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Low-dimensional Space Modeling-based
Differential Evolution for Large Scale Global

Optimization Problems

Thiago Henrique Lemos Fonseca1, Silvia Modesto Nassar1, Alexandre César Muniz de Oliveira2 and Bruno Agard3

Abstract—Large-Scale Global Optimization (LSGO) has been
an active research field. Part of this interest is supported by its
application to cutting-edge research such as Deep Learning,
Big Data, and complex real-world problems such as image
encryption, real-time traffic management, and more. However,
the high dimensionality makes solving LSGO a significant chal-
lenge. Some recent research deal with the high dimensionality
by mapping the optimization process to a reduced alternative
space. Nonetheless, these works suffer from the changes in
the search space topology and the loss of information caused
by the dimensionality reduction. This paper proposes a hy-
brid metaheuristic, so-called LSMDE (Low-dimensional Space
Modeling-based Differential Evolution), that uses the Singular
Value Decomposition to build a low-dimensional search space
from the features of candidate solutions generated by a new
SHADE-based algorithm (GM-SHADE). GM-SHADE combines
a Gaussian Mixture Model (GMM) and two specialized local
algorithms: MTS-LS1 and L-BFGS-B, to promote a better
exploration of the reduced search space. GMM mitigates the
loss of information in mapping high-dimensional individuals to
low-dimensional individuals. Furthermore, the proposal does
not require prior knowledge of the search space topology,
which makes it more flexible and adaptable to different LSGO
problems. The results indicate that LSMDE is the most efficient
method to deal with partially separable functions compared to
other state-of-the-art algorithms and has the best overall perfor-
mance in two of the three proposed experiments. Experimental
results also show that the new approach achieves competitive
results for non-separable and overlapping functions on the most
recent test suite for LSGO problems.

Index Terms—Gaussian Mixture Model, Dimensionality Re-
duction, Differential Evolution, Singular Value Decomposition

I. INTRODUCTION

L arge Scale Global Optimization (LSGO) deals with
optimization problems with a high number of decision

variables [1]. Its study is of great relevance to Computer
Science, not only for developing new evolutionary algorithms
for these problems but also for encouraging lines of research
closely linked to large-scale computational projects, such
as Distributed Systems and Parallel Algorithms [2], [3].
The applicability of LSGO to subjects of intense studies,
such as Deep Learning, Big Data, among others, is also
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a factor that attracts interest in the design of increasingly
efficient algorithms [4]–[6]. However, several factors make
solving LSGO problems a major challenge. For example, the
evaluation of a large-scale problem is often computationally
expensive [7]. This high cost is often the case in many real-
world problems, such as image encryption [8], [9], real-time
traffic management [10], construction engineering [6], and
others.

Another factor contributing to the complexity of large-
scale optimization problems is the interaction among vari-
ables. This interaction prevents them from being indepen-
dently optimized to find the global optimum of an objective
function [2], [11]. In the Continuous Optimization literature,
the interaction between variables is commonly referred to as
Non-separability [12], [13] and in Evolutionary Computing
literature; this phenomenon is named Epistasis [14]. De-
composition algorithms based on Cooperative Coevolution
(CC) are often employed to split the decision variables of
the problem into several subproblems, each containing a
subset of the original dimensions [2], [15], [16]. However,
partitioning the dimensions could reduce the search space
coverage since the optimization result combines multiple op-
timized subspaces. In addition, identifying the best grouping
of dimensions requires higher computational cost evaluations
[11], [15], [17].

Non-Decomposition algorithms have been developed over
the past few years to mitigate the variable dependency
problem [2], [18], [19]. These approaches improve the ex-
ploration of high-dimensional search spaces by creating new
evolutionary operators, initialization methods, specialized
local searches, and strategies that optimize the multidimen-
sional space. This approach is responsible for developing
one of the best current algorithms for LSGO problems [20],
[21]. Nonetheless, Non-Decomposition algorithms still need
to deal directly with the problems caused by the exponential
increase in the search space, which degrades the benefits
achieved by the developed specialized strategies over time
[15], [22]. Recently, [23] and [24] demonstrated that it is
possible to reduce the effects of dimensionality through
optimization in a dimensionally reduced search space. The
results, although encouraging, relied on a preliminary anal-
ysis of the search space topology to develop dimensionality
reduction algorithms specific to each type of space, and it
was not possible to extend them to general LSGO problems
[18].

This paper proposes a new non-decomposition approach
based on the so-called Success-History Based Parameter
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Adaptation for Differential Evolution (SHADE) algorithm.
Our algorithm uses a dimensionality reduction method
named Singular Value Decomposition (SVD) that builds
the low-dimensional search space from the features of the
current population of candidate solutions generated by the
SHADE-based algorithm. Therefore, our proposal does not
require prior knowledge about the search space to explore
it. Gaussian Mixture Model (GMM) is used with SHADE
to promote the search for optimal solutions in a low-
dimensional space. GMM mitigates the error in mapping
high-dimensional individuals to low-dimensional individuals
by soft clustering using probability distributions. The candi-
date’s optimal solution can then be reconverted back to the
original high-dimensional space where a local search method
can explore its neighboring regions.

For experimentation, we considered the most recent LSGO
test suite conducted at the 2013 IEEE Congress on Evolu-
tionary Computation (CEC’2013) [25] and new evaluation
criteria held at the 2019 IEEE Congress on Evolutionary
Computation (CEC’2019) [26].

CEC’2013 benchmark is a recognized benchmark for com-
paring the selected algorithms on a wide variety of functions
with different design perspectives, including nonuniform
subcomponent sizes, imbalances in subcomponent contribu-
tions, overlapping subcomponents, ill-conditioning, symme-
try breaking, and irregularities [27]. Our proposed algorithm,
called Low-dimensional Space Modeling-based Differential
Evolution (LSMDE), is evaluated against seven state-of-
the-art algorithms that have also achieved competitive re-
sults in competitions on the CEC’2013 large-scale global
optimization (LSGO) test suite over the past few years.
The experimental results show that LSMDE has better per-
formance on the partially separable functions than other
state-of-the-art LSGO algorithms. The results also showed
promising performance of the LSMDE on non-separable and
overlapping functions.

In the paper, we provide the following main contributions:
(i) we quantify the gain in terms of average fitness values
that can be achieved with a LSMDE optimizer using the most
recent test suite for LSGO problems; (ii) we provide valuable
indications that makes the proposed approach suitable for
partially separable optimization problems ; (iii) we propose
an innovative way of applying Dimension Reduction to
Large-Scale Optimization problems opening up possibilities
for applications of different algorithms from the same scope
(PCA, t-SNE).

In the following, Section II presents the related works. Sec-
tion III describes in detail the proposed algorithm. Section IV
presents the experimental design indicated by the IEEE Task
Force on Large-Scale Global Optimization and our results.
Section V presents the statistical analysis that supports our
results. Finally, Section VI contains conclusions and further
research.

II. RELATED WORKS

Several specific algorithms have been proposed to deal
with Large Scale Global Optimization (LSGO) problems in
the last decade. This problem has two main approaches:
decomposition algorithms based on Cooperative Coevolution

(CC) and non-decomposition algorithms. Decomposition-
based algorithms use a divide-and-conquer approach by
decomposing LSGO problems into several low-dimensional
subcomponents. In contrast, non-decomposition algorithms
improve the exploration of d-dimensional search spaces by
creating new evolutionary operators and specialized local
search (LS) methods [28]

The cooperative coevolution (CC) method, proposed by
[29], decomposes the original large-scale problem into a
certain number of one-dimensional subproblems before its
evolution. A subcomponent optimizer can evolve a subpopu-
lation for each subproblem in a round-robin fashion. A series
of variants have been developed under the traditional CC in
conjunction with different evolutionary strategies. Such as
CCGS [30], CC-CMA-ES [31], SACC [2], CCFR [32], and
many others.

