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Learning Possibilistic Graphical Models from Data
Christian Borgelt and Rudolf Kruse

Abstract— Graphical models—especially probabilistic net-
works like Bayes networks and Markov networks—are very
popular to make reasoning in high-dimensional domains feasible.
Since constructing them manually can be tedious and time
consuming, a large part of recent research has been devoted to
learning them from data. However, if the dataset to learn from
contains imprecise information in the form of sets of alternatives
instead of precise values, this learning task can pose unpleasant
problems. In this paper we survey an approach to cope with these
problems, which is not based on probability theory as the more
common approaches like, e.g., expectation maximization, but uses
possibility theory as the underlying calculus of a graphical model.
We provide semantical foundations of possibilistic graphical
models, explain the rationale of possibilistic decomposition as well
as the graphical representation of decompositions of possibility
distributions and finally discuss the main approaches to learn
possibilistic graphical models from data.

Index Terms— possibility theory, context model, probabilistic
networks, possibilistic networks, learning from data

I. I NTRODUCTION

REASONING in high-dimensional domains tends to be
infeasible in the domains as a whole—and the more so

if uncertainty and imprecision are involved. As a consequence,
decomposition techniques, which reduce the reasoning process
to computations in lower-dimensional subspaces, have become
very popular. Decomposition based on independence relations
between variables, for example, has been studied extensively
in the field ofgraphical modeling[55], [37], in which graphs
(in the sense of graph theory) are used to describe decom-
positions of multivariate distributions. Among the best-known
approaches are Bayes networks [40], Markov networks [36],
and the more general valuation-based networks [49]. All of
these approaches led to efficient implementations, for example
HUGIN [1], PATHFINDER [27], and PULCINELLA [45].

Because a graphical model is a comprehensive description
of the dependences and independences obtaining in a given do-
main and because it allows us to draw inferences efficiently, it
is a powerful tool to do reasoning—as soon as it is constructed.
Its manual construction by human experts, however, can be
tedious and time consuming. Therefore recent research has
focused on methods to learn graphical models from a database
of sample cases. Although some instances of this learning task
have been shown to be NP-hard in the general case [13], [10],
there are several very successful heuristic algorithms [12],
[28], [21], [31].

Several of these approaches, however, are restricted to learn-
ing from precisedata, i.e., the description of the sample cases
must not contain missing values or set-valued information:
There must be exactly one value for each of the attributes used
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to describe the domain. In applications this presupposition
is rarely met, though: databases are notoriously incomplete,
while useful imprecise information (in the sense of a set of
possible values for an attribute) is frequently available. Hence
we face the challenge to extend the existing algorithms to
incomplete and imprecise data.

Researchers in probabilistic graphical models try to meet
this challenge with approaches that are based on the expec-
tation maximization (EM) algorithm [14], [3], [19]. Although
these approaches are promising, they suffer from the fact that
an iterative procedure is necessary to find proper values for the
probabilities, the convergence of which can be slow and which
cannot be guaranteed to find the optimal values. Therefore we
explore a different path in this paper, namely graphical models
that are based on possibility theory [23], [6], [8]. It turns out
that with this type of graphical models imprecise information
can be handled very conveniently and efficiently.

This paper is organized as follows: In section II we briefly
review the axiomatic approach to possibility theory [15] and
introduce our notation. In section III we discuss the seman-
tics of possibility distributions and present the approach on
which our theory of possibilistic graphical models is based.
In section IV we review the ideas of graphical models and
transfer them to the possibilistic case. In section V we study
learning possibilistic graphical models from data by discussing
the main ingredients of learning algorithms: search methods
and evaluation measures.

II. POSSIBILITY THEORY

Possibility theory can be developed axiomatically in direct
analogy to probability theory [15]. The fundamental notion is
a possibility measure:

Definition 1: Let Ω be a finite sample space. Apossibility
measureΠ on Ω is a functionΠ : 2Ω → [0, 1] satisfying

1) Π(∅) = 0,
2) ∀E1, E2 ⊆ Ω : Π(E1 ∪ E2) = max{Π(E1),Π(E2)}.
These axioms take the place of the well-known Kol-

mogorov axioms of probability theory [32]. For general sample
spaces2Ω has to be replaced, as in probability theory, by a
suitableσ-algebra and the second axiom has to be extended
to infinite families of events. However, in this paper we
confine ourselves to finite sample spaces. To the above axioms
the requirementΠ(Ω) = 1 is often added, which expresses
a normalization of the measure. We chose not to add it,
because it is difficult to justify in our approach to semantics
of possibility measures.

Note that—in analogy to probability theory—the whole
possibility measure can be reconstructed from the degrees of
possibility of the elementary events. Therefore it is useful to
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define a special function assigning these elementary or basic
degrees of possibility.

Definition 2: Let Ω be finite sample space. Abasic possi-
bility assignmentis a functionπ : Ω → [0, 1].

With a basic possibility assignmentπ we have:

∀E ⊆ Ω : Π(E) = max
ω∈E

Π({ω}) = max
ω∈E

π(ω).

Basic possibility assignments are often required to be nor-
malized, i.e., it is required that∃ω ∈ Ω : π(Ω) = 1. This
requirement leads to a normalized possibility measure. As for
the measure, we drop this condition.

