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Learning Possibilistic Graphical Models from Data

Christian Borgelt and Rudolf Kruse

Abstract— Graphical models—especially probabilistic net- to describe the domain. In applications this presupposition
works like Bayes networks and Markov networks—are very s rarely met, though: databases are notoriously incomplete,
popular to make reasoning in high-dimensional domains feasible. while useful imprecise information (in the sense of a set of

Since constructing them manually can be tedious and time ibl | f ttribute) is f 1 ilable. H
consuming, a large part of recent research has been devoted to possible values for an attribute) is frequently available. Hence

learning them from data. However, if the dataset to learn from We face the challenge to extend the existing algorithms to
contains imprecise information in the form of sets of alternatives incomplete and imprecise data.

instead of precise values, this learning task can pose unpleasant Researchers in probabilistic graphical models try to meet
problems. In this paper we survey an approach to cope with these ;¢ challenge with approaches that are based on the expec-

problems, which is not based on probability theory as the more . NS .
common approaches like, e.g., expectation maximization, but usesation maximization (EM) algorithm [14], [3], [19]. Although

possibility theory as the underlying calculus of a graphical model. these approaches are promising, they suffer from the fact that
We provide semantical foundations of possibilistic graphical an iterative procedure is necessary to find proper values for the
models, expla}in the rationale _of possibilistic de_cpmposition as \{v_ell probabilities, the convergence of which can be slow and which
as the graphical representation of decompositions of possibility . nnqt he guaranteed to find the optimal values. Therefore we
distributions and finally discuss the main approaches to learn X ) . .
possibilistic graphical models from data. explore a different path in this paper, namely graphical models
that are based on possibility theory [23], [6], [8]. It turns out
that with this type of graphical models imprecise information
can be handled very conveniently and efficiently.
This paper is organized as follows: In section Il we briefly
. INTRODUCTION review the axiomatic approach to possibility theory [15] and
EASONING in high-dimensional domains tends to bentroduce our notation. In section Ill we discuss the seman-
infeasible in the domains as a whole—and the more §@s of possibility distributions and present the approach on
if uncertainty and imprecision are involved. As a consequengghich our theory of possibilistic graphical models is based.
decomposition techniques, which reduce the reasoning procgssection IV we review the ideas of graphical models and
to computations in lower-dimensional subspaces, have becomgsfer them to the possibilistic case. In section V we study
very popular. Decomposition based on independence relatigqggrning possibilistic graphical models from data by discussing
between variables, for example, has been studied extensiv@l¥ main ingredients of learning algorithms: search methods
in the field ofgraphical modeling55], [37], in which graphs and evaluation measures.
(in the sense of graph theory) are used to describe decom-
positions of multivariate distributions. Among the best-known
approaches are Bayes networks [40], Markov networks [36], Il. POSSIBILITY THEORY
and the more general valu.a.tlon-.based netwc_)rks [49]. All of Possibility theory can be developed axiomatically in direct
these approaches led to efficient implementations, for examghe

alogy to probability theory [15]. The fundamental notion is
HUGIN [1], PATHFINDER [27], and PULCINELLA [45]. apt;)ssibility measure

ez s graphl ol . comrehenne e i 1T e i sl space sy
b P gmnag asurell on € is a functionII : 2 — [0, 1] satisfying

main and because it allows us to draw inferences ef‘ficiently,ﬁ&e
is a powerful tool to do reasoning—as soon as it is constructedd) 11(9) =0,
Its manual construction by human experts, however, can be?) VE1, B2 € Q:TI(Ey U Ey) = max{II(E1), I1(Ez)}. D
tedious and time consuming. Therefore recent research ha¥hese axioms take the place of the well-known Kol-
focused on methods to learn graphical models from a databasegorov axioms of probability theory [32]. For general sample
of sample cases. Although some instances of this learning tagiaces2’ has to be replaced, as in probability theory, by a
have been shown to be NP-hard in the general case [13], [19]jtables-algebra and the second axiom has to be extended
there are several very successful heuristic algorithms [18), infinite families of events. However, in this paper we
[28], [21], [31]. confine ourselves to finite sample spaces. To the above axioms
Several of these approaches, however, are restricted to ledhe- requirementI(2) = 1 is often added, which expresses
ing from precisedata, i.e., the description of the sample cases normalization of the measure. We chose not to add it,
must not contain missing values or set-valued informatiobecause it is difficult to justify in our approach to semantics
There must be exactly one value for each of the attributes usEdoossibility measures.
- . , Note that—in analogy to probability theory—the whole
Christian Borgelt and Rudolf Kruse are both affiliated with the Department .
of Knowledge Processing and Language Engineering, Otto-von-GuericI@QSS'b'I'ty measure can be reconstructed from the degrees of
University of Magdeburg, Germany. possibility of the elementary events. Therefore it is useful to
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define a special function assigning these elementary or basiterpretation of the terms appearing in the theory. In proba-

degrees of possibility. bility theory, for instance, we have to provide an interpretation
Definition 2: Let  be finite sample space. Basic possi- of the basic notion of a probabilify.
bility assignmenis a functionr : Q — [0, 1]. O In the same way, if we plan to apply possibility theory, we
With a basic possibility assignmentwe have: have to provide an interpretation of the notion of a degree
of possibility. The main problem here is that in colloquial
VECQ: II(E)= max N{w}) = max 7(w). language the notion “possibility”, like “truth”, is two-valued.

Either an event, a circumstance etc. is possible or it is
Basic possibility assignments are often required to be ndmpossible. However, to interpretegreesof possibility, we
malized, i.e., it is required thaiw € Q : 7(Q) = 1. This need a quantitative notion. Thus our intuition, exemplified by
requirement leads to a normalized possibility measure. As fopw the word “possible” is used in colloquial language, does
the measure, we drop this condition. not help us to understand what may be meant by a degree of
Events, i.e., subsets of the sample sp&keare usually Possibility. Unfortunately, this fact is often treated too lightly
described by attributes and their values. These attributes Hréoublications on possibility theory. It is frequently difficult
introduced in the same way as in probability theory, namel9 pin down the exact meaning that is given to a degree of
as random variables. That is, attributes are functions mappip@ssibility, because the explanations provided are very vague
from the sample spac@ to some domain. With attributes weand conceptually unclear. Often one can find such strange and
can defingpossibility distributions—again in direct analogy to meaningless sentences like “The closeid = a) is to 1,
probability theory—as functions mapping from the domain ¢ghe more possible(!) it is that is the actual value ofd.,
a random variable to the intervil, 1]. These functions assignwhich are not meant atefinitionsof the termmore possible-
to each value the degree of possibility of the set of elementampich would be acceptable, though not very useful—, but as
events that are mapped to this value. Multivariate possibili§n explanationof the meaning of degrees of possibility.
distributions can be derived by introducing vectors of random To avoid such problems, we provide a precise interpretation
variables. However, such vectors lead to inconvenient notatioha degree of possibility, on which the theory of possibilistic
when it comes to computing marginal possibility distributiongletworks can be safely based. This interpretation consists
which we need below. Therefore we choose a different, though two components. The first is the context model [20] by

equivalent definition of a possibility distribution: which the degree of possibility of an elementary event is
Definition 3: Let Q be a finite sample space amdl = interpreted as therobability of the possibilityof this event