Despite the improvement in computational performance
provided by the constant decomposition algorithms based on
CC, such gains generally do not offset the cost of evaluations
required for variable dependency detection. According to
[33], this approach is not considered competitive enough
compared to algorithms specially designed for LSGO. In-
vesting in mitigating the limitations of decomposition-based
algorithms led to the investigation of other strategies. An in-
teresting work developed by [34] describes the whole process
of creating a competitive hybrid algorithm specific for LSGO
with the experimental design to the final statistical validation
of the results. These results show that a good experimental
design can find a combination of algorithms that outperforms
any previous decomposition-based algorithms, automatically
selecting the most suitable heuristic for each function and
search phase.

Among these hybrid approaches, algorithms based on
Swarm Intelligence (SI) and Differential Evolution (DE)
have gained prominence for LSGO problems due to their
simplicity and efficiency [28]. One example of this combi-
nation is C-DEEPSO, proposed by [35]. C-DEEPSO is a
hybrid metaheuristic that incorporates distinctive features of
Particle Swarm Optimization (PSO), Differential Evolution
(DE), and Evolutionary Programming (EP). The distinctive
feature of C-DEEPSO consists of improved assimilation of
the optimization landscape. To take advantage of the infor-
mation collected by the population throughout the search,
C-DEEPSO relies on a collective memory instead of mul-
tiple and independent memories that encompass the search
experience of each individual. The results indicate that the
C-DEEPSO is an efficient and competitive algorithm for
tackling LSGO problems.

Differential Evolution (DE) has proven to be a promising
approach in decomposition-based and non-decomposition-
based algorithms, with several significant improvements
made over the last few years [36]. Researches have proposed
new mutation strategies to improve the optimization perfor-
mance of DE algorithms [37]. For example, [38] proposed an
enhanced adaptive differential evolution (EADE) algorithm
that utilizes the information of good and bad vectors in the
DE population through a new mutation rule. Already, [39]
uses a new mutation rule to balance the global exploration
ability and the local exploitation tendency and enhance the
convergence rate of an algorithm so-called ANDE. The
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comparison results between EADE and ANDE and the
other state-of-art algorithms indicate that both algorithms
are highly competitive for LSGO problems. [40] also used
a new mutation strategy based on neighborhood, quantic
computing characteristics, and a CC method to propose
an improved DE with higher convergence accuracy and
stability for high-dimensional problems. Another interesting
strategy is to combine DE algorithms with LS methods.
[41] proposed combining the DE’s exploratory component
with the LS method’s exploitative factor in an algorithm
named IHDELS. [42] developed the SHADE, a DE that uses
a success history-based parameter adaptation technique. In
the SHADE, a memory pool stores the successful parameter
values of scaling factor F and crossover rate CR. For every
individual, F and CR values are calculated by selecting
a random location from historical memory and using the
corresponding values with Cauchy and normal distribution,
respectively. This algorithm became a reference for other
algorithms that came later due to its promising results in
LSGO benchmark suites.

Few DE algorithms have succeeded in LSGO problems
as the SHADE-ILS proposed by [21]. Winner of the IEEE
CEC’2018 Special Session and Competition on Large-Scale
Global Optimization, SHADE-ILS is a SHADE-based hybrid
algorithm that combines a modern Differential Evolution
algorithm with a local search method chosen from a set of
different search methods. The selection of the local search
method is dynamic. SHADE-ILS considers the improve-
ment obtained by each search in the previous intensification
phase to identify the most suitable method for each itera-
tion. [43] proposed a SHADE-based algorithm with linear
population size reduction and semi-parameter adaptation
(MLSHADE-SPA) where dimensions are randomly divided
into groups and solved separately. Subsequently, an adaptive
local search method was developed for MLSHADE-SPA,
achieving promising results on non-separable functions and
overlapping functions [17]. Another efficient SHADE-based
algorithm was the GL-SHADE proposed by [20]. Two pop-
ulations are used in GL-SHADE, each evolving differently,
allowing them to complement each other during the search
process. The first population is responsible for exploring the
search space, while the second is responsible for exploiting
it. GL-SHADE outperformed the SHADE-ILS in many IEEE
LSGO test problems [20].

The hybridization of metaheuristics and local search has a
fundamental and compelling place in LSGO research [6].
This influence is more evident when considering related
papers and competitions in special sessions such as the CEC
Special Sessions and Competitions organized by The IEEE
Congress on Evolutionary Computation (IEEE CEC).

The first winner of the LSGO competitions was Multi-
ple Trajectory Search (MTS), a combination of three lo-
cal searches presented in CEC’2008 [44]. MTS uses three
methods to find candidate solutions neighboring the current
solution [6]. Among these local search methods, MTS-LS1
is the most effective for LSGO. MTS-LS1 evaluates each
dimension one by one, from the first dimension to the last
one. MTS-LS1 is a local search method suitable for separable
problems but sensitive to rotations [21].

MTS-LS1 and its variants were used as local search

methods in important winner algorithms of the IEEE CEC
mentioned above as SHADE-ILS [21], MTS [44], IHDELS
[41], MLSHADE-SPA [43], among others. L-BFGS-B is
another local search method with great results in LSGO prob-
lems. L-BFGS-B utilizes an approximation of the gradient
to improve the search and is sensitive to rotation [45]. This
method is used in IHDELS [41] and SHADE-ILS [21].

A recent and promising alternative to deal with increased
dimensionality is mapping the optimization process to a more
straightforward alternative space. Based on this premise,
[23], and [24] developed algorithms according to the follow-
ing idea: while the global optimization problem is defined
in ample dimensional space, the decision of whether to start
or not a local search occurs through a clustering technique
based on a low-dimensional space. A limitation of this
approach is that the low-dimensional space is based on
feature engineering, which is associated with a problem-
specific geometric characteristic of every sampled solution.
[18] developed the C-MDE, a clustering-memetic DE that
uses Random Projection (RP) to reduce the dimensionality
of the LSGO problems. Random Projections are random
linear maps sampled from suitable distributions, which ap-
proximately preserve certain geometrical invariants. In other
words, it is not problem-dependent. However, C-MDE fails
to deal appropriately with the loss of information caused by
dimension reduction. Aside from that, only 100 dimensions
were tested, which is not enough compared to other tests
conducted using state-of-the-art algorithms.

Recently, [46] proposed a generic framework of itera-
tive Cooperative Coevolution with evolutions in two spaces
(BICCA). In the pattern space, variable interaction patterns
are continuously evaluated by CC. The patterns are evolved
in the pattern space by using a pattern discovery engine to
analyze the interaction of the variables. Cooperative Coevolu-
tion and global search are performed adaptively in the search
space to obtain better fitness. By adopting evolutions and
interactions within two spaces, patterns evolve to provide
better clusters while individuals evolve to achieve better
fitness. Problem decomposition is conducted throughout the
optimization process. Experiments on widely used bench-
marks show that BICCA achieves competitive performance
on optimization problems with up to 10000 dimensions. [47]
proposed an EDA based on latent space (LS-EDA), which
transforms the multivariate probabilistic EDA model into its
principal component latent subspace with lower dimension-
ality. Dimensions with higher projected values contribute
more to the optimization process. LS-EDA can also help
to recognize and understand the structure of the problem.
The computational cost and population size of LS-EDA can
be effectively reduced due to the dimensionality reduction.
At the same time, its performance is highly competitive
compared with state-of-the-art algorithms for overlapping
and non-separable functions.

The following section presents the proposed algorithm
named Low-dimensional Space Modeling based Differential
Evolution (LSMDE). This algorithm expands on recent re-
search by proposing a dimensionality reduction algorithm
for large-scale global optimization without requiring prior
knowledge about the search space. LSMDE also deals with
the information loss inherent to the dimensionality reduction
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process through a soft clustering process based on probability
distributions.

