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Abstract—Various real-world problems can be attributed to 
constrained multi-objective optimization problems. Although 
there are various solution methods, it is still very challenging to 
automatically select efficient solving strategies for constrained 
multi-objective optimization problems. Given this, a process 
knowledge-guided constrained multi-objective autonomous 
evolutionary optimization method is proposed. Firstly, the effects 
of different solving strategies on population states are evaluated in 
the early evolutionary stage. Then, the mapping model of 
population states and solving strategies is established. Finally, the 
model recommends subsequent solving strategies based on the 
current population state. This method can be embedded into 
existing evolutionary algorithms, which can improve their 
performances to different degrees. The proposed method is 
applied to 41 benchmarks and 30 dispatch optimization problems 
of the integrated coal mine energy system. Experimental results 
verify the effectiveness and superiority of the proposed method in 
solving constrained multi-objective optimization problems. 

 
Index Terms—Constrained multi-objective optimization, 

evolutionary optimization, autonomy, process knowledge, 
integrated coal mine energy system 

I. INTRODUCTION 

ONSTRAINED multi-objective optimization problems 
(CMOPs) refer to optimizing multiple conflicting 
objectives, with the decision variables satisfying one or 

more equality/inequality constraints. Many real-world 
problems can be attributed to CMOPs, such as integrated 
energy dispatch[1], multi-stage portfolio[2] and spacecraft orbit 
optimization[3]. Without loss of generality, a CMOP can be 
defined as 

Min  𝐹(𝑥) = (𝑓ଵ(𝑥), 𝑓ଶ(𝑥), … , 𝑓௠(𝑥)) 

 
This work was sponsored by the National Key R&D Program of China with 

grant No. 2021YFE0199000, the National Natural Science Foundation of China 
with grant No. 62133015, Shandong Provincial Natural Science Foundation 
with grant No. ZR2022LZH017, Fundamental Research Funds for the Central 
Universities with grant No. JAI210003 and the Open Research Project of The 
Hubei Key Laboratory of Intelligent Geo-Information Processing with grant No. 
KLIGIP-2022-A06. (Corresponding author: Dunwei Gong).  

Mingcheng Zuo is with the Artificial Intelligence Research Institute and 
School of Mathematics, China University of Mining and Technology, Xuzhou 
221116, PR China (e-mail: mingcheng.zuo@cumt.edu.cn).  

Mingcheng Zuo is also with the State Key Laboratory of High-end Server 
& Storage Technology; Hubei Key Laboratory of Intelligent Geo-Information 
Processing, China University of Geosciences, Wuhan 430078, PR China. 

Dunwei Gong is with School of Information Science and Technology, 
Qingdao University of Science and Technology, Qingdao, Shandong, 266061, 
PR China (e-mail: dwgong@vip.163.com) 

 

s. t.      𝑔௜(𝑥) ≤ 0, 𝑖 = 1,2, … , 𝑙              

              ℎ௜(𝑥) = 0, 𝑖 = 𝑙 + 1, 𝑙 + 2, … , 𝑘

  𝑥 = (𝑥ଵ, 𝑥ଶ, … , 𝑥஽) ∈ 𝑅஽  

 

Since decision variables need to satisfy one or more 
constraints and multiple conflicting objectives are optimized 
simultaneously, multi-objective optimization problems are very 
challenging. In recent years, multi-objective evolutionary 
optimization has been the mainstream method to solve this 
problem. The key to solving CMOPs with this method is 
dealing with constraints to balance the feasibility, convergence, 
and diversity of optimization solutions in the objective space. 
Currently, standard constraint handling techniques in multi-
objective evolutionary optimization methods include the 
penalty function method, objective and constraint separation 
method, multi-objective method, transformation method, mixed 
method, and multiple-operator method[4]. Among them,  the 
multiple-operator method solves CMOPs by dynamically 
adjusting the distribution of a population in the decision space[5]. 
In general, the existing multiple-operator method usually 
determines the opportunity and scope of utilizing the alternative 
operators according to human experience. However, the 
limitations of human experience cause the opportunity and 
scope of utilizing the various operators to be subjective. In 
addition, the adopted operators are not adjusted timely 
according to the evolutionary state of a population, resulting in 
low efficiency when solving CMOPs.  

Enhancing the multiple-operator method is to perform the 
most promising operator to generate a population. Dynamically 
selecting an efficient operator among all candidates needs 
continuously learning the knowledge 1  generated in the 
evolutionary process. Currently, various knowledge-guided 
evolutionary algorithms have been proposed to solve multi-

Yan Wang is with School of Information and Control Engineering, China 
University of Mining and Technology, Xuzhou, 221116, PR China (e-mail: 
yanwang0501@outlook.com). 

Xianming Ye is with the Department of Electrical, Electronic, and Computer 
Engineering, University of Pretoria, Pretoria 0002, South Africa (e-mail: 
xianming.ye@up.ac.za). 

Bo Zeng is with the State Key Laboratory of Alternate Electrical Power 
System with Renewable Energy Sources, North China Electric Power 
University, Beijing 102206, PR China (e-mail: alosecity@126.com). 

Fanlin Meng is with Alliance Manchester Business School, University of 
Manchester, Manchester M15 6PB, UK (e-mail: 
fanlin.meng@manchester.ac.uk). 

 
1 The knowledge here refers to the useful information generated during the 

execution of evolutionary algorithm which can help the algorithm to make the 
search decision, rather than the existing human experience. 
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objective optimization problems. These algorithm variants 
include meta-knowledge-guided evolutionary algorithms[6], 
local search-oriented knowledge-guided evolutionary 
algorithms[7], multi-stage knowledge-guided evolutionary 
algorithms[8], reference vector-guided evolutionary 
algorithms[9,10], good and bad knowledge-guided evolutionary 
algorithms[11], individual ranking-guided evolutionary 
algorithms[12-15], etc.  However, applying the process 
knowledge to multiple-operator methods for better-solving 
CMOPs still needs to be improved. 

Given the above analysis and to fill the research gap, a 
process knowledge-guided autonomous evolutionary 
optimization method (PKAEO) for constrained multi-objective 
problems is proposed in this paper. Besides the operators, other 
solving strategies also can be embedded in PKAEO as guidance 
strategies for population evolution. The process knowledge 
indicates how to perform the guidance strategies for generating 
a better evolutionary population. Considering the strong ability 
of deep reinforcement learning to sense the effectiveness of the 
strategy, the representative model of deep reinforcement 
learning, Deep Q-learning Network (DQN), is used to reflect 
the process knowledge. Firstly, in the early evolutionary stage 
of PKAEO, the guidance strategies are randomly executed to 
evaluate their effects on different populations’ evolutionary 
states where a certain number of samples are accumulated 
simultaneously. Then, based on these samples, the DQN is 
trained to establish the mapping model between population 
states and guidance strategies. Finally, the model recommends 
subsequent guidance strategies intelligently based on the 
current population state.  

The main contributions of this paper are reflected in the 
following three aspects: 

(1) An autonomous design pattern of guidance strategies 
selection in evolutionary optimization algorithms for CMOPs is 
proposed. Compared with the human experience-based design 
pattern, the proposed PKAEO needs designers to set population 
state, guidance strategies, and strategy evaluation method. Then, 
the guidance strategies can be automatically selected according 
to the population state to maximize the benefit of strategy 
execution. Theoretically, this method can provide superior 
strategy selection planning, and in the application, it can 
significantly save the time and cost of algorithm design. 

(2) A simple but effective method of describing the 
population’s evolutionary process is proposed. Currently, many 
evolutionary algorithms have configured dynamically adjusted 
strategies or parameters related to the evolutionary process. 
However, the relationship is usually built on the subjective 
manual experience. The proposed population state effectively 
recognizes the real-time evolutionary situation and is conducive 
to establishing the dynamic adjustment of strategies or 
parameters. 

(3) A flexible method of embedding the guidance 
strategies into existing evolutionary algorithms is proposed. In 
general, the current multiple-operator method is fixed to a 
specific paradigm, which causes difficulty in synthesizing the 
capacity of multiple solving paradigms. Relatively, the 
guidance strategies in PKAEO can be designed by integrating 
various solving paradigms. More importantly, these guidance 

strategies are only placed between the operators without 
modifying the original structure of evolutionary algorithms.  

The rest of this paper is organized as follows. Section II 
reviews the relevant research works and points out the problems 
existing in the current research. The proposed method is 
described in Section III, including the population state’s 
characterization, the population’s regulation strategies, and 
their performance evaluation. Section IV is the experimental 
results and analysis. Finally, Section V summarizes the whole 
paper and discusses future research directions. 

II. RELATED WORKS 

In this paper, we study evolutionary algorithms for 
constrained multi-objective optimization problems and enhance 
the autonomy of guidance strategy selection through process 
knowledge. Given this, this section mainly reviews the existing 
constrained multi-objective evolutionary algorithms. 
Considering that the proposed method involves multiple-
operator methods and knowledge-guided techniques, the 
existing research on these two topics is also reviewed. 

A. Constrained multi-objective evolutionary optimization 

Constraint handling for constrained multi-objective 
evolutionary optimization is crucial. The penalty function 
method is the most commonly used in many constraint-
handling methods. The idea is transforming constraints into 
objective functions through the penalty function so that a 
constrained optimization problem becomes unconstrained. It is 
well understood that the penalty factor dramatically affects the 
performance of the penalty function method, such as the 
adverse effects caused by too large or too small values. If the 
feasible region consists of several disconnected ones, then the 
population will be limited to a particular local search space 
region by a hefty penalty factor. If the penalty factor is small, 
many searches will be spent on infeasible regions, causing 
difficulty in finding feasible solutions to the problem. Given 
this, the penalty functions with various penalty factors have 
been proposed in previous works. Jan et al.[16] adjusted the value 
of the penalty factor according to the proportion of feasible 
solutions in the evolutionary population. In the dynamic penalty 
factor method proposed by Zapotecas et al.[17], the value of the 
factor is closely related to the evolutionary stage of the 
population. In addition, Vaz et al.[18] also proposed a three-stage 
penalty factor adjustment method dependent on the 
evolutionary stage. It can be seen that the idea of the penalty 
function method is simple. However, it needs to set a reasonable 
penalty factor, and the setting of this factor often depends on 
the human experience. 