{Ay,...,A,} a set of attributes with respective domaingS it results from distinguishing a set of casescontexts

dom(4;), i = 1,...,n. A possibility distributionTyx on X Unfortunately, this interpretation cannot be extended directly

is a restriction of a possibility measuFeto those events that to (general) events without placing strong restrictions on the
can be defined by stating values for all attributesXin That contexts and the sets of values possible in them. Since these

is, mx = I|¢,, Where restrictions are usually not acceptable in applications, we rely
on a different approach as the second component. In this
Ex = {E € 20 ‘ Ja; € dom(Ay) @ ...3a, € dom(4,,) : approach the maximum operation is derived from a specific,

but frequently occurring reasoning task.
= (W)=a;s 4. O . :
E {w €e ‘/\AJ‘EX 45(w) aj}} Of course, there are also several other interpretations of

As in probability theory we abbreviate the description of thgegrefes Off FOSSIb”Ity' !5”;6’ Lor |r|]15tance;, the epistemic m;elr-
eventE by A, .y A; = a,”, With this definition, projec- pretation of fuzzy sets [57], the theory of epistemic states [51],

. / . . he theory of likelihoods [17], the interpretation of possibility
tions to subsets of attributes can easily be defined, because tt'l\]se)éimilarity, which is related to metric spaces [43], [44],

only reduce the number of terms in the conjunctions definir‘%d ossibility apreferencewhich is justified mathematicall
the events. In contrast to this, with a definition based on,a b Y ap J y

. . ; mparabl ibility relations [18]. However, di in
Cartesian product of the attribute domains, we would habg compa able possb ty relations [18]. However, discussing

) ) . . . hese interpretations and whether or how they can be used as
to use inconvenient index mapping functions to preserve t

association of attributes and values, because this associageoaSIS of possibilistic graphical models is beyond the scope

is brought about only by the position in the argument list 0 Pihis paper.
the distribution function.
Note that a basic possibility assignment can be seen as fheThe Context Model

possibility distribution for a specific random variable, namely As already indicated above, in the context model approach

the one, which has the sample spdeeas its domain. This to semantics of degrees of possibility [20] we distinguish a set

justifies the use of the lowercase for both a possibility of cases ocontexts These contexts may correspond to objects

distribution and a basic possibility assignment. or sample cases, to specific situations that are characterized
by physical frame conditions or to observers who estimate the

values of the descriptive attributes in a given situation. We
Il1. I NTERPRETATION OFPOSSIBILITY THEORY

If af | th d | df . . 1A brief survey of the three most common interpretations—logical, em-
~ It a formal theory, developed from an axiomatic apprloacgirical (or frequentistic), and subjective (or personalistic)—can be found, for
is to be applied to real world problems, we have to provide @ample, in [46].
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assume that we can state for each context a probability thatdntext. Thus we tolerate imprecisiosefsof possible values
occurs or that it is selected to describe an obtaining situatiqgrer context) only to that extend we are forced to by the
In addition, we assume that for each context we can state smtailable information. In this way we make the resulting basic
of values that are possiBildor the attributes used to describepossibility assignment as specific as possible, i.e., we make
the domain of interest. the bound on the underlying assignment of probabilities as

The context model can be formalized by the notion of tight as possible [8]. A justification for this strategy w.r.t.
random set A random set is simply a set-valued randondecision making can easily be derived from standard Dutch
variable: in analogy to a standard, usually real-valued randdyook arguments, showing that in the long run a betting strategy
variable, which maps the elementary events of a sample sphaged on the (true) probability of an event outperforms all
to numbers, a random set maps elementary events to tker strategies. Consequently, we should strive to get as close
subsets of a given reference set [38], [39], [29], [34]. to an assignment of probabilities as we can.

Definition 4: Let (C,2¢, P) be a finite probability space
and ) a non-empty set. A set-valued mappifig: C — 2

is called arandom set The setsl'(c), ¢ € C, are called the ) ) ) .
focal setsof T. O An unrestricted context model provides an interpretation

The setC, i.e., the sample space of the finite probabilit@nly for a basic possibility assignment. A direct extension of
space(C, 2, P), is intended to represent the contexts. A focdhe interpretation to (general) events is not possible, because
setI'(c) is the set of values that are possfole contextc. It the context model allows us to derive only
is often useful _to require all f_ocal sel¥c) to be non-empty, VECQ: maxr(w) < I(E) < min {17 Z W(w)}
in order to avoid some technical problems. weE

From a random set we can formally derive a basic pos- wek
sibility assignment by computing itsontour function[48] or but not thatII(E) must be equal to the lower bound. The
falling shadow{54] on the sef. That is, to each elemente lower bound is attained only if at least one elementfof
Q the probability of the set of those contexts is assigned, whiish contained in all focal sets supporting. However, if no

B. The Maximum Operation

are mapped to a set containing[34]. focal set contains more than one elementEhfthen we only
Definition 5: Let I : ¢ — 2 be a random set. Thieasic have the upper bound. The usual solution to this problem is
possibility assignment induced liyis the mapping to restrict the focal sets of the underlying random sets [16],

[2], namely to require them to beonsonan{34].
Q=01 wePHceClwel(9h). O " pefinition 6: Let T : ¢ — 22 be a random set witld' =

With this definition the informal characterization given{c;,...,c,}. The focal setsl(¢;), 1 < i < n, are called
above is made precis&he degree of possibility of an eventonsonantiff there exists a sequence,,ci,,...,¢;,, 1 <
is the probability of the possibility of the everite., the i;,...,4, <n,V1<j <k <mn:i; # i such that
probability of the contexts in which it is possible.

Note that a basic possibility assignment induced by a Pleiy) € T(ei) © .0 S T(eiy ) U
random set degenerates to a simple statement of possibigyitively, it must be possible to arrange the focal sets
and impossible events if there is only one context. In sUGl that they form a “(stair) pyramid” or a “(stair) cone”
a situation a possibility distribution is a merelation, which ¢ “nossibility mass” on€Q. In this picture the focal sets
is represented by itmdicator function On the other hand, if correspond to horizontal “slices”, the thickness of which
for each context there is exactly one possible value, then thgyresents their probability. With this picture in mind it is

induced basic possibility assignment degenerates to an assighky to see that requiring consonant focal sets is necessary
ment of probabilities to the elementary events. Consequenyg sufficient forvE € Q : II(E) = maxgcp m(w). In

th_e cprresponding possibility distribution is a probability disyqgition, the induced possibility measure is an upper bound
tribution. _ o . _ for the underlying unknown probability measure [16].

Note also that a basic possibility assignment is always ana|though consonant focal sets are very convenient to handle
upper bound for an assignment of probabilities to elementgfythematically, it has to be admitted that presupposing them
events, provided that there are no empty focal sets. The reagggy, clashes with the conditions obtaining in practice: We
is that with the context model we disregard the conditionghe|y find ourselves in a position in which the focal sets can
probabllltles of the values in a focal set given the corresponga arranged into an inclusion sequence. Consider, for example,
ing context (usually, because we do not know them). We tre@lset of observers who estimate the value of some magnitude
thgm as .|f they were 1, although they may be §maller. Frogg, intervals. Even if we assume that some of them estimate
this consideration it should be clear that it is desirable to ma5%|d|y and some more cautiously, so that we have intervals
the focal sets as specific as possible. Any value that can Beiffering size, the intervals need not form an inclusion
excluded, should be excluded, and if the available informati%quence: Some observers may tend to larger values while
permits us to split a context and assign probabilities to thgners tend to smaller ones. And, obviously, the situation is
sub-contexts and if in at least one of the resulting subyt improved by requiring that the correct value is contained
contexts fewer values are possible, then we should split theihe estimated intervals.