III. PROPOSED ALGORITHM

In this section, we introduce a Low-dimensional Space
Modeling based Differential Evolution for Large Scale
Global Optimization, referred to as LSMDE. The proposed
algorithm is a non-decomposition-based technique, as it
optimizes the entire search space through an adaptive di-
mensionality reduction algorithm and uses Gaussian mixture
models to search for the optimal solution in the reduced
space. LSMDE comprises three main steps: Population Ini-
tialization with modified partial opposition-based learning,
Dimensionality Reduction with an Adaptive Singular Value
Decomposition strategy, and Search Space Exploration, with
GM-SHADE.

A. Population Initialization

In general, a good initial population improves the perfor-
mance of algorithms and can save computational resources
during the search process [48]. Random or uniform popula-
tion initialization are among the most common techniques.
However, these techniques are not recommended for large-
scale problems [49]. Opposition-based Learning (OBL) has
attracted interest in the past decade, mainly because of its
wide use in soft computing algorithms [48]. The computa-
tional concept of opposition learning was inspired by the
concept of opposite number, defined as follows:

Definition III.1 (Opposite point in the d-space). Let
x⃗(x1, ..., xd) be a point in d-dimensional space and xj ∈
[aj , bj ], j = 1, 2, ..., d. The opposite of x⃗ is defined by
z⃗(z1, ..., zd) as follows:

zj = aj + bj − xj (1)

According to [48], searching for optimal solutions consid-
ering randomness and its opposite provides a higher proba-
bility of finding the promising regions since the search can be
redirected to more favorable regions in opposite directions.
LSMDE uses a modified partial opposition-based learning
inspired by [50] with three different opposition operators for
each dimension of the problem, as defined below.

Definition III.2 (LSMDE Opposition Strategy). Let x⃗ =
(x1, ..., xd) be a point in d-dimensional space and xj ∈
[aj , bj ], j = 1, 2, ..., d. The opposite of x⃗ is defined by
z⃗ = (z1, ..., zd) where each zj is selected randomly among
three opposition operators, as follows :

zj =

 aj + bj − xj
xj + aj − ((aj + bj)/2) mod (bj − aj)

random(aj + bj − xj , aj + bj/2)
(2)

Generally, traditional opposition schemes calculate the
opposition for all variables of a candidate solution using
the same opposition operator [48]. This technique limits
the diversity of opposition points since the "opposed space"
always follows the same formation rule. The random addition
of opposition operators allows the construction of opposite
points with more significant variability in each dimension,
allowing exploring regions of the high-dimensional search
space that would be difficult to reach only through an

evolutionary algorithm. Therefore, the goal is to generate
an initial population with high diversity that allows for more
efficient exploration of the d-dimensional search space in the
following optimization steps.

Given a minimization problem, a population of individuals
x⃗i ∈ P generated randomly and its opposite population z⃗i ∈
Z generated according to Equation 2, each new individual
x⃗i of the new initial population P is formed by:

x⃗i = min(f(x⃗i), f(z⃗i)) | ∀x⃗i, z⃗i ∈ (P∪Z) and i = 1, 2, ..., n
(3)

where f is a fitness function and n is the number of
individuals in the population. In other words, the initial popu-
lation is formed by the best individuals between the random
population P and the opposite population Z. Before starting
the optimization step, LSMDE reduces the dimensionality
of the initial generated population P in order to reduce the
complexity of the overall Large Scale Optimization Problem.

B. Dimensionality Reduction by Adaptive Singular Value
Decomposition

Given any population P is a subset of the search space,
LSMDE represents this subset as a matrix Pn×d where n
is the number of individuals in the population and d is
the dimensionality of the problem. According to Singular
Value Decomposition (SVD) [51], any matrix Pn×d can be
decomposed into three matrices U, S, V , illustrated in Figure
1, where V T is the transpose of matrix V as follows:

P = U · S · V T (4)

• S is a d×d diagonal matrix with s11 ≥ s22 ≥ ...sdd ≥ 0
called the singular values.

• U is a n × d matrix called the left singular vectors or
eigensamples UT · U = I

• V is a d × d matrix call the right singular vectors or
eigenfeatures V · V T = V T · V = I

Fig. 1. Matrix decomposition

We can rewrite Equation 4 as follows:

P = Σ
min (n,d)
i=1 si · u⃗i · v⃗Ti (5)

where si is the ith singular value and u⃗i, v⃗Ti are the cor-
responding left singular vectors and right transpose singular
vectors. In other words, the SVD expresses P as a non-
negative linear combination of min (n, d) rank-1 matrices,
with the singular values providing the multipliers and the
outer products of the left and right singular vectors pro-
viding the rank-1 matrices. As the SVD of P represents
the subspace P as a multiplication of matrices ordered by
importance, we can keep only the most important k singular
vectors in order to obtain a projection U · S ∈ Rk from
subspace P ∈ Rd where k < d. The general idea to reduce
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the dimensionality of the matrix P is to keep only the first
top k terms on Equation 5 in order to generate a low-rank
approximation P̃ similar to the original P [51] as defined
below:

P̃ = Σki=1si · u⃗i · v⃗Ti or P̃ = Uk · Sk · V Tk (6)

Matrix Ψ = UkSk gives low dimensional representations of
the search space P from its k principal components scores
(PC) and matrix V Tk can be interpreted as a reconstruction
matrix that projects these low dimensional points back into
the approximate high dimensional space P̃ (Figure 2).

In order for the Ψ subspace to be used in a population-
based approach, it is necessary to develop a way to update
the low-dimensional subspace without having to reconstruct
it. This feature is important so that mutation, crossover and
selection operators can generate new low-dimensional candi-
date solutions without losing their neighborhood relationship.

For an approximate subspace P̃ , the three decomposed
matrices Uk, Sk and Vk are computed first. However, when
a new individual is added to the search space through a
population-based approach, it is not necessary to recalculate
the low-dimensional subspace Ψ from scratch. We can use
the concept of Folding-in to build Ψ(t+i) as an incremental
process [52], [53].

Let UkSkV Tk be the matrice that makes up the low-ranking
approximation of the subspace P ∈ Rn×d, given a new
individual x⃗i ∈ Rn×d to be projected onto a k-dimensional
space Ψ, we have u⃗ = x⃗i ·Vk ·S−1

k . The projection u⃗ ∈ Rn×k
is merged into the existing SVD by adding to the bottom of
the matrix Uk resulting in a matrix U (t+1)

k ∈ R(n+1)×k. This
new matrix can be used to compute Ψ(t+1) = U

(t+1)
k ·Sk for

the next generation of the population-based approach. Figure
3 illustrates the projection of a new individual x⃗i into Ψ.

The best value of k to minimize the difference between
P and P̃ can be described by Johnson-Lindenstrauss lemma
(JLL) [54], as described below:

Lemma III.1 (Johnson-Lindenstraus). For any 0 < ϵ < 1
and integer n, let k be a positive integer such that k ≥
4(ϵ2/2 − ϵ3/3)−1 log n. Then for any set P of n points in
Rd, there is a map f : Rd → Rk such that for all x⃗, y⃗ ∈ P ,

(1− ϵ) ∥x⃗− y⃗∥2 ≤ ∥f(x⃗)− f(y⃗)∥2 ≤ (1− ϵ) ∥x⃗− y⃗∥2 .

Furthermore, this map can be found in randomized polyno-
mial time.

