mean normalized regret of final performance on “test” benchmark instances for the configuration, shown in Table III. Shown is the mean over 30
evaluations, averaged over all available test benchmark instances for each of the three scenarios. The uncertainty bands show the standard error over instance
means. Regret is calculated as the difference between the best evaluation performance so far and the overall best value on each benchmark instance over all
experiments; normalized such that 1 corresponds to the median of the performance of all randomly sampled full-fidelity evaluations.

This is not the case for the rbv2_super scenario, where none
of the different algorithms seem to clearly exploit the problem
structure of rbv2_super better than others.

RQ2: How does the optimized algorithm compare to other
established HPO implementations?

Setup: We evaluate several well-known HPO algorithms
in their default configuration on the same benchmark
instances: for BOHB [16], we use the implementation found
in HpBandSter3 (version 0.7.4); for HB [14], we use

3https://github.com/automl/HpBandSter

mlr3hyperband4 (version 0.1.2); and for SMAC [5], we
use the SMACv3 package5 (version 1.0.1). We also con-
struct a traditional Gaussian process-based BO (GPBO) [4]
with mlrMBO6 (version 1.1.5). As GPBO works best with
numerical search spaces, we only evaluate it on lcbench. Note
that GPBO, SMAC, and RS are not multifidelity algorithms
and therefore always evaluate points with maximum
fidelity 1.

4https://cran.r-project.org/package=mlr3hyperband
5https://github.com/automl/SMAC3
6https://cran.r-project.org/package=mlrMBO

MOOSBAUER et al.: AUTOMATED BENCHMARK-DRIVEN DESIGN AND EXPLANATION 1347

Fig. 5. Critical difference plot [55] comparing the performance of different algorithms across all instances and scenarios. For each of the three scenarios, the
mean performance (across replications) for each of the six algorithms is computed (γ ∗[HB] is equal to γ ∗lcbench[HB] for instances of the lcbench scenario, and
to γ ∗rbv[HB] for the rbv2_super scenario; same for γ ∗[EQUAL]). The critical difference test is based on the ranks of the algorithms computed per scenario
and instance. Lower ranks are better. Horizontal bold bars indicate that there is no significant difference between algorithms (α = 1%). GPBO, which was
not evaluated on all scenarios, is not included. (a) Intermediate optimization budget of 100 full evaluations. (b) Full evaluation budget (final performance).

Results: The performance curves for the mean normalized
regret are shown in Fig. 3, and the final performance values
at 30 ·d full-fidelity evaluations are shown in Fig. 4. A critical
difference plot and test can be seen in Fig. 5(b). The behavior
of RS, HB, BOHB, and SMAC is not surprising; initially, RS
and SMAC perform the same, as SMAC evaluates an initial
random design. After this, the performance of SMAC improves
quickly. HB and BOHB initially both perform better than RS
or SMAC because of their multifidelity evaluations, but there
is little difference between them. After a while, BOHB starts
to outperform HB because of its surrogate-based sampling,
which aligns with the observations in [16]. Therefore, BOHB
performs well for most budgets, often being the best optimizer
for a budget of one as well as for 100 full-fidelity evalu-
ations. Given its multifidelity characteristics, HB is a good
choice for low budgets, while SMAC is well suited for larger
optimization budgets. Our framework is very competitive on
both lcbench and rbv2_super, but is outperformed by SMAC
on nb301. We assume that this is because Algorithm 2 was
not explicitly optimized for the nb301 scenario.

Although our framework was only optimized for
performance at 30 · d evaluations, it is also competitive
with BOHB after fewer evaluations, as seen in Fig. 5(b).

RQ3: Does the successive-halving fidelity schedule have an
advantage over the (simpler) equal-batch-size schedule?

Setup: It is likely that the type of fidelity scheduling used
interacts with other configuration parameters. Therefore, we
investigate the difference of resulting optimal configurations
γ ∗[equal] and γ ∗[HB].

Results: In both scenarios, the batch method HB is ultimately
selected for the optimum γ ∗, although Fig. 5(a) and (b) shows
that the difference to batch size equal is not statistically
significant at α = 1%. We observe that the equal fidelity
scheduling mode has several advantages: it is much simpler
than HB as it does not need to keep track of SH brackets and
does not need to adapt μ(b) to make the expended budget
at each bracket approximately equal. As another benefit, it
allows for easy parallel scheduling of evaluations (see also
Fig. 1). This is because it always schedules the same number
of function evaluations at a time, which can therefore be run
synchronously.