20f course, we use the word ™possible™ here in the colloquial sense, i.e., 1 N€S€ considerations show that teting modelinterpre-
as the opposite of "impossible™. tation of a degree of possibility [2] (since each observer can
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be seen as voting for a set of values and for each value the AT A, e
number of votes falling to it is counted), which is used to b‘; bz
justify the assumption of consonant focal sets, makes very by by
strong implicit assumptions about the behavior of the observers | 3 J c3
and the information available to them. Actually, we cannot see _‘_L 2 ECZ
how the consonance assumption can be founded semantically a1 as az as a1 as az as
without requiring that the same information is available to all by bs
observers and that they all use the same method, governed only by b2
by a “cautiousness parameter”, to estimate an interval from by by
this information. For example, they may all have to compute a \/ A %’cf’
confidence interval and may only choose the confidence level. € 1

Another possible solution to the problem outlined above
is to abandon the maximum operation and to work with tHeég. 1. A simple three-dimensional relation and its projections.
weak, but safe upper bound of the above inequality. Although
this approach may sometimes be feasible, it is clear that the o
amount of imprecision (to be measured, for instance, by tff¢ degrees of possibility of a (general) evefit namely
size of the focal sets) must be very small in order to keéE(E) = max,ep l({w}) = max,ep 7(w).
the value of the possibility measure below the cutoff value 1.
This is especially important if the events are large, i.e., if they IV. GRAPHICAL MODELS

contain many elementary events. Therefore we judge it to berhe pasic idea underlying graphical models is to exploit
pf Iittle_ vaI.ue: It pr.actically eliminates the ability to handlejngependence relations between variables in order to de-
imprecise information. compose a high-dimensional distribution—i.e., a relation, a

Our own solution to the problem ([6], [8]) is to restrictprobability distribution, or a possibility distribution—into a set
the context model/random set approach to basic possibilgy(conditional or marginal) distributions on lower-dimensional
assignments and to provide semantics for the maximum Gfitbspaces. This decomposition—and the independence rela-
eration by independent means. The rationale underlying Qi#ns that make it possible—is represented as a (directed or
approach is that calculi like probability theory and possibilityindirected) graph: There is a node for each attribute used to
theory, especially if they are employed in probabilistic angescribe the considered domain. Edges connect attributes that
possibilistic networks, are used to suppdgcision making are directly dependent on each other. The edges also indicate
That is, it is often the goal to decide @mme course of action the paths along which evidence has to be propagated, when
and to decide in such a way as to optimize the expected benﬁﬂferences are to be drawn from observations.

In analogy to probability theory the standard rule by which
we try to achieve this in possibility theory is to decide on th .
course of action corresponding to the event that has the high%‘stA Simple Example
degree of possibility (presupposing equal benefits; otherwise¥We start our exposition of the theory of possibilistic graph-
the respective benefits have to be taken into account). THigl models with a very simple example, which we discuss in
event can be “least excluded”, since the probability of tH@e relational setting first. That is, we consider a possibility
contexts in which it can be excluded is smallest, and hencedigtribution derived from a random set with only one context.
is the best option available. In this case the distribution is a simple relation (represented

If we take the goal to make such a decision into accoufly its indicator function), which only indicates whether a
right from the start, it modifies our view of the mode"ngcom_bmatlon of _attrlb_ute vglues is possible or not. The relation
and reasoning process and thus leads to different demaW§slike to consider is defined over three attributesB, and
on a measure assigned &etsof elementary events. TheC and is depicted in the upper left of figure 1: Each cube
reason is that we may no longer care about, for instan&@rresponds to a pqsslble comblnatlon of attribute values..
the probability of a set of elementary events, because in thePue to the simplicity of this example, we can draw in-
end we may have to decide @me We only care about the ferences about the modeled domain directly in this three-
possibility of the “most possible” elementary everntained di_mensional space. For instance, if we observe th_at the at-
in the set. Hence, if we want to rank two (general) event§ibute A has the valueas, we only have to restrict the
we rank them according to the best decision we can maflistribution to the “slice” corresponding to this value (i.e., we
by selecting an elementary event contained in them. Thug@ve toconditionit on A = a4) to infer that it must be either
is reasonable to assign to a (general) event the maximumdf= b2 or B = b, and eitherC' = ¢, or C' = cs.
the degrees of possibility assigned to the elementary event§lowever, the example relation has an interesting property,
contained in it, because it directly reflects the best decisi¥flich allows us to derive the same reasoning result in
possible if we are constrained to select from this edeps an entirely different way: It can be decomposed into two
a consequence, we immediately get the formula to Comp@[@aller relations from which it can be reconstructed. The

smaller relations are two of the three possible two-dimensional

3Such a constraint may be brought about by observations, which echLBEOjeCtions shown in figure 1, namely the p.roje_Ction to the
other, complementary events (see below). subspace scaffolded by and B and the projection to the
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a1 a2 a3 a4 [80]90]70] 70] numbers are
b3 a1 az az a4 parts per 1000
ba 40] 60[ 10] 60| b3 [80]
by 20| 10[ 20] 20| b2 [ 70]
;@, 30 ] 30| 20] 10| b; [90]
\ c2 40] 80] 10] 70 €3
C
J ! 30| 10| 70| 60
a1 az a3 aq ay a2 az a4 60| 60| 20| 10| €1 €2 C3
bs by bs [20]20] 10] 20 c2 20| 80| 60| by
by by b (30 10 40] 40 40| 70| 20| by
b ) b1 [80]90]20] 10 90|60 30] b1
1 1 a1 a2 a3z agq C1 a1 a2 a3 aq
¢ C; i C
o> (T 1 17 o b3 [20] 80] 10] 70 401 60] 20[ 60| c3
‘ ‘1 ‘ €1 bo [30] 10] 70] 60 60| 80] 70| 70| c2
by [80[90]20] 10 80| 90|40 40] c1

Fig. 2. Cylindrical extensions of projections and their intersection. Fig. 5. A three-dimensional possibility distribution with marginal distribu-

tions (maxima over rows/columns).

al a2 az a3 Cl1 C2 C3
HEN c 7
‘ extend proc - extension, intersection, and projection operations that involve
by project || extend| L1 b ly the sub ffolded d B and by B and
b A only the subspaces scaffolded by an and by B an
b2 %%% C. This justifies a network representation as it is shown in
e et figure 4: The edges indicate the paths along which evidence
has to be propagated.
Fig. 3. Propagating the evidence that attribdtdas valueas. Th_e ,?pProaCh outlined above can ea,S'Iy be tranSf.erre:d to the
possibilistic case. We only have to realize that a projection can
®—@—© be formalized by taking the maximum of the indicator function

describing the relation over the values of the removed attribute.