LSMDE uses the JLL to infer k for dimensionality reduc-
tion by Singular Value Decomposition in order to preserve
the distances of individuals by a factor of (1 ± ϵ). By not
making assumptions about the topology of the search space,
the method is more flexible and can be applied to different
search spaces. Based on JLL, it is possible to develop an
adaptive ϕ function that maps each high dimensional element
x⃗i ∈ P into its corresponding element ψ⃗i ∈ Ψ and an inverse
function ϕ′ that projects these low dimensional individuals
back into the high dimensional space such that:

ϕ(x⃗i) = ψ⃗i, ϕ′(ψ⃗i) ≃ x⃗i | f(x⃗i) ≃ f(ϕ′(ψ⃗i)) , ∀i ∈ [1, n]
(7)

ϕ′(ψ⃗i) = ψ⃗i · V Tk (8)

f is the fitness function for the optimization problem and
V Tk is a reconstruction matrix.

From the concepts presented above, we can develop a
function ϕ : Rd → Rk that maps candidate solutions from a
high-dimensional space P to a space of low dimensionality
Ψ. Similarly, we can develop a function ϕ′ : Rk → Rd such
that each individual ψ⃗ ∈ (Ψ ⊂ Rk) can be mapped back
to the individual x⃗ ∈ (P ⊂ Rd) as the Algorithm 1 and 2
below:

Algorithm 1: Adaptive SVD ϕ
Data: P, n, ϵ
Result: P̃
1. k ← 4(ϵ2/2− ϵ3/3)−1 logn ;
2. Uk, Sk, Vk ← SV D(P ) ;
3. Ψ← (UkSk) ;
4. Return: Ψ, V T

k ;

Algorithm 2: Inverse Adaptive SVD ϕ′

Data: Ψ, V T
k

Result: P̃
1. P̃ ← ΨV T

k ;
2. Return: P̃ ;

The computation complexity of the other LSMDE steps
is asymptotically upper bound by the complexity of the
space transformation process defined in Algorithms 1 and
2 since these transformations are responsible for the high-
est computational cost. According to [55], the computation
complexity of the SVD method represented by Algorithm
1, line 2 is O(k2n). The matrix multiplication complexity
for generating the low dimensional representations of the
search space Ψ is also O(k2n). In Algorithm 2, line 1, the
complexity of projecting a low-dimensional population back
to high-dimensional space is O(knd). To summarize, the
complexity of converting a population to low dimensionality
and back to high dimensionality is O(k2n+ knd).

Success-History Based Parameter Adaptation for Differen-
tial Evolution (SHADE) is one of the most successful differ-
ential evolution algorithms [56] and some of its variants are
among the best algorithms in important competitions [21],
[57]. Therefore, LSMDE applies the SHADE, hybridized
with a Gaussian Mixture Model with a variational bayesian
estimation mechanism in the low dimensionality space to
discover regions of optimality that can be reconverted to the
original space. This hybridization is named GM-SHADE.

C. Gaussian Mixture SHADE (GM-SHADE)

One of the key tasks in the application of mixture models
is the determination of a suitable number of clusters. GM-
SHADE estimates the model parameters and detects the
number of clusters automatically as part of the variational
estimation procedure using a parameter based on a finite
mixture model with Dirichlet process [58]. The Dirichlet Pro-
cess is a stochastic process used in Bayesian nonparametric
to cluster data without specifying the number of clusters in
advance.

To perform the search in a low-dimensional space, we
created the GM-SHADE, an algorithm that hybridizes the
SHADE algorithm and Bayesian Gaussian Mixture Models
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Fig. 2. Illustration of a low-dimensional representation from a d-dimensional random P matrix to a k-dimensional Ψ matrix.

Fig. 3. Projection of a new high dimensional individual x⃗i through the Low-rank approximation ϕ(x⃗i ∈ P ) (folding-in)

to guide the search process for promising regions in a low-
dimensional search space. This algorithm has a parameter
adaptation based on a successful history inspired by the
SHADE-ILS algorithm [21], that is, crossover rate (CR) and
a scaling factor (F) are dynamically updated following the
same rules defined in [21].

GM-SHADE searches for promising regions in the low-
dimensional space Ψ, framing it into clusters that are repre-
sented by a function composed of several Gaussians, each
identified by λ ∈ 1, ...,Λ, where Λ is the current number of
clusters. The cluster coverage is determined by a Gaussian
λ, composed by a mean individual µ⃗, a covariance Υ and
a mixing probability π. The goal is to ensure that each
Gaussian fits all candidate solutions ψ⃗i belonging to each
cluster. The assimilation process from a candidate solution
ψ⃗i to a Gaussian mixture is a Gaussian Density Function:

N(ψ⃗i|µ⃗,Υ) =
1

(2π)k/2|Υ|1/2
∗ e− 1

2 (ψ⃗i−µ⃗)TΥ−1(ψ⃗i−µ⃗) (9)

ψ⃗i represents an individual in the low-dimensional space, k is
the number of dimensions of ψ⃗i, µ⃗ is the mean and Υ is the
covariance. Using the variational expectation-maximization
algorithm (Variational EM) [58], GM-SHADE finds the best
parameters θ = [πλ, µ⃗λ,Υλ] for each Gaussian λ. The
mixing coefficient πλ represents the overall probability of
observing an individual ψ⃗i that comes from Gaussian λ.

Dirichlet process mixture models (DPMMs) provide a non-
parametric Bayesian framework to describe distributions over
mixture models with an infinite number of mixture com-
ponents (clusters). A Dirichlet process (DP), parameterized
by a base distribution G0 and a concentration parameter α,
is used as a prior over the distribution G of the clusters.
For a population Ψ, mixture component parameters θ, and a
parameterized distribution H , the DPMM can be written as
Equation 10:

G|α,G0 ∼ DP (α,G0)

θi|G ∼ G

ψ⃗i|θi ∼ H(θi)

(10)

Dirichlet process mixture models can be implemented as
a Gaussian mixture model (GMM) in which all parameters,
including Λ, are inferred from Ψ [59]. In GMM, Gaussians
with high π values represent regions where more individuals
ψ are observed and are promising regions. Figure 4 shows
the number of clustering being updated according to the
population Ψ.

In this work, we consider that a Gaussian λ is promising
if:

πλ ≥ 0.25(1/Λ) + (1/Λ) (11)

where Λ is the current number of clusters inferred by DP to
the current population Ψ. The promising Gaussian defined by
θ = [πp, µ⃗p,Υp] represents the region of search space where
there are higher chances of finding significant solutions to the
problem and µ⃗p is the average individual that represents the
promising Gaussian. In each generation, a mutant vector v⃗i is
generated from a member ψ⃗i of the current low-dimensional
population according to the Equation as follows:

v⃗i = ψ⃗i + Fi · (µ⃗p − ψ⃗i) + Fi · (ψ⃗r1 − ψ⃗r2) (12)

µ⃗p is the mean individual of the most promising Gaussian
in the current generation, and the scaling factor Fi is gen-
erated from the Cauchy distribution as defined in [21]. The
indexes r1 and r2 indicate that the individuals ψ⃗r1 and ψ⃗r2
are chosen randomly from the population Ψ. After generating
the mutant vector v⃗i it is crossed with the parent ψ⃗i in order
to generate trial vector ρ⃗i as follows:

ρ⃗i,d =

{
v⃗i,d If rand[0,1) ≤ CRi
ψ⃗i,d Otherwise

(13)
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rand[0, 1) denotes a uniformly selected random number
from [0, 1), ρ⃗i,d is the d-th dimension of the i-th trial vector
ρ⃗ and CRi ∈ [0, 1] is the crossover rate of individual ψ⃗i.