RQ4: What is the effect of using multifidelity methods in
general?

Setup: We evaluate the performance of a modified γ ∗ where
the number of fidelity stages s is set to 1, thus ensuring that
configurations are only evaluated with maximum fidelity 1.7

Results: Our results show the superiority of MF-HPO meth-
ods compared to HPO methods that do not make use of
lower-fidelity approximations. Fig. 5(a) suggests that multi-
fidelity methods are significantly better than their nonmultifi-
delity counterparts if optimization is stopped at an intermediate
overall budget corresponding to 100 full-fidelity evaluations.
To be more precise, we see that BOHB as well as both
optimized variants γ ∗[equal] and γ ∗[HB] (optimized for
the respective scenario, respectively) significantly outperform
SMAC under this strict budget constraint. In line with [14],
HB significantly outperforms RS for this budget. On the other
hand, Fig. 5(b) provides evidence that multifidelity methods
can achieve performance on the same level as state-of-the-art
methods that do not make use of low-fidelity approxima-
tions (e.g., SMAC) for larger budgets. We conclude that a
properly designed multifidelity mechanism provides substan-
tial improvements of anytime performance without affecting
performance for larger budgets negatively. In our opinion, the
gain in anytime performance justifies the additional algorith-
mic complexity that is introduced by multifidelity methods.

RQ5a and RQ5b: Does changing SAMPLE configuration
parameters throughout the optimization process offer an
advantage? Does (more complicated) surrogate-assisted sam-
pling in SAMPLE provide an advantage over using simple
random sampling with surrogate filtering?

Setup: To investigate RQ5a (i.e., the effect of the depen-
dence of ρ, ntrn and the Ns configuration parameters on t),
we performed an optimization where this t-dependence was
removed. As these parameters are interpolated between the
values at t = 0 and t = 1, this corresponds to restricting the
search space to where these values are equal, as shown for γ2
in Table III. In addition to this, we ran another optimization
where we further restricted N0

s and N1
s to be equal, ntrn to

be 1, and only the tournament filter_method be used for
RQ5b. The performance of the resulting configurations gives
an indication of the performance that is lost for the gain in
simplicity.

7Because s is not part of the search space � and is instead given by 6, this
is achieved by setting ηfid to ∞.

1348 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 26, NO. 6, DECEMBER 2022

Results: The observations made for γ2 (forbidding change
over time) and γ3 (forbidding change over time and within
each batch) are slightly contradictory. In particular, the nb301
performance of γ lcbench

2 [HB] is a visible outlier with regards
to optimization performance. There is no obvious explanation
from inspecting the configuration parameters of γ lcbench

2 [HB],
but it is possible that it is an accidental “good fit” of
configuration parameters to the specific landscape of nb301.

On lcbench and rbv2_super, the impact of restricting the
search space is smaller and within the uncertainty of the
performance of a single configuration. However, we note that
both changing configuration parameters over time and within
each batch sample introduce significant complexity to the
algorithm; thus we prefer the restricted optimization results
over γ ∗.

RQ6: What effect do different surrogate models (or using
no model at all) have on performance?

Setup: We evaluate the overall result γ ∗[equal] with Ifsur

set to each of the inducers in the original search space
(see Table V in the supplementary material). Furthermore,
γ ∗[equal] is evaluated with ρ set to 1 (i.e., all points are
sampled randomly from a distribution that may be nonuni-
form), and finally, with ρ = 1 and Pλ(A) = uniform (i.e.,
all points are sampled completely uniformly at random).

Results: Surprisingly, the simple k-nearest-neighbors algo-
rithm seems to be chosen consistently by the algorithm
configuration for both lcbench and rbv2_super (see Fig. 2),
either with a value of k = 1 or k = 7. This result is in
line with what we already speculated for RQ1. Our ablation
experiments suggest that the performance of the optimizer is
on average best when using this surrogate learner, even though
the differences do not seem to be significant. KNN1 is there-
fore a reasonable, and simpler, alternative to more complex
surrogate learners like the TPE-based method proposed for
the original BOHB algorithm.