, _ For instance,
Fig. 4. Graph/network representation.

mT(A=a;,B="b;) =max7m(A=a;,B="0;,C=c).
Ck

subspace scaffolded b and C: The complete relation can Computing the intersection of the cylindrical extensions of
be reconstructed from these projections by intersecting thBfiejections (i.e., their natural join) can be formalized by
cylindrical extensions. This is demonstrated in figure 2. It c&#®mputing the minimum of the indicator functions describing
be seen that forming a cylindrical extension means to add BIf Projections. That is, in our example the full relation can
values of the missing dimension(s). The name of this operatiBf reconstructed using the formula

is very |nt'U|t|ve:'Sets are usue}lly sketch'ed as circles, and t(A=a;,B=b;,C=cy)

adding a dimension to a circle yields a cylinder. The result of .
intersecting the cylindrical extensions, shown on the bottom  — min{7(A = a;, B =b;),7(B = b;,C = c) }-

Igft, obviously coincides with the original relation shown infhe same formulae apply if we have more than one context
figure 1. (recall that we obtained a relation by assuming that there is

Note that this property of a relation is well-known ingnly one context) and thus have a general possibility distri-
database theory gsin-decomposability52], because the full pution. To illustrate this, figure 5 shows a three-dimensional
relation is reconstructed asretural join of the projections. possibility distribution, which can be decomposed—like the
It is easy to verify that a natural join is equivalent to apelation above—into thenarginal distributionson the sub-
intersection of cylindrical extensions of projections. spaces scaffolded byt and B and byB andC. Consequently,

Note also that, of course, not all relations are jointhe projection formula and the reconstruction formula are the
decomposable. However, if a relation is join-decomposabkame as in the relational case and thus we obtain an analogous
this property can be exploited in the reasoning process. Thigé@soning scheme.
demonstrated in figure 3. We assume again that the attribute This reasoning scheme illustrated in figure 6 for the same
has been observed to have the value By extending this example evidence we used above, namely the observation that
evidence to the subspace scaffolded/ynd B, intersecting A = ay. In the first step this evidence is extended cylindrically
it with the projection of the relation to this subspace, an@ the subspace scaffolded by and B and intersected with
finally projecting the result to the domain @, we obtain the projection to this subspace by taking the minimum. The
that it must be eitheB = b, or B = b3. In an analogous way result is projected to the domain d3. In the second step
we proceed on the right side and obtain that it must be eith@e degrees of possibility obtained for the valuesifare
C=cyorC =cs. extended cylindrically to the subspace scaffoldedfband C

It is easy to verify that any inference that can be drawn in ttend intersected with the projection to this subspace. The result
full three-dimensional relation can also be drawn using onig then projected to the domain 6f, yielding the degrees of
the projections. The reasoning scheme is always a sequencpasssibility shown in the top right of figure 6.
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a1 Az az a4 C1 C2 C3

[0 0] 0] 70]new old [80] 80] 60] Definition 9: Let II be a possibility measure on a finite
[80]90] 70] 70] old A ¢ new[20] 70] 60] sample spac€ and £, E> C Q. Then
min B max
l new new old column T I(E, | Ez) = (£ N Ey)
10 {7 . 2
bs 0555 70 max m 1212’3 %%% bs is the conditional degree of possibilitgf £, given £,. O
Y L m 06320 02 Of course, there are also other definitions of a conditional
b1 %% s m 205563 b1 degree of possibility, but only this definition fits the semantics
ai az az a4 c1 C2 €3 we outlined in the preceding section: Fixing an evety

constrains the set of contexts from which we have to determine
the degree of possibility of an eveft; to those contexts in
which E; as well asEs are possible. A renormalization as in
probability theory is not possible, because in general we do not
B. Decomposition know how fixing the event, affects the set of all contexts.

The above examples exploited two things, namely th§onsequently, we cgnnot determine a proper normalization
the relation shown in figure 1 as well as the possibilit{}aCtor' A rer_lprmgllzanon analogous to probab_lhty theory can
distribution shown in figure 5 are decomposable and th@fly Pe justified if the focal sets of the underlying random set
the decomposition can be represented by the graph show/@ifi consonant—an assumption we rejected in the preceding
figure 4. These are indeed the two fundamental ingredientsS§€ton- . _
the theory of graphical models, which we now study in more With _cond|t|onal_(_jegre(_es of possibility we can define the
detail. We start by giving a formal account of the notion df€Y notion of conditional independence:
decomposition, which is based on the notion of a marginal Pefinition 10: Let ¢ be a (finite) sample spacél a pos-

distribution, since marginal distributions are the component®ility measure on®, and A, B, and C' attributes with
of the decompositions we saw above. respective domaingom(A), dom(B), anddom(C). A andC

Definition 7: Let U = {A,,..., A,} be a set of attributes are calledconditionally possibilistically independegiven B,
and dom(A;) their respective domains. Furthermore, tgt Written ALy B | C, iff

Fig. 6. Propagating the evidence that attribdtéhas valueay.

be a possibility distribution ovel/. Then va € dom(A) : ¥b € dom(B) : Ve € dom(C) :
A A=a)= e, v A Ame)  MA=aB=bloo
e ol e — min{ll(A=a|C= ,T(B=b]C=0)}.0

is the marginal distribution of 7, over a setM c U Ofcourse, this definition is easily extended to sets of attributes.

of attributes, where the somewhat sloppy notation w.r.t. tHe1is specific notion of conditional possibilistic independence
maximum is meant to indicate that the maximum has to &Ca”edpossibiﬁstic non—intel’activit)[15]. As for the notion

taken over all values of all attributes A — M. I of a conditional degree of pOSS|b|||ty, there are other defini-
Definition 8: A possibility distribution =, over a sety tions, which we neglect here.

of attributes is calleddecomposablav.r.t. a family M = Conditional possibilistic independence can also be used

{M,..., M,,} of subsets of iff to derive a decomposition with conditional distributions by

drawing on a chain rule like formula, namely
Va; € dom(4,) :...Va, € dom(A4,,) :

i =a;) = mi A = 7‘)- o
o A A=) =iy A A=

A, eU

Vay € dom(A4,) :...Va, € dom(Ay) : A
H(/\:;lAz = ai) = Inln:;lH(AZ = a; /\;;1114] = CLj).

Note that these definitions are directly analogous to th&dbviously, this formula holds generally, since the term for
probabilistic counterparts: A marginal probability distribution = n in the minimum on the right is equal to the term on
is obtained by using a sum instead of the maximum ihe left. We now simplify the expression on the right by can-
definition 7. The corresponding decomposition formula for theeling “unnecessary” conditions, i.e., conditioning attributes,

probabilistic case is of which the conditioned attribute is independent given the
remaining attributes. We can do so, because from, for example,
Ya, € dom(4;) :...Va, € dom(A,) : Allp B | C we can infer that
pU( N Ai= “i) = 11 ‘z’M( A A= “) VYa € dom(A) : Vb € dom(B) : Ve € dom(C) :
A, eU MeM AeM

(A=a|B=0b,C=c)

The functions¢,; can be computed from the marginal distri- — min{Tl(A=a|C =), TI(B=bC=c)}

butions on the setd/ of attributes. These functions are called

factor potentials[9]. With formulae like this one we can cancel conditions if we
Alternatively, a decomposition of a multivariate distributiorproceed in the order of descending valuesiofThen the

can be based on conditional distributions. This is achievg@conditional possibility in the minimum can be neglected,

with the following definitions: because among the remaining, unprocessed terms there must
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be one that is equal to it or refers to more attributes and thusl) every node with converging edges either iZror has

restricts the degree of possibility more. a descendant i,
Note that this decomposition also has a probabilistic coun-2) every other node is not i#.
terpart, based on the chain rule of probability: These separation criteria are used to defiorditional inde-

pendence graph# graph is a conditional independence graph
w.r.t. a given multivariate distribution if it captures by node
/\i_lAj :aj). separation only correct conditional independences between
J=1 sets of attributes. That is, i separatesX andY, then X
dY must be conditionally independent giveh
Formally, the connection between conditional independence
%’raphs and graphs that describe decompositions is brought
about by a theorem that shows that a distribution is de-
Ya € dom(A) : Vb € dom(B) : Ve € dom(C) : composable w.rt. a given graph if and only if this graph
P(A=a,B=b|C =) is a conditional independence graph of the distribution. For
’ the probabilistic setting, this theorem is usually attributed to
= P(A=a[C=¢)-P(B=b|C=0), [25], where it was proved for the discrete case, although