Contrary to the penalty function method, the objective and 
constraint separation method calculates the objective function 
values of a candidate and its degree of violating constraints, 
respectively, to minimize the objective function values while 
alleviating the degree of violating constraints through a 
population’s evolution. Representative methods include the 
constraint dominance method[19], 𝜀  constraint method[20] and 
random ranking method[21]. In the constraint dominance method, 
for solutions 𝑥 and 𝑦, when one of the following conditions is 
satisfied, 𝑥 dominates 𝑦: (1)𝐶𝑉(𝑥) < 𝐶𝑉(𝑦)；(2)If 𝐶𝑉(𝑥) =

𝐶𝑉(𝑦) = 0, ∀𝑖 ∈ {1,2, … , 𝑚}, there is 𝑓௜(𝑥) ≤ 𝑓௜(𝑦), and ∃𝑖 ∈
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{1,2, … , 𝑚} , 𝑓௜(𝑥) < 𝑓௜(𝑦) , where 𝐶𝑉 ( ⋅ ) represents the 
constraint violation degree of the optimization solution. Deb et 
al.[19] first adopted this constraint handling method in NSGA-II. 
Although this method can find a feasible solution quickly, it can 
also causes prematurity[22]. To make the population evolves 
toward the feasible regions, the 𝜀 constraint method deals with 
the constraints of optimization solutions by relaxing the 
constraints to a certain extent and gradually decreasing the 
value of 𝜀. When 𝜀 = 0, the 𝜀 constraint method is equivalent 
to the constraint dominance method. Jiao et al.[23] used the 𝜀 
constraint method to continuously reduce the constraint 
violation degree of infeasible solutions and obtained the 
optimization solution set that converged to the constraint Pareto 
front. Considering that the constraint dominance method may 
lead to the premature convergence of a population, therefore, in 
the random ranking method, constraint dominance, and 
objective dominance are selected probabilistically to generate 
the offspring population. Ying et al.[24] proposed an adaptive 
random ranking method according to the constraint violation 
difference of population individuals and evolutionary stages. 
Obviously, the objective and constraint separation method can 
well balance the feasibility of a candidate and its degree of 
optimizing objectives. However, this method involves the 
setting of parameters (such as 𝜀 and the probability), which still 
depends on human’s experience. 

Like the penalty function method, the multi-objective 
method also transforms the constrained multi-objective 
optimization problem into an unconstrained multi-objective 
optimization problem. However, the method considers the 
constraints as one or more optimization objectives and 
optimizes the transformed objectives to reduce the constraint 
violation degree of the optimization solution. The number of 
optimized objectives after transformation differs by considering 
various transformation methods. Ray et al.[25], Long et al.[26] and 
Zhou et al.[27] transformed all constraints into one optimization 
objective related to the degree of constraint violation. Vieira et 
al.[28] transformed the constraints into two optimization 
objectives: the total constraint violation degree and the number 
of violated constraints. Obviously, this method can deal with 
constraints flexibly, and the number of transformed objectives 
can be determined according to the solving needs. However, the 
increase in the number of objective functions also causes 
difficulty in solving the problems. 

The difficulty of solving a complex optimization problem 
can be reduced by decomposing it into several simple problems. 
Based on this, the transformation method divides an 
evolutionary algorithm into a number of components, with each 
being responsible for a subtask. The whole optimization 
problem is solved through the cooperation of these components. 
A typical transformation method is dividing the population into 
multiple subpopulations and then solving multiple subtasks 
through the evolution of the subpopulations. The optimization 
problem can be entirely solved based on the co-evolution of 
subpopulations. Generally, the tasks accomplished through the 
evolution of different subpopulations can be set flexibly. Wang 
et al.[29] proposed a co-evolutionary optimization method, 
which divided the whole population into subpopulations with a 

number equaling that of optimization objectives. In this method, 
the constrained single-objective optimization problems are 
solved through the evolution of each subpopulation. Liu et al.[30] 
divided the whole population into two subpopulations. One 
subpopulation searched for the optimal solutions by minimizing 
the optimization objectives, and the other searched for feasible 
solutions satisfying the constraints. Similarly, Tian et al.[31] 
divided the whole population into two subpopulations, which 
were devoted to searching for solutions on the unconstrained 
Pareto Front (UPF) and the constrained Pareto front (CPF), 
respectively. Another standard transformation method is 
splitting the entire evolution process into multiple stages, each 
of which performs different optimization subtasks. Under this 
circumstance, the tasks to be fulfilled can be flexibly set 
through a population’s evolution in different stages. Fan et al.[32] 
proposed a search framework combining the phases of push and 
pull. In the push phase, the population passes through the 
infeasible regions and converges to the UPF. In the pull phase, 
the population converges to the CPF from the UPF. Tian et al.[33] 
also divided the whole evolution process into two stages. In the 
first stage, the population was guided to evolve toward the 
feasible regions, and in the second stage, the optimization 
solutions were better distributed on the CPF. Yu et al.[34] 
divided the whole evolution process into two stages as well. The 
first stage considered the balance between diversity and 
convergence of optimization solutions, and the second stage 
considered the balance between diversity and feasibility of 
optimization solutions. It can be seen that the transformation 
method reduces the difficulty of problem-solving by 
decomposing the optimization task into some subtasks that can 
be easily solved. However, how to decompose the problem 
reasonably depends on the human experience, and the quality 
of generated solutions in decomposition based methods 
depends strongly on the weights’ setting[35]. 

The hybrid of the evolutionary algorithm and traditional 
optimization method also can improve the efficiency of solving 
problems. Specifically, the evolutionary algorithm guides the 
population to evolve toward the regions with better objective 
values, and the mathematical programming further searches for 
feasible solutions in the current region. Morovati et al.[36] 
combined evolutionary algorithm and Zoutendijk feasible 
direction method to find optimization solutions satisfying 
constraints. By mining the valuable information of the 
population in the evolutionary process, Schutze et al.[37] 
estimated the exploration directions for evolutionary algorithms, 
and predicted the exploitation direction for locating feasible 
regions. It can be seen that the hybrid method takes into account 
both global and local searches and balances the optimization 
performance and the degree of constraint satisfaction. However, 
the opportunity of performing mathematical programming 
during the search of evolutionary algorithms is a problem. 

B. Multiple-operator method 

The operators directly affect the population’s distribution 
in the search space. The basic idea of the multiple-operator 
method is adaptively implementing various operators on a 
population according to the specific needs of problem-solving, 
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achieving the balance of feasibility, convergence, and diversity 
of optimization solutions. The customized multiple-operator 
methods for different optimization problems show diversiform 
characteristics. In the multiple-operator method proposed by 
Yu et al.[38], an advanced mutation operator is designed for 
infeasible solutions. Each mutation operator is performed on 
individuals with different probabilities during the evolutionary 
process, leading the population to evolve toward the CPF. Yu 
et al.[39] attempted to control the opportunity of an individual to 
generate offspring, where a feasible solution conducts genetic 
operations with a high probability. In the method proposed by 
Xu et al.[40], feasible solutions and infeasible solutions adopt 
different mutation strategies to make the population evolve 
toward the feasible regions as soon as possible. Liu et al.[41] 
divided the whole population into multiple subpopulations, 
where each subpopulation adopted different crossover 
strategies. In this way, the population achieved better global 
exploration ability. He et al.[42] carried out different crossover 
and mutation operations on feasible and sound infeasible 
solutions. It realized the transformation from infeasible 
solutions to feasible solutions. Qian et al.[43] adaptively adjusted 
the parameter of the mutation operator and generated the trial 
vectors based on the acquired knowledge in the evolution 
process to balance the diversity and convergence of the 
population. Tian et al.[44] used deep reinforcement learning to 
intelligently select operators at each evolutionary stage to 
achieve the balance of population diversity and convergence. 

It can be seen that the multiple-operator method can adapt 
to the needs of problem-solving and balance the feasibility, 
convergence, and diversity of optimization solutions. However, 
how to configure multiple operators with complementary 
performance and determine the appropriate opportunity to 
perform the operators still need further research. 

C. Knowledge-guided multi-objective evolutionary 
optimization 

Knowledge guidance evolutionary algorithms are efficient 
in dealing with complex optimization problems. The 
knowledge is the extracted information from the data generated 
in the evolutionary process, which can further assist in 
generating a better offspring population. Ding et al.[8] used the 
prior knowledge to initialize the population and led the 
population’s evolution by referring to the elite individuals. Yao 
et al.[45] proposed a subspace-related population initialization 
method and adaptively generated new promising individuals by 
evaluating the quality of solutions in each subspace. Guo et al. 
[46] proposed a knowledge-guided transfer strategy for 
evolutionary dynamic multi-objective optimization problems. 
This method extracts knowledge as a two-tuple under each 
historical environment, which is preserved in a knowledge pool. 
Redundant knowledge is recognized and adaptively removed to 
guarantee the pool’s diversity. To promote positive knowledge 
transfer, a knowledge-matching strategy is developed to re-
evaluate the representative of each stored knowledge under a 
new environment. In addition, an improved knowledge transfer 
mechanism based on subspace alignment is introduced. To 
circumvent the rapid loss of population diversity and premature 
convergence, Li et al.[47] proposed a knowledge-guided multi-

objective particle swarm optimization using fusion learning 
strategies. An improved leadership selection strategy based on 
knowledge utilization is presented to select the appropriate 
global leader for improving the convergence ability of the 
algorithm. However, there is still no knowledge-guided 
algorithm for constrained multi-objective optimization 
problems. 