After all of the trial vectors ρ⃗i have been generated,
a selection process determines the survivors for the next
low-dimensional population Ψ(t+1). The selection operator
compares each ψ⃗i against its corresponding trial vector ρ⃗i,
keeping the better vector in the population. In a minimization
problem, the crossover is defined as follows:

ψ⃗i =

{
ρ⃗i If f(ϕ′(ρ⃗i)) ≤ f(ϕ′(ψ⃗i))

ψ⃗i Otherwise
(14)

When a stopping condition is reached, GM-SHADE re-
turns the θ = [πp, µ⃗p,Υp] of the promising Gaussians from
the current population Ψ. In a multimodal problem, more
than one Gaussian may be promising. Figure 4 illustrates the
clustering of the search space by Bayesian Gaussian Mixture
models as the Ψ population is updated in each generation.
The average individual µ⃗p is returned to the original search
space using the inverse of the adaptive SVD function ϕ′ as
follows:

ϕ′(µ⃗p) = µ⃗p · V Tk (15)

Promising Gaussian θ = [πp, µ⃗p,Υp] reconverted in a
promising high dimensional neighborhood can be explored
by a specialized local search algorithm aiming to find the
optimum solution for the LSGO problem in a limited region
of the approximated original search space (Figure 5).

As [21], GM-SHADE uses a combination of two local
search algorithms to explore the promising high-dimension
neighborhood: MTS LS1 [44], specially designed for LSGO
and L-BFGS-B [45] that uses an approximation of the
gradient.

IV. EXPERIMENTS AND RESULTS

In order to evaluate the performance of our proposal,
we adopted the most recent test suite for LSGO prob-
lems held at 2013 IEEE Congress on Evolutionary Com-
putation (CEC’2013) [25], adopting new evaluation criteria
held at 2019 IEEE Congress on Evolutionary Computation
(CEC’2019) [26]. CEC’2013 benchmark comprises 15 min-
imization functions with 1000 dimensions, except for f14
and f15, which are overlapping functions where d = 905.
The functions are divided into 5 categories: Fully-separable
functions (f1 − f3), Functions with a separable subcompo-
nent (f4 − f7), Functions with no separable subcomponent
(f8 − f11), Overlapping functions (f12 − f14) and Non-
separable functions (f15). In addition, tThe CEC’2013 bench-
mark improved earlier versions by including nonuniform
subcomponent sizes, Imbalance in the contribution of sub-
components, functions with overlapping subcomponents, new
transformations such as symmetry breaking, ill-conditioning,
and local irregularities [3], [25]

The IEEE CEC’2013 benchmark suite was designed to
provide a suitable evaluation platform for testing and com-
paring large-scale optimization algorithms [25]. To that end,
the CEC’2013 benchmark suite successfully represents the
nature of a variety of real-world problems and builds a
scalable set of benchmark functions to promote research in
the field of large-scale global optimization [60].

As an example, it is argued that subcomponent interaction
is commonplace in many real-world problems [61]. For
example, each component of a supply-chain problem is called
a silo, and most are multi-silo problems with interaction
between silos [62]. CEC’2013 contemplates this class of
problems sharing decision variables between subcomponents
(overlapping decision vectors or coupling variables). Inter-
connected components are prevalent in many engineering
optimization problems, such as multidisciplinary design op-
timization (MDO) [63] where a problem should be analyzed
from various engineering aspects. For instance, the design of
an airplane wing may have an aerodynamic and a structural
design aspect, both of which can impose some constraints
on the other [64]. Another example is an automotive design
process where a power train sequentially follows structural,
chassis, and interior design. [64]

Table I presents some features of the CEC’2013 bench-
mark.

TABLE I
SUMMARY OF THE CEC 2013 LSGO BENCHMARK FUNCTIONS

Function Properties Search Range
f1 Elliptic Function Unimodal [−100, 100]D
f2 Rastrigin Function Multimodal [−5, 5]D
f3 Ackley Function Multimodal [−32, 32]D
f4 Elliptic Function Unimodal [−100, 100]D
f5 Rastrigin Function Multimodal [−5, 5]D
f6 Ackley Function Multimodal [−32, 32]D
f7 Schwefels Problem 1.2 Multimodal [−100, 100]D
f8 Elliptic Function Unimodal [−100, 100]D
f9 Rastrigin Function Multimodal [−5, 5]D
f10 Ackley Function Multimodal [−32, 32]D
f11 Schwefels Problem 1.2 Unimodal [−100, 100]D
f12 Rosenbrock’s Function Multimodal [−100, 100]D
f13 Schwefels Function Unimodal [−100, 100]D
f14 Schwefels Function Unimodal [−100, 100]D
f15 Schwefels Problem 1.2 Unimodal [−100, 100]D

Seven state-of-the-art metaheuristic approaches: BICCA
[46], CC-CMA-ES [31], C-DEEPSO [35], GL-SHADE [20],
IHDELS [41], MLSHADE-SPA [43] and SHADE-ILS [21]
are selected to participate in comparison against LSMDE.

Competing algorithms were chosen according to their
rankings in the past IEEE CEC Special Sessions and Compe-
titions on Large-Scale Global Optimization and their similar-
ities to LSMDE. For example, SHADE-ILS uses the same
Differential Evolution algorithm (DE) that is the basis for
the DE of the proposed algorithm. In addition, SHADE-
ILS was the best algorithm for the IEEE CEC’2018 Special
Session and Competition on Large-Scale Global Optimiza-
tion. MLSHADE-SPA, GL-SHADE, and IHDELS are some
algorithms that use a similar DE to SHADE-ILS. They also
have promising performance in a different function category
from the CEC’2013 benchmark. BICCA was selected for an
exploratory search strategy in an alternative search space to
the original search space. This feature is similar to LSMDE,
although it does not use a dimensionality reduction strategy.
CC-CMA-ES and DEEPSO were selected because they are
adaptations for LSGO of two algorithms that traditionally
have good performance in continuous optimization problems:
Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
and Particle Swarm Optimization (PSO).
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Fig. 4. Gaussian Mixture Models finding promising regions in the Alpine N1 low-dimensional search space. The number of clusters is automatically
inferred by DP. In this case the number of clusters initially defined (population Ψt) does not match the true generative distribution of the next populations;
therefore, the Bayesian Gaussian mixture model fits the number of clusters according to the current population distribution.

Fig. 5. Illustration of a space transformation from a promising Gaussian in
Ψ to a promising region in P̃ .

Based on the criteria defined in [26], three experiments
were performed with different maximum numbers of objec-
tive function evaluations (FE): 1.2×105 evaluations, 6×105

evaluations and 3×106 evaluations. Twenty-five independent
executions per function were carried out for each experi-
ment and algorithm. Running averages of each competing
algorithm used in this work are described in recent works,
gathered in Special Sessions and Competition on Large-
Scale Global Optimization and available at www.tflsgo.org.
The control parameters adopted by the competing algorithms
are described in their respective papers, and the control
parameters adopted by LSMDE are shown in Table II. Tol-
erance ϵ specifies the allowed distortion when constructing
the low-dimensional space Ψ. Higher ϵ values indicate a
greater tolerance for distortion and lower k values. However,
as information loss increases, the optimization procedure
becomes more difficult. Population size was determined in
the same way as in competing shade-based algorithms, and
ϵ was determined experimentally.

TABLE II
PARAMETERS USED IN LSMDE

Parameter Value Description

n 100 Size of the Population
d 1000 Dimension of the problem
ϵ 0.03 Johnson-Lindenstraus tolerance error

A. Performance measurement
The performance comparison is carried out using a method

indicated by IEEE Task Force on Large-Scale Global Opti-
mization based on Formula One car racing (Formula One cri-
terion). In particular, this method was used in the recent CEC
LSGO competition 2019 [65]. This process of optimizing
a function is analogous to a race, such that the competitor
(algorithm) that comes in first (best average performance)
receives 25 points, second place receives 18 points, the third
receives 15 points, and so on. Table III presents the summary
of the scores in competition with eight competitors (the
number of competitors in this work).