Vay € dom(44) :...Va, € dom(A,,) :
P(/\i:1Ai = ai) = Z];[P(Al = a;

As in the possibilistic case this decomposition may be 5|mpﬁ1-
fied by canceling conditions. Furthermore, conditional prob
bilistic independence,

is analogous to conditional possibilistic independence, (according to [37]) this result seems to have been discovered
in various forms by several authors. In the possibilistic setting
Va € dom(A) : Vb € dom(B) : Ve € dom(C) : similar theorems hold, although certain restrictions have to be
M(A=a,B=0b|C=c) intrqduced [23], [6], [8]. _ _ _
— min{ll(A=a|C=c),I(B=b|C=c)} Fmally,_the graph underlying a graphlc_al modgl is very use-
ful to derive evidence propagation algorithms, since evidence
(cf. definition 10). propagation can be reduced to simple computations of node

processors that communicate by passing messages along the
edges of a properly adapted graph. We confine ourselves here
to the illustration given by the examples studied above (cf.

Graphs (in the sense of graph theory) are a very convenigglre 3 and 6). A detailed account can be found, for instance,
tool to describe decompositions if we identify each attribuig [9).

with a node. In the first place, graphs can be used to specify the
setsM of attributes underlying the decomposition. How this is

done depends on whether the graph is directed or undirected. ) ) _ )
If it is undirected, the setd/ are the maximal cliques of the Having reviewed the ideas underlying graphical models, we

graph, where a clique is a complete subgraph and it is maxinfQW turn to Iearnmg_ them from a database of sample cases.
if it is not contained in another complete subgraph. If the gragiiere are three basic approaches:

is directed, we can be more explicit about the distributions in « Test whether a distribution is decomposable w.r.t. a graph.
the decomposition: We can use conditional distributions, since This is the most direct approach. It is not bound to
we may use the direction of the edges to specify which is the a graphical representation, but can also be carried out
conditioned attribute and which are the conditions. We do so W.r.t. other representations of the subsets of attributes
by identifying the parents of an attribute with its conditions ~ used to compute the (candidate) decomposition of the
in a chain rule decomposition. distribution.

Secondly, graphs can be used to describe (conditional} Find a cond. indep. graph by cond. independence tests.
dependence and independence relations between attributes via This approach exploits the theorems mentioned in the pre-
the notion ofseparationof nodes. What is to be understood by ~ ceding section, which connect conditional independence
“separation” depends again on whether the graph is directed graphs and graphs that describe decompositions. It has
or undirected. If it is undirected, separation is defined as the advantage that by a single conditional independence
follows: If X, Y, and Z are three disjoint subsets of nodes  test, if it fails, several candidate graphs can be excluded.
in an undirected graph, thefi separates( from Y iff after ~ « Find a graph by measuring the strength of dependences.
removing the nodes i and their associated edges from the ~ This is a heuristic, but often highly successful approach,
graph there is no path, i.e., no sequence of consecutive edges, Which is based on the frequently valid assumption that

C. Graphical Representation

V. LEARNING GRAPHICAL MODELS FROMDATA

from a node inX to a node inY. Or, in other words,Z in a conditional independence graph an attribute is more
separatest from Y iff all paths from a node inX to a node strongly dependent on adjacent attributes than on at-
in Y contain a node irZ. tributes that are not directly connected to it.

For directed graphs, which have to be acyclic, the so-calledNote that none of these methods is perfect. The first
d-separation criterionis used [40], [53]: If X, Y, andZ are approach suffers from the usually huge number of candidate
three disjoint subsets of nodes, th&ns said tod-separateX graphs. The second often needs the strong assumption that
from Y iff there is no path, i.e., no sequence of consecutithere is a perfect map, where a perfect map is a conditional
edges (of any direction), from a node X to a node inY independence graph that captura$ conditional indepen-
along which the following two conditions hold: dences by node separation. In addition, if it is not restricted
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. a1 a2 a3 a4 5. a1 a2 az a4
to certain types of graphs (for example, polytrees), one has o b by
test conditional independences of high order (i.e., with a large b Q b
number of conditioning attributes), which tend to be unreliable by by
unless the amount of data is enormous. The heuristic chara c3 | c3
of the third approach is obvious. Examples in which it fails e’ e e L1 e
can easily be found, since under certain conditions attributgs a1 as as a4 6. aj az as a4
that are not adjacent in a conditional independence graph can b3 b3
exhibit a strong dependence [6], [8]. b2 @\ ba

A (computationally feasible) analytical method to construct b1 b1
optimal graphical models from a database of sample ca @ | 7@63 @ ‘ o
C1 L

C1

has not been found yet, neither for the probabilistic nor for

the possibilistic case. Therefore an algorithm for learning & a1 az a3 a4 7. a1 az a3 a4
graphical model from data usually consists of b b

1) anevaluation measurand ® Z? @) Zf

2) asearch method | 3 ‘ s
With the former the quality of a given network is assesses e ‘ID/QCQ e e ‘ AS
the latter is used to traverse the space of possible networks. a1 as a3 a4 8 a1 as as a4

It should be noted, though, that restrictions of the search vaway.wav b3
space introduced by an algorithm and special properties of 0 bo @\ ba
the evaluation measure used sometimes disguise the fact that b1 b1
a search through the space of possible network structure@ e Co 3 ‘ ol
carried out. For example, by conditional independence tests = ‘ Cl

all graphs missing certain edges can be excluded without , _ _ _
inspecting these graphs explicitly. Greedy approaches try Rg 7 All eight possible graphs and the corresponding relations.
find good edges or subnets and combine them in order to

construct an overall model and thus may not appear to be . . .
searching. Nevertheless the above characterization is apt, si faph 3 (I:agnottgescrlbeha iec;mpod3|gon1._hNote That th';.tresu:t
an algorithm that does not explicitly search the space 0 exciudes e graphs 1, 4, and 7. The only conditiona

possible networks usually carries out a (heuristic) search Oﬁng:ge;dter:]r;cerrar: gosesohor:d:sgg [Algm‘o?rr]r?althzssgvr'?hi:nt\gse d
different level, guided by an evaluation measure. For examp ! grap W ve. gor

some greedy approaches search for the best set of parents o%ﬁ: opdnmgal m;jependencel thts mc’;y consftruc.:t "’tl graph Agy
attribute by measuring the strength of dependence on candi oving edges from a complete graph, see, for instance, [41]

. " . 8].
parent attributes; conditional independence test approaches’ [ . . ,
search the space of all possible conditional independenc n the third approach, we are looking for attributes that are
statements strongly dependent. An intuitive measure of the strength of

(relational) dependence of two attributes is how severely the
set of possible values of one attribute is restricted if the value