C. Discussion 

From the review of existing studies, it can be seen that the 
transformation method and the multiple-operator method both 
need to describe the state of the population’s evolution, set the 
switching conditions of different strategies/stages, and evaluate 
the effectiveness of the strategies. These operations 
substantially impact the performance of constrained multi-
objective evolutionary optimization algorithms. For the 
employed techniques in this paper, i.e., the multiple-operator 
method and knowledge-guided theory, there are still following 
bottleneck: 

(1) Most existing multiple-operator methods usually 
determine the opportunity and scope of utilizing the various 
operators based on the human experience, which can be very 
subjective. In addition, the adopted operators are not adjusted 
in time according to the evolutionary state of the population, 
which dramatically limits the quality and efficiency of solutions. 
The only algorithms that can automatically select the operators, 
like ref.[44], develop the framework based on a specific solving 
paradigm, which are difficult to embed into existing algorithms 
to improve their performances. 

(2) The current knowledge-guided multi-objective 
evolutionary optimization algorithms usually employ 
customized knowledge transfer methods, like prior knowledge, 
for specific problems. However, as the optimization problem 
becomes more large-scale, more dynamic, and more complex, 
the role of knowledge guidance becomes more demanding. It is 
imperative to propose a general knowledge guidance 
framework available to the constrained multi-objective 
optimization algorithms for different application scenarios. 

To overcome the above limitations, we propose a process 
knowledge-guided constrained multi-objective autonomous 
evolutionary optimization algorithm, which is detailed in 
Section III. Based on the population state, the proposed 
algorithm can automatically recommend the strategy for the 
subsequent population’s evolution by using the mapping model 
of the population state and guidance strategy, which 
significantly improves the autonomy of problem-solving. The 
proposed framework is flexible, where the population state, 
guidance strategies, and strategy evaluation can be easily 
adjusted according to the actual demands. Specifically, by 
setting various features in the population state, assorted 
information can be mined from diversified aspects; to realize 
the disparate guidance effects, distinctive strategies can be 
configured in the framework; Divergent evaluation indicators 
can be set to lead the algorithm to complete different solving 
tasks in multiple evolutionary stages. 
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III. PROCESS KNOWLEDGE-GUIDED CONSTRAINED MULTI-
OBJECTIVE AUTONOMOUS EVOLUTIONARY OPTIMIZATION  

A. OVERALL FRAMEWORK 

This section proposes a constrained multi-objective 
autonomous evolutionary optimization method guided by 
process knowledge. The idea is as follows. Firstly, the 
regulation effects of different guidance strategies on the 
population states are evaluated at the early evolutionary stage. 
Then, based on the generated samples, the mapping model 
between population states and guidance strategies is established. 
Finally, the subsequent guidance strategy is intelligently 
recommended according to the established mapping model and 
the current population state. The advantage of this approach is 
that the constrained multi-objective optimization problem can 
be solved efficiently by adopting appropriate strategies at 
different stages of the population’s evolution. 

The overall framework of the proposed method is shown 
in Algorithm 1. In this method, process knowledge reflects the 
influence of guidance strategies on population state regulation, 
including the state 𝑠௧ of the population 𝑃௧ in the generation 𝑡, 
the adopted guidance strategy 𝑎௧  and its effect evaluation 𝑟௧ . 
Based on process knowledge, the mapping relationship between 
( 𝑠௧ , 𝑎௧ ) and 𝑟௧  is established and represented by Deep Q-
learning Network (DQN). According to 𝑠௧, the DQN is applied 
to determine the guidance strategy 𝑎௧ to be implemented on 𝑃௧  
(line 5). In addition, the evolutionary population information of 
different generations is used to enrich process knowledge (lines 
6-9). Here, 𝑇௠௔௫  is the maximum evolutionary generation. It is 
easy to see that PKAEO does not change the structure of 
existing evolutionary algorithms but only uses process 
knowledge to guide the population’s evolution. 

Algorithm 1 The framework of PKAEO 

Input: parameters of DQN, maximum generation number 𝑇௠௔௫  

𝑃
೘்ೌೣ

 1. 𝑡 ← 1; 
2. 𝑃௧ ← 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(); 
3. While  𝑡ℎ𝑒 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑖𝑠 𝑛𝑜𝑡 𝑚𝑒𝑡 do 

4.       /*Embedding PKG to EAs, referring to Algorithm 2*/ 
5. 𝑉௧ ← 𝑅𝑒𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 ( 𝑃௧ ); 𝑼𝒕 ← 𝑷𝑲𝑮 ( 𝑽𝒕 ); 𝑄௧ ←

𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑈௧); 

6. 𝑅௧ ← 𝑄௧ ∪ 𝑃௧; 
7. Generate offspring population 𝑃௧ାଵ from 𝑅௧ according 

to the evolutionary algorithm; 
8.       /*Archive the process data, referring to Algorithm 3*/ 
9.       Archive the process data into memory 𝑴; 
10.       𝑡 ← 𝑡 + 1; 
11. End while 
12. Return 𝑃

೘்ೌೣ
; 

In order to apply process knowledge to guide the 
subsequent population’s evolution, the whole process of the 
population’s evolution is divided into two stages, as shown in 
Fig.1. The first stage is the process knowledge acquisition stage, 
starting from the first generation to the generation 𝑇௦௔௠. The 
second stage is the process knowledge application stage from 
the generation 𝑇௦௔௠ + 1 to the end of population’s evolution. 

More details of Fig.1 are explained in Algorithm 2. In the 
process knowledge acquisition stage, the samples for training 
DQN (line 6) are generated by randomly implementing the 
guidance strategy 𝑎௧ on population 𝑃௧(line 3), which includes 
the state 𝑠௧ାଵ of 𝑃௧ାଵ, and the evaluation value 𝑟௧ of the strategy 
𝑎௧. In the process knowledge application stage, according to the 
state 𝑠௧ , the predicted evaluation value 𝑟௧

ᇱ  of the guidance 
strategy 𝑎௧  is provided by DQN. Then the subsequent 
population’s evolution is carried out by performing the 𝑎௧ with 
maximum predicted 𝑟௧

ᇱ (line 9). At the same time, the sample 
used to update DQN is also generated (line 8).  

 
Fig.1 Process knowledge acquisition and application. 𝑠௧  is the extracted 
population state from 𝑃௧, 𝑎௧  is the guidance strategy performed on 𝑃௧, 𝑟௧  is the 
performance evaluation of 𝑎௧ . 

Algorithm 2 Population knowledge guidance (PKG) 
Input: recombined population 𝑉௧; 

𝑈௧
1. If 𝑡 ≤ 𝑇௦௔௠ then 
2.    /* Select a random strategy */ 
3.    Select 𝑎௧ randomly; 
4. Else 
5.    /*Train the DQN */ 
6.    Train the DQN with algorithm 4; 
7.    /*Update the DQN */ 
8.    Update the DQN with algorithm 5; 
9.    Select 𝑎௧ according to equation (3); 
10. End if 
11. Conduct 𝑎௧ on 𝑉௧ to generate 𝑈௧; 

It can be seen that the key to realizing process knowledge 
guidance is determining the input (𝑠௧,𝑎௧) and output 𝑟௧ of DQN 
and training the DQN. Below, these fundamental techniques are 
detailed in Sections III-B and III-C, respectively. 

B. Inputs and outputs of DQN 

1)  Population state characterization based on diversity and 
convergence 

Diversity and convergence are two critical characteristics 
of the evolutionary population, which reflect the dispersion and 
approximation performances of the population, respectively. 
Given this, population states can be characterized by diversity 
and convergence. It is worth noting that the diversity and 
convergence are from the decision space. This paper adopts the 
following two methods to characterize population diversity. 
The first is the standard deviation of individual locations in the 
population. For 𝑃௧ , the standard deviation of individual 
locations in this population is denoted as 𝜉௧

[48,49]. The second is 
the number of individual clusters in the population. For 𝑃௧, the 
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best number of individual clusters in this population is denoted 
as 𝜅௧

[50,51], which can be estimated by the Silhouette Coefficient 
method[52]. It is easy to see that 𝜉௧  and 𝜅௧  reflect the intra-
generational characteristics of the population, and describe the 
diversity of the population from different aspects. 

The convergence characteristics of the population are 
described in the following two ways. One is the distance 
between the center points of populations in two successive 
generations. Considering the population of generations 𝑡 − 1 
and 𝑡, the distance between the centers of 𝑃௧ିଵ and 𝑃௧ is 𝜆௧ [53]. 
The other is the average distance between centroids of 
individual clusters in two successive generations. For 𝑃௧ିଵ and 
𝑃௧ , the average movement distance of clustering centroids is 
denoted as 𝜏௧, then, 𝜏௧ can be presented as 

𝜏௧ =
ଵ

఑೟
∑ |𝑁𝐶௜,௧ − 𝐶௜,௧|

఑೟
௜ୀଵ                       (1) 

where 𝐶௜,௧  is the 𝑖 th centroid of 𝑃௧ . Please note that 𝑃௧ିଵ  is 
divided into 𝜅௧ିଵ  clusters here, and 𝑁𝐶௜,௧  means the nearest 
cluster centroid in 𝐶௧ିଵ  to 𝐶௜,௧ . It can be seen that 𝜆௧  and 𝜏௧  
reflect the population’s inter-generational characteristics and 
depict the population’s convergence from different angles. 