Events, i.e., subsets of the sample spaceΩ, are usually
described by attributes and their values. These attributes are
introduced in the same way as in probability theory, namely
as random variables. That is, attributes are functions mapping
from the sample spaceΩ to some domain. With attributes we
can definepossibility distributions—again in direct analogy to
probability theory—as functions mapping from the domain of
a random variable to the interval[0, 1]. These functions assign
to each value the degree of possibility of the set of elementary
events that are mapped to this value. Multivariate possibility
distributions can be derived by introducing vectors of random
variables. However, such vectors lead to inconvenient notation
when it comes to computing marginal possibility distributions,
which we need below. Therefore we choose a different, though
equivalent definition of a possibility distribution:

Definition 3: Let Ω be a finite sample space andX =
{A1, . . . , An} a set of attributes with respective domains
dom(Ai), i = 1, . . . , n. A possibility distributionπX on X
is a restriction of a possibility measureΠ to those events that
can be defined by stating values for all attributes inX. That
is, πX = Π|EX

, where

EX =
{

E ∈ 2Ω
∣∣∣ ∃a1 ∈ dom(A1) : . . .∃an ∈ dom(An) :

E =
{

ω ∈ Ω
∣∣∣ ∧

Aj∈X Aj(ω) = aj

}}
.

As in probability theory we abbreviate the description of the
eventE by “

∧
Aj∈X Aj = aj”, With this definition, projec-

tions to subsets of attributes can easily be defined, because they
only reduce the number of terms in the conjunctions defining
the events. In contrast to this, with a definition based on a
Cartesian product of the attribute domains, we would have
to use inconvenient index mapping functions to preserve the
association of attributes and values, because this association
is brought about only by the position in the argument list of
the distribution function.

Note that a basic possibility assignment can be seen as the
possibility distribution for a specific random variable, namely
the one, which has the sample spaceΩ as its domain. This
justifies the use of the lowercaseπ for both a possibility
distribution and a basic possibility assignment.

III. I NTERPRETATION OFPOSSIBILITY THEORY

If a formal theory, developed from an axiomatic approach,
is to be applied to real world problems, we have to provide an

interpretation of the terms appearing in the theory. In proba-
bility theory, for instance, we have to provide an interpretation
of the basic notion of a probability.1

In the same way, if we plan to apply possibility theory, we
have to provide an interpretation of the notion of a degree
of possibility. The main problem here is that in colloquial
language the notion “possibility”, like “truth”, is two-valued.
Either an event, a circumstance etc. is possible or it is
impossible. However, to interpretdegreesof possibility, we
need a quantitative notion. Thus our intuition, exemplified by
how the word “possible” is used in colloquial language, does
not help us to understand what may be meant by a degree of
possibility. Unfortunately, this fact is often treated too lightly
in publications on possibility theory. It is frequently difficult
to pin down the exact meaning that is given to a degree of
possibility, because the explanations provided are very vague
and conceptually unclear. Often one can find such strange and
meaningless sentences like “The closerπ(A = a) is to 1,
the more possible(!) it is thata is the actual value ofA.”,
which are not meant asdefinitionsof the termmore possible—
which would be acceptable, though not very useful—, but as
an explanationof the meaning of degrees of possibility.

To avoid such problems, we provide a precise interpretation
of a degree of possibility, on which the theory of possibilistic
networks can be safely based. This interpretation consists
of two components. The first is the context model [20] by
which the degree of possibility of an elementary event is
interpreted as theprobability of the possibilityof this event
as it results from distinguishing a set of cases orcontexts.
Unfortunately, this interpretation cannot be extended directly
to (general) events without placing strong restrictions on the
contexts and the sets of values possible in them. Since these
restrictions are usually not acceptable in applications, we rely
on a different approach as the second component. In this
approach the maximum operation is derived from a specific,
but frequently occurring reasoning task.

Of course, there are also several other interpretations of
degrees of possibility, like, for instance, the epistemic inter-
pretation of fuzzy sets [57], the theory of epistemic states [51],
the theory of likelihoods [17], the interpretation of possibility
as similarity, which is related to metric spaces [43], [44],
and possibility aspreference, which is justified mathematically
by comparable possibility relations [18]. However, discussing
these interpretations and whether or how they can be used as
a basis of possibilistic graphical models is beyond the scope
of this paper.

A. The Context Model

As already indicated above, in the context model approach
to semantics of degrees of possibility [20] we distinguish a set
of cases orcontexts. These contexts may correspond to objects
or sample cases, to specific situations that are characterized
by physical frame conditions or to observers who estimate the
values of the descriptive attributes in a given situation. We

1A brief survey of the three most common interpretations—logical, em-
pirical (or frequentistic), and subjective (or personalistic)—can be found, for
example, in [46].
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assume that we can state for each context a probability that it
occurs or that it is selected to describe an obtaining situation.
In addition, we assume that for each context we can state sets
of values that are possible2 for the attributes used to describe
the domain of interest.

The context model can be formalized by the notion of a
random set. A random set is simply a set-valued random
variable: in analogy to a standard, usually real-valued random
variable, which maps the elementary events of a sample space
to numbers, a random set maps elementary events to the
subsets of a given reference set [38], [39], [29], [34].

Definition 4: Let (C, 2C , P ) be a finite probability space
and Ω a non-empty set. A set-valued mappingΓ : C → 2Ω

is called arandom set. The setsΓ(c), c ∈ C, are called the
focal setsof Γ.

The setC, i.e., the sample space of the finite probability
space(C, 2C , P ), is intended to represent the contexts. A focal
setΓ(c) is the set of values that are possible2 in contextc. It
is often useful to require all focal setsΓ(c) to be non-empty,
in order to avoid some technical problems.

From a random set we can formally derive a basic pos-
sibility assignment by computing itscontour function[48] or
falling shadow[54] on the setΩ. That is, to each elementω ∈
Ω the probability of the set of those contexts is assigned, which
are mapped to a set containingω [34].

Definition 5: Let Γ : C → 2Ω be a random set. Thebasic
possibility assignment induced byΓ is the mapping

π : Ω → [0, 1], ω 7→ P ({c ∈ C | ω ∈ Γ(c)}).

With this definition the informal characterization given
above is made precise:The degree of possibility of an event
is the probability of the possibility of the event, i.e., the
probability of the contexts in which it is possible.