RQ7: Does the equal-batch-size schedule give an advan-
tage over established methods when parallel resources are
available?

Setup: The optimization of ML methods that are expen-
sive to evaluate is often done in parallel; we evaluate the
performance of our method and other methods in a (simu-
lated) parallel setting. We evaluate γ ∗[equal] with μ set to
32 and with an optimization budget of 30 · 4 · d, where d is
the dimensionality of the optimization problem. We compare
it to GPBO with qLCB [10] for 32 parallel evaluations and
simulate parallel execution of RS by running 30 · 4 · d ran-
dom evaluations. Both BOHB and SMAC offer parallelized
versions, but the YAHPO Gym benchmark package does not
yet provide support for asynchronous parallel evaluations [50].
However, since HB and BOHB propose evaluations in batches,
we compared HB and BOHB by accounting for submitted
batches in increments of 32, essentially simulating a sin-
gle HB/BOHB optimizer sending evaluations to 32 parallel
workers and waiting for their completion synchronously.

Results: Fig. 3 shows that our algorithm is competitive with
GPBO—a state-of-the-art synchronously parallel optimization
algorithm—when evaluated with 32 parallel resources. This
result also shows the main advantage that the equal fidelity

schedule has over scheduling like HB, as synchronously paral-
lelizing HB or BOHB puts them at a great disadvantage over
even RS. For HB and BOHB, it is necessary to use asyn-
chronously parallelized methods [15], [17] or use an archive
shared between multiple workers [16] to obtain competitive
results. However, synchronous objective evaluations are much
easier to implement in many environments than asynchronous
communication between workers, making the advantage of the
simplicity of the equal schedule even more pronounced.

C. Reproducibility and Open Science

The implementation of the framework in Algorithm 2 and
reproducible scripts for the algorithm configuration and anal-
ysis are available in public repositories.8 All data that were
generated by our analyses are available as well.

VI. CONCLUSION

We presented a principled approach and framework to
benchmark-driven algorithm design and applied it to generic
MF-HPO. We formalized the search space of multifidelity
hyperparameter optimizers and created a rich and configurable
optimization framework. Given the search space, we used
BO for meta-optimization of our framework on two different
problem scenarios within the field of AutoML and evaluated
the result on held out test problems and an entirely held out
test scenario. We evaluated the configured optimizers and com-
pared to BOHB, HB, SMAC, and a simple RS as reference.
We performed an extensive analysis of the effect of different
algorithmic components on performance, while also consid-
ering the additional algorithmic complexity they introduce.
Our configured framework showed equal and in some cases
superior performance to widely used HPO algorithms.

The additional algorithmic complexity introduced by mul-
tifidelity evaluations provides substantial benefits. However,
based on our experiments, we argue that design choices made
by established multifidelity optimizers like BOHB can be
replaced by simpler choices: For example, the (more com-
plex) SH schedule is not significantly better than a schedule
using equal batch sizes, which allows for more efficient
parallelization.

A KDE-based sampling of points to propose, whether fil-
tered by a surrogate model or not, was consistently chosen by
our framework. This detail, which is not usually presented as
the main feature of BOHB, seems to have an unexpectedly
large impact. On the other hand, our optimization results sug-
gest that a surprisingly simple surrogate learner (knn, k = 1)

can perform even better.
Some components of our search space with large algorith-

mic complexity have not shown much benefits. Optimization
on rbv2_super did choose time-varying random interleav-
ing, and overall, more aggressive filtering late during an
optimization run (Ns(1) > Ns(0)) was slightly favored,
but the results did not consistently outperform a configu-
ration obtained from a restricted optimization that excluded
time-varying configuration parameters.

8https://github.com/mlr-org/smashy,
https://github.com/compstat-lmu/paper_2021_benchmarking_special_issue

MOOSBAUER et al.: AUTOMATED BENCHMARK-DRIVEN DESIGN AND EXPLANATION 1349

Our analysis of the set of best observed performances during
optimization indicates that there is a large agreement between
benchmark scenarios about what the optimal γ ∗ configuration
should be, with parameters that control (model-based) sam-
pling and the surrogate model being the notable exception.
This suggests that there may be a set of configuration param-
eters that are either generally good for many ML problems,
or have little impact on performance and can therefore be set
to the simplest value. However, some configuration param-
eters should be adapted to the properties of the particular
given optimization problem. The meta-optimization frame-
work presented in this work can be used in future work to
investigate the relationship between features of optimization
problems and related optimal configurations.