For constrained optimization problems, in addition to 
using the above methods to characterize the whole population, 
it is also necessary to consider the characterization of feasible 
solutions in the population. For the feasible solution sets of the 
population in the generation 𝑡 , the above characteristics are 

denoted as 𝜆௧
௙ ,  𝜏௧

௙ ,  𝜉௧
௙  and  𝜅௧

௙ . In particular, when all the 

individuals in 𝑃௧  are infeasible solutions, let 𝜆௧
௙

= 𝜏௧
௙

= 𝜉௧
௙

=

𝜅௧
௙

= 0; when all the individuals in 𝑃௧  are feasible solutions, 

𝜆௧ = 𝜆௧
௙ , 𝜏௧ = 𝜏௧

௙ , 𝜉௧ = 𝜉௧
௙ , 𝜅௧ = 𝜅௧

௙. 
In addition, the evolution process of the population, 

denoted as 𝜑௧, is characterized as follows: 

𝜑௧ =
௧

೘்ೌೣ
    

In this way, the population 𝑃௧  can be characterized by the 
above nine features to form the population state, denoted as 𝑠௧. 
Therefore, 𝑠௧ can be represented as 

𝑠௧  =  (𝜆௧ , 𝜏௧ , 𝜉௧ , 𝜅௧; 𝜆௧
௙ , 𝜏௧

௙ , 𝜉௧
௙ , 𝜅௧

௙
; 𝜑௧ )             (2) 

2)  Guidance strategies for population state regulation 
In evolutionary algorithms, the regulation of the 

population state is achieved through various guidance 
strategies[54]. It is easy to understand that disparate evolutionary 
algorithm paradigms usually adopt distinctive guidance 
strategies in preference. Among many paradigms of 
evolutionary algorithms, the differential evolution algorithm is 
very typical and widely used. In addition to the original 
guidance strategy, numerous enhanced guidance strategies have 
been proposed for the differential evolution algorithms, like the 
DE/current-to-pbest/1-X[55]. Existing differential guidance 
strategies can be divided into the following three categories: i) 
DE/best/1 and DE/best/2; ii) DE/rand/1 and DE/rand/2; and iii) 
DE/current-to-pbest/1. For  DE/best/1 and DE/best/2, they have 
better convergence performance, among which DE/best/1 has a 
faster convergence speed and DE/best/2 has better local 
convergence performance. For DE/rand/1 and DE/rand/2, they 
can well maintain population diversity[56]. Compared with 
DE/rand/1, DE/rand/2 can generate diversified evolutionary 
directions in the search space and has a more vital ability to 
maintain population diversity. For DE/current-to-pbest/1, they 

take into account the convergence and diversity of the 
population[57]. In addition, they can effectively protect 
individual genes that satisfy all or part of the constraints. 

For other paradigms of evolutionary algorithms, there is a 
variety of guidance strategies with an extraordinary 
performance that also can be used but these are beyond the 
scope of this paper. 

In summary, there are five guidance strategies for 
regulating population state here. If the number of guidance 
strategies performed on the population 𝑃௧ is denoted as 𝑎௧, then, 
the value of 𝑎௧ and its meaning are as follows: 0 indicates that 
no guidance strategy is implemented; 1 to 5 indicates the 
implementation of guidance strategies DE/best/1, DE/best/2, 
DE/rand/1, DE/rand/2, and DE/current-to-pbest/1, respectively. 
3)  Phased evaluation of guidance strategies 

When using evolutionary algorithms to solve constrained 
multi-objective optimization problems, the evolution of the 
population can be roughly divided into two stages. The first 
stage is when the evolutionary population does not contain any 
feasible solution to the problem; another stage is when the 
evolutionary population contains one or more feasible solutions 
to the problem. For these stages, different indicators are used to 
evaluate the performance of guidance strategies. 

Suppose the evolutionary population does not contain any 
feasible solution to the problem. In this case, the performance 
of the guidance strategy can be evaluated by reducing the 
overall constraint violation degree of the population. Here, the 
constraint dominance method is employed. Consider the 
population 𝑃௧, and perform the strategy 𝑎௧ on the  𝑃௧. In order 
to evaluate the performance of 𝑎௧ , the overall constraint 
violation degree of 𝑃௧  is calculated, denoted as 𝜙௧ . The 
constraint violation degree of an individual is obtained by 
summing these violation degrees. Then, the performance of the 
guidance strategy 𝑎௧, denoted as 𝑟௧, can be presented by 

𝑟௧ =
థ೟ିథ೟శభ

థ೟
                                    (3) 

Obviously, the value of 𝑟௧ is between 0 and 1. In particular, 
if 𝑟௧ = 0, it means the constraint satisfaction does not improve 
after performing an guidance strategy; If 𝑟௧ = 1, it indicates 
after performing 𝑎௧ , all the individuals of 𝑃௧  satisfy the 
constraints. 

When the evolutionary population contains one or more 
feasible solutions to the problem, the performance of the 
guidance strategy is evaluated by the improvement degree of 
PD[58] and HV[59]. Here, PD is used to reflect the diversity of 
feasible solutions, and HV reflects not only the diversity, but 
also the convergence of feasible solutions. For the population 
𝑃௧, the PD and HV of feasible solutions are denoted as 𝑃𝐷௧  and 
𝐻𝑉௧ , respectively. Then, the performance 𝑟௧  of the guidance 
strategy 𝑎௧ can be expressed as 

𝑟௧ = 𝜑௧ ∗
௉஽೟శభି௉஽೟

௉஽೟
+ (1 − 𝜑௧) ∗

ு௏೟శభିு௏೟

ு௏೟
            (4) 

In this way, the performance 𝑟௧ of the guidance strategy 𝑎௧ can 
be expressed as 

𝑟௧ = ቐ

థ೟ିథ೟శభ

థ೟
,                                                             𝑖𝑓  𝜙௧ > 0

𝜑௧ ∗
௉஽೟శభି௉஽೟

௉஽೟
+ (1 − 𝜑௧) ∗

ு௏೟శభିு ೟

ு௏೟
,       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

    (5) 

Note that due to different search preferences, this 
evaluation method may generate conflicts with the embedded 
algorithms. In specific applications, diversified evaluation 
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methods can be flexibly set according to the guiding need of the 
population’s evolution, such as replacing the constraint 
dominance method with the 𝜀 constraint method. 

C. Training and application of DQN 

1) Sample acquisition and augmentation 
When the proposed method is used to solve the constrained 

multi-objective optimization problems, a sample is generated in 
each generation of the population’s evolution, and the 𝑡 th 
sample is denoted as 𝑒௧ = (𝑠௧ , 𝑎௧ , 𝑟௧, 𝑠௧ାଵ). Different samples 
have different functions. Specifically, the collected samples in 
the process knowledge acquisition and application are used to 
train and update the mapping model DQN, respectively. The 
sample acquisition method is shown in Algorithm 3. First, 
initialize the memory 𝑀 to hold the samples and set the size of 
𝑀  to 𝑁  (line 2). Then, after one evolution generation of 
population 𝑃௧ , the performance 𝑟௧ of the guidance strategy 𝑎௧ is 
evaluated, and the state 𝑠௧ାଵ of the offspring population 𝑃௧ାଵ is 
obtained and recorded (line 4). Finally, the generated sample 
𝑒௧ = (𝑠௧ , 𝑎௧ , 𝑟௧, 𝑠௧ାଵ) is saved in 𝑀. If the number of samples 
exceeds 𝑁 , then the sample with the smallest generation 
number in 𝑀 is replaced (line 5). 

Algorithm 3 Acquisition of samples 

1. If 𝑡 = 1 then 
2.     Initialize replay memory 𝑀 to capacity 𝑁; 
3. End if 
4. Observe 𝑟௧ and the state 𝑠௧ାଵ of 𝑃௧ାଵ; 
5. Archive transition 𝑒௧ = (𝑠௧ , 𝑎௧ , 𝑟௧, 𝑠௧ାଵ) into 𝑀. 

Since the number of obtained samples is difficult to meet 
the requirements of DQN training, this paper generates the 
augmented samples by randomly perturbing the existing 
samples. For the sample 𝑒௧ = (𝑠௧ , 𝑎௧ , 𝑟௧, 𝑠௧ାଵ) , different 
augmented samples can be obtained by augmenting them once 
or more. It is easy to understand that increasing the 
augmentation produces more augmented samples, which helps 
to improve the accuracy of DQN, but also leads to high 
computational burden. Denote the times of augmenting sample 
𝑒௧  as α, then, the augmented samples of this sample can be 
expressed as 

𝑒௧
ଵ = (𝑠௧

ଵ, 𝑎௧ , 𝑟௧
ଵ, 𝑠௧ାଵ) 

𝑒௧
ଶ = (𝑠௧

ଶ, 𝑎௧ , 𝑟௧
ଶ, 𝑠௧ାଵ) 

…                                          (6) 
𝑒௧

஑ = (𝑠௧
஑, 𝑎௧ , 𝑟௧

஑, 𝑠௧ାଵ) 
where 𝑠௧

௜ = 𝑠௧ ∗ 𝑛𝑜𝑟𝑚(1, 𝜎) ,  𝑟௧
௜ = 𝑟௧ ∗ 𝑛𝑜𝑟𝑚(1, 𝜎) , 

𝑛𝑜𝑟𝑚(1, 𝜎) is the normal distribution function, 𝑖 =1, 2, …, α. 
It is worth noting that the component 𝑠௧ାଵ  is not 

augmented because it does not participate in the training 
process. To keep the sample balance with different strategies, 
the augmentation of 𝑒௧ is conducted only when the proportion 

of 𝑎௧ among all the samples is lower than 
ଵ

ேௌ
, where 𝑁𝑆 is the 

overall number of guidance strategies.  
2) Training of DQN 

The training process of DQN is shown in Algorithm 4. 
First, 𝑏 samples are randomly selected and normalized from 𝑀 
(line 2). The training parameters are initialized, including the 
weight 𝜃 of DQN, the maximum training times 𝑔, the number 
of hidden layers and neurons, and the learning rate 𝑙𝑟 of the 

network. The hidden layers are connected through the Sigmoid 
function, and the activation function of the output layer is linear 
(line 3). Then, for a given sample 𝑒௧ = (𝑠௧ , 𝑎௧ , 𝑟௧, 𝑠௧ାଵ) , the 
predicted value 𝑟௧

ᇱ  of the sample is obtained by forward 
propagation, thus the prediction error is calculated, and the 
network weights 𝜃  are adjusted along the direction of the 
negative gradient of the prediction error. Finally, when the 
fitting precision is met, or the number 𝑔 of training epochs is 
reached, DQN training is stopped (line 4). 

