
1

Process Knowledge-guided Autonomous
Evolutionary Optimization for Constrained Multi-

objective Problems

Mingcheng Zuo, Dunwei Gong, Member, IEEE, Yan Wang, Xianming Ye, Bo Zeng and Fanlin Meng

Abstract—Various real-world problems can be attributed to
constrained multi-objective optimization problems. Although
there are various solution methods, it is still very challenging to
automatically select efficient solving strategies for constrained
multi-objective optimization problems. Given this, a process
knowledge-guided constrained multi-objective autonomous
evolutionary optimization method is proposed. Firstly, the effects
of different solving strategies on population states are evaluated in
the early evolutionary stage. Then, the mapping model of
population states and solving strategies is established. Finally, the
model recommends subsequent solving strategies based on the
current population state. This method can be embedded into
existing evolutionary algorithms, which can improve their
performances to different degrees. The proposed method is
applied to 41 benchmarks and 30 dispatch optimization problems
of the integrated coal mine energy system. Experimental results
verify the effectiveness and superiority of the proposed method in
solving constrained multi-objective optimization problems.

Index Terms—Constrained multi-objective optimization,

evolutionary optimization, autonomy, process knowledge,
integrated coal mine energy system

I. INTRODUCTION

ONSTRAINED multi-objective optimization problems
(CMOPs) refer to optimizing multiple conflicting
objectives, with the decision variables satisfying one or

more equality/inequality constraints. Many real-world
problems can be attributed to CMOPs, such as integrated
energy dispatch[1], multi-stage portfolio[2] and spacecraft orbit
optimization[3]. Without loss of generality, a CMOP can be
defined as

Min 𝐹(𝑥) = (𝑓ଵ(𝑥), 𝑓ଶ(𝑥), … , 𝑓௠(𝑥))

This work was sponsored by the National Key R&D Program of China with

grant No. 2021YFE0199000, the National Natural Science Foundation of China
with grant No. 62133015, Shandong Provincial Natural Science Foundation
with grant No. ZR2022LZH017, Fundamental Research Funds for the Central
Universities with grant No. JAI210003 and the Open Research Project of The
Hubei Key Laboratory of Intelligent Geo-Information Processing with grant No.
KLIGIP-2022-A06. (Corresponding author: Dunwei Gong).

Mingcheng Zuo is with the Artificial Intelligence Research Institute and
School of Mathematics, China University of Mining and Technology, Xuzhou
221116, PR China (e-mail: mingcheng.zuo@cumt.edu.cn).

Mingcheng Zuo is also with the State Key Laboratory of High-end Server
& Storage Technology; Hubei Key Laboratory of Intelligent Geo-Information
Processing, China University of Geosciences, Wuhan 430078, PR China.

Dunwei Gong is with School of Information Science and Technology,
Qingdao University of Science and Technology, Qingdao, Shandong, 266061,
PR China (e-mail: dwgong@vip.163.com)

s. t. 𝑔௜(𝑥) ≤ 0, 𝑖 = 1,2, … , 𝑙

 ℎ௜(𝑥) = 0, 𝑖 = 𝑙 + 1, 𝑙 + 2, … , 𝑘

 𝑥 = (𝑥ଵ, 𝑥ଶ, … , 𝑥஽) ∈ 𝑅஽

Since decision variables need to satisfy one or more
constraints and multiple conflicting objectives are optimized
simultaneously, multi-objective optimization problems are very
challenging. In recent years, multi-objective evolutionary
optimization has been the mainstream method to solve this
problem. The key to solving CMOPs with this method is
dealing with constraints to balance the feasibility, convergence,
and diversity of optimization solutions in the objective space.
Currently, standard constraint handling techniques in multi-
objective evolutionary optimization methods include the
penalty function method, objective and constraint separation
method, multi-objective method, transformation method, mixed
method, and multiple-operator method[4]. Among them, the
multiple-operator method solves CMOPs by dynamically
adjusting the distribution of a population in the decision space[5].
In general, the existing multiple-operator method usually
determines the opportunity and scope of utilizing the alternative
operators according to human experience. However, the
limitations of human experience cause the opportunity and
scope of utilizing the various operators to be subjective. In
addition, the adopted operators are not adjusted timely
according to the evolutionary state of a population, resulting in
low efficiency when solving CMOPs.

Enhancing the multiple-operator method is to perform the
most promising operator to generate a population. Dynamically
selecting an efficient operator among all candidates needs
continuously learning the knowledge 1 generated in the
evolutionary process. Currently, various knowledge-guided
evolutionary algorithms have been proposed to solve multi-

Yan Wang is with School of Information and Control Engineering, China
University of Mining and Technology, Xuzhou, 221116, PR China (e-mail:
yanwang0501@outlook.com).

Xianming Ye is with the Department of Electrical, Electronic, and Computer
Engineering, University of Pretoria, Pretoria 0002, South Africa (e-mail:
xianming.ye@up.ac.za).

Bo Zeng is with the State Key Laboratory of Alternate Electrical Power
System with Renewable Energy Sources, North China Electric Power
University, Beijing 102206, PR China (e-mail: alosecity@126.com).

Fanlin Meng is with Alliance Manchester Business School, University of
Manchester, Manchester M15 6PB, UK (e-mail:
fanlin.meng@manchester.ac.uk).

1 The knowledge here refers to the useful information generated during the

execution of evolutionary algorithm which can help the algorithm to make the
search decision, rather than the existing human experience.

C

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3243109

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

2

objective optimization problems. These algorithm variants
include meta-knowledge-guided evolutionary algorithms[6],
local search-oriented knowledge-guided evolutionary
algorithms[7], multi-stage knowledge-guided evolutionary
algorithms[8], reference vector-guided evolutionary
algorithms[9,10], good and bad knowledge-guided evolutionary
algorithms[11], individual ranking-guided evolutionary
algorithms[12-15], etc. However, applying the process
knowledge to multiple-operator methods for better-solving
CMOPs still needs to be improved.

Given the above analysis and to fill the research gap, a
process knowledge-guided autonomous evolutionary
optimization method (PKAEO) for constrained multi-objective
problems is proposed in this paper. Besides the operators, other
solving strategies also can be embedded in PKAEO as guidance
strategies for population evolution. The process knowledge
indicates how to perform the guidance strategies for generating
a better evolutionary population. Considering the strong ability
of deep reinforcement learning to sense the effectiveness of the
strategy, the representative model of deep reinforcement
learning, Deep Q-learning Network (DQN), is used to reflect
the process knowledge. Firstly, in the early evolutionary stage
of PKAEO, the guidance strategies are randomly executed to
evaluate their effects on different populations’ evolutionary
states where a certain number of samples are accumulated
simultaneously. Then, based on these samples, the DQN is
trained to establish the mapping model between population
states and guidance strategies. Finally, the model recommends
subsequent guidance strategies intelligently based on the
current population state.

The main contributions of this paper are reflected in the
following three aspects:

(1) An autonomous design pattern of guidance strategies
selection in evolutionary optimization algorithms for CMOPs is
proposed. Compared with the human experience-based design
pattern, the proposed PKAEO needs designers to set population
state, guidance strategies, and strategy evaluation method. Then,
the guidance strategies can be automatically selected according
to the population state to maximize the benefit of strategy
execution. Theoretically, this method can provide superior
strategy selection planning, and in the application, it can
significantly save the time and cost of algorithm design.

(2) A simple but effective method of describing the
population’s evolutionary process is proposed. Currently, many
evolutionary algorithms have configured dynamically adjusted
strategies or parameters related to the evolutionary process.
However, the relationship is usually built on the subjective
manual experience. The proposed population state effectively
recognizes the real-time evolutionary situation and is conducive
to establishing the dynamic adjustment of strategies or
parameters.

(3) A flexible method of embedding the guidance
strategies into existing evolutionary algorithms is proposed. In
general, the current multiple-operator method is fixed to a
specific paradigm, which causes difficulty in synthesizing the
capacity of multiple solving paradigms. Relatively, the
guidance strategies in PKAEO can be designed by integrating
various solving paradigms. More importantly, these guidance

strategies are only placed between the operators without
modifying the original structure of evolutionary algorithms.

The rest of this paper is organized as follows. Section II
reviews the relevant research works and points out the problems
existing in the current research. The proposed method is
described in Section III, including the population state’s
characterization, the population’s regulation strategies, and
their performance evaluation. Section IV is the experimental
results and analysis. Finally, Section V summarizes the whole
paper and discusses future research directions.

II. RELATED WORKS

In this paper, we study evolutionary algorithms for
constrained multi-objective optimization problems and enhance
the autonomy of guidance strategy selection through process
knowledge. Given this, this section mainly reviews the existing
constrained multi-objective evolutionary algorithms.
Considering that the proposed method involves multiple-
operator methods and knowledge-guided techniques, the
existing research on these two topics is also reviewed.

A. Constrained multi-objective evolutionary optimization

Constraint handling for constrained multi-objective
evolutionary optimization is crucial. The penalty function
method is the most commonly used in many constraint-
handling methods. The idea is transforming constraints into
objective functions through the penalty function so that a
constrained optimization problem becomes unconstrained. It is
well understood that the penalty factor dramatically affects the
performance of the penalty function method, such as the
adverse effects caused by too large or too small values. If the
feasible region consists of several disconnected ones, then the
population will be limited to a particular local search space
region by a hefty penalty factor. If the penalty factor is small,
many searches will be spent on infeasible regions, causing
difficulty in finding feasible solutions to the problem. Given
this, the penalty functions with various penalty factors have
been proposed in previous works. Jan et al.[16] adjusted the value
of the penalty factor according to the proportion of feasible
solutions in the evolutionary population. In the dynamic penalty
factor method proposed by Zapotecas et al.[17], the value of the
factor is closely related to the evolutionary stage of the
population. In addition, Vaz et al.[18] also proposed a three-stage
penalty factor adjustment method dependent on the
evolutionary stage. It can be seen that the idea of the penalty
function method is simple. However, it needs to set a reasonable
penalty factor, and the setting of this factor often depends on
the human experience.

Contrary to the penalty function method, the objective and
constraint separation method calculates the objective function
values of a candidate and its degree of violating constraints,
respectively, to minimize the objective function values while
alleviating the degree of violating constraints through a
population’s evolution. Representative methods include the
constraint dominance method[19], 𝜀 constraint method[20] and
random ranking method[21]. In the constraint dominance method,
for solutions 𝑥 and 𝑦, when one of the following conditions is
satisfied, 𝑥 dominates 𝑦: (1)𝐶𝑉(𝑥) < 𝐶𝑉(𝑦)；(2)If 𝐶𝑉(𝑥) =

𝐶𝑉(𝑦) = 0, ∀𝑖 ∈ {1,2, … , 𝑚}, there is 𝑓௜(𝑥) ≤ 𝑓௜(𝑦), and ∃𝑖 ∈

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3243109

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

3

{1,2, … , 𝑚} , 𝑓௜(𝑥) < 𝑓௜(𝑦) , where 𝐶𝑉 (⋅) represents the
constraint violation degree of the optimization solution. Deb et
al.[19] first adopted this constraint handling method in NSGA-II.
Although this method can find a feasible solution quickly, it can
also causes prematurity[22]. To make the population evolves
toward the feasible regions, the 𝜀 constraint method deals with
the constraints of optimization solutions by relaxing the
constraints to a certain extent and gradually decreasing the
value of 𝜀. When 𝜀 = 0, the 𝜀 constraint method is equivalent
to the constraint dominance method. Jiao et al.[23] used the 𝜀
constraint method to continuously reduce the constraint
violation degree of infeasible solutions and obtained the
optimization solution set that converged to the constraint Pareto
front. Considering that the constraint dominance method may
lead to the premature convergence of a population, therefore, in
the random ranking method, constraint dominance, and
objective dominance are selected probabilistically to generate
the offspring population. Ying et al.[24] proposed an adaptive
random ranking method according to the constraint violation
difference of population individuals and evolutionary stages.
Obviously, the objective and constraint separation method can
well balance the feasibility of a candidate and its degree of
optimizing objectives. However, this method involves the
setting of parameters (such as 𝜀 and the probability), which still
depends on human’s experience.