A. A Simple Example of the other becomes known. Obviously, the restriction is the

In order to illustrate the ideas underlying the differenmore severe, the fewer possible value combinations (i.e., tuples
approaches, we turn again to the simple relational example imethe projection) there are. In order to be able to compare
discussed above. Suppose that we are given the relation shélwe measure for different attributes, which may have different
in figure 1 and that we want to determine a graphical mod&lymbers of possible values, we compute the relative number
which describes an exact or, at least, a good approximafetuples w.r.t. the size of the subspace scaffolded by the
decomposition of this relation. In the first approach, we simpBttributes.
compute the relations that correspond to every possible graptf we apply these considerations to the example relation
and compare it to the original relation. This is demonstratetiudied above, we can set up table I, which shows the relative
in figure 7. Apart from the complete graph, which consists @fumber of possible value combinations for all three possible
only one clique and thus always exactly represents the relatibup-dimensional subspaces. If we select those subspaces, for
because there is no decomposition, graph 5 exactly reprodusdsich this number is smallest (formally, we may apply the
the relation. Hence this graph gets selected as the learnifmgiskal algorithm [35] to construct a minimum spanning tree),
result. we find exactly those projections that are a decomposition of

In the second approach we check (conditional) indepetite relation. Hence we find again the optimal graphical model,
dences that are indicated by a given graph. If a condition@mely graph 5 of figure 7.
independence does not hold, the graph has to be discardedNote that another way to justify the dependence measure
For example, graph 3 in figure 7 indicates thatll B | f. used above is the following: If a set of projections is not an
However, this is not the case, because itr{sd = a;, B = exact decomposition, then the intersection of the cylindrical
bs) = 0, but 7(A = a;) = 1 and7(B = b3) = 1 and extensions will contain additional tuples, which are not con-
hencemin{m(A = a;),m(B = b3)} = 1. As a consequence, tained in the original relation. There can never be fewer tuples,
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TABLE |

more complicated. As already mentioned above, probabilistic
RELATIONAL SELECTION CRITERIA FOR SUBSPACES

approaches usually rely on some version of the EM algorithm
subspacerelative number of | gain in _ [14] in this case, which is a rather expensive procedure.
possible combinationsHartley information . psps s .
For learning possibilistic networks from data we first have

6 _ 1 _ 12 _ ; . -

;‘ x g 127 2 503 1°g2 5 ! to specify how a database is related to a possibility measure.
x 12737 67% 082 ERN 0.58 However, with the context model approach this is straightfor-

BxC | g =g ~5% log, & ~0.85

ward: We simply interpret each tuple of a given database of
sample cases as derived from a context. Consequently, each
tuple corresponds to a focal set and thus may be imprecise,

because the reconstruction formula prescribes to compute k§e it may stand for a set of possible precise tuples. Hence
minimum of marginal distributions, which were obtained bfiealing with imprecise information becomes extremely simple.
taking maxima. Hence the right hand side of the reconstructionNevertheless, we face some problems in the possibilis-
formula can never be less than the left hand side, even if tf@ Setting, too, because we can no longer apply naive
subsets of attributes used do not yield an exact decompositiBigthods to determine the marginal distributions. Consider,

If using sets of attributes that do not yield a decompositidR" €xample, the three imprecise tuplefu, a2, as}, {bs}),
leads to additional tuples, we can find a decomposition (if@1,a2},{b2,bs}), and ({as,as},{b:}), each of which rep-
there is one), by minimizing the number of tuples in th&esents all precise tuples that can be formed by selecting one
intersection of the cylindrical extensions of the projectionyalue from each of the sets it consists of. Suppose that each
And if there is no exact decomposition, this will give udf these tuples corresponds to a context having a probability
at least a good approximation. Now it is plausible that tH&f 5 and try to compute the marginal degrees of possibility
intersection has the fewer tuples, the fewer tuples there ardf@h the valuesa,. It is easy to check that neither the sum of
the cylindrical extensions. And, of course, there are the fewd€ Probabilities of the contexts, in which a given value is
tuples in the cylindrical extensions, the fewer tuples there ap@ssible, nor their maximum vyields the correct result in all
in the projections. Hence we should strive for projections witfgses: For the value, the maximum is incorrect and far
as few tuples as possible. the sum is incorrect. _ _ _

Of course, when doing so, we should take care of the Fortunately, there is a simple preprocessing operation by
number of tuples thatould bein the projection, i.e., the size Which the database to learn from can be transformed, so that
of the subspace projected to. If we counted only the nump@mPuting maximum projections becomes trivial [3], [6], [8].
of tuples, we would tend to select projections to subspacEgiS operation is based on the notion@ésure under tuple
scaffolded by few attributes and by attributes having only fe{ptersection That is, we add (possibly imprecise) tuples to the
values. Therefore it is better to strive for projections in whicAatabase in order to achieve a situation, in which for any two
the relative number of tuples w.r.t. the size of the subspace!iles from the database theitersection(i.e., the intersection
as small as possible. of the represented sets of precise tuples) is also contained in

Note, however, that both arguments we gave are ont@/e database. For this enhanced database the following theorem
plausible. Counterexamples can easily be given [6], [8]. Nebolds:

ertheless, the resulting procedure is a very promising heuristic! '€orem 1:Let D be a database of sample cases over a
method that often leads to good results. setU of attributes, consisting of a s&tof (possibly imprecise)

tuples and a functiomw : R — IN, which assigns to each tuple
the number of occurrences of the tuple. Furthermore Rfet

B. Computing Marginal Distributions be the closure of? under tuple intersection and* : R* — IN
From the example studied above, it is clear that a badle defined as

operation that is needed to learn a graphical model from w*(r) = Z w(r).

a dataset of sample cases is a method to estimate from s€R,rCs

the dataset the marginal or conditional distributions of Bhen for any precise tupleover a subse C U
candidate decomposition of the distribution. Such an operation max w* (r)

is necessary, because the marginal and/or conditional distribu- —SECW = ) i O(t) # 0,
tions are needed to assess the quality of a given candidate mx(t) = 2isen )

. . ) . 0, otherwise,
graphical model, especially, if we are using the approach that
constructs a model by measuring the strengths of dependenttéd C(t) = {c € R* |t C c|x}. U
of attributes. The proof can be found in [5], [6], [8]. As a consequence we

In the probabilistic setting and especially in the discre@n compute any marginal distribution by determining for each
case it is very simple to estimate marginal distributions frof@int of the subspace the maximum of the weights (values of
a database of sample cases: Simply count for each point%?_) of those tuples in the enhanced database that are projected
the subspace the number of tuples that are projected tdaitit.

(projected in the relational sense) and then do maximum likeli-

hood estimation, possibly enhanced by Laplace correction. ©f Evaluation Measures

course, this method presupposes that the tuples are complet&n evaluation measureserves to assess the quality of a
and precise. If we consider imprecise data, things becomigen candidate graphical model w.rt. a given database of
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a1 a2 az aq

Hartley information needed to determine 1 141 11 1=0

b coord.:  logy 4+ logy 3 = log, 12 ~ 3.58 » 0gz 1 +logy 1 —log, 1 =
b ir: ~
2 coord. pair: log, 6 2.58 log, 2 + log, 2 — log, 3 ~ 0.42
by gain: logy 12 — logy 6 = logy 2 =1 as

log, 3 + log, 2 — log, 5 = 0.26

Fig. 8. Computation of Hartley information gain. a2
log, 4 4 log, 3 — log, 8 ~ 0.58
o —— g2 g2 g2
V4 log, 4 + log, 3 —log, 12 =0

sample cases, so that it can be determined which of a set of ¢’
candidate graphical models best fits the given data. An exam-

ple of an evaluation measure is the number of additional tupldg 9 A possibility distribution can be seen as a set of relations.
in the relation represented by a given graph (cf. figure 7). In

this case the algorithm should should strive to minimize the ) . .
measure. The idea underlying this measure is as follows: Suppose we