Algorithm 4 Training of the DQN  

1. If 𝑡 = 𝑇௦௔௠ + 1 then 

2.    Sample and normalize random 𝑏 transitions from 𝑀; 
3.    Initialize the DQN parameters; 
4.    Train the DQN to get 𝑄(𝑠௧ , 𝑎; 𝜃); 
5. End If 

3) Application of DQN 
After training DQN, for the population 𝑃௧  in the 

generation 𝑡 , the population state 𝑠௧  is taken as the input of 
DQN, and the performance prediction values of different 
guidance strategies are obtained. Denoting the effect of 
guidance strategy, after performing guidance strategy 𝑎௧ on 𝑃௧, 
is obtained as 𝑟௧

ᇱ. For all the guidance strategies, the guidance 
strategy with the maximum performance prediction value is 
denoted as 𝑎௧

௠௔௫ = 𝑎𝑟𝑔 max {𝑟௧
ᇱ}. Therefore, 𝑎௧

௠௔௫ is selected 
as the guidance strategy for the subsequent population. 

In addition, in order to reduce the negative impact caused 
by overfitting DQN and improve the exploration ability in 
population state space, this paper draws on Epsilon’s greedy 
strategy. It randomly selects a strategy from all guidance 
strategies with a probability 𝜖  to replace the strategy 
recommended by DQN for the subsequent population’s 
evolution. Specifically, Epsilon’s greedy strategy is as follows: 

𝑎௧ = ൜
𝑟𝑎𝑛𝑑_𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦         𝑖𝑓  𝑟𝑎𝑛𝑑 < 𝜖 

𝑎௧
௠௔௫                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

            (7) 

Where 𝑟𝑎𝑛𝑑_𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦  means selecting a random strategy, 
function 𝑟𝑎𝑛𝑑  is a random float number belonging to [0, 1]. 
Considering that PKAEO needs to get more random samples at 
the early stages, 𝜖  is set to 0.3ఝ೟ , which is a dynamically 
decreased value, as shown in Fig.2. 

 
Fig.2 The value of 𝜖 in PKAEO 

4) Updating of DQN 
As the population continues to evolve, more samples are 

generated, and the prediction accuracy of DQN may also 
decrease. Given this, it is necessary to update DQN in the 
process of population evolution to predict the performance of 
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guidance strategies accurately. For convenience, we update 
DQN regularly. As shown in Algorithm 5, denote the updating 
period of DQN as 𝑇௨௣ௗ , DQN is updated when t ≥ 𝑇௦௔௠⋀(t −

𝑇௦௔௠)%𝑇௨௣ௗ = 0. For the 𝑘th update of DQN, the sample set 
generated from the last DQN update to the current generation, 
denoted as 𝑀௞, is used to update the parameters of DQN. The 
updating sets a goal 𝑦௝  for each 𝑒௝ = (𝑠௝ , 𝑎௝ , 𝑟௝ , 𝑠௝ାଵ) , and 
construct a loss function 

𝐿 = (𝑦௝ − 𝑄(𝑠௝ , 𝑎௝; 𝜃))ଶ                         (8) 
The loss function 𝐿 is the optimization objective to update the 
weight parameter 𝜃 of the neural network. 𝑄(. ) is the predicted 
𝑟௝

ᇱ  of 𝑎௝  for 𝑠௝ . If the stop condition of the evolutionary 
algorithm is not reached, 𝑦௝ = 𝑟௝ + 𝛾𝑚𝑎𝑥௔𝑄(𝑠௝ାଵ, 𝑎; 𝜃), where 
𝛾 ∈ [0,1] is the discount on the predicted strategy evaluation. 
𝑚𝑎𝑥௔𝑄(𝑠௝ାଵ, 𝑎; 𝜃) is the maximum predicted 𝑟௝ାଵ

ᇱ  of all 
possible 𝑎௝ାଵ  for 𝑠௝ାଵ . The purpose of this operation is to 
accelerate the convergence of DQN. When the stop condition 
of the evolutionary algorithm is reached, 𝑦௝ = 𝑟௝. Overall, 

𝑦௝ = ൜
𝑟௝                                   𝑖𝑓  𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑠௝ାଵ 

𝑟௝ + 𝛾𝑚𝑎𝑥௔𝑄(𝑠௝ାଵ, 𝑎; 𝜃)    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
          (9) 

Algorithm 5 Updating of the DQN 

1. If t ≥ 𝑇௦௔௠⋀(t − 𝑇௦௔௠)%𝑇௨௣ௗ = 0 
2.     Sample and normalize random mini-batch of 𝑏 

transitions 𝑒௝ = (𝑠௝ , 𝑎௝ , 𝑟௝, 𝑠௝ାଵ) from 𝑀; 
3.     Update 𝑄(𝑠௧ , 𝑎; 𝜃) according to equation (9); 

4. End If 

D. Complexity analysis 

It can be seen from the above description that the time 
complexity of the proposed method is mainly determined by the 
extraction of the population state, the execution of the guidance 
strategy, the evaluation of the guidance strategy, and the 
training of the DQN. 

When the dimension of decision space for solving the 
optimization problem is 𝑑 , for the evolutionary algorithm 
whose maximum evolutionary generation number is 𝑇௠௔௫  and 
population size is 𝑛 , to extract the population state, it is 
necessary to calculate the distance between the population 
individuals. Executing guidance strategies involves vector 
computation of all population individuals. The evaluation of the 
guidance strategy is related to the number of feasible solutions 
and the number 𝑚  of optimization objectives. For DQN, 
assume the neural network contains ℎ layers, and the average 
number of nodes in the hidden layer is 𝑝, the number of nodes 
in the input and output layers is 10 and 1, respectively. Each 
training or update needs 𝑔 iterations, and a total of 𝑏 samples 
are selected for training. The time complexity of these four parts 
is as follows: 

(1) The time complexity of extracting population state is 
𝑂(𝑇௠௔௫𝑛𝑑); 

(2) The time complexity of executing the guidance 
strategy in the worst case is 𝑂(𝑇௠௔௫𝑛𝑑); 

(3) The time complexity of guidance strategy evaluation in 
the worst case is 𝑂(𝑇௠௔௫𝑛ଶ𝑚 + 𝑇௠௔௫𝑛௠ିଶ 𝑙𝑜𝑔 𝑛)[60]; 

(4) The time complexity of training and updating DQN is 

𝑂(⌊ ೘்ೌೣି ೞ்ೌ೘

்ೠ೛೏
⌋((ℎ − 3)𝑝ଶ + 11𝑝)𝑏𝑔). 

It can be seen that the time complexity of the proposed 
method is mainly determined by 𝑇௠௔௫ , 𝑛 , 𝑑 , 𝑚  and the 
parameters of DQN. For large-scale constrained multi-objective 
optimization problems, the above time complexity is mainly 
determined by the extraction of population state and the 
execution of guidance strategies, about 𝑂(𝑇௠௔௫𝑛𝑑); When the 
number of objectives increases, the time complexity is mainly 
determined by the evaluation of guidance strategy, about 
𝑂(𝑇௠௔௫𝑛ଶ𝑚 + 𝑇௠௔௫𝑛௠ିଶ 𝑙𝑜𝑔 𝑛); When the dimensions of the 
decision space and objective space of the optimization problem 
are small, the time complexity is mainly determined by the 

training and update of DQN, about 𝑂(⌊ ೘்ೌೣି ೞ்ೌ೘

்ೠ೛೏
⌋((ℎ − 3)𝑝ଶ +

11𝑝)𝑏𝑔). 

E. Further elucidation 

The core idea of PKAEO is to select appropriate strategies 
to improve the performance of evolutionary algorithms by 
tracking the changes in the population state. Previously, Sharma 
et al.[61] proposed a description method for population states 
based on the ranking of population individuals and the locations 
of the population. In their method, DDQN is used to select the 
search strategies automatically. In terms of the solved problems, 
their method is devoted to the single-objective optimization 
problems and has the following flaws: (1) the population state 
description is redundant; (2) the strategy evaluation method is 
simplified; (3) the offline training of samples is required. In 
addition, Tian et al.[44] proposed an automatic operator selection 
framework guided by decision variables and weight vectors for 
multi-objective optimization problems. Unlike our method, 
their method evaluates the performance of guidance strategies 
by comparing their improvements in fitness value and does not 
involve the state description of the evolutionary population, 
therefore provides no straightforward way to mine the 
population information. More importantly, PKAEO can easily 
embed existing evolutionary algorithms. By setting preferential 
evaluation methods of guidance strategies, the most beneficial 
strategies are intelligently selected to improve the performance 
of algorithms. 

IV. EXPERIMENT  

Eight experiments are conducted in this section to evaluate 
the proposed method’s performance. The first group verifies the 
effectiveness of the proposed method on benchmark problems 
by comparing it with five constrained multi-objective 
optimization algorithms. The second group verifies the 
superiority of the proposed method on benchmark problems by 
comparing it with four multi-strategy optimization frameworks. 
The third to fifth groups study the influence of parameter 𝛼 on 
the algorithm stability. The fifth group studies the comparison 
of intelligent recommendation of strategies in PKAEO with 
empirical use of strategies. The sixth group studies the suitable 
number of configured guidance strategies. The last group 
studies the time consumption of PKAEO. The operating 
environment of the experiments is as follows: Intel(R) 
Core(TM) i5-9500 CPU @ 3.00GHz, 32GB RAM, Windows 
10, and PlatEMO[62]. 
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A. Benchmark test suites 

In order to evaluate the performance of the proposed 
method, four benchmark suites are selected: LIR-CMOP[63], 
MW[64], DTLZ[65], and VNT[66]. These test suites cover the four 
common types of constrained multi-objective optimization 
problems[4], namely (1) the UPF and the CPF  completely 
coincide; (2) Parts of UPF are feasible, and CPF is parts of UPF; 
(3) Some regions of UPF are feasible, and CPF and UPF partly 
coincide; (3) UPF is located in the infeasible region, and CPF 
is wholly separated from UPF. The above indicate that the 
selected test suites are representative and helpful in testing the 
proposed method. 