Like the penalty function method, the multi-objective
method also transforms the constrained multi-objective
optimization problem into an unconstrained multi-objective
optimization problem. However, the method considers the
constraints as one or more optimization objectives and
optimizes the transformed objectives to reduce the constraint
violation degree of the optimization solution. The number of
optimized objectives after transformation differs by considering
various transformation methods. Ray et al.[25], Long et al.[26] and
Zhou et al.[27] transformed all constraints into one optimization
objective related to the degree of constraint violation. Vieira et
al.[28] transformed the constraints into two optimization
objectives: the total constraint violation degree and the number
of violated constraints. Obviously, this method can deal with
constraints flexibly, and the number of transformed objectives
can be determined according to the solving needs. However, the
increase in the number of objective functions also causes
difficulty in solving the problems.

The difficulty of solving a complex optimization problem
can be reduced by decomposing it into several simple problems.
Based on this, the transformation method divides an
evolutionary algorithm into a number of components, with each
being responsible for a subtask. The whole optimization
problem is solved through the cooperation of these components.
A typical transformation method is dividing the population into
multiple subpopulations and then solving multiple subtasks
through the evolution of the subpopulations. The optimization
problem can be entirely solved based on the co-evolution of
subpopulations. Generally, the tasks accomplished through the
evolution of different subpopulations can be set flexibly. Wang
et al.[29] proposed a co-evolutionary optimization method,
which divided the whole population into subpopulations with a

number equaling that of optimization objectives. In this method,
the constrained single-objective optimization problems are
solved through the evolution of each subpopulation. Liu et al.[30]
divided the whole population into two subpopulations. One
subpopulation searched for the optimal solutions by minimizing
the optimization objectives, and the other searched for feasible
solutions satisfying the constraints. Similarly, Tian et al.[31]
divided the whole population into two subpopulations, which
were devoted to searching for solutions on the unconstrained
Pareto Front (UPF) and the constrained Pareto front (CPF),
respectively. Another standard transformation method is
splitting the entire evolution process into multiple stages, each
of which performs different optimization subtasks. Under this
circumstance, the tasks to be fulfilled can be flexibly set
through a population’s evolution in different stages. Fan et al.[32]
proposed a search framework combining the phases of push and
pull. In the push phase, the population passes through the
infeasible regions and converges to the UPF. In the pull phase,
the population converges to the CPF from the UPF. Tian et al.[33]
also divided the whole evolution process into two stages. In the
first stage, the population was guided to evolve toward the
feasible regions, and in the second stage, the optimization
solutions were better distributed on the CPF. Yu et al.[34]
divided the whole evolution process into two stages as well. The
first stage considered the balance between diversity and
convergence of optimization solutions, and the second stage
considered the balance between diversity and feasibility of
optimization solutions. It can be seen that the transformation
method reduces the difficulty of problem-solving by
decomposing the optimization task into some subtasks that can
be easily solved. However, how to decompose the problem
reasonably depends on the human experience, and the quality
of generated solutions in decomposition based methods
depends strongly on the weights’ setting[35].

The hybrid of the evolutionary algorithm and traditional
optimization method also can improve the efficiency of solving
problems. Specifically, the evolutionary algorithm guides the
population to evolve toward the regions with better objective
values, and the mathematical programming further searches for
feasible solutions in the current region. Morovati et al.[36]
combined evolutionary algorithm and Zoutendijk feasible
direction method to find optimization solutions satisfying
constraints. By mining the valuable information of the
population in the evolutionary process, Schutze et al.[37]
estimated the exploration directions for evolutionary algorithms,
and predicted the exploitation direction for locating feasible
regions. It can be seen that the hybrid method takes into account
both global and local searches and balances the optimization
performance and the degree of constraint satisfaction. However,
the opportunity of performing mathematical programming
during the search of evolutionary algorithms is a problem.

B. Multiple-operator method

The operators directly affect the population’s distribution
in the search space. The basic idea of the multiple-operator
method is adaptively implementing various operators on a
population according to the specific needs of problem-solving,

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3243109

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

4

achieving the balance of feasibility, convergence, and diversity
of optimization solutions. The customized multiple-operator
methods for different optimization problems show diversiform
characteristics. In the multiple-operator method proposed by
Yu et al.[38], an advanced mutation operator is designed for
infeasible solutions. Each mutation operator is performed on
individuals with different probabilities during the evolutionary
process, leading the population to evolve toward the CPF. Yu
et al.[39] attempted to control the opportunity of an individual to
generate offspring, where a feasible solution conducts genetic
operations with a high probability. In the method proposed by
Xu et al.[40], feasible solutions and infeasible solutions adopt
different mutation strategies to make the population evolve
toward the feasible regions as soon as possible. Liu et al.[41]
divided the whole population into multiple subpopulations,
where each subpopulation adopted different crossover
strategies. In this way, the population achieved better global
exploration ability. He et al.[42] carried out different crossover
and mutation operations on feasible and sound infeasible
solutions. It realized the transformation from infeasible
solutions to feasible solutions. Qian et al.[43] adaptively adjusted
the parameter of the mutation operator and generated the trial
vectors based on the acquired knowledge in the evolution
process to balance the diversity and convergence of the
population. Tian et al.[44] used deep reinforcement learning to
intelligently select operators at each evolutionary stage to
achieve the balance of population diversity and convergence.

It can be seen that the multiple-operator method can adapt
to the needs of problem-solving and balance the feasibility,
convergence, and diversity of optimization solutions. However,
how to configure multiple operators with complementary
performance and determine the appropriate opportunity to
perform the operators still need further research.

C. Knowledge-guided multi-objective evolutionary
optimization

Knowledge guidance evolutionary algorithms are efficient
in dealing with complex optimization problems. The
knowledge is the extracted information from the data generated
in the evolutionary process, which can further assist in
generating a better offspring population. Ding et al.[8] used the
prior knowledge to initialize the population and led the
population’s evolution by referring to the elite individuals. Yao
et al.[45] proposed a subspace-related population initialization
method and adaptively generated new promising individuals by
evaluating the quality of solutions in each subspace. Guo et al.
[46] proposed a knowledge-guided transfer strategy for
evolutionary dynamic multi-objective optimization problems.
This method extracts knowledge as a two-tuple under each
historical environment, which is preserved in a knowledge pool.
Redundant knowledge is recognized and adaptively removed to
guarantee the pool’s diversity. To promote positive knowledge
transfer, a knowledge-matching strategy is developed to re-
evaluate the representative of each stored knowledge under a
new environment. In addition, an improved knowledge transfer
mechanism based on subspace alignment is introduced. To
circumvent the rapid loss of population diversity and premature
convergence, Li et al.[47] proposed a knowledge-guided multi-

objective particle swarm optimization using fusion learning
strategies. An improved leadership selection strategy based on
knowledge utilization is presented to select the appropriate
global leader for improving the convergence ability of the
algorithm. However, there is still no knowledge-guided
algorithm for constrained multi-objective optimization
problems.

C. Discussion

From the review of existing studies, it can be seen that the
transformation method and the multiple-operator method both
need to describe the state of the population’s evolution, set the
switching conditions of different strategies/stages, and evaluate
the effectiveness of the strategies. These operations
substantially impact the performance of constrained multi-
objective evolutionary optimization algorithms. For the
employed techniques in this paper, i.e., the multiple-operator
method and knowledge-guided theory, there are still following
bottleneck:

(1) Most existing multiple-operator methods usually
determine the opportunity and scope of utilizing the various
operators based on the human experience, which can be very
subjective. In addition, the adopted operators are not adjusted
in time according to the evolutionary state of the population,
which dramatically limits the quality and efficiency of solutions.
The only algorithms that can automatically select the operators,
like ref.[44], develop the framework based on a specific solving
paradigm, which are difficult to embed into existing algorithms
to improve their performances.

(2) The current knowledge-guided multi-objective
evolutionary optimization algorithms usually employ
customized knowledge transfer methods, like prior knowledge,
for specific problems. However, as the optimization problem
becomes more large-scale, more dynamic, and more complex,
the role of knowledge guidance becomes more demanding. It is
imperative to propose a general knowledge guidance
framework available to the constrained multi-objective
optimization algorithms for different application scenarios.

To overcome the above limitations, we propose a process
knowledge-guided constrained multi-objective autonomous
evolutionary optimization algorithm, which is detailed in
Section III. Based on the population state, the proposed
algorithm can automatically recommend the strategy for the
subsequent population’s evolution by using the mapping model
of the population state and guidance strategy, which
significantly improves the autonomy of problem-solving. The
proposed framework is flexible, where the population state,
guidance strategies, and strategy evaluation can be easily
adjusted according to the actual demands. Specifically, by
setting various features in the population state, assorted
information can be mined from diversified aspects; to realize
the disparate guidance effects, distinctive strategies can be
configured in the framework; Divergent evaluation indicators
can be set to lead the algorithm to complete different solving
tasks in multiple evolutionary stages.

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3243109

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

5

III. PROCESS KNOWLEDGE-GUIDED CONSTRAINED MULTI-
OBJECTIVE AUTONOMOUS EVOLUTIONARY OPTIMIZATION

A. OVERALL FRAMEWORK

This section proposes a constrained multi-objective
autonomous evolutionary optimization method guided by
process knowledge. The idea is as follows. Firstly, the
regulation effects of different guidance strategies on the
population states are evaluated at the early evolutionary stage.
Then, based on the generated samples, the mapping model
between population states and guidance strategies is established.
Finally, the subsequent guidance strategy is intelligently
recommended according to the established mapping model and
the current population state. The advantage of this approach is
that the constrained multi-objective optimization problem can
be solved efficiently by adopting appropriate strategies at
different stages of the population’s evolution.

The overall framework of the proposed method is shown
in Algorithm 1. In this method, process knowledge reflects the
influence of guidance strategies on population state regulation,
including the state 𝑠௧ of the population 𝑃௧ in the generation 𝑡,
the adopted guidance strategy 𝑎௧ and its effect evaluation 𝑟௧ .
Based on process knowledge, the mapping relationship between
(𝑠௧ , 𝑎௧) and 𝑟௧ is established and represented by Deep Q-
learning Network (DQN). According to 𝑠௧, the DQN is applied
to determine the guidance strategy 𝑎௧ to be implemented on 𝑃௧
(line 5). In addition, the evolutionary population information of
different generations is used to enrich process knowledge (lines
6-9). Here, 𝑇௠௔௫ is the maximum evolutionary generation. It is
easy to see that PKAEO does not change the structure of
existing evolutionary algorithms but only uses process
knowledge to guide the population’s evolution.

Algorithm 1 The framework of PKAEO

Input: parameters of DQN, maximum generation number 𝑇௠௔௫

𝑃
೘்ೌೣ

 1. 𝑡 ← 1;
2. 𝑃௧ ← 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛();
3. While 𝑡ℎ𝑒 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑖𝑠 𝑛𝑜𝑡 𝑚𝑒𝑡 do

4. /*Embedding PKG to EAs, referring to Algorithm 2*/
5. 𝑉௧ ← 𝑅𝑒𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 (𝑃௧); 𝑼𝒕 ← 𝑷𝑲𝑮 (𝑽𝒕); 𝑄௧ ←

𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑈௧);

6. 𝑅௧ ← 𝑄௧ ∪ 𝑃௧;
7. Generate offspring population 𝑃௧ାଵ from 𝑅௧ according

to the evolutionary algorithm;
8. /*Archive the process data, referring to Algorithm 3*/
9. Archive the process data into memory 𝑴;
10. 𝑡 ← 𝑡 + 1;
11. End while
12. Return 𝑃

೘்ೌೣ
;

In order to apply process knowledge to guide the
subsequent population’s evolution, the whole process of the
population’s evolution is divided into two stages, as shown in
Fig.1. The first stage is the process knowledge acquisition stage,
starting from the first generation to the generation 𝑇௦௔௠. The
second stage is the process knowledge application stage from
the generation 𝑇௦௔௠ + 1 to the end of population’s evolution.