Other fruitful directions for future work include the more in-
depth evaluation of asynchronous evaluations; asynchronous
methods are important nowadays where parallel resources are
plentiful, but current widely used surrogate-based benchmarks
do not allow for easy asynchronous evaluations. Suggested
methods, such as waiting with a sleep-timer for an appropriate
amount [16], are impractical for meta-optimization.

REFERENCES

[1] B. Bischl et al., “Hyperparameter optimization: Foundations, algorithms,
best practices and open challenges,” 2021, arXiv:2107.05847.

[2] L. Kotthoff, C. Thornton, H. H. Hoos, F. Hutter, and K. Leyton-Brown,
“Auto-WEKA: Automatic model selection and hyperparameter
optimization in WEKA,” in Automated Machine Learning: Methods,
Systems, Challenges, F. Hutter, L. Kotthoff, and J. Vanschoren, Eds.
Cham, Switzerland: Springer Int., 2019, pp. 81–95.

[3] D. H. Wolpert and W. G. Macready, “No free lunch theorems for
optimization,” IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 67–82,
Apr. 1997.

[4] D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient global
optimization of expensive black-box functions,” J. Global Optim.,
vol. 13, no. 4, pp. 455–492, 1998.

[5] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model-
based optimization for general algorithm configuration,” in Learning
and Intelligent Optimization, C. A. C. Coello, Ed. Berlin, Germany:
Springer, 2011, pp. 507–523.

[6] K. Swersky, J. Snoek, and R. P. Adams, “Freeze-thaw Bayesian
optimization,” 2014, arXiv:1406.3896.

[7] J. Bergstra and Y. Bengio, “Random search for hyper-parameter
optimization,” J. Mach. Learn. Res., vol. 13, pp. 281–305, Feb. 2012.

[8] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian
optimization of machine learning algorithms,” in Proc. 25th Int. Conf.
Neural Inf. Process. Syst. Vol. 2, 2012, pp. 2951–2959.

[9] R. Turner et al., “Bayesian optimization is superior to random search
for machine learning hyperparameter tuning: Analysis of the black-
box optimization challenge 2020,” in Proc. NeurIPS Competition
Demonstration Track, vol. 133. Vancouver, BC, Canada, Dec. 2020,
pp. 3–26.

[10] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Parallel algorithm con-
figuration,” in Learning and Intelligent Optimization, Y. Hamadi and
M. Schoenauer, Eds. Berlin, Germany: Springer, 2012, pp. 55–70.

[11] B. Bischl, S. Wessing, N. Bauer, K. Friedrichs, and C. Weihs, “MOI-
MBO: Multiobjective infill for parallel model-based optimization,” in
Proc. 8th Int. Conf. Learn. Intell. Optim., Gainesville, FL, USA,
Feb. 2014, pp. 173–186.

[12] J. González, Z. Dai, P. Hennig, and N. D. Lawrence, “Batch Bayesian
optimization via local penalization,” in Proc. 19th Int. Conf. Artif. Intell.
Stat. (AISTATS), vol. 51. Cadiz, Spain, May 2016, pp. 648–657.

[13] C. Chevalier and D. Ginsbourger, “Fast computation of the multi-
points expected improvement with applications in batch selection,” in
Learning and Intelligent Optimization. Berlin, Germany: Springer, 2013,
pp. 59–69.

[14] L. Li, K. G. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar,
“Hyperband: A novel bandit-based approach to hyperparameter
optimization,” J. Mach. Learn. Res., vol. 18, pp. 1–52, Jan. 2017.

[15] L. Li et al., “A system for massively parallel hyperparameter tuning,”
in Proc. Int. Conf. Mach. Learn. Syst. (MLSys), Austin, TX, USA,
Mar. 2020, pp. 230–246.

[16] S. Falkner, A. Klein, and F. Hutter, “BOHB: Robust and efficient hyper-
parameter optimization at scale,” in Proc. 35th Int. Conf. Mach. Learn.
(ICML), vol. 80. Stockholm, Sweden, Jul. 2018, pp. 1436–1445.