 The number of optimization objectives and the dimension 
of decision variables are set as follows. For LIR-CMOP1~LIR-
CMOP12, 𝑚 = 2, 𝑑 = 30; for LIR-CMOP13~LIR-CMOP14, 
𝑚 = 3, 𝑑 = 30; for MW4, MW8 and MW14, 𝑚 = 3, 𝑑 = 15; 
for other MW test instances, 𝑚 = 2, 𝑑 = 15; for DTLZ8, 𝑚 =
3, 𝑑 = 30 ; for DTLZ9, 𝑚 = 2 , 𝑑 = 20; for VNT4, 𝑚 = 3, 
𝑑 = 2. 

B. Comparison algorithms and parameters setting 

In this section, the state-of-the-art algorithms for solving 
constrained multi-objective optimization problems, including 
CMOEA-MS[36], AGEMOEA[67], AGEMOEAII[68], 
ARMOEA[69] and the typical algorithm NSGA-II[70], are 
selected as the embedded objects of the process knowledge 
guidance proposed in this paper. The variants with process 
knowledge guidance are denoted as “PK-*”. The effectiveness 
of PKAEO is verified by comparing the performance of “PK-*” 
and original algorithms. To illustrate the superiority of PKAEO, 
four multi-strategy frameworks for solving constrained multi-
objective optimization problems, including C-TAEA[71], 
MOCell[72], MaOEAIT[73], and Top[74], are selected as the 
comparison algorithms. The parameter values of the above 
algorithms are consistent with those in the original articles. 

In “PK-*”, the parameters of DQN are set as 𝛾 = 0.9, 𝑁 =
500 , 𝑔 = 100 , 𝑇௨௣ௗ = 0.25 ∗ 𝑇௠௔௫ , 𝑇௦௔௠ = 0.3 ∗ 𝑇௠௔௫ , 𝛼 =

5; the number of nodes in the hidden layer of DNN is 32, 64, 
and 32 respectively, and the learning rate of network training 
𝑙𝑟 = 0.001. The parameters of guidance strategies are set to 
𝐹 ∈ [0,0.5], 𝐶𝑅 ∈ [0,1]. Considering that if all the guidance 
strategies are adopted, the ample strategy space will have a high 
requirement on the number of samples. Therefore, from the 
perspective of maintaining population diversity and 
convergence, DE/rand/1 and DE/current-to-pbest/1 are selected 
in the experiment, i.e. 𝑎௧ = 1 and 𝑎௧ = 2, respectively. 

The population size is 100 for all test instances. The 
function evaluation times of each algorithm are 100000 and 
10000 for the LIR-CMOP test suite and the other test suites, 
respectively.  

C. Performance indicator 

Since the Inverted Generational Distance (IGD)[75]  and 
hyper-volume (HV)[59] can comprehensively evaluate the 
performance of intelligent optimization algorithms, they are 
selected as performance indicators in this paper. In order to 
evaluate the significant difference of compared methods on 
performance indicators, the Wilcoxon Rank-sum test is used for 
the hypothesis test, and the significance level is set at 0.05. The 

symbols “+”, “-” and “=” are used to indicate that “PK-*” are 
significantly better than, worse than and not different from the 
original algorithms, respectively. In addition, the multi-
problem Wilcoxon Rank-sum test with a significance level of 
0.05 is used to evaluate the significance of the performance 
difference between the compared algorithms. 

D. Effectiveness of the proposed method 

For all problems, each algorithm is run 30 times 
independently to obtain the HV and IGD performance 
indicators. Due to the space limitation, their mean values and 
standard deviations are listed in Tables S-1 to S-6 in the 
Appendix, in which the highlighted gray background data are 
the best values. Table 1 lists the HV and IGD performance 
indicators of “PK-*” and each original algorithm. For IGD, 
“PK-*” significantly outperform the original algorithms on at 
most 20 and at least 17 test problems. For HV, “PK-*” 
significantly outperform the original algorithms on at most 19 
and at least 16 test problem. Considering the R+ value of “PK-
*” is higher than the R- value, it can be seen that process 
knowledge guidance can improve the performance of the 
embedded algorithms.  

Table 1 IGD and HV performance indicators of “PK-*” and embedded 
algorithms 

IGD +/-/= R+ R- 𝜶=0.05 
PK-NSGAII  VS   NSGAII 20/2/9 473.5 22.5 YES 
PK-AGEMOEA  VS  AGEMOEA 19/2/10 251.5 213.5 YES 
PK-AGEMOEAII  VS  AGEMOEAII 19/4/8 454.5 41.5 YES 
PK-ARMOEA  VS  ARMOEA 20/3/8 291.5 204.5 YES 
PK-CMOEA-MS  VS  CMOEA-MS 17/6/8 343.0 153.0 YES 

HV +/-/= R+ R- 𝜶=0.05 
PK-NSGAII  VS  NSGAII 16/0/15 465.0 0.0 YES 
PK-AGEMOEA  VS  AGEMOEA 19/1/11 494.5 1.5 YES 
PK-AGEMOEAII  VS  AGEMOEAII 18/3/10 426.5 38.5 YES 
PK-ARMOEA  VS  ARMOEA 17/3/11 494.5 1.5 YES 
PK-CMOEA-MS  VS  CMOEA-MS 17/6/8 496.0 0.0 YES 

For the MW test instances, the constraints have various 
styles. Specifically, the feasible regions are tiny and divided by 
a vast infeasible region, causing the CPF contains multiple 
isolated solutions. According to Tables S-1 and S-4, process 
knowledge guidance is practical for most problems. In order to 
visually demonstrate the performance effect of process 
knowledge guidance, the distribution of the non-dominated 
solutions provided by “PK-*” and the original algorithms on the 
MW3 problem is shown in Fig.S-1 and Fig.S-2, respectively. It 
can be seen that process knowledge guidance can effectively 
guide the algorithm to obtain more widely distributed non-
dominated solutions. More specifically, according to the 
searching process of PK-ARMOEA on MW3 and MW5 in 
Fig.S-3 and Fig.S-4, the process knowledge guidance first 
guides the population to locate feasible solutions quickly. It 
then guides the population to approach the CPF quickly once a 
feasible solution is found. Finally, process knowledge guidance 
improves the diversity distribution of the non-dominated 
solutions. 

The feasible regions for the LIR-CMOP test instances are 
tiny, and even some problems contain only one curve. In 
addition, the CPF is divided by a vast infeasible region, forming 
several disjoint segments or sparse points. According to Tables 
S-2 and S-5, process knowledge guidance can improve the 
comprehensive performance of all embedded algorithms on 
LIR-CMOP. However, the performance on different test 
instances is slightly different, detailed as follows. 
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(1) For LIR-CMOP1~LIR-CMOP4 with small feasible 
regions, process knowledge guidance can help the embedded 
algorithm to obtain better non-dominated solutions, which is 
attributed to the fast localization of the feasible regions by 
DE/rand/1 in global exploration and the fast convergence of 
DE/current-to-pbest/1 in local exploitation.  

(2) For LIR-CMOP5~LIR-CMOP6, which need to go 
through the infeasible regions to locate the CPF, the process 
knowledge guidance is limited by the constraint handling 
ability of the embedded algorithm to a certain extent, which 
makes it challenging to improve the performance of 
AGEMOEA and ARMOEA significantly. Nevertheless, it can 
help NSGAII find feasible solutions for LIR-CMOP6. 

(3) For LIR-CMOP7~LIR-CMOP14, process knowledge 
guidance has significant advantages, which can improve the 
performance of all algorithms on most test instances. 

For the DTLZ and VNT test instances, the constrained 
multi-objective optimization problems DTLZ8~DTLZ9 and 
VNT4 are selected. According to Tables S-3 and S-6, except for 
the CMOEA-MS algorithm, process knowledge guidance can 
improve the comprehensive performance of all other algorithms. 
According to the solving process of ARMOEA and PK-
ARMOEA on the DTLZ8 problem in Fig.S-5 and Fig.S-6, PK-
ARMOEA maintains a high population diversity in the 
evolution process, showing obvious advantages at the 50th 
generation and converging to the CPF at the 75th generation. 

 
Fig.3 Strategy selection results of PK-ARMOEA in the process of solving 
MW2, MW10, LIR-CMOP13, and LIR-CMOP14, where red dots represent the 
random strategy selection in generations 1~𝑇௦௔௠, and the blue dots represent 
the DQN strategy recommendation in the process knowledge application. 

It is worth noting that process knowledge guidance is not 
effective in some test instances. According to the distribution 
of non-dominated solutions to these test instances shown in 
Fig.S-7 and the strategy selection of PK-ARMOEA given in 
Fig.3, we can see that 

(1) The non-dominated solutions of MW2 and MW10 
distribute centrally on some dimensions. Thus, DE/current-to-
pbest/1 with fast convergence gets a higher evaluation value 
than DE/rand/1. For MW2, to locate the promising regions, no 
guidance is performed in the early stage; the DE/current-to-
pbest/1 is used to accelerate the convergence in the late stage. 
Although the algorithm has performed the DE/current-to-
pbest/1 in the generations 𝑇௦௔௠ାଵ~𝑇௠௔௫ , the strategy sampling 
in generations 1~𝑇௦௔௠ , specifically the random execution of 
DE/rand/1, still reduces the convergence speed. For MW10, the 
population is premature. Though the DE/rand/1 is employed to 
search for new promising regions, it is still challenging to 
significantly improve the solutions further. 

(2) The non-dominated solutions of LIR-CMOP13 and 
LIR-CMOP14 are dispersed and located in different local 
regions. For LIR-CMOP13, at the early stage of process 
knowledge application (generations 𝑇௦௔௠ାଵ~𝑇௠௔௫ ), the 

continuous employment of DE/current-to-pbest/1 focuses on 
local exploitation and neglects global exploration. Even if the 
DE/rand/1 is performed at the late stage of process knowledge 
application, the quality of the non-dominated solutions is still 
affected. For LIR-CMOP14, the mutation operators of DE are 
not effective, thus no guidance is conducted in process 
knowledge application. 