TABLE III
SUMMARY OF SCORES

Position score

1st 25
2nd 18
3nd 15
4th 12
5th 10
6th 8
7th 6
8th 4

Table IV emphasizes the maximum score that can be
achieved by a competitor based on the number of functions
contained in each of the categories of functions, allowing us
to do a deeper analysis of the performance of the algorithms
for each category. Although the maximum score in an
experiment is 375, as the number of functions per category
is not equal, the maximum scores per category are also not
equal.

TABLE IV
SUMMARY OF MAXIMUM SCORES PER CATEGORY OF FUNCTION

Category nº of functions Max

Fully-separable Functions 3 75
Functions with a separable subcomponent 4 100

Functions with no separable subcomponents 4 100
Overlapping Functions 3 75

Non-separable Functions 1 25

Figure 6 presents the average cumulative score of the
competing algorithms for the three experiments proposed by
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the IEEE Task Force on Large-Scale Global Optimization. It
can be observed that LSMDE has the best overall average
score, which indicates a possible superiority over the other al-
gorithms. However, it is essential to observe the performance
of each algorithm on each category of function. This analysis
allows us to identify which types of LSGO problems the
algorithms performed better and worse on. To perform this
analysis, each experiment was explored separately (1.2×105

evaluations, 6× 105 evaluations, and 3× 106 evaluations).
Table V shows the average fitness values for each function

during the execution of the experiments with the limit of
1.2× 105, 6× 105 and 3× 106 evaluations of the objective
function f . Based on Table V, it is possible to observe
that the proposed algorithm LSMDE has the best average
performance for an experiment with 1.2 × 105 evaluations
of the objective function f . Figure 7(a) shows the score of
each algorithm based on the Formula One criterion for each
category of function for FE = 1.2 × 105. The proposed
algorithm demonstrates its best performance on functions
with a separable component, functions with no separable
components, and non-separable functions. LSMDE presented
an average score superior to all competing algorithms, in-
cluding one of the best current algorithms, SHADE-ILS.

LSMDE demonstrated better average performance than the
other algorithms for an experiment with 6× 105 evaluations
of the objective function f . Figure 7(b) confirms the superi-
ority of LSMDE on functions with a separable subcomponent
and functions with no separable subcomponents. We can also
observe a promising performance in overlapping functions
for FE = 6× 105.

GL-SHADE algorithm scored higher than other competing
algorithms for the experiment with a limit of 3×106 evalua-
tions of the objective function f . LSMDE and SHADE-ILS
presented the second-best position. Figure 7(c) shows that
LSMDE still performs better in functions with a separable
subcomponent and functions with no separable subcompo-
nents than GL-SHADE and SHADE-ILS for FE = 3× 106

Figure 6 shows that the proposal has the highest average
overall score. According to Figure 8, LSMDE has the best
performance in experiments with a maximum of 1.2 × 105

and 6 × 105 evaluations, achieving the third best position
in the experiment with a maximum of 3 × 106 evaluations.
Figure 8 presents the general score for each experiment with
the sum of the scores of each function category.

V. STATISTICAL ANALYSIS

In order to guarantee the statistical confidence of the
previous results, we selected the state-of-the-art algorithm,
the most recent algorithm among the competitors, and the
proposed algorithm (SHADE-ILS, GL-SHADE, LSMDE) to
carry out a more in-depth analysis. As their papers only
provide the means and standard deviations of each competing
algorithm (some papers only provide the means, without the
standard deviations) and it is not possible to identify the
results of each run, LSMDE, SHADE-ILS and GL-SHADE
were run locally to apply the appropriate statistical tests. Ini-
tially, we planned to use the multivariate analysis of variance
test (MANOVA) with two factors (function and algorithm),
but the data provided by running the three algorithms did not
pass the homoscedasticity test.

According to [66], the non-parametric Kruskal-Wallis test
is recommended for comparing performance among three
bio-inspired algorithms. However, the statistical test only
indicates whether or not there is a statistical difference among
the three compared algorithms. We used two post hoc tests,
Conover and Dunn, with Holm correction to determine which
algorithm has the best performance [67].

Table VI and VII present the p-values of the LSMDE ver-
sus the previous best algorithms for Dunn and Conover post
hoc tests, respectively. p-values smaller than 0.05 indicate a
statistical difference between the control algorithm and the
algorithm compared with the current function. In this case,
LSMDE is the control algorithm. p-values in bold represent
functions where LSMDE performed statistically superior to
its adversary (SHADE-ILS or GL-SHADE). The other p-
values represent functions where the LSMDE is statistically
equal to or lower than its adversary.

Table VI and VII summarize the results of the comparison
of the proposed algorithm LSMDE versus the state-of-the-
art algorithm SHADE-ILS and the comparison of LSMDE
versus GL-SHADE (one of the most recent algorithms for
LSGO problems). These results can be analyzed considering
each experiment separately: experiment 1 with 1.2 × 105

evaluations, experiment 2 with 6 × 105 evaluations and
experiment 3 with 3× 106 evaluations.

Based on experiments 1 and 2 (Table VI and VII), we
can say that the proposed algorithm is statistically superior
to GL-SHADE in 11 or 12 of the 15 functions from the
CEC’2013 benchmark. GL-SHADE outperformed LSMDE
on 9 functions for experiment 3. However, the proposed
algorithm performed better on partially separable functions,
outperforming GL-SHADE on 5 of the eight functions avail-
able in this category (Figure 10). Comparing LSMDE and
SHADE-ILS shows an improvement of the proposed algo-
rithm concerning the number of statistically better functions
in experiments 1 and 2. This improvement is more evident
when we analyze the category of partially separable functions
(f4 − f11) as observed in Figure 10. In experiment 3, it is
observed that LSMDE is statistically similar to, or superior,
in 7 functions and statistically inferior to SHADE-ILS in
8 functions. Figure 10 shows that LSMDE achieved better
performance in 4 functions for partially separable problems
in experiment 3, according to the Conover post hoc test.

The convergence curves of LSMDE confirm its advantages
over the best competitors. Algorithms are on a logarithmic
scale which helps to see more clearly how fast algorithms
converge across the calculation lifecycle, and all algorithms
start from the same seed for a fair comparison. Based on
Figure 9, we can infer that the LSMDE outperforms the
competition in tests with less objective function evaluations.
A limited evaluation indicates an advantage of the proposed
algorithm in situations with limited computational resources.
We also observe that LSMDE performs better on partially
separable functions (f4 − f11).

Analyses using the Formula One criterion suggested
by IEEE Task Force on Large-Scale Global Optimization
demonstrate that the proposed algorithm performs better than
other state-of-the-art algorithms. Nonetheless, the Kruskal-
Wallis statistical test enables an evaluation of which function
in each competing algorithm performs best, equal, or worse.
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Fig. 6. Overall average score for 8 competitors based on Formula One criterion considering the three experiments. LSMDE has the best overall performance.

Since each function represents a broader range of real-world
optimization problems, the statistical test enables the most
suitable algorithm for each situation to be chosen. Therefore,
the proposed algorithm performs best, especially on partially
separable problems. We can also conclude that LSMDE is
competitive with the best algorithms used in this work.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a new SHADE-based non-
decomposition algorithm (LSMDE) to solve Large-Scale
Global Optimization problems. LSMDE uses a Singular
Value Decomposition algorithm to reduce the d−dimensional
search space according to the resources of the current pop-
ulation of candidate solutions. The search for promising
solutions in low-dimensional space is guided by a SHADE
algorithm hybridized with Gaussian Mixture Models. This
model allows GM-SHADE to cluster low-dimensional so-
lutions, considering the uncertainty of their mapping to the
low-dimensional space and mitigating the loss of information
in this process. Candidates for the optimal solution can be
mapped back to high-dimensional space through an Inverse
SVD algorithm, and their neighborhood region can be prop-
erly explored through a local search algorithm. In order to
evaluate the LSMDE performance, this algorithm has been
tested on the most recent test suite for LSGO problems, IEEE
CEC’2013 benchmark functions.