[17] L. C. Tiao, A. Klein, C. Archambeau, and M. W. Seeger, “Model-based
asynchronous hyperparameter optimization,” 2020, arXiv:2003.10865.

[18] D. Sculley et al., “Hidden technical debt in machine learning systems,”
in Proc. Annu. Conf. Neural Inf. Process. Syst., Montreal, QC, Canada,
Dec. 2015, pp. 2503–2511.

[19] K. G. Jamieson and A. Talwalkar, “Non-stochastic best arm identification
and hyperparameter optimization,” in Proc. 19th Int. Conf. Artif. Intell.
Stat. (AISTATS), vol. 51. Cadiz, Spain, May 2016, pp. 240–248.

[20] H. H. Hoos, “Programming by optimization,” Commun. Assoc. Comput.
Mach., vol. 55, no. 2, pp. 70–80, Feb. 2012.

[21] S. Minton, “Automatically configuring constraint satisfaction programs:
A case study,” Constraints, vol. 1, pp. 7–43, Sep. 1996.

[22] S. J. Westfold and D. R. Smith, “Synthesis of efficient constraint
satisfaction programs,” Knowl. Eng. Rev., vol. 16, no. 1, pp. 69–84,
2001.

[23] D. Balasubramaniam, L. de Silva, C. A. Jefferson, L. Kotthoff, I. Miguel,
and P. Nightingale, “Dominion: An architecture-driven approach to gen-
erating efficient constraint solvers,” in Proc. 9th Workshop IEEE/IFIP
Conf. Softw. Archit., Jun. 2011, pp. 228–231.

[24] A. R. KhudaBukhsh, L. Xu, H. H. Hoos, and K. Leyton-Brown,
“SATenstein: Automatically building local search SAT solvers from
components,” in Proc. 21st Int. Joint Conf. Artif. Intell.. San Francisco,
CA, USA, 2009, pp. 517–524.

[25] J.-N. Monette, Y. Deville, and P. van Hentenryck, “Aeon: Synthesizing
scheduling algorithms from high-level models,” in Operations Research
and Cyber-Infrastructure. Boston, MA, USA: Springer, 2009, pp. 43–59.

[26] M. López-Ibáñez and T. Stützle, “The automatic design of multiobjective
ant colony optimization algorithms,” IEEE Trans. Evol. Comput., vol. 16,
no. 6, pp. 861–875, Dec. 2012.

[27] L. C. T. Bezerra, M. López-Ibáñez, and T. Stützle, “Automatic
component-wise design of multiobjective evolutionary algorithms,”
IEEE Trans. Evol. Comput., vol. 20, no. 3, pp. 403–417, Jun. 2016.

[28] M. Birattari, Z. Yuan, P. Balaprakash, and T. Stützle, “F-race and
iterated F-race: An overview,” in Experimental Methods for the
Analysis of Optimization Algorithms. Berlin, Germany: Springer, 2010,
pp. 311–336.

[29] M. López-Ibáñez, J. Dubois-Lacoste, L. P. Cáceres, M. Birattari, and
T. Stützle, “The irace package: Iterated racing for automatic algorithm
configuration,” Oper. Res. Perspect., vol. 3, pp. 43–58, Jan. 2016.

[30] N. Dang, L. P. Cáceres, P. D. Causmaecker, and T. Stützle, “Configuring
irace using surrogate configuration benchmarks,” in Proc. Genet. Evol.
Comput. Conf. (GECCO), Berlin, Germany, Jul. 2017, pp. 243–250.

[31] F. Hutter, H. H. Hoos, K. Leyton-Brown, and T. Stützle, “ParamILS:
An automatic algorithm configuration framework,” J. Artif. Intell. Res.,
vol. 36, pp. 267–306, Sep. 2009.

[32] O. Maron and A. W. Moore, “The racing algorithm: Model selection for
lazy learners,” Artif. Intell. Rev., vol. 11, nos. 1–5, pp. 193–225, 1997.
[Online]. Available: https://doi.org/10.1023/A:1006556606079

[33] S. van Rijn, H. Wang, M. van Leeuwen, and T. Bäck, “Evolving the
structure of evolution strategies,” in Proc. IEEE Symp. Ser. Comput.
Intell. (SSCI), 2016, pp. 1–8.