A desirable property of an evaluation measure is decompdé@nt to determine the actual values of the two attributes
ability, i.e., the total network quality should be computable &1d B- Obviously, there are two possible ways to do this: In
an aggregate (e.g. sum or product) of local scores, for exammg first place, we c_ouId dgtermme the vglue of each attribute
a score for a maximal clique of the graph to be assessedSgParately, thus trying to find the “coordinates” of the value
a score for a single edge. Most such evaluation measures GfgPination. Or we may exploit the fact that the combinations
based on measures of dependence, since for both the secdfigrestricted by the relation shown in figure 8 and try to
and the third basic approach listed above it is necessarydt%term'”e th_e comb|r_1at|0n directly. In the former case we need
measure the strength of dependence of two or more attribut®€ Hartley information of the set of values ef plus the
either in order to test for conditional independence or in ordbfartiey information of the set of values @3, i.e., log, 4 +
to find the strongest dependences. Here we confine ourseliigg 3 ~ 3.58 bits. In the latter case we need the Hartley
to measures that assess the strength of dependence of Rffymation of the possible tuples, i.gog; 6 ~ 2.58 bit, and
attributes in the possibilistic case. The transfer to conditionijus 9ain one bit. Since it is plausible that we gain the more

tests (by computing a weighted sum of the results for ihits, the more strongly dependent the two attributes are, we

different instantiations of the conditions) and to more thafi@y use the Hartley information gain as a direct indication of

two attributes is straightforward. the strength of dependence of the two attributes.

Possibilistic evaluation measures can easily be derived byNOte that the Hartley information gain is closely related to
exploiting the close connection of possibilistic networks tH1€ relative number of value combinations, which we used in
relational networks (see above). The idea is to draw dfi€ Simple example above: It is the binary logarithm of the
the a-cut view of a possibility distribution. This concept isféciprocal value of that number.
transferred from the theory of fuzzy sets [34]. In thecut In the possibilistic case the Hartley information gain is gen-
view a possibility distribution is seen assat of relationsvith ~ eralized to thespecificity gain[22], [4], [6], [8] as a measure
one relation for each degree of possibility The indicator of possibilistic dependence (cf. figure 9): It is integrated over
function of such a relation is defined by simply assigning &l a-cuts of a given possibility distribution.
value of 1 to all tuples for which the degree of possibility is

sup m
no less tharx and a value of 0 to all other tuples. It is easy t@gain(A, B) = / log, (Z[w]a(A = a))
see that a possibility distribution is decomposable if and only 0 a

if each of thea-cut relations is decomposable. Thus we may .
derive a measure for the strength of possibilistic dependence + logy (ZW“(B n b))

of two variables by integrating a measure for the strength of ’

relational dependence over all degrees of possihility — log, (Z[w]a(A =a,B = b)) dao.
To make this clearer, we consider a simple example. Fig- a,b

ure 8 shows a simple relation over two attributésand B: Anoth h to deri for th h of
The grey squares indicate the tuples contained in this relation: nother approach to derive a measure for the strength o

We can measure the strength of dependence ahd B by possibilistic dependence starts from the observation that the

computing theHartley information gain26], which is closely mh'n'mlr‘]m ,OT mgfglnsl POSS'?"';‘V d|str.|il;)ut|ons ca_nndot be éess
related to the intuitive measure used above: than the joint distribution. If the attributes are independent,

then the minimum of the marginals coincides with the joint

Ig(iime” (A, B) distribution (see above). Hence we may measure the strength
. . . of dependences by summing the (square of) the difference be-
= log (Z R(A = a>) +logy (Zb: R(B = b)) tween the minimum of the marginals and the value of the joint

¢ distribution [6], [8]. Like the specificity gain, this measure
— log, (ZR(A =a,B= b)) is the larger, the more strongly dependent the attributes are.
a,b Note that this measure is closely related to fffemeasure of
~ log, (X, R(A=a)) (>, R(B=0)) classical statistics, which may be used to learn a probabilistic

>ap R(A=0a,B=0) ' graphical model.
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1 — dam correct?

Surveys of other evaluation measures—which include prob- '@‘ ﬂ 2 — sire correct?
abilistic measures—can be found in [4], [6], [8]. % 3 — stated dam phenogroup 1

@ 4 — stated dam phenogroup 2
D. Search Methods é

5 — stated sire phenogroup 1
As already indicated above, a search method determines

©
©)

6 — stated sire phenogroup 2
7 — true dam phenogroup 1
8 — true dam phenogroup 2

©
PO
G

which graphs are considered in order to find a good graphical @9\\ (1 1?) :ttrr‘dz e Eueeﬂggig‘dg 2
model. Since an exhaustive search is impossible due to the / 11 — offspring phenogroup 1
huge number of graphs heuristic search methods have to 12 — offspring phenogroup 2
be used. Usually these heuristic methods introduce strong ,/rg%\\\ 13— oftspring genotype
restrictions w.r.t. the graphs considered and exploit the value (? 15 — factor 41

of the evaluation measure to guide the search. In addition they 16 — factor 42

are often greedy w.r.t. the model quality. @ 17 —factor 43

. : . . . 18 — lysis 40
The simplest instance of such a search method is, of coursg attributes with 2 to 8 values. 19 — |ysis 41

the Kruskal algorithm [35], which determines an optimumThe grey nodes correspond to 20 — lysis 42

weight spanning tree for given edge weights (see above). ThRPServable attributes. 21 - lysis 43

algorithm has been used very early in the probabilistic Sefy. 10. Domain expert designed network for the Danish Jersey cattle blood

ting, using theShannon information gaialso calledmutual type determination example.

information or cross entropy of the connected attributes as

edge weights [11]. In the possibilistic setting, we may simply

replace the Shannon information gain by ®mecificity gain compute the specificity gain/sum of (squared) differences for

[22] or the sum of (squared) differences [6], [8] in order tthis pseudo-attribute and the child attribute.

arrive at an analogous algorithm. A drawback of the greedy parent selection is that it may lead
A natural extension of the Kruskal algorithm is a greedio a graph that is not well suited for evidence propagation. The

parent selection for directed graphs, which is often carrigdason is that a directed graphical model is often preprocessed

out on a topological order of the attributes that is fixed im order to simplify the evidence propagation, namely by turn-

advance: At the beginning the value of an evaluation measuiiag it into a so-calledoin tree [36], [9]. This transformation

is computed for a parentless child attribute. Then in turn eativolves adding edges to the model and thus may lead to a

of the parent candidates (the attributes preceding the childnmore complex evidence propagation than the original graph

the topological order) is temporarily added and the evaluatisnggests. An approach to overcome this drawback has been

measure is recomputed. The parent candidate yielding #heggested in [6], [7], [8]: The idea is to skip the construction

highest value of the evaluation measure is selected asfea directed graphical model and to learn directly a join tree.

first parent and is permanently added. In the third step eathe learning algorithm is based on simulated annealing and

remaining parent candidate is added temporarily as a secdwas lead to promising results, especially in the possibilistic

parent and again the evaluation measure is recomputed. s&fting.

before, the parent candidate that yields the highest value of the

evaluation is permanently added. The process stops if either V1. AN EXAMPLE APPLICATION

no mor ren ndi re availabl iven maximum . o .
0 more parent candidates are available, a give aXiMUMy s an example of a possible application of learning pos-

_number of parents is reached, or none .Of the parent Candidag%ﬁstic networks we consider the problem of blood group
if added, yields a value of the evaluation measure exceed@g[ermmation of Danish Jersey cattle in the F-blood group

the best value of the preceding step. sgstem [42]. For this problem there is a Bayesian network