The No Free Lunch Theorem [68] proves mathematically
that no algorithm can perform the best on all problems.
Nonetheless, according to the experimental result, the pro-
posed algorithm has relevant advantages summarized as
follows: (i) LSMDE outperforms many state-of-the-art algo-
rithms for partially separable functions, which may indicate it
has better applicability to real-world problems; (ii) LSMDE
showed the best overall performance in experiments with
limited computational resources ( 1.2×105 and 6×105 objec-
tive function evaluations); (iii) Its innovative dimensionality
reduction method can be adapted and improved for different
population-based algorithms; (iv) Its dimensionality reduc-
tion method learns from the current population of candidate
solutions without any prior knowledge about the search
space characteristics, making the LSMDE more flexible and
applicable to a variety of high-dimensional problems.

Experiments also revealed some limitations of the pro-
posed algorithm. First, LSMDE performs worse than com-
peting algorithms on simple problems, such as fully separa-
ble problems. Second, the convergence curve demonstrates

that although performance is enhanced with low computing
resources, there is no substantial gain when a large computa-
tional resource is available (This problem is observed in other
algorithms based on dimensionality reduction as BICCA and
LS-EDA).

Some open issues are worthy of further study in future
works: determining the most suitable number of individuals
for each dimensionality reduction. In addition, it is essential
to investigate the effect of dimensionality reduction on the
topology of different types of search space and how this
can produce insights for algorithm improvement. We also
aim to apply the proposed LSMDE in various applications,
such as parameter optimization, constrained optimization
problems, multi-objective optimization, data mining, and
feature selection.
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TABLE V
AVERAGE FITNESS VALUES FOR THE ALGORITHMS ON THE CEC 2013 LSGO FUNCTIONS WITH 1.2× 105 , 6× 105 AND 3× 106 EVALUATIONS.

Algorithms

Functions FE’s BICCA CC-CMA-ES DEEPSO GL-SHADE IHDELS SHADE-ILS MLSHADE-SPA LSMDE

f1

1.2× 105 1.03e+10 1.14e+08 2.99e+10 1.78e+05 2.01e+05 5.12e+04* 6.12e+07 2.15e+06
6× 105 7.87e+03 3.99e+04 4.61e+09 3.82e+01 4.70e+02 3.55e-23* 1.22e-01 3.50e-09
3× 106 0.00e+00* 5.80e-09 1.44e+08 3.74e-23 4.34e-28 2.56e-28 1.94e-22 6.88e-23

f2

1.2× 105 2.26e+04 1.40e+03 3.45e+04 6.84e+02* 4.99e+03 2.54e+03 1.74e+03 2.83e+03
6× 105 1.01e+01* 1.33e+03 2.61e+04 2.35e+01 2.78e+03 1.79e+03 9.13e+01 1.75e+03
3× 106 8.46e-07* 1.33e+03 1.49e+04 7.76e+00 1.32e+03 1.04e+03 7.89e+01 9.56e+02

f3

1.2× 105 1.75e+01 3.78e-02* 2.12e+01 2.00e+01 2.01e+01 2.01e+01 3.54e+00 2.04e+01
6× 105 1.92e+00 0.00e+00* 2.09e+01 2.00e+01 2.01e+01 2.01e+01 6.74e-05 2.01e+01
3× 106 7.27e-01 0.00e+00* 2.04e+01 2.00e+01 2.01e+01 2.01e+01 0.00e+00 2.01e+01

f4

1.2× 105 8.16e+10 6.09e+11 4.27e+11 5.63e+10 2.15e+10* 3.58e+10 6.92e+11 2.38e+10
6× 105 8.23e+09 3.53e+10 4.95e+10 3.44e+09 2.36e+09 3.74e+09 5.63e+09 2.17e+09*
3× 106 8.85e+08 2.19e+09 4.77e+09 3.01e+07* 3.04e+08 3.01e+08 6.90e+08 1.96e+08

f5

1.2× 105 6.31e+06 7.28e+14 1.56e+07 4.35e+06 1.24e+07 2.35e+06 1.09e+07 2.26e+06*
6× 105 3.29e+06 7.28e+14 1.46e+07 2.67e+06 1.02e+07 2.10e+06 2.58e+06 1.75e+06*
3× 106 2.58e+06 7.28e+14 1.45e+07 2.23e+06 9.59e+06 1.33e+06 1.80e+06 1.15e+06*

f6

1.2× 105 4.82e+05* 7.54e+05 1.05e+06 1.05e+06 1.05e+06 1.05e+06 8.38e+05 1.01e+06
6× 105 1.87e+05 6.30e+05 1.04e+06 1.05e+06 1.03e+06 1.04e+06 1.60e+03* 1.00e+06
3× 106 1.46e+05 5.87e+05 1.02e+06 1.03e+06 1.03e+06 1.03e+06 1.40e+03* 9.98e+05

f7

1.2× 105 2.27e+09 5.81e+09 3.50e+09 1.50e+09 3.09e+08 3.68e+08 6.27e+09 1.52e+08*
6× 105 5.34e+07 1.42e+09 2.40e+08 2.80e+07 1.10e+07 1.54e+06* 1.89e+08 1.05e+07
3× 106 1.82e+05 7.44e+06 1.54e+07 2.37e+00* 3.46e+04 2.24e+02 5.31e+04 3.91e+04

f8

1.2× 105 1.87e+15 2.93e+16 8.33e+14 4.05e+14 2.09e+14 2.36e+14 2.46e+16 7.11e+11*
6× 105 3.96e+13 2.30e+15 1.68e+14 1.10e+13 2.22e+13 1.43e+13 4.26e+13 1.36e+11*
3× 106 3.78e+12 3.88e+14 5.42e+12 1.11e+11 1.36e+12 5.99e+11 9.77e+12 2.68e+09*

f9

1.2× 105 5.73e+08 7.36e+08 1.03e+09 2.55e+09 7.25e+08 2.87e+08 8.23e+08 2.62e+08*
6× 105 3.19e+08 4.48e+08 9.29e+09 2.40e+09 6.96e+08 2.49e+08 2.15e+08 2.13e+08*
3× 106 2.18e+08 3.71e+08 9.17e+08 2.36e+09 6.74e+08 1.58e+08 1.61e+08 1.48e+08*

f10

1.2× 105 4.00e+06* 2.68e+07 9.41e+07 9.38e+07 9.43e+07 9.39e+07 3.11e+07 9.21e+07
6× 105 1.89e+06 4.49e+06 9.22e+07 9.27e+07 9.31e+07 9.32e+07 1.11e+03* 9.08e+07
3× 106 1.24e+06 7.55e+05 9.07e+07 9.17e+07 9.16e+07 9.26e+07 6.56e+02* 9.06e+07

f11

1.2× 105 8.48e+10 6.04e+11 7.52e+11 9.44e+11 9.55e+09 5.58e+09 8.67e+11 4.30e+09*
6× 105 8.59e+08 5.15e+10 8.03e+09 9.27e+11 4.51e+08 1.30e+08* 1.68e+09 6.96e+08
3× 106 2.85e+07 1.58e+08 5.60e+08 9.27e+11 1.07e+07 5.39e+05* 4.04e+07 1.15e+07

f12

1.2× 105 1.20e+11 6.92e+03 7.80e+11 2.42e+04 2.07e+03* 2.64e+03 1.19e+07 4.43e+04
6× 105 1.67e+04 6.17e+03 1.55e+11 9.60e+02 1.44e+03 1.77e+03 1.02e+03 6.68e+02*
3× 106 1.40e+03 1.27e+03 1.54e+10 3.19e-01* 3.77e+02 6.49e+01 1.04e+02 3.25e+02

f13
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6× 105 8.24e+08 1.87e+10 1.29e+10 2.73e+09 7.29e+08 5.60e+08* 4.94e+09 1.10e+09
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3× 106 4.27e+07 7.10e+07 4.33e+08 4.79e+06* 1.58e+07 7.63e+06 1.52e+07 2.54e+07
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6× 105 2.21e+07 4.24e+07 3.00e+07 3.24e+07 1.49e+07 1.69e+07 4.88e+07 2.48e+07
3× 106 3.16e+06 3.03e+07 7.04e+06 1.29e+06 2.81e+06 8.68e+05* 2.76e+07 6.16e+06
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TABLE VI
DUNN’S TEST RESULTS, p-VALUES OF LSMDE VERSUS SHADE-ILS AND GL-SHADE ON THE CEC 2013 BENCHMARK FUNCTIONS FOR 1000

DIMENSIONS. SYMBOLS ’+’,’-’ AND ’=’ DENOTE THE LSMDE IS BETTER THAN, WORSE THAN, OR SIMILAR TO THE COMPARED ALGORITHM,
RESPECTIVELY.