More details of Fig.1 are explained in Algorithm 2. In the
process knowledge acquisition stage, the samples for training
DQN (line 6) are generated by randomly implementing the
guidance strategy 𝑎௧ on population 𝑃௧(line 3), which includes
the state 𝑠௧ାଵ of 𝑃௧ାଵ, and the evaluation value 𝑟௧ of the strategy
𝑎௧. In the process knowledge application stage, according to the
state 𝑠௧ , the predicted evaluation value 𝑟௧

ᇱ of the guidance
strategy 𝑎௧ is provided by DQN. Then the subsequent
population’s evolution is carried out by performing the 𝑎௧ with
maximum predicted 𝑟௧

ᇱ (line 9). At the same time, the sample
used to update DQN is also generated (line 8).

Fig.1 Process knowledge acquisition and application. 𝑠௧ is the extracted
population state from 𝑃௧, 𝑎௧ is the guidance strategy performed on 𝑃௧, 𝑟௧ is the
performance evaluation of 𝑎௧ .

Algorithm 2 Population knowledge guidance (PKG)
Input: recombined population 𝑉௧;

𝑈௧
1. If 𝑡 ≤ 𝑇௦௔௠ then
2. /* Select a random strategy */
3. Select 𝑎௧ randomly;
4. Else
5. /*Train the DQN */
6. Train the DQN with algorithm 4;
7. /*Update the DQN */
8. Update the DQN with algorithm 5;
9. Select 𝑎௧ according to equation (3);
10. End if
11. Conduct 𝑎௧ on 𝑉௧ to generate 𝑈௧;

It can be seen that the key to realizing process knowledge
guidance is determining the input (𝑠௧,𝑎௧) and output 𝑟௧ of DQN
and training the DQN. Below, these fundamental techniques are
detailed in Sections III-B and III-C, respectively.

B. Inputs and outputs of DQN

1) Population state characterization based on diversity and
convergence

Diversity and convergence are two critical characteristics
of the evolutionary population, which reflect the dispersion and
approximation performances of the population, respectively.
Given this, population states can be characterized by diversity
and convergence. It is worth noting that the diversity and
convergence are from the decision space. This paper adopts the
following two methods to characterize population diversity.
The first is the standard deviation of individual locations in the
population. For 𝑃௧ , the standard deviation of individual
locations in this population is denoted as 𝜉௧

[48,49]. The second is
the number of individual clusters in the population. For 𝑃௧, the

G
en

er
at

io
ns

:
G

en
er

at
io

ns
:





1P

samTP

1a

samTa

1s 1r

tsta tP tr





maxTs
maxTr

tsta tP tr
1

~
sa

m
T

m
ax

1~
sa

m
T

T


ts
ta

tr

ta

ts

'
tr

samTs
samTr

1samTa  1samTP  1samTs  1samTr 

maxTP
maxTa

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3243109

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

6

best number of individual clusters in this population is denoted
as 𝜅௧

[50,51], which can be estimated by the Silhouette Coefficient
method[52]. It is easy to see that 𝜉௧ and 𝜅௧ reflect the intra-
generational characteristics of the population, and describe the
diversity of the population from different aspects.

The convergence characteristics of the population are
described in the following two ways. One is the distance
between the center points of populations in two successive
generations. Considering the population of generations 𝑡 − 1
and 𝑡, the distance between the centers of 𝑃௧ିଵ and 𝑃௧ is 𝜆௧ [53].
The other is the average distance between centroids of
individual clusters in two successive generations. For 𝑃௧ିଵ and
𝑃௧ , the average movement distance of clustering centroids is
denoted as 𝜏௧, then, 𝜏௧ can be presented as

𝜏௧ =
ଵ

఑೟
∑ |𝑁𝐶௜,௧ − 𝐶௜,௧|

఑೟
௜ୀଵ (1)

where 𝐶௜,௧ is the 𝑖 th centroid of 𝑃௧ . Please note that 𝑃௧ିଵ is
divided into 𝜅௧ିଵ clusters here, and 𝑁𝐶௜,௧ means the nearest
cluster centroid in 𝐶௧ିଵ to 𝐶௜,௧ . It can be seen that 𝜆௧ and 𝜏௧
reflect the population’s inter-generational characteristics and
depict the population’s convergence from different angles.

For constrained optimization problems, in addition to
using the above methods to characterize the whole population,
it is also necessary to consider the characterization of feasible
solutions in the population. For the feasible solution sets of the
population in the generation 𝑡 , the above characteristics are

denoted as 𝜆௧
௙ , 𝜏௧

௙ , 𝜉௧
௙ and 𝜅௧

௙ . In particular, when all the

individuals in 𝑃௧ are infeasible solutions, let 𝜆௧
௙

= 𝜏௧
௙

= 𝜉௧
௙

=

𝜅௧
௙

= 0; when all the individuals in 𝑃௧ are feasible solutions,

𝜆௧ = 𝜆௧
௙ , 𝜏௧ = 𝜏௧

௙ , 𝜉௧ = 𝜉௧
௙ , 𝜅௧ = 𝜅௧

௙.
In addition, the evolution process of the population,

denoted as 𝜑௧, is characterized as follows:

𝜑௧ =
௧

೘்ೌೣ

In this way, the population 𝑃௧ can be characterized by the
above nine features to form the population state, denoted as 𝑠௧.
Therefore, 𝑠௧ can be represented as

𝑠௧ = (𝜆௧ , 𝜏௧ , 𝜉௧ , 𝜅௧; 𝜆௧
௙ , 𝜏௧

௙ , 𝜉௧
௙ , 𝜅௧

௙
; 𝜑௧) (2)

2) Guidance strategies for population state regulation
In evolutionary algorithms, the regulation of the

population state is achieved through various guidance
strategies[54]. It is easy to understand that disparate evolutionary
algorithm paradigms usually adopt distinctive guidance
strategies in preference. Among many paradigms of
evolutionary algorithms, the differential evolution algorithm is
very typical and widely used. In addition to the original
guidance strategy, numerous enhanced guidance strategies have
been proposed for the differential evolution algorithms, like the
DE/current-to-pbest/1-X[55]. Existing differential guidance
strategies can be divided into the following three categories: i)
DE/best/1 and DE/best/2; ii) DE/rand/1 and DE/rand/2; and iii)
DE/current-to-pbest/1. For DE/best/1 and DE/best/2, they have
better convergence performance, among which DE/best/1 has a
faster convergence speed and DE/best/2 has better local
convergence performance. For DE/rand/1 and DE/rand/2, they
can well maintain population diversity[56]. Compared with
DE/rand/1, DE/rand/2 can generate diversified evolutionary
directions in the search space and has a more vital ability to
maintain population diversity. For DE/current-to-pbest/1, they

take into account the convergence and diversity of the
population[57]. In addition, they can effectively protect
individual genes that satisfy all or part of the constraints.

For other paradigms of evolutionary algorithms, there is a
variety of guidance strategies with an extraordinary
performance that also can be used but these are beyond the
scope of this paper.

In summary, there are five guidance strategies for
regulating population state here. If the number of guidance
strategies performed on the population 𝑃௧ is denoted as 𝑎௧, then,
the value of 𝑎௧ and its meaning are as follows: 0 indicates that
no guidance strategy is implemented; 1 to 5 indicates the
implementation of guidance strategies DE/best/1, DE/best/2,
DE/rand/1, DE/rand/2, and DE/current-to-pbest/1, respectively.
3) Phased evaluation of guidance strategies

When using evolutionary algorithms to solve constrained
multi-objective optimization problems, the evolution of the
population can be roughly divided into two stages. The first
stage is when the evolutionary population does not contain any
feasible solution to the problem; another stage is when the
evolutionary population contains one or more feasible solutions
to the problem. For these stages, different indicators are used to
evaluate the performance of guidance strategies.

Suppose the evolutionary population does not contain any
feasible solution to the problem. In this case, the performance
of the guidance strategy can be evaluated by reducing the
overall constraint violation degree of the population. Here, the
constraint dominance method is employed. Consider the
population 𝑃௧, and perform the strategy 𝑎௧ on the 𝑃௧. In order
to evaluate the performance of 𝑎௧ , the overall constraint
violation degree of 𝑃௧ is calculated, denoted as 𝜙௧ . The
constraint violation degree of an individual is obtained by
summing these violation degrees. Then, the performance of the
guidance strategy 𝑎௧, denoted as 𝑟௧, can be presented by

𝑟௧ =
థ೟ିథ೟శభ

థ೟
 (3)

Obviously, the value of 𝑟௧ is between 0 and 1. In particular,
if 𝑟௧ = 0, it means the constraint satisfaction does not improve
after performing an guidance strategy; If 𝑟௧ = 1, it indicates
after performing 𝑎௧ , all the individuals of 𝑃௧ satisfy the
constraints.

When the evolutionary population contains one or more
feasible solutions to the problem, the performance of the
guidance strategy is evaluated by the improvement degree of
PD[58] and HV[59]. Here, PD is used to reflect the diversity of
feasible solutions, and HV reflects not only the diversity, but
also the convergence of feasible solutions. For the population
𝑃௧, the PD and HV of feasible solutions are denoted as 𝑃𝐷௧ and
𝐻𝑉௧ , respectively. Then, the performance 𝑟௧ of the guidance
strategy 𝑎௧ can be expressed as

𝑟௧ = 𝜑௧ ∗
௉஽೟శభି௉஽೟

௉஽೟
+ (1 − 𝜑௧) ∗

ு௏೟శభିு௏೟

ு௏೟
 (4)

In this way, the performance 𝑟௧ of the guidance strategy 𝑎௧ can
be expressed as

𝑟௧ = ቐ

థ೟ିథ೟శభ

థ೟
, 𝑖𝑓 𝜙௧ > 0

𝜑௧ ∗
௉஽೟శభି௉஽೟

௉஽೟
+ (1 − 𝜑௧) ∗

ு௏೟శభିு ೟

ு௏೟
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5)

Note that due to different search preferences, this
evaluation method may generate conflicts with the embedded
algorithms. In specific applications, diversified evaluation

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3243109

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

7

methods can be flexibly set according to the guiding need of the
population’s evolution, such as replacing the constraint
dominance method with the 𝜀 constraint method.

C. Training and application of DQN

1) Sample acquisition and augmentation
When the proposed method is used to solve the constrained

multi-objective optimization problems, a sample is generated in
each generation of the population’s evolution, and the 𝑡 th
sample is denoted as 𝑒௧ = (𝑠௧ , 𝑎௧ , 𝑟௧, 𝑠௧ାଵ). Different samples
have different functions. Specifically, the collected samples in
the process knowledge acquisition and application are used to
train and update the mapping model DQN, respectively. The
sample acquisition method is shown in Algorithm 3. First,
initialize the memory 𝑀 to hold the samples and set the size of
𝑀 to 𝑁 (line 2). Then, after one evolution generation of
population 𝑃௧ , the performance 𝑟௧ of the guidance strategy 𝑎௧ is
evaluated, and the state 𝑠௧ାଵ of the offspring population 𝑃௧ାଵ is
obtained and recorded (line 4). Finally, the generated sample
𝑒௧ = (𝑠௧ , 𝑎௧ , 𝑟௧, 𝑠௧ାଵ) is saved in 𝑀. If the number of samples
exceeds 𝑁 , then the sample with the smallest generation
number in 𝑀 is replaced (line 5).

Algorithm 3 Acquisition of samples

1. If 𝑡 = 1 then
2. Initialize replay memory 𝑀 to capacity 𝑁;
3. End if
4. Observe 𝑟௧ and the state 𝑠௧ାଵ of 𝑃௧ାଵ;
5. Archive transition 𝑒௧ = (𝑠௧ , 𝑎௧ , 𝑟௧, 𝑠௧ାଵ) into 𝑀.