This search method has been used in the well-known K2 af-". L . .
gorithm [12], which constructs a Bayesian network (a directe directed probabilistic network) designed by human domain

probabilistic network) from a database of sample cases. Tﬁgzerts, which serves the purpose to verify parentage for

. . igree registration.
evaluation measure used has become known akK2hmetrig 9 9

hich was later aeneralized to tgavesian-Dirichlet metric The section of the world modeled in this example is
which w 9 12 yes i ' Idescribed by 21 attributes, eight of which are observable. The

[2.8]' Of course, in the p035|b|l|s_t|c seFtlng we may alls.o.appgize of the domains of these attributes ranges from two to eight
this greedy search method, again relying on the specificity 9N

or on the sum of the (squared) differences as the evaluati dlues. The total frame of discernment (s 30 -6 - 8% =
(sq ) W's76 046 336 possible states. This number makes it obvious

measure. In Ord‘?r to handle mu_ltiple parent attribute_s with {h t the knowledge about this domain must be decomposed in
we simply combine all parents into one pseudo-attribute aBfder to make reasoning feasible, since it is clearly impossible

to store a probability or a degree of possibility for each

There are () possible undirected graphs oveattributes. In our simple state. Figure 10 lists the attributes and shows the conditional
example we could carry out an exhaustive search only, because we had mere

three attributes. |nc¥ependenf:e graph of the Baye'silan ne'mork.
5A topological order is an order of the nodes of a graph such that all parentAs described above, a conditional independence graph

nodes of a given node precede it in the order. That is, there cannot be an egggbles us to decompose the joint probability distribution
from a node to another, which precedes it in the topological order. By fixin

a topological order in advance, the set of possible graphs is severely restrié&@ a product of Condi.tional p_rOb?-bilities' In the D?-niSh
and it is ensured that the resulting graph is acyclic. Jersey cattle example, this factorization leads to a considerable
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TABLE I TABLE IV
AN EXAMPLE OF A CONDITIONAL PROBABILITY DISTRIBUTION THAT IS EVALUATION OF LEARNED POSSIBILISTIC NETWORKS
ASSOCIATED WITH THE NETWORK SHOWN IN FIGURELQ. network edges params. min. avg. max.
indep. 0 80 | 10.064 | 10.160 | 11.390
sire true sire stated sire phenogroup 1 ref 22 308 9.888 9.917 | 11.318
correct| phenogroup 1| F1 V1 . - - -
tree Sgain 20 415 | 8.878 | 8.990 | 10.714
yes F1 1 0 0 .
yes Vi o 1 0 treed, » 20 462 | 8.662 | 8.820 | 10.334
ves V2 0 0 1 dag Sgain 31 1630 | 8524 | 8.621| 10.292
no F1 0.58 0.10 0.32 dagd, » 36 1488 | 8.154 | 8.329 | 10.200
no V1 0.58 0.10 0.32 :
no V2 0.58 0.10 0.32 sian 20 332 | 8.318| 8589 | 10.172
TABLE Il of NEtwork Structures§. Evaluations of the learned networks
AN EXTRACT FROM THE DANISH JERSEY CATTLE DATABASE. showed that the learning task was successfully solved and
nyyflv2flv2flv2aflvv2v2va2nynyos6oe thatthe quality of the networks is comparable to that of
nyyflvy2 = = f] y2 # # # * flyD y yny7607 learned probabilistic networks and the (probabilistic) reference
nyyflv2fl flflv2fl fl flfl fiflil yynn?7700 structure w.r.t. reasoning.
nyyflv2flflflv2afl fiflifl fiiyynn7700 : . it "
nyyflveflviflv2 flviv2fl fivayyny7707 As an |IIustr§t|_o_n,_tabIe v shoyvs some res ItSmde_p.
nyyflfl**flfl **f f fifl yynn6®600 means a possibilistic network with isolated nodes (i.e., no
nyyflvl**flvl***vyvlIv2viv2nyyyO0545 wenf “ ”
Ny y vz flvifluz flvi flvifviyyyy7767 edges), “ref.” the reference structure. “tree” means that an

optimum weight spanning tree was constructed, “dag” that a
directed acyclic graph was learned by greedy parent selection.
“sian” refers to the simulated annealing approach mentioned
. N . above, using a penalty on the number of parametefs.i,”
simplification: Only 308 conditional probabilities have to bgneans that specificity gain was used as the evaluation measure,
specified. An example of a conditional probability table, WhicQX2 that a possibilistic analog of the? measure was used (see
is part of the factorization, is shown in table IlI. It states tthove). The second column of the table lists the number of
conditional probabilities of the phenogroup 1 of the stated sié@ges of the model, the third the number of parameters (i.e.,
of a given calf conditioned on the phenogroup 1 of the true sifgge number of degrees of possibility that have to be stored).
and whether the sire was correctly identified. The probabilitigfe |ast three columns list evaluations of the network w.r.t. the
in this table are derived from statistical data and the experienggabase, which were computed as follows: For each (possibly
of human domain experts. imprecise) tuple of the database the minimum, the average, and
Besides the domain expert designed reference structure tHbeemaximum of the degree of possibility of the precise tuples
is a database of 500 real world sample cases (an extractcofmpatible with it is computed. Then these values are summed
this database is shown in table 1ll). This database can be uswer all tuples in the database. The smaller these numbers, the
to test learning algorithms for graphical models, because thetter the network.
guality of the learning result can be determined by comparingThat the reference structure yields bad results is due to the
it to the reference structure. However, there is a problefact that it is a Bayesian network and therefore employs a
connected with the database, namely that it contains a failifferent notion of conditional independence. The simulated
large number of unknown values—only a little over half ofinnealing approach yields the best result, especially, if the
the tuples are complete (This can already be guessed from nim@del complexity is taken into account. It has the advantage
extract shown in table Ill: the stars denote missing values)that it needs no topological order like the greedy parent search,
'er., no background information that has to be provided by a

As already indicated above, missing values make it diffic
wman expert.

to learn a Bayesian network, since an unknown value can
seen as representing imprecise information: It states that all
values contained in the domain of the corresponding attribute VIl. CONCLUSIONS

are possible. Nevertheless it is still feasible to learn a Bayesianp this paper we surveyed possibilistic graphical models and
network from the database in this case, since the depe”derlﬁﬁ%oaches to learn them from a database of sample cases as an
are rather strong and thus the remaining small number of tuplggernative to the better-known probabilistic approaches. Based
is still sufficient to recover the underlying structure. Howevegy, the context model interpretation of a degree of possibility
learning a possibilistic network from the same dataset is Mu@la showed that imprecise information is easily handled in
easier, since possibility theory was especially designed dQch a possibilistic approach. W.r.t. learning algorithms a lot of
handle imprecise information. Hence no discarding or specighrk done in the probabilistic counterpart of this research area
treatment of tuples with missing values is necessary.

In order to check this Conjecture we implemented the lear 5The source code of this program can be retrieved free of charge at
. . ' . . _.._http://fuzzy.cs.uni-magdeburg.de/"borgelt/software.html
ing methods discussed above (together with their prObab'“St'OShell scripts and datasets for the reported results can be found

counterparts) in a prototype program called INES (Inductidittp:/fuzzy.cs.uni-magdeburg.de/books/gm/software.html

at
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can be transferred. In general all search methods are dire¢zbj
usable, only the evaluation measures have to be adapted.
Experiments done with an example application showed that
learning possibilistic networks from data is an important

alternative to the established probabilistic methods. (23]

(24]
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