Note that a basic possibility assignment induced by a
random set degenerates to a simple statement of possible
and impossible events if there is only one context. In such
a situation a possibility distribution is a mererelation, which
is represented by itsindicator function. On the other hand, if
for each context there is exactly one possible value, then the
induced basic possibility assignment degenerates to an assign-
ment of probabilities to the elementary events. Consequently,
the corresponding possibility distribution is a probability dis-
tribution.

Note also that a basic possibility assignment is always an
upper bound for an assignment of probabilities to elementary
events, provided that there are no empty focal sets. The reason
is that with the context model we disregard the conditional
probabilities of the values in a focal set given the correspond-
ing context (usually, because we do not know them). We treat
them as if they were 1, although they may be smaller. From
this consideration it should be clear that it is desirable to make
the focal sets as specific as possible. Any value that can be
excluded, should be excluded, and if the available information
permits us to split a context and assign probabilities to the
sub-contexts and if in at least one of the resulting sub-
contexts fewer values are possible, then we should split the

2Of course, we use the word ”‘possible”’ here in the colloquial sense, i.e.,
as the opposite of ”‘impossible”’.

context. Thus we tolerate imprecision (setsof possible values
per context) only to that extend we are forced to by the
available information. In this way we make the resulting basic
possibility assignment as specific as possible, i.e., we make
the bound on the underlying assignment of probabilities as
tight as possible [8]. A justification for this strategy w.r.t.
decision making can easily be derived from standard Dutch
book arguments, showing that in the long run a betting strategy
based on the (true) probability of an event outperforms all
other strategies. Consequently, we should strive to get as close
to an assignment of probabilities as we can.

B. The Maximum Operation

An unrestricted context model provides an interpretation
only for a basic possibility assignment. A direct extension of
the interpretation to (general) events is not possible, because
the context model allows us to derive only

∀E ⊆ Ω : max
ω∈E

π(ω) ≤ Π(E) ≤ min
{

1,
∑
ω∈E

π(ω)
}

,

but not thatΠ(E) must be equal to the lower bound. The
lower bound is attained only if at least one element ofE
is contained in all focal sets supportingE. However, if no
focal set contains more than one element ofE, then we only
have the upper bound. The usual solution to this problem is
to restrict the focal sets of the underlying random sets [16],
[2], namely to require them to beconsonant[34].

Definition 6: Let Γ : C → 2Ω be a random set withC =
{c1, . . . , cn}. The focal setsΓ(ci), 1 ≤ i ≤ n, are called
consonantiff there exists a sequenceci1 , ci2 , . . . , cin , 1 ≤
i1, . . . , in ≤ n, ∀1 ≤ j < k ≤ n : ij 6= ik, such that

Γ(ci1) ⊆ Γ(ci2) ⊆ . . . ⊆ Γ(cin).

Intuitively, it must be possible to arrange the focal sets
so that they form a “(stair) pyramid” or a “(stair) cone”
of “possibility mass” onΩ. In this picture the focal sets
correspond to horizontal “slices”, the thickness of which
represents their probability. With this picture in mind it is
easy to see that requiring consonant focal sets is necessary
and sufficient for∀E ⊆ Ω : Π(E) = maxω∈E π(ω). In
addition, the induced possibility measure is an upper bound
for the underlying unknown probability measure [16].

Although consonant focal sets are very convenient to handle
mathematically, it has to be admitted that presupposing them
often clashes with the conditions obtaining in practice: We
rarely find ourselves in a position in which the focal sets can
be arranged into an inclusion sequence. Consider, for example,
a set of observers who estimate the value of some magnitude
by intervals. Even if we assume that some of them estimate
boldly and some more cautiously, so that we have intervals
of differing size, the intervals need not form an inclusion
sequence: Some observers may tend to larger values while
others tend to smaller ones. And, obviously, the situation is
not improved by requiring that the correct value is contained
in the estimated intervals.

These considerations show that thevoting modelinterpre-
tation of a degree of possibility [2] (since each observer can
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be seen as voting for a set of values and for each value the
number of votes falling to it is counted), which is used to
justify the assumption of consonant focal sets, makes very
strong implicit assumptions about the behavior of the observers
and the information available to them. Actually, we cannot see
how the consonance assumption can be founded semantically
without requiring that the same information is available to all
observers and that they all use the same method, governed only
by a “cautiousness parameter”, to estimate an interval from
this information. For example, they may all have to compute a
confidence interval and may only choose the confidence level.

Another possible solution to the problem outlined above
is to abandon the maximum operation and to work with the
weak, but safe upper bound of the above inequality. Although
this approach may sometimes be feasible, it is clear that the
amount of imprecision (to be measured, for instance, by the
size of the focal sets) must be very small in order to keep
the value of the possibility measure below the cutoff value 1.
This is especially important if the events are large, i.e., if they
contain many elementary events. Therefore we judge it to be
of little value: It practically eliminates the ability to handle
imprecise information.

Our own solution to the problem ([6], [8]) is to restrict
the context model/random set approach to basic possibility
assignments and to provide semantics for the maximum op-
eration by independent means. The rationale underlying our
approach is that calculi like probability theory and possibility
theory, especially if they are employed in probabilistic and
possibilistic networks, are used to supportdecision making.
That is, it is often the goal to decide ononecourse of action
and to decide in such a way as to optimize the expected benefit.

In analogy to probability theory the standard rule by which
we try to achieve this in possibility theory is to decide on the
course of action corresponding to the event that has the highest
degree of possibility (presupposing equal benefits; otherwise
the respective benefits have to be taken into account). This
event can be “least excluded”, since the probability of the
contexts in which it can be excluded is smallest, and hence it
is the best option available.