Since the number of obtained samples is difficult to meet
the requirements of DQN training, this paper generates the
augmented samples by randomly perturbing the existing
samples. For the sample 𝑒௧ = (𝑠௧ , 𝑎௧ , 𝑟௧, 𝑠௧ାଵ) , different
augmented samples can be obtained by augmenting them once
or more. It is easy to understand that increasing the
augmentation produces more augmented samples, which helps
to improve the accuracy of DQN, but also leads to high
computational burden. Denote the times of augmenting sample
𝑒௧ as α, then, the augmented samples of this sample can be
expressed as

𝑒௧
ଵ = (𝑠௧

ଵ, 𝑎௧ , 𝑟௧
ଵ, 𝑠௧ାଵ)

𝑒௧
ଶ = (𝑠௧

ଶ, 𝑎௧ , 𝑟௧
ଶ, 𝑠௧ାଵ)

… (6)
𝑒௧

஑ = (𝑠௧
஑, 𝑎௧ , 𝑟௧

஑, 𝑠௧ାଵ)
where 𝑠௧

௜ = 𝑠௧ ∗ 𝑛𝑜𝑟𝑚(1, 𝜎) , 𝑟௧
௜ = 𝑟௧ ∗ 𝑛𝑜𝑟𝑚(1, 𝜎) ,

𝑛𝑜𝑟𝑚(1, 𝜎) is the normal distribution function, 𝑖 =1, 2, …, α.
It is worth noting that the component 𝑠௧ାଵ is not

augmented because it does not participate in the training
process. To keep the sample balance with different strategies,
the augmentation of 𝑒௧ is conducted only when the proportion

of 𝑎௧ among all the samples is lower than
ଵ

ேௌ
, where 𝑁𝑆 is the

overall number of guidance strategies.
2) Training of DQN

The training process of DQN is shown in Algorithm 4.
First, 𝑏 samples are randomly selected and normalized from 𝑀
(line 2). The training parameters are initialized, including the
weight 𝜃 of DQN, the maximum training times 𝑔, the number
of hidden layers and neurons, and the learning rate 𝑙𝑟 of the

network. The hidden layers are connected through the Sigmoid
function, and the activation function of the output layer is linear
(line 3). Then, for a given sample 𝑒௧ = (𝑠௧ , 𝑎௧ , 𝑟௧, 𝑠௧ାଵ) , the
predicted value 𝑟௧

ᇱ of the sample is obtained by forward
propagation, thus the prediction error is calculated, and the
network weights 𝜃 are adjusted along the direction of the
negative gradient of the prediction error. Finally, when the
fitting precision is met, or the number 𝑔 of training epochs is
reached, DQN training is stopped (line 4).

Algorithm 4 Training of the DQN

1. If 𝑡 = 𝑇௦௔௠ + 1 then

2. Sample and normalize random 𝑏 transitions from 𝑀;
3. Initialize the DQN parameters;
4. Train the DQN to get 𝑄(𝑠௧ , 𝑎; 𝜃);
5. End If

3) Application of DQN
After training DQN, for the population 𝑃௧ in the

generation 𝑡 , the population state 𝑠௧ is taken as the input of
DQN, and the performance prediction values of different
guidance strategies are obtained. Denoting the effect of
guidance strategy, after performing guidance strategy 𝑎௧ on 𝑃௧,
is obtained as 𝑟௧

ᇱ. For all the guidance strategies, the guidance
strategy with the maximum performance prediction value is
denoted as 𝑎௧

௠௔௫ = 𝑎𝑟𝑔 max {𝑟௧
ᇱ}. Therefore, 𝑎௧

௠௔௫ is selected
as the guidance strategy for the subsequent population.

In addition, in order to reduce the negative impact caused
by overfitting DQN and improve the exploration ability in
population state space, this paper draws on Epsilon’s greedy
strategy. It randomly selects a strategy from all guidance
strategies with a probability 𝜖 to replace the strategy
recommended by DQN for the subsequent population’s
evolution. Specifically, Epsilon’s greedy strategy is as follows:

𝑎௧ = ൜
𝑟𝑎𝑛𝑑_𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 𝑖𝑓 𝑟𝑎𝑛𝑑 < 𝜖

𝑎௧
௠௔௫ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (7)

Where 𝑟𝑎𝑛𝑑_𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 means selecting a random strategy,
function 𝑟𝑎𝑛𝑑 is a random float number belonging to [0, 1].
Considering that PKAEO needs to get more random samples at
the early stages, 𝜖 is set to 0.3ఝ೟ , which is a dynamically
decreased value, as shown in Fig.2.

Fig.2 The value of 𝜖 in PKAEO

4) Updating of DQN
As the population continues to evolve, more samples are

generated, and the prediction accuracy of DQN may also
decrease. Given this, it is necessary to update DQN in the
process of population evolution to predict the performance of

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3243109

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

8

guidance strategies accurately. For convenience, we update
DQN regularly. As shown in Algorithm 5, denote the updating
period of DQN as 𝑇௨௣ௗ , DQN is updated when t ≥ 𝑇௦௔௠⋀(t −

𝑇௦௔௠)%𝑇௨௣ௗ = 0. For the 𝑘th update of DQN, the sample set
generated from the last DQN update to the current generation,
denoted as 𝑀௞, is used to update the parameters of DQN. The
updating sets a goal 𝑦௝ for each 𝑒௝ = (𝑠௝ , 𝑎௝ , 𝑟௝ , 𝑠௝ାଵ) , and
construct a loss function

𝐿 = (𝑦௝ − 𝑄(𝑠௝ , 𝑎௝; 𝜃))ଶ (8)
The loss function 𝐿 is the optimization objective to update the
weight parameter 𝜃 of the neural network. 𝑄(.) is the predicted
𝑟௝

ᇱ of 𝑎௝ for 𝑠௝ . If the stop condition of the evolutionary
algorithm is not reached, 𝑦௝ = 𝑟௝ + 𝛾𝑚𝑎𝑥௔𝑄(𝑠௝ାଵ, 𝑎; 𝜃), where
𝛾 ∈ [0,1] is the discount on the predicted strategy evaluation.
𝑚𝑎𝑥௔𝑄(𝑠௝ାଵ, 𝑎; 𝜃) is the maximum predicted 𝑟௝ାଵ

ᇱ of all
possible 𝑎௝ାଵ for 𝑠௝ାଵ . The purpose of this operation is to
accelerate the convergence of DQN. When the stop condition
of the evolutionary algorithm is reached, 𝑦௝ = 𝑟௝. Overall,

𝑦௝ = ൜
𝑟௝ 𝑖𝑓 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑠௝ାଵ

𝑟௝ + 𝛾𝑚𝑎𝑥௔𝑄(𝑠௝ାଵ, 𝑎; 𝜃) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (9)

Algorithm 5 Updating of the DQN

1. If t ≥ 𝑇௦௔௠⋀(t − 𝑇௦௔௠)%𝑇௨௣ௗ = 0
2. Sample and normalize random mini-batch of 𝑏

transitions 𝑒௝ = (𝑠௝ , 𝑎௝ , 𝑟௝, 𝑠௝ାଵ) from 𝑀;
3. Update 𝑄(𝑠௧ , 𝑎; 𝜃) according to equation (9);

4. End If

D. Complexity analysis

It can be seen from the above description that the time
complexity of the proposed method is mainly determined by the
extraction of the population state, the execution of the guidance
strategy, the evaluation of the guidance strategy, and the
training of the DQN.

When the dimension of decision space for solving the
optimization problem is 𝑑 , for the evolutionary algorithm
whose maximum evolutionary generation number is 𝑇௠௔௫ and
population size is 𝑛 , to extract the population state, it is
necessary to calculate the distance between the population
individuals. Executing guidance strategies involves vector
computation of all population individuals. The evaluation of the
guidance strategy is related to the number of feasible solutions
and the number 𝑚 of optimization objectives. For DQN,
assume the neural network contains ℎ layers, and the average
number of nodes in the hidden layer is 𝑝, the number of nodes
in the input and output layers is 10 and 1, respectively. Each
training or update needs 𝑔 iterations, and a total of 𝑏 samples
are selected for training. The time complexity of these four parts
is as follows:

(1) The time complexity of extracting population state is
𝑂(𝑇௠௔௫𝑛𝑑);

(2) The time complexity of executing the guidance
strategy in the worst case is 𝑂(𝑇௠௔௫𝑛𝑑);

(3) The time complexity of guidance strategy evaluation in
the worst case is 𝑂(𝑇௠௔௫𝑛ଶ𝑚 + 𝑇௠௔௫𝑛௠ିଶ 𝑙𝑜𝑔 𝑛)[60];

(4) The time complexity of training and updating DQN is

𝑂(⌊ ೘்ೌೣି ೞ்ೌ೘

்ೠ೛೏
⌋((ℎ − 3)𝑝ଶ + 11𝑝)𝑏𝑔).

It can be seen that the time complexity of the proposed
method is mainly determined by 𝑇௠௔௫ , 𝑛 , 𝑑 , 𝑚 and the
parameters of DQN. For large-scale constrained multi-objective
optimization problems, the above time complexity is mainly
determined by the extraction of population state and the
execution of guidance strategies, about 𝑂(𝑇௠௔௫𝑛𝑑); When the
number of objectives increases, the time complexity is mainly
determined by the evaluation of guidance strategy, about
𝑂(𝑇௠௔௫𝑛ଶ𝑚 + 𝑇௠௔௫𝑛௠ିଶ 𝑙𝑜𝑔 𝑛); When the dimensions of the
decision space and objective space of the optimization problem
are small, the time complexity is mainly determined by the

training and update of DQN, about 𝑂(⌊ ೘்ೌೣି ೞ்ೌ೘

்ೠ೛೏
⌋((ℎ − 3)𝑝ଶ +

11𝑝)𝑏𝑔).

E. Further elucidation

The core idea of PKAEO is to select appropriate strategies
to improve the performance of evolutionary algorithms by
tracking the changes in the population state. Previously, Sharma
et al.[61] proposed a description method for population states
based on the ranking of population individuals and the locations
of the population. In their method, DDQN is used to select the
search strategies automatically. In terms of the solved problems,
their method is devoted to the single-objective optimization
problems and has the following flaws: (1) the population state
description is redundant; (2) the strategy evaluation method is
simplified; (3) the offline training of samples is required. In
addition, Tian et al.[44] proposed an automatic operator selection
framework guided by decision variables and weight vectors for
multi-objective optimization problems. Unlike our method,
their method evaluates the performance of guidance strategies
by comparing their improvements in fitness value and does not
involve the state description of the evolutionary population,
therefore provides no straightforward way to mine the
population information. More importantly, PKAEO can easily
embed existing evolutionary algorithms. By setting preferential
evaluation methods of guidance strategies, the most beneficial
strategies are intelligently selected to improve the performance
of algorithms.

IV. EXPERIMENT

Eight experiments are conducted in this section to evaluate
the proposed method’s performance. The first group verifies the
effectiveness of the proposed method on benchmark problems
by comparing it with five constrained multi-objective
optimization algorithms. The second group verifies the
superiority of the proposed method on benchmark problems by
comparing it with four multi-strategy optimization frameworks.
The third to fifth groups study the influence of parameter 𝛼 on
the algorithm stability. The fifth group studies the comparison
of intelligent recommendation of strategies in PKAEO with
empirical use of strategies. The sixth group studies the suitable
number of configured guidance strategies. The last group
studies the time consumption of PKAEO. The operating
environment of the experiments is as follows: Intel(R)
Core(TM) i5-9500 CPU @ 3.00GHz, 32GB RAM, Windows
10, and PlatEMO[62].

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3243109

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

9

A. Benchmark test suites

In order to evaluate the performance of the proposed
method, four benchmark suites are selected: LIR-CMOP[63],
MW[64], DTLZ[65], and VNT[66]. These test suites cover the four
common types of constrained multi-objective optimization
problems[4], namely (1) the UPF and the CPF completely
coincide; (2) Parts of UPF are feasible, and CPF is parts of UPF;
(3) Some regions of UPF are feasible, and CPF and UPF partly
coincide; (3) UPF is located in the infeasible region, and CPF
is wholly separated from UPF. The above indicate that the
selected test suites are representative and helpful in testing the
proposed method.