In summary, process knowledge guidance has a significant 
effect on improving the performance of evolutionary algorithms. 
However, in the application process, the immediate reward of 
fast convergence strategies and the random sampling for 
exploring the effect of strategies will lead to the wrong guidance 
of the population’s evolution. Therefore, the design of a more 
scientific strategy evaluation system is the critical factor 
affecting the effect of process knowledge guidance. 

E. Further research 

1) Comparison with other multi-strategy frameworks 
At present, the multi-strategy frameworks for solving 

constrained multi-objective optimization problems include C-
TAEA, MOCell, MaOEAIT, and Top. This section compares 
the performance of PKAEO with these frameworks. In addition 
to the above test suites, the CF test suite[76] is also used here. 
Taking PK-CMOEA-MS as an example, each algorithm is 
independently run 30 times for all optimization problems to 
calculate the mean and standard deviation of HV and IGD 
indicators, as listed in Tables S-7 to S-12. Table 2 lists the HV 
and IGD performance statistics of PK-CMOEA-MS and other 
algorithms. For IGD, PK-CMOEA-MS significantly 
outperforms the original algorithms on at most 35 and at least 
25 test problems. For HV, PK-CMOEA-MS outperforms the 
original algorithms on at most 35 and at least 22 test problems. 
The overall advantage of PKAEO is verified according to the 
higher R+ value than the R- value of PK-CMOEA-MS. In 
addition, the Friedman test is used to compare the IGD and HV 
of all algorithms, and the results are listed in Tables 3 and 4. It 
is easy to see that PK-CMOEA-MS ranks best among all the 
comparison algorithms. The detailed result analysis is given as 
follows: 

 (1) For the MW test instances, MOCell and MaOEAIT 
have similar performances. On HV and IGD indicators, PK-
CMOEA-MS achieves both 12+/0-/2= in comparison with 
these two algorithms. Compared with CTAEA, the advantage 
of PK-CMOEA-MS is slight, only 7+/6-/1= is achieved on both 
HV and IGD indicators. Top performs worst on the MW test 
instances, which only finds the feasible solutions of two 
problems.  

(2) For the LIRCMOP test instances, the advantage of PK-
CMOEA-MS is significant. Specifically, PK-CMOEA-MS 
performs better than MOCell and MaOEAIT on all the 
problems. Compared with ToP, PK-CMOEA-MS shows 
superiority on 13 ones among all the problems in terms of HV 
indicator; as for the IGD indicator, PK-CMOEA-MS achieves 
12+/0-/2=. CTAEA performs better than PK-CMOEA-MS on 4 
and 3 problems in terms of HV and IGD indicators, respectively. 

(3) For other problems, PK-CMOEA-MS shows the most 
obvious advantage in comparison with ToP, where it achieves 
11+/1-/1= on both HV and IGD indicators. Compared with 
MOCell, PK-CMOEA-MS achieves 9+/2-/1= on both HV and 
IGD indicators. Similarly, PK-CMOEA-MS achieves 9+/2-/2= 
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and 9+/1-/3= on HV and IGD indicators, respectively. 
Compared with CTAEA, PK-CMOEA-MS achieves 8+/0-/5= 
on both HV and IGD indicators. 

Table 2 IGD and HV indicator statistics of PK-CMOEA-MS and other 
algorithms 

IGD +/-/= R+ R- 
PK-CMOEA-MS  VS  C-TAEA 23/9/9 597.0 264.0 
PK-CMOEA-MS  VS  MOCell 35/2/3 796.0 65.0 
PK-CMOEA-MS  VS  MaOEAIT 26/1/4 769.0 92.0 
PK-CMOEA-MS  VS  ToP 25/1/5 740.0 121.0 

HV +/-/= R+ R- 
PK-CMOEA-MS  VS  C-TAEA 22/10/9 567.0 294.0 
PK-CMOEA-MS  VS  MOCell 35/2/3 807.5 54.0 
PK-CMOEA-MS  VS  MaOEAIT 26/2/3 841.0 20.0 
PK-CMOEA-MS  VS  ToP 26/1/4 858.0 3.0 

Table 3 IGD ranking of PK-AGEMOEA and comparison algorithms 
Algorithm Ranking 

PK-CMOEA-MS 1.88 
C-TAEA 2.34 

ToP 3.20 
MOCell 3.54 

MaOEAIT 4.05 

Table 4 HV ranking of PK-AGEMOEA and comparison algorithms 
Algorithm Ranking 

PK-CMOEA-MS 1.56 
C-TAEA 1.99 

ToP 3.11 
MOCell 3.24 

MaOEAIT 4.10 

2) Sensitivity analysis of 𝛼 
Since the purpose of this paper is to propose a process 

knowledge guidance framework for evolutionary algorithms, 
we do not focus on fine-tuning the framework parameters, such 
as the scaling factor 𝐹 of search strategy, crossover probability 
𝐶𝑅, parameters of DQN including 𝑙𝑟, 𝑇௦௔௠  and 𝑇௨௣ௗ . However, 
we should pay attention to the stability of PKAEO, which is 
closely related to the times of data augmentation (𝛼) for DQN. 

In order to investigate the influence of 𝛼 on PKAEO, PK-
AGEMOEA is taken as a study example. For each optimization 
problem, PK-AGEMOEA is independently run 30 times to 
calculate the mean and standard deviation of HV and IGD 
indicators, as listed in Tables S-13 and S-14. It can be seen that 
the value of 𝛼  has a significant impact on the algorithm’s 
stability. In addition, the Friedman test is used to compare the 
standard deviation of HV under different settings of 𝛼, and the 
analysis results are listed in Table 5. It is easy to find that as the 
value of 𝛼 increases, PK-AGEMOEA becomes more and more 
stable. Thus, according to algorithms’ stability requirement and 
the limitation of computing resources, an appropriate value can 
be set in real-world applications. 

Table 5 Stability ranking of PK-AGEMOEA with different 𝛼 values 
Algorithm Ranking 

PK-AGEMOEA (𝛼 = 5) 2.18 
PK-AGEMOEA (𝛼 = 10) 1.92 
PK-AGEMOEA (𝛼 = 15) 1.90 

3) Sensitivity analysis of  𝑇௦௔௠  
𝑇௦௔௠ determines the size of collected samples for training 

the DQN. A smaller 𝑇௦௔௠  will cause the insufficiency of 
samples, reducing the accuracy of trained DQN, while a larger 
𝑇௦௔௠ pays too much attention to sample collection, shortening 
the scope of evolutionary guidance.  To study the influence of  
𝑇௦௔௠  on the algorithm, PK-NSGAII with 𝑇௦௔௠  = 0.1*𝑇௠௔௫ , 

0.2*𝑇௠௔௫ , 0.3*𝑇௠௔௫  and 0.4*𝑇௠௔௫  are tested and compared. 
They are independently run 30 times to calculate the mean and 
standard deviation of the HV indicator, as listed in Table S-15. 
The Friedman test is used to compare the HV of all algorithm 
variants, and the results are listed in Table 6. Overall, PK-
NSGAII is not sensitive to the  𝑇௦௔௠ ∈ [0.1 ∗ 𝑇௠௔௫ , 0.4 ∗ 𝑇௠௔௫]. 
It achieves the best and worst performances at 𝑇௦௔௠ = 0.3 ∗
𝑇௠௔௫  and 𝑇௦௔௠ = 0.2 ∗ 𝑇௠௔௫ , respectively. Therefore, 𝑇௦௔௠ =
0.3 ∗ 𝑇௠௔௫ is a promising setting. 

Table 6 HV ranking of PK-NSGAII with different 𝑇௦௔௠ values 
Algorithm Ranking 

PK-NSGAII (𝑇௦௔௠ = 0.3 ∗ 𝑇௠௔௫) 2.40 
PK-NSGAII (𝑇௦௔௠ = 0.4 ∗ 𝑇௠௔௫) 2.46 
PK-NSGAII (𝑇௦௔௠ = 0.1 ∗ 𝑇௠௔௫) 2.45 
PK-NSGAII (𝑇௦௔௠ = 0.2 ∗ 𝑇௠௔௫) 2.71 

4) Sensitivity analysis of  𝑇௨௣ௗ  

𝑇௨௣ௗ   determines the frequency of updating the DQN. A smaller 
𝑇௨௣ௗ  will cause instability of the DQN, and increase the time 
consumption, while a larger 𝑇௨௣ௗ  is unable to timely perceive 
the dynamic changes of strategy evaluation. To study the 
influence of 𝑇௨௣ௗ  on the algorithm, PK-NSGAII with 𝑇௨௣ௗ  = 
0.1∗ 𝑇௠௔௫, 0.2∗ 𝑇௠௔௫, 0.3∗ 𝑇௠௔௫ and 0.4∗ 𝑇௠௔௫ are tested and 
compared. They are independently run 30 times to calculate the 
mean and standard deviation of the HV indicator, as listed in 
Table S-16. The Friedman test is used to compare the HV of all 
algorithm variants, and the results are listed in Table 7. Overall, 
PK-NSGAII is not sensitive to the 𝑇௨௣ௗ ∈ [0.1 ∗ 𝑇௠௔௫ , 0.4 ∗

𝑇௠௔௫]. It achieves the best and worst performances at 𝑇௨௣ௗ =

0.3 ∗ 𝑇௠௔௫  and 𝑇௨௣ௗ = 0.4 ∗ 𝑇௠௔௫ , respectively. Therefore, 
𝑇௨௣ௗ = 0.25 ∗ 𝑇௠௔௫  is a promising setting. 