If we take the goal to make such a decision into account
right from the start, it modifies our view of the modeling
and reasoning process and thus leads to different demands
on a measure assigned tosets of elementary events. The
reason is that we may no longer care about, for instance,
the probability of a set of elementary events, because in the
end we may have to decide onone. We only care about the
possibility of the “most possible” elementary eventcontained
in the set. Hence, if we want to rank two (general) events,
we rank them according to the best decision we can make
by selecting an elementary event contained in them. Thus it
is reasonable to assign to a (general) event the maximum of
the degrees of possibility assigned to the elementary events
contained in it, because it directly reflects the best decision
possible if we are constrained to select from this event.3 As
a consequence, we immediately get the formula to compute

3Such a constraint may be brought about by observations, which exclude
other, complementary events (see below).
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Fig. 1. A simple three-dimensional relation and its projections.

the degrees of possibility of a (general) eventE, namely
Π(E) = maxω∈E Π({ω}) = maxω∈E π(ω).

IV. GRAPHICAL MODELS

The basic idea underlying graphical models is to exploit
independence relations between variables in order to de-
compose a high-dimensional distribution—i.e., a relation, a
probability distribution, or a possibility distribution—into a set
of (conditional or marginal) distributions on lower-dimensional
subspaces. This decomposition—and the independence rela-
tions that make it possible—is represented as a (directed or
undirected) graph: There is a node for each attribute used to
describe the considered domain. Edges connect attributes that
are directly dependent on each other. The edges also indicate
the paths along which evidence has to be propagated, when
inferences are to be drawn from observations.

A. A Simple Example

We start our exposition of the theory of possibilistic graph-
ical models with a very simple example, which we discuss in
the relational setting first. That is, we consider a possibility
distribution derived from a random set with only one context.
In this case the distribution is a simple relation (represented
by its indicator function), which only indicates whether a
combination of attribute values is possible or not. The relation
we like to consider is defined over three attributesA, B, and
C and is depicted in the upper left of figure 1: Each cube
corresponds to a possible combination of attribute values.

Due to the simplicity of this example, we can draw in-
ferences about the modeled domain directly in this three-
dimensional space. For instance, if we observe that the at-
tribute A has the valuea4, we only have to restrict the
distribution to the “slice” corresponding to this value (i.e., we
have tocondition it on A = a4) to infer that it must be either
B = b2 or B = b2 and eitherC = c2 or C = c3.

However, the example relation has an interesting property,
which allows us to derive the same reasoning result in
an entirely different way: It can be decomposed into two
smaller relations from which it can be reconstructed. The
smaller relations are two of the three possible two-dimensional
projections shown in figure 1, namely the projection to the
subspace scaffolded byA and B and the projection to the
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Fig. 2. Cylindrical extensions of projections and their intersection.
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Fig. 3. Propagating the evidence that attributeA has valuea4.

Aj Bj Cj
Fig. 4. Graph/network representation.

subspace scaffolded byB and C: The complete relation can
be reconstructed from these projections by intersecting their
cylindrical extensions. This is demonstrated in figure 2. It can
be seen that forming a cylindrical extension means to add all
values of the missing dimension(s). The name of this operation
is very intuitive: Sets are usually sketched as circles, and
adding a dimension to a circle yields a cylinder. The result of
intersecting the cylindrical extensions, shown on the bottom
left, obviously coincides with the original relation shown in
figure 1.

Note that this property of a relation is well-known in
database theory asjoin-decomposability[52], because the full
relation is reconstructed as anatural join of the projections.
It is easy to verify that a natural join is equivalent to an
intersection of cylindrical extensions of projections.

Note also that, of course, not all relations are join-
decomposable. However, if a relation is join-decomposable,
this property can be exploited in the reasoning process. This is
demonstrated in figure 3. We assume again that the attributeA
has been observed to have the valuea4. By extending this
evidence to the subspace scaffolded byA andB, intersecting
it with the projection of the relation to this subspace, and
finally projecting the result to the domain ofB, we obtain
that it must be eitherB = b2 or B = b3. In an analogous way
we proceed on the right side and obtain that it must be either
C = c2 or C = c3.

It is easy to verify that any inference that can be drawn in the
full three-dimensional relation can also be drawn using only
the projections. The reasoning scheme is always a sequence of
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Fig. 5. A three-dimensional possibility distribution with marginal distribu-
tions (maxima over rows/columns).

extension, intersection, and projection operations that involve
only the subspaces scaffolded byA and B and by B and
C. This justifies a network representation as it is shown in
figure 4: The edges indicate the paths along which evidence
has to be propagated.

The approach outlined above can easily be transferred to the
possibilistic case. We only have to realize that a projection can
be formalized by taking the maximum of the indicator function
describing the relation over the values of the removed attribute.
For instance,

π(A = ai, B = bj) = max
ck

π(A = ai, B = bj , C = ck).

Computing the intersection of the cylindrical extensions of
projections (i.e., their natural join) can be formalized by
computing the minimum of the indicator functions describing
the projections. That is, in our example the full relation can
be reconstructed using the formula

π(A = ai, B = bj , C = ck)
= min{π(A = ai, B = bj), π(B = bj , C = ck)}.

The same formulae apply if we have more than one context
(recall that we obtained a relation by assuming that there is
only one context) and thus have a general possibility distri-
bution. To illustrate this, figure 5 shows a three-dimensional
possibility distribution, which can be decomposed—like the
relation above—into themarginal distributionson the sub-
spaces scaffolded byA andB and byB andC. Consequently,
the projection formula and the reconstruction formula are the
same as in the relational case and thus we obtain an analogous
reasoning scheme.

This reasoning scheme illustrated in figure 6 for the same
example evidence we used above, namely the observation that
A = a4. In the first step this evidence is extended cylindrically
to the subspace scaffolded byA and B and intersected with
the projection to this subspace by taking the minimum. The
result is projected to the domain ofB. In the second step
the degrees of possibility obtained for the values ofB are
extended cylindrically to the subspace scaffolded byB andC
and intersected with the projection to this subspace. The result
is then projected to the domain ofC, yielding the degrees of
possibility shown in the top right of figure 6.
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Fig. 6. Propagating the evidence that attributeA has valuea4.