 The number of optimization objectives and the dimension
of decision variables are set as follows. For LIR-CMOP1~LIR-
CMOP12, 𝑚 = 2, 𝑑 = 30; for LIR-CMOP13~LIR-CMOP14,
𝑚 = 3, 𝑑 = 30; for MW4, MW8 and MW14, 𝑚 = 3, 𝑑 = 15;
for other MW test instances, 𝑚 = 2, 𝑑 = 15; for DTLZ8, 𝑚 =
3, 𝑑 = 30 ; for DTLZ9, 𝑚 = 2 , 𝑑 = 20; for VNT4, 𝑚 = 3,
𝑑 = 2.

B. Comparison algorithms and parameters setting

In this section, the state-of-the-art algorithms for solving
constrained multi-objective optimization problems, including
CMOEA-MS[36], AGEMOEA[67], AGEMOEAII[68],
ARMOEA[69] and the typical algorithm NSGA-II[70], are
selected as the embedded objects of the process knowledge
guidance proposed in this paper. The variants with process
knowledge guidance are denoted as “PK-*”. The effectiveness
of PKAEO is verified by comparing the performance of “PK-*”
and original algorithms. To illustrate the superiority of PKAEO,
four multi-strategy frameworks for solving constrained multi-
objective optimization problems, including C-TAEA[71],
MOCell[72], MaOEAIT[73], and Top[74], are selected as the
comparison algorithms. The parameter values of the above
algorithms are consistent with those in the original articles.

In “PK-*”, the parameters of DQN are set as 𝛾 = 0.9, 𝑁 =
500 , 𝑔 = 100 , 𝑇௨௣ௗ = 0.25 ∗ 𝑇௠௔௫ , 𝑇௦௔௠ = 0.3 ∗ 𝑇௠௔௫ , 𝛼 =

5; the number of nodes in the hidden layer of DNN is 32, 64,
and 32 respectively, and the learning rate of network training
𝑙𝑟 = 0.001. The parameters of guidance strategies are set to
𝐹 ∈ [0,0.5], 𝐶𝑅 ∈ [0,1]. Considering that if all the guidance
strategies are adopted, the ample strategy space will have a high
requirement on the number of samples. Therefore, from the
perspective of maintaining population diversity and
convergence, DE/rand/1 and DE/current-to-pbest/1 are selected
in the experiment, i.e. 𝑎௧ = 1 and 𝑎௧ = 2, respectively.

The population size is 100 for all test instances. The
function evaluation times of each algorithm are 100000 and
10000 for the LIR-CMOP test suite and the other test suites,
respectively.

C. Performance indicator

Since the Inverted Generational Distance (IGD)[75] and
hyper-volume (HV)[59] can comprehensively evaluate the
performance of intelligent optimization algorithms, they are
selected as performance indicators in this paper. In order to
evaluate the significant difference of compared methods on
performance indicators, the Wilcoxon Rank-sum test is used for
the hypothesis test, and the significance level is set at 0.05. The

symbols “+”, “-” and “=” are used to indicate that “PK-*” are
significantly better than, worse than and not different from the
original algorithms, respectively. In addition, the multi-
problem Wilcoxon Rank-sum test with a significance level of
0.05 is used to evaluate the significance of the performance
difference between the compared algorithms.

D. Effectiveness of the proposed method

For all problems, each algorithm is run 30 times
independently to obtain the HV and IGD performance
indicators. Due to the space limitation, their mean values and
standard deviations are listed in Tables S-1 to S-6 in the
Appendix, in which the highlighted gray background data are
the best values. Table 1 lists the HV and IGD performance
indicators of “PK-*” and each original algorithm. For IGD,
“PK-*” significantly outperform the original algorithms on at
most 20 and at least 17 test problems. For HV, “PK-*”
significantly outperform the original algorithms on at most 19
and at least 16 test problem. Considering the R+ value of “PK-
*” is higher than the R- value, it can be seen that process
knowledge guidance can improve the performance of the
embedded algorithms.

Table 1 IGD and HV performance indicators of “PK-*” and embedded
algorithms

IGD +/-/= R+ R- 𝜶=0.05
PK-NSGAII VS NSGAII 20/2/9 473.5 22.5 YES
PK-AGEMOEA VS AGEMOEA 19/2/10 251.5 213.5 YES
PK-AGEMOEAII VS AGEMOEAII 19/4/8 454.5 41.5 YES
PK-ARMOEA VS ARMOEA 20/3/8 291.5 204.5 YES
PK-CMOEA-MS VS CMOEA-MS 17/6/8 343.0 153.0 YES

HV +/-/= R+ R- 𝜶=0.05
PK-NSGAII VS NSGAII 16/0/15 465.0 0.0 YES
PK-AGEMOEA VS AGEMOEA 19/1/11 494.5 1.5 YES
PK-AGEMOEAII VS AGEMOEAII 18/3/10 426.5 38.5 YES
PK-ARMOEA VS ARMOEA 17/3/11 494.5 1.5 YES
PK-CMOEA-MS VS CMOEA-MS 17/6/8 496.0 0.0 YES

For the MW test instances, the constraints have various
styles. Specifically, the feasible regions are tiny and divided by
a vast infeasible region, causing the CPF contains multiple
isolated solutions. According to Tables S-1 and S-4, process
knowledge guidance is practical for most problems. In order to
visually demonstrate the performance effect of process
knowledge guidance, the distribution of the non-dominated
solutions provided by “PK-*” and the original algorithms on the
MW3 problem is shown in Fig.S-1 and Fig.S-2, respectively. It
can be seen that process knowledge guidance can effectively
guide the algorithm to obtain more widely distributed non-
dominated solutions. More specifically, according to the
searching process of PK-ARMOEA on MW3 and MW5 in
Fig.S-3 and Fig.S-4, the process knowledge guidance first
guides the population to locate feasible solutions quickly. It
then guides the population to approach the CPF quickly once a
feasible solution is found. Finally, process knowledge guidance
improves the diversity distribution of the non-dominated
solutions.

The feasible regions for the LIR-CMOP test instances are
tiny, and even some problems contain only one curve. In
addition, the CPF is divided by a vast infeasible region, forming
several disjoint segments or sparse points. According to Tables
S-2 and S-5, process knowledge guidance can improve the
comprehensive performance of all embedded algorithms on
LIR-CMOP. However, the performance on different test
instances is slightly different, detailed as follows.

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3243109

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

10

(1) For LIR-CMOP1~LIR-CMOP4 with small feasible
regions, process knowledge guidance can help the embedded
algorithm to obtain better non-dominated solutions, which is
attributed to the fast localization of the feasible regions by
DE/rand/1 in global exploration and the fast convergence of
DE/current-to-pbest/1 in local exploitation.

(2) For LIR-CMOP5~LIR-CMOP6, which need to go
through the infeasible regions to locate the CPF, the process
knowledge guidance is limited by the constraint handling
ability of the embedded algorithm to a certain extent, which
makes it challenging to improve the performance of
AGEMOEA and ARMOEA significantly. Nevertheless, it can
help NSGAII find feasible solutions for LIR-CMOP6.

(3) For LIR-CMOP7~LIR-CMOP14, process knowledge
guidance has significant advantages, which can improve the
performance of all algorithms on most test instances.

For the DTLZ and VNT test instances, the constrained
multi-objective optimization problems DTLZ8~DTLZ9 and
VNT4 are selected. According to Tables S-3 and S-6, except for
the CMOEA-MS algorithm, process knowledge guidance can
improve the comprehensive performance of all other algorithms.
According to the solving process of ARMOEA and PK-
ARMOEA on the DTLZ8 problem in Fig.S-5 and Fig.S-6, PK-
ARMOEA maintains a high population diversity in the
evolution process, showing obvious advantages at the 50th
generation and converging to the CPF at the 75th generation.

Fig.3 Strategy selection results of PK-ARMOEA in the process of solving
MW2, MW10, LIR-CMOP13, and LIR-CMOP14, where red dots represent the
random strategy selection in generations 1~𝑇௦௔௠, and the blue dots represent
the DQN strategy recommendation in the process knowledge application.

It is worth noting that process knowledge guidance is not
effective in some test instances. According to the distribution
of non-dominated solutions to these test instances shown in
Fig.S-7 and the strategy selection of PK-ARMOEA given in
Fig.3, we can see that

(1) The non-dominated solutions of MW2 and MW10
distribute centrally on some dimensions. Thus, DE/current-to-
pbest/1 with fast convergence gets a higher evaluation value
than DE/rand/1. For MW2, to locate the promising regions, no
guidance is performed in the early stage; the DE/current-to-
pbest/1 is used to accelerate the convergence in the late stage.
Although the algorithm has performed the DE/current-to-
pbest/1 in the generations 𝑇௦௔௠ାଵ~𝑇௠௔௫ , the strategy sampling
in generations 1~𝑇௦௔௠ , specifically the random execution of
DE/rand/1, still reduces the convergence speed. For MW10, the
population is premature. Though the DE/rand/1 is employed to
search for new promising regions, it is still challenging to
significantly improve the solutions further.

(2) The non-dominated solutions of LIR-CMOP13 and
LIR-CMOP14 are dispersed and located in different local
regions. For LIR-CMOP13, at the early stage of process
knowledge application (generations 𝑇௦௔௠ାଵ~𝑇௠௔௫), the

continuous employment of DE/current-to-pbest/1 focuses on
local exploitation and neglects global exploration. Even if the
DE/rand/1 is performed at the late stage of process knowledge
application, the quality of the non-dominated solutions is still
affected. For LIR-CMOP14, the mutation operators of DE are
not effective, thus no guidance is conducted in process
knowledge application.

In summary, process knowledge guidance has a significant
effect on improving the performance of evolutionary algorithms.
However, in the application process, the immediate reward of
fast convergence strategies and the random sampling for
exploring the effect of strategies will lead to the wrong guidance
of the population’s evolution. Therefore, the design of a more
scientific strategy evaluation system is the critical factor
affecting the effect of process knowledge guidance.

E. Further research

1) Comparison with other multi-strategy frameworks
At present, the multi-strategy frameworks for solving

constrained multi-objective optimization problems include C-
TAEA, MOCell, MaOEAIT, and Top. This section compares
the performance of PKAEO with these frameworks. In addition
to the above test suites, the CF test suite[76] is also used here.
Taking PK-CMOEA-MS as an example, each algorithm is
independently run 30 times for all optimization problems to
calculate the mean and standard deviation of HV and IGD
indicators, as listed in Tables S-7 to S-12. Table 2 lists the HV
and IGD performance statistics of PK-CMOEA-MS and other
algorithms. For IGD, PK-CMOEA-MS significantly
outperforms the original algorithms on at most 35 and at least
25 test problems. For HV, PK-CMOEA-MS outperforms the
original algorithms on at most 35 and at least 22 test problems.
The overall advantage of PKAEO is verified according to the
higher R+ value than the R- value of PK-CMOEA-MS. In
addition, the Friedman test is used to compare the IGD and HV
of all algorithms, and the results are listed in Tables 3 and 4. It
is easy to see that PK-CMOEA-MS ranks best among all the
comparison algorithms. The detailed result analysis is given as
follows:

 (1) For the MW test instances, MOCell and MaOEAIT
have similar performances. On HV and IGD indicators, PK-
CMOEA-MS achieves both 12+/0-/2= in comparison with
these two algorithms. Compared with CTAEA, the advantage
of PK-CMOEA-MS is slight, only 7+/6-/1= is achieved on both
HV and IGD indicators. Top performs worst on the MW test
instances, which only finds the feasible solutions of two
problems.

(2) For the LIRCMOP test instances, the advantage of PK-
CMOEA-MS is significant. Specifically, PK-CMOEA-MS
performs better than MOCell and MaOEAIT on all the
problems. Compared with ToP, PK-CMOEA-MS shows
superiority on 13 ones among all the problems in terms of HV
indicator; as for the IGD indicator, PK-CMOEA-MS achieves
12+/0-/2=. CTAEA performs better than PK-CMOEA-MS on 4
and 3 problems in terms of HV and IGD indicators, respectively.