Experiment 1: 1.2× 105 Experiment 2: 6× 105 Experiment 3: 3× 106

Functions SHADE-ILS GL-SHADE SHADE-ILS GL-SHADE SHADE-ILS GL-SHADE

f1 5.63e-30 (-) 1.38e-08 (-) 1.74e-08 (-) 1.74e-08 (+) 6.76e-11 (-) 5.49e-05 (+)

f2 1.73e-01 (=) 3.72e-15 (-) 2.48e-05 (+) 1.38e-10 (-) 4.54e-06 (+) 4.62e-10 (-)

f3 2.81e-02 (-) 6.77e-22 (-) 1.17e-01 (=) 1.39e-20 (-) 3.00e-01 (=) 3.68e-20 (-)

f4 7.65e-01 (=) 1.04e-11 (+) 7.04e-02 (=) 2.49e-04 (+) 2.91e-02 (-) 2.13e-21 (-)

f5 6.76e-02 (=) 2.37e-14 (+) 1.06e-02 (+) 2.78e-16 (+) 2.68e-01 (=) 8.01e-19 (+)

f6 9.36e-14 (+) 6.08e-18 (+) 6.96e-10 (+) 1.32e-27 (+) 8.05e-16 (+) 2.15e-19 (+)

f7 7.58e-08 (+) 6.88e-29 (+) 7.61e-09 (-) 3.07e-07 (+) 4.49e-13 (-) 1.14e-22 (-)

f8 5.75e-09 (+) 2.98e-29 (+) 2.97e-13 (+) 2.12e-22 (+) 2.41e-19 (+) 4.40e-15 (+)

f9 7.98e-01 (=) 8.77e-18 (+) 1.65e-03 (+) 2.29e-16 (+) 2.30e-01 (=) 1.14e-19 (+)

f10 3.66e-06 (+) 1.02e-12 (+) 3.57e-12 (+) 6.45e-24 (+) 7.07e-19 (-) 2.73e-16 (+)

f11 4.81e-03 (-) 1.43e-12 (+) 2.17e-20 (-) 1.30e-01 (=) 3.00e-09 (-) 9.90e-29 (-)

f12 1.43e-15 (-) 2.59e-01 (=) 6.46e-18 (+) 4.64e-06 (+) 6.51e-06 (-) 2.27e-22 (-)

f13 4.20e-01 (=) 2.09e-15 (+) 7.72e-09 (-) 1.10e-07 (+) 5.50e-14 (-) 1.43e-21 (-)

f14 8.48e-01 (=) 7.48e-17 (+) 4.10e-09 (-) 1.60e-07 (+) 2.32e-09 (-) 1.58e-28 (-)

f15 7.44e-10 (+) 2.32e-22 (+) 8.89e-13 (-) 1.31e-01 (=) 3.42e-20 (-) 5.92e-15 (-)

b/e/w∗ 5/6/4 11/1/3 7/2/6 11/2/2 4/3/8 6/0/9
∗ LSMDE is significantly better in “b” functions, equal in “e” functions and worse in “w” functions.

TABLE VII
CONOVER’S TEST RESULTS, p-VALUES OF LSMDE VERSUS SHADE-ILS AND GL-SHADE ON THE CEC 2013 BENCHMARK FUNCTIONS FOR 1000

DIMENSIONS. SYMBOLS ’+’,’-’ AND ’=’ DENOTE THE LSMDE IS BETTER THAN, WORSE THAN, OR SIMILAR TO THE COMPARED ALGORITHM,
RESPECTIVELY.

Experiment 1: 1.2× 105 Experiment 2: 6× 105 Experiment 3: 3× 106

Functions SHADE-ILS GL-SHADE SHADE-ILS GL-SHADE SHADE-ILS GL-SHADE

f1 7.15e-70 (-) 9.07e-36 (-) 1.34e-36 (-) 1.34e-36 (+) 1.77e-28 (-) 1.89e-14 (+)

f2 1.81e-02 (+) 2.22e-28 (-) 7.71e-16 (+) 1.49e-28 (-) 2.67e-19 (+) 1.75e-29 (-)

f3 1.10e-04 (-) 1.40e-37 (-) 6.43e-03 (-) 4.06e-35 (-) 6.23e-02 (=) 9.62e-36 (-)

f4 6.90e-01 (=) 6.41e-16 (+) 5.73e-02 (=) 1.82e-04 (+) 1.81e-04 (-) 7.45e-36 (-)

f5 1.40e-03 (-) 7.10e-28 (+) 5.31e-04 (+) 7.89e-22 (+) 6.74e-02 (=) 7.91e-31 (+)

f6 5.36e-23 (+) 6.88e-28 (+) 6.84e-30 (+) 3.40e-55 (+) 6.67e-29 (+) 3.68e-33 (+)

f7 2.69e-28 (+) 5.86e-62 (+) 1.62e-27 (-) 4.28e-23 (+) 2.88e-27 (-) 3.63e-39 (-)

f8 2.64e-33 (+) 1.86e-64 (+) 2.92e-27 (+) 1.51e-38 (+) 2.95e-32 (+) 3.39e-27 (+)

f9 6.64e-01 (=) 1.43e-30 (+) 2.90e-05 (+) 1.37e-21 (+) 3.97e-02 (+) 2.72e-33 (+)

f10 3.64e-08 (+) 1.92e-15 (+) 3.00e-27 (+) 3.31e-42 (+) 2.12e-32 (+) 2.54e-29 (+)

f11 5.75e-07 (-) 1.01e-26 (+) 1.23e-34 (-) 8.86e-03 (-) 5.87e-32 (-) 3.87e-61 (-)

f12 1.07e-28 (-) 5.12e-02 (=) 2.43e-24 (+) 6.90e-10 (+) 3.48e-12 (-) 6.30e-35 (-)

f13 1.85e-01 (=) 1.30e-26 (+) 1.72e-30 (-) 5.46e-27 (+) 1.07e-27 (-) 6.25e-37 (-)

f14 7.56e-01 (=) 8.69e-28 (+) 6.95e-32 (-) 3.52e-27 (+) 1.65e-31 (-) 5.89e-60 (-)

f15 5.50e-20 (+) 8.40e-36 (+) 3.92e-21 (-) 2.09e-02 (+) 3.01e-34 (-) 5.62e-28 (-)

b/e/w∗ 6/4/5 11/1/3 7/1/7 12/0/3 5/2/8 6/0/9
∗ LSMDE is significantly better in “b” functions, equal in “e” functions and worse in “w” functions.
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Fig. 7. Score of each competing algorithm based on the Formula One criterion for (a) 1.2×105, (b) 6×105 and (c) 3×106 evaluations of the objective
function.
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