B. Decomposition

The above examples exploited two things, namely that
the relation shown in figure 1 as well as the possibility
distribution shown in figure 5 are decomposable and that
the decomposition can be represented by the graph shown in
figure 4. These are indeed the two fundamental ingredients of
the theory of graphical models, which we now study in more
detail. We start by giving a formal account of the notion of
decomposition, which is based on the notion of a marginal
distribution, since marginal distributions are the components
of the decompositions we saw above.

Definition 7: Let U = {A1, . . . , An} be a set of attributes
and dom(Ai) their respective domains. Furthermore, letπU

be a possibility distribution overU . Then

πM

( ∧
Ai∈M

Ai = ai

)
= max

∀Aj∈U−M :
ai∈dom(Aj)

πU

( ∧
Ai∈U

Ai = ai

)
,

is the marginal distribution of πU over a setM ⊂ U
of attributes, where the somewhat sloppy notation w.r.t. the
maximum is meant to indicate that the maximum has to be
taken over all values of all attributes inU −M .

Definition 8: A possibility distribution πU over a setU
of attributes is calleddecomposablew.r.t. a family M =
{M1, . . . ,Mm} of subsets ofU iff

∀a1 ∈ dom(A1) : . . .∀an ∈ dom(An) :

πU

( ∧
Ai∈U

Ai = ai

)
= min

M∈M
πM

( ∧
Ai∈M

Ai = ai

)
.

Note that these definitions are directly analogous to their
probabilistic counterparts: A marginal probability distribution
is obtained by using a sum instead of the maximum in
definition 7. The corresponding decomposition formula for the
probabilistic case is

∀a1 ∈ dom(A1) : . . .∀an ∈ dom(An) :

pU

( ∧
Ai∈U

Ai = ai

)
=

∏
M∈M

φM

( ∧
Ai∈M

Ai = ai

)
.

The functionsφM can be computed from the marginal distri-
butions on the setsM of attributes. These functions are called
factor potentials[9].

Alternatively, a decomposition of a multivariate distribution
can be based on conditional distributions. This is achieved
with the following definitions:

Definition 9: Let Π be a possibility measure on a finite
sample spaceΩ andE1, E2 ⊆ Ω. Then

Π(E1 | E2) = Π(E1 ∩ E2)

is theconditional degree of possibilityof E1 given E2.
Of course, there are also other definitions of a conditional

degree of possibility, but only this definition fits the semantics
we outlined in the preceding section: Fixing an eventE2

constrains the set of contexts from which we have to determine
the degree of possibility of an eventE1 to those contexts in
which E1 as well asE2 are possible. A renormalization as in
probability theory is not possible, because in general we do not
know how fixing the eventE2 affects the set of all contexts.
Consequently, we cannot determine a proper normalization
factor. A renormalization analogous to probability theory can
only be justified if the focal sets of the underlying random set
are consonant—an assumption we rejected in the preceding
section.

With conditional degrees of possibility we can define the
key notion of conditional independence:

Definition 10: Let Ω be a (finite) sample space,Π a pos-
sibility measure onΩ, and A, B, and C attributes with
respective domainsdom(A), dom(B), anddom(C). A andC
are calledconditionally possibilistically independentgivenB,
written A⊥⊥Π B | C, iff

∀a ∈ dom(A) : ∀b ∈ dom(B) : ∀c ∈ dom(C) :
Π(A = a,B = b | C = c)

= min{Π(A = a | C = c),Π(B = b | C = c)}.

Of course, this definition is easily extended to sets of attributes.
This specific notion of conditional possibilistic independence
is calledpossibilistic non-interactivity[15]. As for the notion
of a conditional degree of possibility, there are other defini-
tions, which we neglect here.

Conditional possibilistic independence can also be used
to derive a decomposition with conditional distributions by
drawing on a chain rule like formula, namely

∀a1 ∈ dom(A1) : . . .∀an ∈ dom(An) :

Π
(∧n

i=1
Ai = ai

)
= minn

i=1Π
(
Ai = ai

∣∣∣ ∧i−1

j=1
Aj = aj

)
.

Obviously, this formula holds generally, since the term for
i = n in the minimum on the right is equal to the term on
the left. We now simplify the expression on the right by can-
celing “unnecessary” conditions, i.e., conditioning attributes,
of which the conditioned attribute is independent given the
remaining attributes. We can do so, because from, for example,
A⊥⊥Π B | C we can infer that

∀a ∈ dom(A) : ∀b ∈ dom(B) : ∀c ∈ dom(C) :
Π(A = a | B = b, C = c)

= min{Π(A = a | C = c),Π(B = b, C = c)}.

With formulae like this one we can cancel conditions if we
proceed in the order of descending values ofi. Then the
unconditional possibility in the minimum can be neglected,
because among the remaining, unprocessed terms there must
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be one that is equal to it or refers to more attributes and thus
restricts the degree of possibility more.

Note that this decomposition also has a probabilistic coun-
terpart, based on the chain rule of probability:

∀a1 ∈ dom(A1) : . . .∀an ∈ dom(An) :

P
(∧n

i=1
Ai = ai

)
=

n∏
i=1

P
(
Ai = ai

∣∣∣ ∧i−1

j=1
Aj = aj

)
.

As in the possibilistic case this decomposition may be simpli-
fied by canceling conditions. Furthermore, conditional proba-
bilistic independence,

∀a ∈ dom(A) : ∀b ∈ dom(B) : ∀c ∈ dom(C) :
P (A = a,B = b | C = c)

= P (A = a | C = c) · P (B = b | C = c),

is analogous to conditional possibilistic independence,

∀a ∈ dom(A) : ∀b ∈ dom(B) : ∀c ∈ dom(C) :
Π(A = a,B = b | C = c)

= min{Π(A = a | C = c),Π(B = b | C = c)}

(cf. definition 10).