(3) For other problems, PK-CMOEA-MS shows the most
obvious advantage in comparison with ToP, where it achieves
11+/1-/1= on both HV and IGD indicators. Compared with
MOCell, PK-CMOEA-MS achieves 9+/2-/1= on both HV and
IGD indicators. Similarly, PK-CMOEA-MS achieves 9+/2-/2=

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3243109

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

11

and 9+/1-/3= on HV and IGD indicators, respectively.
Compared with CTAEA, PK-CMOEA-MS achieves 8+/0-/5=
on both HV and IGD indicators.

Table 2 IGD and HV indicator statistics of PK-CMOEA-MS and other
algorithms

IGD +/-/= R+ R-
PK-CMOEA-MS VS C-TAEA 23/9/9 597.0 264.0
PK-CMOEA-MS VS MOCell 35/2/3 796.0 65.0
PK-CMOEA-MS VS MaOEAIT 26/1/4 769.0 92.0
PK-CMOEA-MS VS ToP 25/1/5 740.0 121.0

HV +/-/= R+ R-
PK-CMOEA-MS VS C-TAEA 22/10/9 567.0 294.0
PK-CMOEA-MS VS MOCell 35/2/3 807.5 54.0
PK-CMOEA-MS VS MaOEAIT 26/2/3 841.0 20.0
PK-CMOEA-MS VS ToP 26/1/4 858.0 3.0

Table 3 IGD ranking of PK-AGEMOEA and comparison algorithms
Algorithm Ranking

PK-CMOEA-MS 1.88
C-TAEA 2.34

ToP 3.20
MOCell 3.54

MaOEAIT 4.05

Table 4 HV ranking of PK-AGEMOEA and comparison algorithms
Algorithm Ranking

PK-CMOEA-MS 1.56
C-TAEA 1.99

ToP 3.11
MOCell 3.24

MaOEAIT 4.10

2) Sensitivity analysis of 𝛼
Since the purpose of this paper is to propose a process

knowledge guidance framework for evolutionary algorithms,
we do not focus on fine-tuning the framework parameters, such
as the scaling factor 𝐹 of search strategy, crossover probability
𝐶𝑅, parameters of DQN including 𝑙𝑟, 𝑇௦௔௠ and 𝑇௨௣ௗ . However,
we should pay attention to the stability of PKAEO, which is
closely related to the times of data augmentation (𝛼) for DQN.

In order to investigate the influence of 𝛼 on PKAEO, PK-
AGEMOEA is taken as a study example. For each optimization
problem, PK-AGEMOEA is independently run 30 times to
calculate the mean and standard deviation of HV and IGD
indicators, as listed in Tables S-13 and S-14. It can be seen that
the value of 𝛼 has a significant impact on the algorithm’s
stability. In addition, the Friedman test is used to compare the
standard deviation of HV under different settings of 𝛼, and the
analysis results are listed in Table 5. It is easy to find that as the
value of 𝛼 increases, PK-AGEMOEA becomes more and more
stable. Thus, according to algorithms’ stability requirement and
the limitation of computing resources, an appropriate value can
be set in real-world applications.

Table 5 Stability ranking of PK-AGEMOEA with different 𝛼 values
Algorithm Ranking

PK-AGEMOEA (𝛼 = 5) 2.18
PK-AGEMOEA (𝛼 = 10) 1.92
PK-AGEMOEA (𝛼 = 15) 1.90

3) Sensitivity analysis of 𝑇௦௔௠
𝑇௦௔௠ determines the size of collected samples for training

the DQN. A smaller 𝑇௦௔௠ will cause the insufficiency of
samples, reducing the accuracy of trained DQN, while a larger
𝑇௦௔௠ pays too much attention to sample collection, shortening
the scope of evolutionary guidance. To study the influence of
𝑇௦௔௠ on the algorithm, PK-NSGAII with 𝑇௦௔௠ = 0.1*𝑇௠௔௫ ,

0.2*𝑇௠௔௫ , 0.3*𝑇௠௔௫ and 0.4*𝑇௠௔௫ are tested and compared.
They are independently run 30 times to calculate the mean and
standard deviation of the HV indicator, as listed in Table S-15.
The Friedman test is used to compare the HV of all algorithm
variants, and the results are listed in Table 6. Overall, PK-
NSGAII is not sensitive to the 𝑇௦௔௠ ∈ [0.1 ∗ 𝑇௠௔௫ , 0.4 ∗ 𝑇௠௔௫].
It achieves the best and worst performances at 𝑇௦௔௠ = 0.3 ∗
𝑇௠௔௫ and 𝑇௦௔௠ = 0.2 ∗ 𝑇௠௔௫ , respectively. Therefore, 𝑇௦௔௠ =
0.3 ∗ 𝑇௠௔௫ is a promising setting.

Table 6 HV ranking of PK-NSGAII with different 𝑇௦௔௠ values
Algorithm Ranking

PK-NSGAII (𝑇௦௔௠ = 0.3 ∗ 𝑇௠௔௫) 2.40
PK-NSGAII (𝑇௦௔௠ = 0.4 ∗ 𝑇௠௔௫) 2.46
PK-NSGAII (𝑇௦௔௠ = 0.1 ∗ 𝑇௠௔௫) 2.45
PK-NSGAII (𝑇௦௔௠ = 0.2 ∗ 𝑇௠௔௫) 2.71

4) Sensitivity analysis of 𝑇௨௣ௗ

𝑇௨௣ௗ determines the frequency of updating the DQN. A smaller
𝑇௨௣ௗ will cause instability of the DQN, and increase the time
consumption, while a larger 𝑇௨௣ௗ is unable to timely perceive
the dynamic changes of strategy evaluation. To study the
influence of 𝑇௨௣ௗ on the algorithm, PK-NSGAII with 𝑇௨௣ௗ =
0.1∗ 𝑇௠௔௫, 0.2∗ 𝑇௠௔௫, 0.3∗ 𝑇௠௔௫ and 0.4∗ 𝑇௠௔௫ are tested and
compared. They are independently run 30 times to calculate the
mean and standard deviation of the HV indicator, as listed in
Table S-16. The Friedman test is used to compare the HV of all
algorithm variants, and the results are listed in Table 7. Overall,
PK-NSGAII is not sensitive to the 𝑇௨௣ௗ ∈ [0.1 ∗ 𝑇௠௔௫ , 0.4 ∗

𝑇௠௔௫]. It achieves the best and worst performances at 𝑇௨௣ௗ =

0.3 ∗ 𝑇௠௔௫ and 𝑇௨௣ௗ = 0.4 ∗ 𝑇௠௔௫ , respectively. Therefore,
𝑇௨௣ௗ = 0.25 ∗ 𝑇௠௔௫ is a promising setting.

Table 7 HV ranking of PK-NSGAII with different 𝑇௨௣ௗ values
Algorithm Ranking

PK-NSGAII (𝑇௨௣ௗ = 0.3 ∗ 𝑇௠௔௫) 2.36
PK-NSGAII (𝑇௨௣ௗ = 0.2 ∗ 𝑇௠௔௫) 2.47
PK-NSGAII (𝑇௨௣ௗ = 0.1 ∗ 𝑇௠௔௫) 2.47
PK-NSGAII (𝑇௨௣ௗ = 0.4 ∗ 𝑇௠௔௫) 2.71

5) Comparison with the empirical use of strategies
In PKAEO, the guidance strategies are selectively

recommended by the DQN. However, there is already
successful experience to better arrange the execution of these
strategies. For example, the DE/rand/1 and DE/current-to-
pbest/1 are tendentiously employed in the early and late stages
respectively, which is beneficial in balancing the global search
and local exploitation. To realize this empirical use of strategies,
the DE/rand/1 and DE/current-to-pbest/1 are fixedly executed

at 𝑡 < ೘்ೌೣ

ଶ
 and 𝑡 ≥ ೘்ೌೣ

ଶ
, respectively. This variant deployed in

PK-NSGAII is named PK-NSGAII-rand. PK-NSGAII-rand is
independently run 30 times to calculate the mean and standard
deviation of HV and IGD indicators, as listed in Tables S-17
and S-18. For HV, PK-NSGAII performs better on 9 test
problems. For IGD, PK-NSGAII outperforms the PK-NSGAII-
rand on 10 test problems. It is worth noting that the empirical
strategy configuration has also achieved good results. To
further strengthen the PKAEO, offline training can help DQN
to acquire the ability of configuring different strategies for the
entire evolution process and automatically switch strategies at
different stages.
6) The influence of the number of guidance strategies

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3243109

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

12

As the above-mentioned reasons, only two guidance
strategies are configured for PKAEO. To verify the rationality
of this choice, PK-NSGAII is tested with different number of
guidance strategies. The variants of PK-NSGAII with
DE/rand/1 and DE/current-to-pbest/1 are named PK-NSGAII-
T1 and PK-NSGAII-T2, respectively; the variant of PK-
NSGAII with DE/rand/1, DE/current-to-pbest/1 and DE/best/1
is named PK-NSGA-II-T3. PK-NSGAII is still configured with
DE/rand/1 and DE/current-to-pbest/1. According to the HV
indicator shown in Table S-19, the Friedman test is used to
compare the HV of all algorithm variants, and the results are
listed in Table 8. Some interesting phenomenon can be
concluded as follows:

(1) DE/rand/1 is more effective than DE/current-to-pbest/1
on most problems. For HV, PK-NSGAII performs better than
PK-NSGAII-T2 on at most 8 and at least 1 test problems; in
comparison with PK-NSGAII-T1, PK-NSGAII performs better
on at most 3 and at least 1 test problems.

(2) Configuring with two guidance strategies is a
promising selection than considering more candidates. For HV,
PK-NSGAII performs better than PK-NSGAII-T3 on at most 6
and at least 3 test problems.

Overall, the current PKAEO is just capable of dispatching
two guidance strategies. To further strengthen the PKAEO,
offline training can help DQN to identify the matching
relationship between other guidance strategies and population
states.

Table 8 HV ranking of PK-NSGAII with different strategies
Algorithm Ranking

PK-NSGAII 2.26
PK-NSGAII-T1 2.35
PK-NSGAII-T3 2.40
PK-NSGAII-T2 2.98

7) The time consumption of PKAEO
The process knowledge guidance module brings extra time

consumption. For MW, LIR-CMOP, DTLZ and VNT, the
comparison of PK-NSGAII and NSGAII in terms of time
consumption is shown in Fig.4. Obviously, the extra time
consumption caused by the process knowledge guidance is
significant. According to the operation of PKAEO, the time
consumption is also partially caused by the high feasible rate of
population, and therefore the subsequent feature extraction of
feasible solutions. To reduce the time consumption, the feature
extraction should be simplified, especially for the computation
related to the distances between population individuals.

Fig.4 Time consumption of PK-NSGAII and NSGAII

V. APPLICATION TO THE DISPATCH OF INTEGRATED COAL

MINE ENERGY SYSTEM

This section discusses the application of process
knowledge guidance to the optimal dispatch of integrated coal
mine energy system (ICMES). Based on the dispatch
optimization model of the integrated coal mine energy systems
in ref.[1], the objectives of minimizing economic cost and
carbon emission allowance are selected, and 30 strongly
constrained multi-objective optimization problems
ICMES1~ICMES30 are designed by setting different cold, heat,
electrical load, light, and wind intensity data. More details
about the optimization model are provided in the supplementary
material. For all ICMES problems, 𝑚=2, 𝑑=384. Considering
that it is challenging to find feasible solutions for strongly
constrained multi-objective optimization problems, this section
also uses the feasible rate (FR) to evaluate the performance of
the algorithms. It sets the function evaluation times to be 50000.
For each problem, all algorithms are independently run 30 times
to obtain the mean value and standard deviation of HV and IGD.
The results are listed in Tables S-17 and S-18. Since CMOEA-
MS cannot solve the ICMES problems, the results of PK-
CMOEA-MS and CMOEA-MS are not given here. Table 9 lists
the HV and IGD statistics of “PK-*” and each original
algorithm. For HV, “PK-*” are significantly better than the
original algorithms on at most 11 and at least 9 test instances.
For FR, “PK-*” are significantly better than the original
algorithms on all test instances. As R+ value of “PK-*” is higher
than R- value, it can be seen that process knowledge guidance
can improve the performance of the embedded algorithms.