[34] G. Malkomes and R. Garnett, “Automating Bayesian optimization with
Bayesian optimization,” in Proc. Int. Conf. Adv. Neural Inf. Process.
Syst., vol. 31, 2018, pp. 5984–5994.

[35] M. Lindauer, M. Feurer, K. Eggensperger, A. Biedenkapp, and F. Hutter,
“Towards assessing the impact of Bayesian optimization’s own hyper-
parameters,” 2019, arXiv:1908.06674.

[36] M. Lindauer et al., “SMAC3: A versatile Bayesian optimization package
for hyperparameter optimization,” 2021, arXiv:2109.09831.

[37] A. Saltelli, “Sensitivity analysis for importance assessment,” Risk Anal.,
vol. 22, no. 3, pp. 579–590, 2002.

[38] W. Hoeffding, “A class of statistics with asymptotically normal distri-
bution,” Ann. Math. Stat., vol. 19, no. 3, pp. 293–325, 1948.

[39] F. Hutter, H. Hoos, and K. Leyton-Brown, “An efficient approach for
assessing hyperparameter importance,” in Proc. 31st Int. Conf. Mach.
Learn., vol. 32. Bejing, China, Jun. 2014, pp. 754–762.

[40] C. Fawcett and H. H. Hoos, “Analysing differences between algo-
rithm configurations through ablation,” J. Heuristics, vol. 22, no. 4,
pp. 431–458, 2016.

1350 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 26, NO. 6, DECEMBER 2022

[41] S. Sheikholeslami, M. Meister, T. Wang, A. H. Payberah, V. Vlassov, and
J. Dowling, “AutoAblation: Automated parallel ablation studies for deep
learning,” in Proc. 1st Workshop Mach. Learn. (EuroMLSys@EuroSys),
Edinburgh, U.K., Apr. 2021, pp. 55–61.

[42] M. López-Ibáñez and T. Stützle, “An experimental analysis of design
choices of multi-objective ant colony optimization algorithms,” Swarm
Intell., vol. 6, pp. 207–232, Jul. 2012.

[43] J. de Nobel, D. Vermetten, H. Wang, C. Doerr, and T. Bäck, “Tuning as
a means of assessing the benefits of new ideas in interplay with existing
algorithmic modules,” in Proc. Genet. Evol. Comput. Conf. Companion,
2021, pp. 1375–1384.

[44] A. Klein, L. C. Tiao, T. Lienart, C. Archambeau, and M. Seeger, “Model-
based asynchronous hyperparameter and neural architecture search,”
2020, arXiv:2003.10865.

[45] M. Birattari, Tuning Metaheuristics—A Machine Learning Perspective
(Studies in Computational Intelligence), vol. 197. Berlin, Germany:
Springer, 2009.

[46] Z. Karnin, T. Koren, and O. Somekh, “Almost optimal exploration
in multi-armed bandits,” in Proc. Int. Conf. Mach. Learn., 2013,
pp. 1238–1246.

[47] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for hyper-
parameter optimization,” in Proc. Int. Conf. Adv. Neural Inf. Process.
Syst., vol. 24, 2011, pp. 2546–2554.

[48] A. Klein, S. Falkner, S. Bartels, P. Hennig, and F. Hutter, “Fast Bayesian
optimization of machine learning hyperparameters on large datasets,” in
Proc. Int. Conf. Artif. Intell. Stat., 2017, pp. 528–536.

[49] D. Golovin, B. Solnik, S. Moitra, G. Kochanski, J. Karro, and
D. Sculley, “Google vizier: A service for black-box optimization,” in
Proc. 23rd ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., 2017,
pp. 1487–1495.

[50] F. Pfisterer, L. Schneider, J. Moosbauer, M. Binder, and B. Bischl,
“YAHPO gym—Design criteria and a new multifidelity benchmark for
hyperparameter optimization,” 2021, arXiv:2109.03670.

[51] D. R. Jones, “A taxonomy of global optimization methods based on
response surfaces,” J. Global Optim., vol. 21, no. 4, pp. 345–383, 2001.

[52] H. Jalali, I. Van Nieuwenhuyse, and V. Picheny, “Comparison of kriging-
based algorithms for simulation optimization with heterogeneous noise,”
Eur. J. Oper. Res., vol. 261, no. 1, pp. 279–301, 2017.