Table 7 HV ranking of PK-NSGAII with different 𝑇௨௣ௗ values 
Algorithm Ranking 

PK-NSGAII (𝑇௨௣ௗ = 0.3 ∗ 𝑇௠௔௫) 2.36 
PK-NSGAII (𝑇௨௣ௗ = 0.2 ∗ 𝑇௠௔௫) 2.47 
PK-NSGAII (𝑇௨௣ௗ = 0.1 ∗ 𝑇௠௔௫) 2.47 
PK-NSGAII (𝑇௨௣ௗ = 0.4 ∗ 𝑇௠௔௫) 2.71 

5) Comparison with the empirical use of strategies 
In PKAEO, the guidance strategies are selectively 

recommended by the DQN. However, there is already 
successful experience to better arrange the execution of these 
strategies. For example, the DE/rand/1 and DE/current-to-
pbest/1 are tendentiously employed in the early and late stages 
respectively, which is beneficial in balancing the global search 
and local exploitation. To realize this empirical use of strategies, 
the DE/rand/1 and DE/current-to-pbest/1 are fixedly executed 

at 𝑡 < ೘்ೌೣ

ଶ
 and 𝑡 ≥ ೘்ೌೣ

ଶ
, respectively. This variant deployed in 

PK-NSGAII is named PK-NSGAII-rand. PK-NSGAII-rand is 
independently run 30 times to calculate the mean and standard 
deviation of HV and IGD indicators, as listed in Tables S-17 
and S-18. For HV, PK-NSGAII performs better on 9 test 
problems. For IGD, PK-NSGAII outperforms the PK-NSGAII-
rand on 10 test problems. It is worth noting that the empirical 
strategy configuration has also achieved good results. To 
further strengthen the PKAEO, offline training can help DQN 
to acquire the ability of configuring different strategies for the 
entire evolution process and automatically switch strategies at 
different stages. 
6) The influence of the number of guidance strategies 
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As the above-mentioned reasons, only two guidance 
strategies are configured for PKAEO. To verify the rationality 
of this choice, PK-NSGAII is tested with different number of 
guidance strategies. The variants of PK-NSGAII with  
DE/rand/1 and DE/current-to-pbest/1 are named PK-NSGAII-
T1 and PK-NSGAII-T2, respectively; the variant of PK-
NSGAII with DE/rand/1, DE/current-to-pbest/1 and DE/best/1 
is named PK-NSGA-II-T3. PK-NSGAII is still configured with 
DE/rand/1 and DE/current-to-pbest/1. According to the HV 
indicator shown in Table S-19, the Friedman test is used to 
compare the HV of all algorithm variants, and the results are 
listed in Table 8. Some interesting phenomenon can be 
concluded as follows: 

(1) DE/rand/1 is more effective than DE/current-to-pbest/1 
on most problems. For HV, PK-NSGAII performs better than 
PK-NSGAII-T2 on at most 8 and at least 1 test problems; in 
comparison with PK-NSGAII-T1, PK-NSGAII performs better 
on at most 3 and at least 1 test problems. 

(2) Configuring with two guidance strategies is a 
promising selection than considering more candidates. For HV, 
PK-NSGAII performs better than PK-NSGAII-T3 on at most 6 
and at least 3 test problems. 

Overall, the current PKAEO is just capable of dispatching 
two guidance strategies. To further strengthen the PKAEO, 
offline training can help DQN to identify the matching 
relationship between other guidance strategies and population 
states. 

Table 8 HV ranking of PK-NSGAII with different strategies 
Algorithm Ranking 

PK-NSGAII 2.26 
PK-NSGAII-T1 2.35 
PK-NSGAII-T3 2.40 
PK-NSGAII-T2 2.98 

7) The time consumption of PKAEO 
The process knowledge guidance module brings extra time 

consumption. For MW, LIR-CMOP, DTLZ and VNT, the 
comparison of PK-NSGAII and NSGAII in terms of time 
consumption is shown in Fig.4. Obviously, the extra time 
consumption caused by the process knowledge guidance is 
significant. According to the operation of PKAEO, the time 
consumption is also partially caused by the high feasible rate of 
population, and therefore the subsequent feature extraction of 
feasible solutions. To reduce the time consumption, the feature 
extraction should be simplified, especially for the computation 
related to the distances between population individuals. 

 
Fig.4 Time consumption of PK-NSGAII and NSGAII 

V. APPLICATION TO THE DISPATCH OF INTEGRATED COAL 

MINE ENERGY SYSTEM 

This section discusses the application of process 
knowledge guidance to the optimal dispatch of integrated coal 
mine energy system (ICMES). Based on the dispatch 
optimization model of the integrated coal mine energy systems 
in ref.[1], the objectives of minimizing economic cost and 
carbon emission allowance are selected, and 30 strongly 
constrained multi-objective optimization problems 
ICMES1~ICMES30 are designed by setting different cold, heat, 
electrical load, light, and wind intensity data. More details 
about the optimization model are provided in the supplementary 
material. For all ICMES problems, 𝑚=2, 𝑑=384. Considering 
that it is challenging to find feasible solutions for strongly 
constrained multi-objective optimization problems, this section 
also uses the feasible rate (FR) to evaluate the performance of 
the algorithms. It sets the function evaluation times to be 50000. 
For each problem, all algorithms are independently run 30 times 
to obtain the mean value and standard deviation of HV and IGD. 
The results are listed in Tables S-17 and S-18. Since CMOEA-
MS cannot solve the ICMES problems, the results of PK-
CMOEA-MS and CMOEA-MS are not given here. Table 9 lists 
the HV and IGD statistics of “PK-*” and each original 
algorithm. For HV, “PK-*” are significantly better than the 
original algorithms on at most 11 and at least 9 test instances. 
For FR, “PK-*” are significantly better than the original 
algorithms on all test instances. As R+ value of “PK-*” is higher 
than R- value, it can be seen that process knowledge guidance 
can improve the performance of the embedded algorithms. 

The distribution of non-dominated solutions on ICMES23 
is presented in Fig.5, showing that the ICMES problems’ 
feasible regions are tiny. Taking the labeled non-dominated 
solution in Fig.5 as a study example, Fig.6 shows the energy 
dispatch solution, including the consumption and generation of 
energy during different periods. The dispatch satisfies the cold, 
electricity, and heat load constraints through multi-energy 
complementation and minimizes the economic cost and carbon 
emission allowance. 

In the guidance strategies of current PKAEO, the scaling 
factor 𝐹 ∈ [0,0.5]. Considering the purpose of this paper is to 
develop a framework, therefore the parameters are not fine-
tuned. However, in the above experiments, we found when 
setting 𝐹 ∈ [0,1], the performance of PKAEO can be further 
enhanced. The reasons of this result can be deduced as follows:  

(1) For DE/rand/1, a larger 𝐹  is more beneficial for the 
global exploration, especially for the strongly constrained 
optimization problems. For DE/current-to-pbest/1, the larger 𝐹 
motivates the population move faster to the better individuals, 
which accelerates the convergence. 

(2) Limited by the feasibility requirements of engineering 
application, the upper and lower boundaries of decision 
variables are not given in large ranges. Hence, on some 
variables, the feasible solutions are situated on the boundaries. 
When generating mutated solutions, the larger 𝐹 brings about 
more elements exceeding the boundaries. In this case, the 
boundary check technique focusing on the boundary search is 
very effective.  
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Table 9 HV and FR indicator statistics of PK-CMOEA-MS and other 
algorithms 

HV +/-/= R+ R- 𝜶=0.05 
PK-NSGAII  VS  NSGAII 9/0/17 460.0 5.0 YES 
PK-AGEMOEA  VS  AGEMOEA 6/0/17 465.0 0.0 YES 
PK-AGEMOEAII  VS  AGEMOEAII 6/0/17 456.0 9.0 YES 
PK-ARMOEA  VS  ARMOEA 11/0/13 435.0 0.0 YES 
PK-CMOEA-MS  VS  CMOEA-MS \ \ \ \ 

FR +/-/= R+ R- 𝜶=0.05 
PK-NSGAII  VS  NSGAII 30/0/0 465.0 0.0 YES 
PK-AGEMOEA  VS  AGEMOEA 30/0/0 465.0 0.0 YES 
PK-AGEMOEAII  VS  AGEMOEAII 30/0/0 465.0 0.0 YES 
PK-ARMOEA  VS  ARMOEA 30/0/0 465.0 0.0 YES 
PK-CMOEA-MS  VS  CMOEA-MS \ \ \ \ 

 

 
Fig.5 Non-dominated solutions to ICMES23 problem found by PK-NSGAII 

 

(a) Balance of electric power                               (b) Balance of cooling power 

 

(c) Balance of heating power                                         (d) Key parameters 
Fig.6 Dispatch solution and key parameters in the optimization model 

VI. CONCLUSION 

For constrained multi-objective optimization problems, 
we propose an evolutionary optimization framework based on 
population convergence and diversity regulation, namely 
PKAEO. Firstly, PKAEO accumulates a certain amount of 
samples by randomly executing guidance strategies at the early 
evolutionary stage and evaluating the regulatory effects of 
different guidance strategies on the population. Then, the 
samples are used to train DQN, and the mapping model between 
population state and guidance strategy is established. 
According to the established mapping model and population 
state, the subsequent guidance strategy is recommended. 
Finally, with the continuous enrichment of sampled data in the 
evolution process, DQN is periodically updated to improve the 
accuracy of guidance strategy recommendations. 

In order to evaluate the performance of PKAEO, we apply 
it to 41 benchmark test problems. Experimental results show 

that PKAEO can effectively improve the performance of 
embedded algorithms, especially in locating small and 
decentralized feasible regions. In addition, the application 
effectiveness of PKAEO on the dispatch optimization problem 
of integrated coal mine energy systems proves that PKAEO is 
practical and scalable.  

 To further improve the performance of PKAEO, we will 
conduct future research in following directions: (1) the 
undifferentiated execution of guidance strategies at the 
sampling stage caused the evolution direction misguidance. The 
offline deep reinforcement learning method can be used to 
assist decision-making and avoid sampling during the execution 
process of the evolutionary algorithm; (2) aiming at the 
premature population convergence caused by the immediate 
reward of guidance strategy, an evolutionary  strategy selection 
method combining manual intervention and autonomous 
selection could be adopted to limit the freedom of DQN strategy 
selection. 
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