C. Graphical Representation

Graphs (in the sense of graph theory) are a very convenient
tool to describe decompositions if we identify each attribute
with a node. In the first place, graphs can be used to specify the
setsM of attributes underlying the decomposition. How this is
done depends on whether the graph is directed or undirected.
If it is undirected, the setsM are the maximal cliques of the
graph, where a clique is a complete subgraph and it is maximal
if it is not contained in another complete subgraph. If the graph
is directed, we can be more explicit about the distributions in
the decomposition: We can use conditional distributions, since
we may use the direction of the edges to specify which is the
conditioned attribute and which are the conditions. We do so
by identifying the parents of an attribute with its conditions
in a chain rule decomposition.

Secondly, graphs can be used to describe (conditional)
dependence and independence relations between attributes via
the notion ofseparationof nodes. What is to be understood by
“separation” depends again on whether the graph is directed
or undirected. If it is undirected, separation is defined as
follows: If X, Y , and Z are three disjoint subsets of nodes
in an undirected graph, thenZ separatesX from Y iff after
removing the nodes inZ and their associated edges from the
graph there is no path, i.e., no sequence of consecutive edges,
from a node inX to a node inY . Or, in other words,Z
separatesX from Y iff all paths from a node inX to a node
in Y contain a node inZ.

For directed graphs, which have to be acyclic, the so-called
d-separation criterionis used [40], [53]: IfX, Y , andZ are
three disjoint subsets of nodes, thenZ is said tod-separateX
from Y iff there is no path, i.e., no sequence of consecutive
edges (of any direction), from a node inX to a node inY
along which the following two conditions hold:

1) every node with converging edges either is inZ or has
a descendant inZ,

2) every other node is not inZ.

These separation criteria are used to defineconditional inde-
pendence graphs: A graph is a conditional independence graph
w.r.t. a given multivariate distribution if it captures by node
separation only correct conditional independences between
sets of attributes. That is, ifZ separatesX and Y , then X
andY must be conditionally independent givenZ.

Formally, the connection between conditional independence
graphs and graphs that describe decompositions is brought
about by a theorem that shows that a distribution is de-
composable w.r.t. a given graph if and only if this graph
is a conditional independence graph of the distribution. For
the probabilistic setting, this theorem is usually attributed to
[25], where it was proved for the discrete case, although
(according to [37]) this result seems to have been discovered
in various forms by several authors. In the possibilistic setting
similar theorems hold, although certain restrictions have to be
introduced [23], [6], [8].

Finally, the graph underlying a graphical model is very use-
ful to derive evidence propagation algorithms, since evidence
propagation can be reduced to simple computations of node
processors that communicate by passing messages along the
edges of a properly adapted graph. We confine ourselves here
to the illustration given by the examples studied above (cf.
figure 3 and 6). A detailed account can be found, for instance,
in [9].

V. L EARNING GRAPHICAL MODELS FROMDATA

Having reviewed the ideas underlying graphical models, we
now turn to learning them from a database of sample cases.
There are three basic approaches:

• Test whether a distribution is decomposable w.r.t. a graph.
This is the most direct approach. It is not bound to
a graphical representation, but can also be carried out
w.r.t. other representations of the subsets of attributes
used to compute the (candidate) decomposition of the
distribution.

• Find a cond. indep. graph by cond. independence tests.
This approach exploits the theorems mentioned in the pre-
ceding section, which connect conditional independence
graphs and graphs that describe decompositions. It has
the advantage that by a single conditional independence
test, if it fails, several candidate graphs can be excluded.

• Find a graph by measuring the strength of dependences.
This is a heuristic, but often highly successful approach,
which is based on the frequently valid assumption that
in a conditional independence graph an attribute is more
strongly dependent on adjacent attributes than on at-
tributes that are not directly connected to it.

Note that none of these methods is perfect. The first
approach suffers from the usually huge number of candidate
graphs. The second often needs the strong assumption that
there is a perfect map, where a perfect map is a conditional
independence graph that capturesall conditional indepen-
dences by node separation. In addition, if it is not restricted
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to certain types of graphs (for example, polytrees), one has to
test conditional independences of high order (i.e., with a large
number of conditioning attributes), which tend to be unreliable
unless the amount of data is enormous. The heuristic character
of the third approach is obvious. Examples in which it fails
can easily be found, since under certain conditions attributes
that are not adjacent in a conditional independence graph can
exhibit a strong dependence [6], [8].

A (computationally feasible) analytical method to construct
optimal graphical models from a database of sample cases
has not been found yet, neither for the probabilistic nor for
the possibilistic case. Therefore an algorithm for learning a
graphical model from data usually consists of

1) anevaluation measureand
2) a search method.

With the former the quality of a given network is assessed,
the latter is used to traverse the space of possible networks.

It should be noted, though, that restrictions of the search
space introduced by an algorithm and special properties of
the evaluation measure used sometimes disguise the fact that
a search through the space of possible network structures is
carried out. For example, by conditional independence tests
all graphs missing certain edges can be excluded without
inspecting these graphs explicitly. Greedy approaches try to
find good edges or subnets and combine them in order to
construct an overall model and thus may not appear to be
searching. Nevertheless the above characterization is apt, since
an algorithm that does not explicitly search the space of
possible networks usually carries out a (heuristic) search on a
different level, guided by an evaluation measure. For example,
some greedy approaches search for the best set of parents of an
attribute by measuring the strength of dependence on candidate
parent attributes; conditional independence test approaches
search the space of all possible conditional independence
statements.