[53] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001.

[54] R. J. Samworth, “Optimal weighted nearest neighbour classifiers,” Ann.
Statist., vol. 40, no. 5, pp. 2733–2763, Oct. 2012.

[55] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,”
J. Mach. Learn. Res., vol. 7, pp. 1–30, Dec. 2006.

Julia Moosbauer is currently pursuing the Doctoral
degree with the Chair for Statistical Learning
and Data Science, Ludwig-Maximilians-Universität
München, Munich, Germany.

She is a member of the Munich Center for
Machine Learning. Her research focus lies in
the interface between automated and explainable
machine learning with the goal to increase trans-
parency and trust into automated machine learning
systems. She is also interested in hyperparame-
ter optimization algorithms (in particular, Bayesian

optimization), algorithm configuration, multiobjective optimization, and
(sequential) experimental design.

Martin Binder is currently pursuing the Doctoral degree with the Chair
for Statistical Learning and Data Science, Ludwig-Maximilians-Universität
München, Munich, Germany.

He is a member of the Munich Center for Machine Learning. He is mostly
working on black-box optimization methods for automatic machine learning
and hyperparameter optimization, with a focus on multifidelity optimization.
He also works on deep learning, specifically self-supervised learning, for
genome sequence classification and analysis.

Lennart Schneider is currently pursuing the
Doctoral degree with the Chair of Statistical
Learning and Data Science, Ludwig-Maximilians-
Universität München, Munich, Germany.

His research focuses on automated machine learn-
ing, hyperparameter optimization, multiobjective
optimization, and neural architecture search.

Florian Pfisterer received the master’s degree in
statistics from the Ludwig Maximilian University of
Munich, Munich, Germany, in 2018, where he is cur-
rently pursuing the Ph.D. degree with the Statistical
Learning and Data Science Group, Department of
Statistics.

His research interests are in the field of automated
machine learning, multiobjective optimization, and
algorithmic fairness.

Marc Becker received the master’s degree in geoin-
formatics from Friedrich-Schiller University Jena,
Jena, Germany, in 2020.

Since 2020, he has been a Research Engineer
with the Ludwig Maximilian University of Munich,
Munich, Germany, and a Main Developer of the mlr3
optimization packages.

Michel Lang received the Ph.D. degree in statis-
tics, Dortmund Technical University, Dortmund,
Germany, in 2015.

He is a former member of the Munich Center
for Machine Learning. He is currently a Scientific
Manager of the Research Center Trustworthy Data
Science and Security, Dortmund, Germany. He is
the author of many popular R packages for machine
learning and parallelization, e.g., mlr3 or batch-
tools. His research areas include machine learning,
optimization, and software development.

Lars Kotthoff received the Doctoral degree in com-
puter science from the University of St Andrews,
St Andrews, U.K., in 2012.

He is an Assistant Professor of Computer Science
with the University of Wyoming, Laramie, WY,
USA. His research focuses on data-driven combi-
natorial optimization, automated machine learning,
and applying machine learning in other disciplines,
for example, materials science.

Bernd Bischl studied computer science, artificial
intelligence, and data sciences in Hamburg,
Germany; Edinburgh, U.K.; and Dortmund,
Germany. He received the Ph.D. degree in statistics
from Dortmund Technical University, Dortmund,
in 2013 with a thesis on “Model and Algorithm
Selection in Statistical Learning and Optimization.”

He holds the Chair of Statistical Learning and
Data Science with the Department of Statistics,
Ludwig-Maximilians-Universität München, Munich,
Germany, and he is the Co-Director of the Munich

Center for Machine Learning, one of Germany’s national competence
centers for ML. He is a member of ELLISl, and a Faculty Member of
ELLIS Munich, an active developer of several R-packages, leads the “mlr”
(Machine Learning in R) Engineering Group and is the Co-Founder of the
Science Platform “OpenML” for open and reproducible ML. Furthermore,
he leads the Munich branch of the Fraunhofer ADA Lovelace Center for
Analytics, Data, and Applications, i.e., a new type of research infrastructure
to support businesses in Bavaria, especially in the SME sector. His research
interests include AutoML, model selection, interpretable ML, as well as the
development of statistical software.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