The distribution of non-dominated solutions on ICMES23
is presented in Fig.5, showing that the ICMES problems’
feasible regions are tiny. Taking the labeled non-dominated
solution in Fig.5 as a study example, Fig.6 shows the energy
dispatch solution, including the consumption and generation of
energy during different periods. The dispatch satisfies the cold,
electricity, and heat load constraints through multi-energy
complementation and minimizes the economic cost and carbon
emission allowance.

In the guidance strategies of current PKAEO, the scaling
factor 𝐹 ∈ [0,0.5]. Considering the purpose of this paper is to
develop a framework, therefore the parameters are not fine-
tuned. However, in the above experiments, we found when
setting 𝐹 ∈ [0,1], the performance of PKAEO can be further
enhanced. The reasons of this result can be deduced as follows:

(1) For DE/rand/1, a larger 𝐹 is more beneficial for the
global exploration, especially for the strongly constrained
optimization problems. For DE/current-to-pbest/1, the larger 𝐹
motivates the population move faster to the better individuals,
which accelerates the convergence.

(2) Limited by the feasibility requirements of engineering
application, the upper and lower boundaries of decision
variables are not given in large ranges. Hence, on some
variables, the feasible solutions are situated on the boundaries.
When generating mutated solutions, the larger 𝐹 brings about
more elements exceeding the boundaries. In this case, the
boundary check technique focusing on the boundary search is
very effective.

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3243109

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

13

Table 9 HV and FR indicator statistics of PK-CMOEA-MS and other
algorithms

HV +/-/= R+ R- 𝜶=0.05
PK-NSGAII VS NSGAII 9/0/17 460.0 5.0 YES
PK-AGEMOEA VS AGEMOEA 6/0/17 465.0 0.0 YES
PK-AGEMOEAII VS AGEMOEAII 6/0/17 456.0 9.0 YES
PK-ARMOEA VS ARMOEA 11/0/13 435.0 0.0 YES
PK-CMOEA-MS VS CMOEA-MS \ \ \ \

FR +/-/= R+ R- 𝜶=0.05
PK-NSGAII VS NSGAII 30/0/0 465.0 0.0 YES
PK-AGEMOEA VS AGEMOEA 30/0/0 465.0 0.0 YES
PK-AGEMOEAII VS AGEMOEAII 30/0/0 465.0 0.0 YES
PK-ARMOEA VS ARMOEA 30/0/0 465.0 0.0 YES
PK-CMOEA-MS VS CMOEA-MS \ \ \ \

Fig.5 Non-dominated solutions to ICMES23 problem found by PK-NSGAII

(a) Balance of electric power (b) Balance of cooling power

(c) Balance of heating power (d) Key parameters
Fig.6 Dispatch solution and key parameters in the optimization model

VI. CONCLUSION

For constrained multi-objective optimization problems,
we propose an evolutionary optimization framework based on
population convergence and diversity regulation, namely
PKAEO. Firstly, PKAEO accumulates a certain amount of
samples by randomly executing guidance strategies at the early
evolutionary stage and evaluating the regulatory effects of
different guidance strategies on the population. Then, the
samples are used to train DQN, and the mapping model between
population state and guidance strategy is established.
According to the established mapping model and population
state, the subsequent guidance strategy is recommended.
Finally, with the continuous enrichment of sampled data in the
evolution process, DQN is periodically updated to improve the
accuracy of guidance strategy recommendations.

In order to evaluate the performance of PKAEO, we apply
it to 41 benchmark test problems. Experimental results show

that PKAEO can effectively improve the performance of
embedded algorithms, especially in locating small and
decentralized feasible regions. In addition, the application
effectiveness of PKAEO on the dispatch optimization problem
of integrated coal mine energy systems proves that PKAEO is
practical and scalable.

 To further improve the performance of PKAEO, we will
conduct future research in following directions: (1) the
undifferentiated execution of guidance strategies at the
sampling stage caused the evolution direction misguidance. The
offline deep reinforcement learning method can be used to
assist decision-making and avoid sampling during the execution
process of the evolutionary algorithm; (2) aiming at the
premature population convergence caused by the immediate
reward of guidance strategy, an evolutionary strategy selection
method combining manual intervention and autonomous
selection could be adopted to limit the freedom of DQN strategy
selection.

REFERENCES

[1] Hu H, Sun X, Zeng B, Gong D, Zhang Y. Enhanced evolutionary multi-
objective optimization-based dispatch of coal mine integrated energy
system with flexible load[J]. Applied Energy, 2021: 118130.

[2] Gong D, Xu B, Zhang Y, Guo Y, Yang S. A similarity-based cooperative co-
evolutionary algorithm for dynamic interval multiobjective optimization
problems[J]. IEEE Transactions on Evolutionary Computation, 2019, 24 (1):
142-156.

[3] Zuo M, Dai G, Peng L, Wang M, Liu Z, Chen C. A case learning-based
differential evolution algorithm for global optimization of interplanetary
trajectory design[J]. Applied Soft Computing, 2020, 94: 106451.

[4] Liang J, Ban X, Yu K, Qu B, Qiao K, Yue C, Chen K, Tan K C. A survey
on evolutionary constrained multi-objective optimization[J]. IEEE
Transactions on Evolutionary Computation, 2022.

[5] Liang Z, Liang W, Xu X, Liu L, Zhu Z. A two stage adaptive knowledge
transfer evolutionary multi-tasking based on population distribution for
multi/many-objective optimization[J]. arXiv preprint arXiv:.00810, 2020.

[6] Li J-Y, Zhan Z-H, Tan K C, Zhang J. A meta-knowledge transfer-based
differential evolution for multitask optimization[J]. IEEE Transactions on
Evolutionary Computation, 2021, 26 (4): 719-734.

[7] Zhang X, Zhan Z-H, Fang W, Qian P, Zhang J. Multipopulation ant colony
system with knowledge-based local searches for multiobjective supply
chain configuration[J]. IEEE Transactions on Evolutionary Computation,
2021, 26 (3): 512-526.

[8] Ding Z, Chen L, Sun D, Zhang X. A multi-stage knowledge-guided
evolutionary algorithm for large-scale sparse multi-objective optimization
problems[J]. Swarm and Evolutionary Computation, 2022, 73: 101119.

[9] Cheng R, Jin Y, Olhofer M, Sendhoff B. A reference vector guided
evolutionary algorithm for many-objective optimization[J]. IEEE
Transactions on Evolutionary Computation, 2016, 20 (5): 773-791.

[10] Liu Q, Jin Y, Heiderich M, Rodemann T, Yu G. An adaptive reference
vector-guided evolutionary algorithm using growing neural gas for many-
objective optimization of irregular problems[J]. IEEE Transactions on
Cybernetics, 2020.

[11] Wimmer H, Rada R. Good versus bad knowledge: Ontology guided
evolutionary algorithms[J]. Expert systems with applications, 2015, 42 (21):
8039-8051.

[12] Chen G, Li J. A diversity ranking based evolutionary algorithm for multi-
objective and many-objective optimization[J]. Swarm and Evolutionary
Computation, 2019, 48: 274-287.

[13] Cheng J, Pan Z, Liang H, Gao Z, Gao J. Differential evolution algorithm
with fitness and diversity ranking-based mutation operator[J]. Swarm and
Evolutionary Computation, 2021, 61: 100816.

[14] Zeng S, Jiao R, Li C, Li X, Alkasassbeh J S. A general framework of
dynamic constrained multiobjective evolutionary algorithms for
constrained optimization[J]. IEEE transactions on Cybernetics, 2017, 47 (9):
2678-2688.

[15] Zuo M, Dai G, Peng L, Tang Z, Gong D, Wang Q. A differential evolution
algorithm with the guided movement for population and its application to

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3243109

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

14

interplanetary transfer trajectory design[J]. Engineering Applications of
Artificial Intelligence, 2022, 110: 104727.

[16] Jan M A, Zhang Q. MOEA/D for constrained multiobjective optimization:
Some preliminary experimental results[C].2010 UK Workshop on
computational intelligence (UKCI),2010: 1-6.

[17] Maldonado H M, Zapotecas-Martínez S. A Dynamic Penalty Function
within MOEA/D for Constrained Multi-objective Optimization
Problems[C].2021 IEEE Congress on Evolutionary Computation
(CEC),2021: 1470-1477.

[18] Vaz F, Lavinas Y, Aranha C, Ladeira M. Exploring Constraint Handling
Techniques in Real-world Problems on MOEA/D with Limited Budget of
Evaluations[C].International Conference on Evolutionary Multi-Criterion
Optimization,2021: 555-566.

[19] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective
genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary
Computation, 2002, 6 (2): 182-197.

[20] Takahama T, Sakai S. Constrained optimization by the ε constrained
differential evolution with gradient-based mutation and feasible
elites[C].2006 IEEE International Conference on Evolutionary
Computation,2006: 1-8.

[21] Runarsson T P, Yao X. Stochastic ranking for constrained evolutionary
optimization[J]. IEEE Transactions on evolutionary computation, 2000, 4
(3): 284-294.

[22] Jiao R, Zeng S, Li C. A feasible-ratio control technique for constrained
optimization[J]. Information Sciences, 2019, 502: 201-217.

[23] Jiao R, Zeng S, Li C, Yang S, Ong Y-S. Handling constrained many-
objective optimization problems via problem transformation[J]. IEEE
Transactions on Cybernetics, 2020, 51 (10): 4834-4847.

[24] Ying W-Q, He W-P, Huang Y-X, Li D-T, Wu Y. An adaptive stochastic
ranking mechanism in MOEA/D for constrained multi-objective
optimization[C].2016 International Conference on Information System and
Artificial Intelligence (ISAI),2016: 514-518.

[25] Ray T, Singh H K, Isaacs A, Smith W: Infeasibility driven evolutionary
algorithm for constrained optimization,Constraint-handling in evolutionary
optimization: Springer,2009: 145-165.

[26] Long Q. A constraint handling technique for constrained multi-objective
genetic algorithm[J]. Swarm Evolutionary Computation, 2014, 15: 66-79.

[27] Zhou Y, Zhu M, Wang J, Zhang Z, Xiang Y, Zhang J. Tri-goal evolution
framework for constrained many-objective optimization[J]. IEEE
Transactions on Systems, Man, Cybernetics: Systems, 2018, 50 (8): 3086-
3099.

[28] Vieira D A, Adriano R L, Vasconcelos J A, Krahenbuhl L. Treating
constraints as objectives in multiobjective optimization problems using
niched Pareto genetic algorithm[J]. IEEE Transactions on Magnetics, 2004,
40 (2): 1188-1191.

[29] Wang J, Liang G, Zhang J. Cooperative differential evolution framework
for constrained multiobjective optimization[J]. IEEE transactions on
cybernetics, 2018, 49 (6): 2060-2072.

[30] Liu B, Ma H, Zhang X, Zhou Y. A memetic co-evolutionary differential
evolution algorithm for constrained optimization[C].2007 IEEE Congress
on Evolutionary Computation,2007: 2996-3002.

[31] Tian Y, Zhang T, Xiao J, Zhang X, Jin Y. A coevolutionary framework for
constrained multiobjective optimization problems[J]. IEEE Transactions on
Evolutionary Computation, 2020, 25 (1): 102-116.

[32] Fan Z, Li W, Cai X, Li H, Wei C, Zhang Q, Deb K, Goodman E. Push and
pull search for solving constrained multi-objective optimization
problems[J]. Swarm and evolutionary computation, 2019, 44: 665-679.

[33] Tian Y, Zhang Y, Su Y, Zhang X, Tan K C, Jin Y. Balancing objective
optimization and constraint satisfaction in constrained evolutionary
multiobjective optimization[J]. IEEE Transactions on Cybernetics, 2021.