A. A Simple Example

In order to illustrate the ideas underlying the different
approaches, we turn again to the simple relational example we
discussed above. Suppose that we are given the relation shown
in figure 1 and that we want to determine a graphical model,
which describes an exact or, at least, a good approximate
decomposition of this relation. In the first approach, we simply
compute the relations that correspond to every possible graph
and compare it to the original relation. This is demonstrated
in figure 7. Apart from the complete graph, which consists of
only one clique and thus always exactly represents the relation,
because there is no decomposition, graph 5 exactly reproduces
the relation. Hence this graph gets selected as the learning
result.

In the second approach we check (conditional) indepen-
dences that are indicated by a given graph. If a conditional
independence does not hold, the graph has to be discarded.
For example, graph 3 in figure 7 indicates thatA⊥⊥B | ∅.
However, this is not the case, because it isπ(A = a1, B =
b3) = 0, but π(A = a1) = 1 and π(B = b3) = 1 and
hencemin{π(A = a1), π(B = b3)} = 1. As a consequence,
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b1
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b2

c2

b3

c3

Fig. 7. All eight possible graphs and the corresponding relations.

graph 3 cannot describe a decomposition. Note that this result
also excludes the graphs 1, 4, and 7. The only conditional
independence that does hold isA⊥⊥ C | B and thus we arrive
again at the graph 5 shown above. A formal algorithm based
on conditional independence tests may construct a graph by
removing edges from a complete graph, see, for instance, [41]
[50], [8].

In the third approach, we are looking for attributes that are
strongly dependent. An intuitive measure of the strength of
(relational) dependence of two attributes is how severely the
set of possible values of one attribute is restricted if the value
of the other becomes known. Obviously, the restriction is the
more severe, the fewer possible value combinations (i.e., tuples
in the projection) there are. In order to be able to compare
this measure for different attributes, which may have different
numbers of possible values, we compute the relative number
of tuples w.r.t. the size of the subspace scaffolded by the
attributes.

If we apply these considerations to the example relation
studied above, we can set up table I, which shows the relative
number of possible value combinations for all three possible
two-dimensional subspaces. If we select those subspaces, for
which this number is smallest (formally, we may apply the
Kruskal algorithm [35] to construct a minimum spanning tree),
we find exactly those projections that are a decomposition of
the relation. Hence we find again the optimal graphical model,
namely graph 5 of figure 7.

Note that another way to justify the dependence measure
used above is the following: If a set of projections is not an
exact decomposition, then the intersection of the cylindrical
extensions will contain additional tuples, which are not con-
tained in the original relation. There can never be fewer tuples,
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TABLE I

RELATIONAL SELECTION CRITERIA FOR SUBSPACES.

subspacerelative number of gain in
possible combinationsHartley information

A×B 6
12

= 1
2

= 50% log2
12
6

= 1

A× C 8
12

= 2
3
≈ 67% log2

12
8
≈ 0.58

B × C 5
9

= 5
9
≈ 56% log2

9
5
≈ 0.85

because the reconstruction formula prescribes to compute the
minimum of marginal distributions, which were obtained by
taking maxima. Hence the right hand side of the reconstruction
formula can never be less than the left hand side, even if the
subsets of attributes used do not yield an exact decomposition.

If using sets of attributes that do not yield a decomposition
leads to additional tuples, we can find a decomposition (if
there is one), by minimizing the number of tuples in the
intersection of the cylindrical extensions of the projections.
And if there is no exact decomposition, this will give us
at least a good approximation. Now it is plausible that the
intersection has the fewer tuples, the fewer tuples there are in
the cylindrical extensions. And, of course, there are the fewer
tuples in the cylindrical extensions, the fewer tuples there are
in the projections. Hence we should strive for projections with
as few tuples as possible.

Of course, when doing so, we should take care of the
number of tuples thatcould bein the projection, i.e., the size
of the subspace projected to. If we counted only the number
of tuples, we would tend to select projections to subspaces
scaffolded by few attributes and by attributes having only few
values. Therefore it is better to strive for projections in which
the relative number of tuples w.r.t. the size of the subspace is
as small as possible.

Note, however, that both arguments we gave are only
plausible. Counterexamples can easily be given [6], [8]. Nev-
ertheless, the resulting procedure is a very promising heuristic
method that often leads to good results.

B. Computing Marginal Distributions

From the example studied above, it is clear that a basic
operation that is needed to learn a graphical model from
a dataset of sample cases is a method to estimate from
the dataset the marginal or conditional distributions of a
candidate decomposition of the distribution. Such an operation
is necessary, because the marginal and/or conditional distribu-
tions are needed to assess the quality of a given candidate
graphical model, especially, if we are using the approach that
constructs a model by measuring the strengths of dependences
of attributes.

In the probabilistic setting and especially in the discrete
case it is very simple to estimate marginal distributions from
a database of sample cases: Simply count for each point of
the subspace the number of tuples that are projected to it
(projected in the relational sense) and then do maximum likeli-
hood estimation, possibly enhanced by Laplace correction. Of
course, this method presupposes that the tuples are complete
and precise. If we consider imprecise data, things become

more complicated. As already mentioned above, probabilistic
approaches usually rely on some version of the EM algorithm
[14] in this case, which is a rather expensive procedure.

For learning possibilistic networks from data we first have
to specify how a database is related to a possibility measure.
However, with the context model approach this is straightfor-
ward: We simply interpret each tuple of a given database of
sample cases as derived from a context. Consequently, each
tuple corresponds to a focal set and thus may be imprecise,
i.e., it may stand for a set of possible precise tuples. Hence
dealing with imprecise information becomes extremely simple.