[34] Yu K, Liang J, Qu B, Yue C. Purpose-directed two-phase multiobjective
differential evolution for constrained multiobjective optimization[J].
Swarm Evolutionary Computation, 2021, 60: 100799.

[35] Jiao R, Zeng S, Li C, Ong Y-S. Two-type weight adjustments in MOEA/D
for highly constrained many-objective optimization[J]. Information
Sciences, 2021, 578: 592-614.

[36] Morovati V, Pourkarimi L. Extension of Zoutendijk method for solving
constrained multiobjective optimization problems[J]. European Journal of
Operational Research, 2019, 273 (1): 44-57.

[37] Schütze O, Alvarado S, Segura C, Landa R. Gradient subspace
approximation: a direct search method for memetic computing[J]. Soft
Computing, 2017, 21 (21): 6331-6350.

[38] Yu X, Yu X, Lu Y, Yen G G, Cai M. Differential evolution mutation
operators for constrained multi-objective optimization[J]. Applied Soft
Computing, 2018, 67: 452-466.

[39] Yu X, Luo W, Xu W, Li C. Constrained multi-objective differential
evolution algorithm with ranking mutation operator[J]. Expert Systems with
Applications, 2022, 208: 118055.

[40] Xu B, Duan W, Zhang H, Li Z. Differential evolution with infeasible-
guiding mutation operators for constrained multi-objective optimization[J].
Applied Intelligence, 2020, 50 (12): 4459-4481.

[41] Liu Y, Li X, Hao Q. A new constrained multi-objective optimization
problems algorithm based on group-sorting[C].Proceedings of the Genetic
and Evolutionary Computation Conference Companion,2019: 221-222.

[42] He C, Cheng R, Tian Y, Zhang X, Tan K C, Jin Y. Paired offspring
generation for constrained large-scale multiobjective optimization[J]. IEEE
Transactions on Evolutionary Computation, 2020, 25 (3): 448-462.

[43] Qian F, Xu B, Qi R, Tianfield H. Self-adaptive differential evolution
algorithm with α-constrained-domination principle for constrained multi-
objective optimization[J]. Soft Computing, 2012, 16 (8): 1353-1372.

[44] Tian Y, Li X, Ma H, Zhang X, Tan K C, Jin Y. Deep reinforcement learning
based adaptive operator selection for evolutionary multi-objective
optimization[J]. IEEE Transactions on Emerging Topics in Computational
Intelligence, 2022.

[45] Yao X, Zhao Q, Gong D, Zhu S. Solution of large-scale many-objective
optimization problems based on dimension reduction and solving
knowledge guided evolutionary algorithm[J]. IEEE Transactions on
Evolutionary Computation, 2021.

[46] Guo Y, Chen G, Jiang M, Gong D, Liang J. A Knowledge guided Transfer
Strategy for Evolutionary Dynamic Multiobjective Optimization[J]. IEEE
Transactions on Evolutionary Computation, 2022.

[47] Li W, Meng X, Huang Y, Mahmoodi S. Knowledge-guided multiobjective
particle swarm optimization with fusion learning strategies[J]. Complex &
Intelligent Systems, 2021, 7 (3): 1223-1239.

[48] Poláková R, Tvrdík J, Bujok P. Differential evolution with adaptive
mechanism of population size according to current population diversity[J].
Swarm and Evolutionary Computation, 2019, 50: 100519.

[49] Yang M, Li C, Cai Z, Guan J. Differential evolution with auto-enhanced
population diversity[J]. IEEE transactions on cybernetics, 2014, 45 (2):
302-315.

[50] Zuo M, Dai G, Peng L, Chen L, Chen X, Song Z. Global optimisation of
multiple gravity assist spacecraft trajectories based on search space
exploring and PCA[C].2016 IEEE Congress on Evolutionary
Computation,2016: 2655-2660.

[51] Liang J, Qiao K, Yue C, Yu K, Qu B, Xu R, Li Z, Hu Y. A clustering-based
differential evolution algorithm for solving multimodal multi-objective
optimization problems[J]. Swarm and Evolutionary Computation, 2021, 60:
100788.

[52] Rousseeuw P J, Mathematics A. Silhouettes: a graphical aid to the
interpretation and validation of cluster analysis[J]. Journal of computational,
1987, 20: 53-65.

[53] Auger A, Hansen N. A restart CMA evolution strategy with increasing
population size[C].2005 IEEE congress on evolutionary computation,2005:
1769-1776.

[54] Mcginley B, Maher J, O'riordan C, Morgan F. Maintaining healthy
population diversity using adaptive crossover, mutation, and selection[J].
IEEE Transactions on Evolutionary Computation, 2011, 15 (5): 692-714.

[55] Zuo M, Dai G, Peng L. A new mutation operator for differential evolution
algorithm[J]. Soft Computing, 2021, 25 (21): 13595-13615.

[56] Storn R, Price K. Differential evolution–a simple and efficient heuristic
for global optimization over continuous spaces[J]. Journal of global
optimization, 1997, 11 (4): 341-359.

[57] Zhang J, Sanderson A C. JADE: adaptive differential evolution with
optional external archive[J]. IEEE Transactions on evolutionary
computation, 2009, 13 (5): 945-958.

[58] Wang H, Jin Y, Yao X. Diversity assessment in many-objective
optimization[J]. IEEE transactions on cybernetics, 2016, 47 (6): 1510-1522.

[59] Bader J, Zitzler E. HypE: An algorithm for fast hypervolume-based many-
objective optimization[J]. Evolutionary computation, 2011, 19 (1): 45-76.

[60] Fonseca C M, Paquete L, López-Ibánez M. An improved dimension-sweep
algorithm for the hypervolume indicator[C].2006 IEEE international
conference on evolutionary computation,2006: 1157-1163.

[61] Sharma M, Komninos A, López-Ibáñez M, Kazakov D. Deep
reinforcement learning based parameter control in differential
evolution[C].Proceedings of the Genetic and Evolutionary Computation
Conference,2019: 709-717.

[62] Tian Y, Cheng R, Zhang X, Jin Y. PlatEMO: A MATLAB platform for
evolutionary multi-objective optimization [educational forum][J]. IEEE
Computational Intelligence Magazine, 2017, 12 (4): 73-87.

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3243109

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

15

[63] Fan Z, Li W, Cai X, Huang H, Fang Y, You Y, Mo J, Wei C, Goodman E.
An improved epsilon constraint-handling method in MOEA/D for CMOPs
with large infeasible regions[J]. Soft Computing, 2019, 23 (23): 12491-
12510.

[64] Ma Z, Wang Y. Evolutionary constrained multiobjective optimization: Test
suite construction and performance comparisons[J]. IEEE Transactions on
Evolutionary Computation, 2019, 23 (6): 972-986.

[65] Deb K, Thiele L, Laumanns M, Zitzler E: Scalable test problems for
evolutionary multiobjective optimization,Evolutionary multiobjective
optimization: Springer,2005: 105-145.

[66] Vlennet R, Fonteix C, Marc I. Multicriteria optimization using a genetic
algorithm for determining a Pareto set[J]. International Journal of Systems
Science, 1996, 27 (2): 255-260.

[67] Panichella A. An adaptive evolutionary algorithm based on non-Euclidean
geometry for many-objective optimization[C].Proceedings of the Genetic
and Evolutionary Computation Conference,2019: 595-603.

[68] Panichella A. An Improved Pareto Front Modeling Algorithm for Large-
scale Many-Objective Optimization[C].The Genetic and Evolutionary
Computation Conference,2022.

[69] Tian Y, Cheng R, Zhang X, Cheng F, Jin Y. An indicator-based
multiobjective evolutionary algorithm with reference point adaptation for
better versatility[J]. IEEE Transactions on Evolutionary Computation, 2017,
22 (4): 609-622.

[70] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective
genetic algorithm: NSGA-II[J]. IEEE transactions on evolutionary
computation, 2002, 6 (2): 182-197.

[71] Li K, Chen R, Fu G, Yao X. Two-archive evolutionary algorithm for
constrained multiobjective optimization[J]. IEEE Transactions on
Evolutionary Computation, 2018, 23 (2): 303-315.

[72] Nebro A J, Durillo J J, Luna F, Dorronsoro B, Alba E. Mocell: A cellular
genetic algorithm for multiobjective optimization[J]. International Journal
of Intelligent Systems, 2009, 24 (7): 726-746.

[73] Sun Y, Xue B, Zhang M, Yen G G. A new two-stage evolutionary algorithm
for many-objective optimization[J]. IEEE Transactions on Evolutionary
Computation, 2018, 23 (5): 748-761.

[74] Liu Z-Z, Wang Y. Handling constrained multiobjective optimization
problems with constraints in both the decision and objective spaces[J].
IEEE Transactions on Evolutionary Computation, 2019, 23 (5): 870-884.

[75] Coello C a C, Cortés N C. Solving multiobjective optimization problems
using an artificial immune system[J]. Genetic programming evolvable
machines, 2005, 6 (2): 163-190.

[76] Zhang Q, Zhou A, Zhao S, Suganthan P N, Liu W, Tiwari S. Multiobjective
optimization test instances for the CEC 2009 special session and
competition[J]. University of Essex, Colchester, UK; Nanyang
technological University, Singapore, special session on performance
assessment of multi-objective optimization algorithms, technical report,
2008, 264: 1-30.

Mingcheng Zuo received the Ph.D. degree in the School of
Computer Science, China University of Geosciences
(Wuhan). He is currently a Lecturer in the Artificial
Intelligence Research Institute, China University of
Mining and Technology. His research interests include
computational intelligence and its application to integrated
energy system.

Dunwei Gong (SM’22) received the B.Sc. degree in
mathematics from China University of Mining and
Technology, Xuzhou, China, in 1992, the M.Sc. degree in
automatic control theory and applications from Beihang
University, Beijing, China, in 1995, and the Ph.D. degree in
control theory and control engineering from China
University of Mining and Technology, Xuzhou, China, in
1999, respectively. He is currently a Professor in
Computational Intelligence and the Director of the Centre

for Intelligent Software and Systems, School of Information Science and
Technology, Qingdao University of Science and Technology, Qingdao, China.
He has published over 200 journal papers, and obtained three awards issued by
Ministry of Education and Jiangsu Province, China, respectively, in recent
years. His research interests include computation intelligence in multi-objective

optimization, dynamic and uncertain optimization, as well as applications in
software engineering, integrated energy systems, big data processing and
parsing.

Yan Wang received the M.Sc. degree in computer science
and technology from the Anhui University, Hefei, China,
in 2020. She is currently pursuing the Ph.D. degree with
the School of Information and Control Engineering, China
University of Mining and Technology, Xuzhou, China.
Her research interests include intelligence optimization
and integrated energy system operation optimization.

Xianming Ye received his BEng and MEng degrees in the
Department of Automation, Wuhan University, China in
2008 and 2010, respectively. He completed his PhD degree
in Electrical Engineering from the University of Pretoria
in 2015. He is currently an Associate Professor and the
Junior Exxaro Chair in Energy Efficiency in the
Department of Electrical, Electronic and Computer

Engineering, University of Pretoria, South Africa. He is also a Certified
Measurement and Verification Professional. His research expertise lies in the
areas of building and industry energy system modelling and optimisation,
renewable energy, microgrids, P2P energy sharing, battery management
systems, explainable AI, and electric vehicles. He is a Guess Editor for IEEE
Transactions on Consumer Electronics, and an Associate Editor for IET
Renewable Power Generation.

Bo Zeng (S’10-M’14) received the Ph.D. degree in
Electrical Engineering from North China Electric Power
University (NCEPU), Beijing, in 2014. He is currently an
Associate Professor in the Department of Electrical and
Electronic Engineering of NCEPU, Beijing. His research
interests include integrated energy system optimization and
power distribution system planning.

Fanlin Meng received the Ph.D. degree in the School of
Computer Science, University of Manchester. He is
currently a Lecturer in the Alliance Manchester Business
School, University of Manchester. His research interests
include computational intelligence, game theory, smart
energy and mobility.

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2023.3243109

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