Nevertheless, we face some problems in the possibilis-
tic setting, too, because we can no longer apply naive
methods to determine the marginal distributions. Consider,
for example, the three imprecise tuples({a1, a2, a3}, {b3}),
({a1, a2}, {b2, b3}), and ({a3, a4}, {b1}), each of which rep-
resents all precise tuples that can be formed by selecting one
value from each of the sets it consists of. Suppose that each
of these tuples corresponds to a context having a probability
of 1

3 and try to compute the marginal degrees of possibility
for the valuesai. It is easy to check that neither the sum of
the probabilities of the contexts, in which a given value is
possible, nor their maximum yields the correct result in all
cases: For the valuea2 the maximum is incorrect and fora3

the sum is incorrect.
Fortunately, there is a simple preprocessing operation by

which the database to learn from can be transformed, so that
computing maximum projections becomes trivial [5], [6], [8].
This operation is based on the notion ofclosure under tuple
intersection. That is, we add (possibly imprecise) tuples to the
database in order to achieve a situation, in which for any two
tuples from the database theirintersection(i.e., the intersection
of the represented sets of precise tuples) is also contained in
the database. For this enhanced database the following theorem
holds:

Theorem 1:Let D be a database of sample cases over a
setU of attributes, consisting of a setR of (possibly imprecise)
tuples and a functionw : R → IN, which assigns to each tuple
the number of occurrences of the tuple. Furthermore, letR∗

be the closure ofR under tuple intersection andw∗ : R∗ → IN
be defined as

w∗(r) =
∑

s∈R,r⊆s

w(r).

Then for any precise tuplet over a subsetX ⊆ U

πX(t) =


maxr∈C(t) w∗(r)∑

s∈R
w(s)

, if C(t) 6= ∅,

0, otherwise,

with C(t) = {c ∈ R∗ | t ⊆ c|X}.
The proof can be found in [5], [6], [8]. As a consequence we
can compute any marginal distribution by determining for each
point of the subspace the maximum of the weights (values of
w∗) of those tuples in the enhanced database that are projected
to it.

C. Evaluation Measures

An evaluation measureserves to assess the quality of a
given candidate graphical model w.r.t. a given database of
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a1 a2 a3 a4

b1

b2

b3
Hartley information needed to determine
coord.: log2 4 + log2 3 = log2 12 ≈ 3.58
coord. pair: log2 6 ≈ 2.58

gain: log2 12− log2 6 = log2 2 = 1

Fig. 8. Computation of Hartley information gain.

sample cases, so that it can be determined which of a set of
candidate graphical models best fits the given data. An exam-
ple of an evaluation measure is the number of additional tuples
in the relation represented by a given graph (cf. figure 7). In
this case the algorithm should should strive to minimize the
measure.

A desirable property of an evaluation measure is decompos-
ability, i.e., the total network quality should be computable as
an aggregate (e.g. sum or product) of local scores, for example
a score for a maximal clique of the graph to be assessed or
a score for a single edge. Most such evaluation measures are
based on measures of dependence, since for both the second
and the third basic approach listed above it is necessary to
measure the strength of dependence of two or more attributes,
either in order to test for conditional independence or in order
to find the strongest dependences. Here we confine ourselves
to measures that assess the strength of dependence of two
attributes in the possibilistic case. The transfer to conditional
tests (by computing a weighted sum of the results for the
different instantiations of the conditions) and to more than
two attributes is straightforward.

Possibilistic evaluation measures can easily be derived by
exploiting the close connection of possibilistic networks to
relational networks (see above). The idea is to draw on
the α-cut view of a possibility distribution. This concept is
transferred from the theory of fuzzy sets [34]. In theα-cut
view a possibility distribution is seen as aset of relationswith
one relation for each degree of possibilityα. The indicator
function of such a relation is defined by simply assigning a
value of 1 to all tuples for which the degree of possibility is
no less thanα and a value of 0 to all other tuples. It is easy to
see that a possibility distribution is decomposable if and only
if each of theα-cut relations is decomposable. Thus we may
derive a measure for the strength of possibilistic dependence
of two variables by integrating a measure for the strength of
relational dependence over all degrees of possibilityα.

To make this clearer, we consider a simple example. Fig-
ure 8 shows a simple relation over two attributesA and B:
The grey squares indicate the tuples contained in this relation.
We can measure the strength of dependence ofA and B by
computing theHartley information gain[26], which is closely
related to the intuitive measure used above:

I
(Hartley)
gain (A,B)

= log2

( ∑
a

R(A = a)
)

+ log2

( ∑
b

R(B = b)
)

− log2

( ∑
a,b

R(A = a,B = b)
)

= log2

(
∑

a R(A = a)) (
∑

b R(B = b))∑
a,b R(A = a,B = b)

.

α4

α3

α2

α1

α0

log2 1 + log2 1− log2 1 = 0

log2 2 + log2 2− log2 3 ≈ 0.42

log2 3 + log2 2− log2 5 ≈ 0.26

log2 4 + log2 3− log2 8 ≈ 0.58

log2 4 + log2 3− log2 12 = 0

Fig. 9. A possibility distribution can be seen as a set of relations.

The idea underlying this measure is as follows: Suppose we
want to determine the actual values of the two attributesA
andB. Obviously, there are two possible ways to do this: In
the first place, we could determine the value of each attribute
separately, thus trying to find the “coordinates” of the value
combination. Or we may exploit the fact that the combinations
are restricted by the relation shown in figure 8 and try to
determine the combination directly. In the former case we need
the Hartley information of the set of values ofA plus the
Hartley information of the set of values ofB, i.e., log2 4 +
log2 3 ≈ 3.58 bits. In the latter case we need the Hartley
information of the possible tuples, i.e.,log2 6 ≈ 2.58 bit, and
thus gain one bit. Since it is plausible that we gain the more
bits, the more strongly dependent the two attributes are, we
may use the Hartley information gain as a direct indication of
the strength of dependence of the two attributes.

Note that the Hartley information gain is closely related to
the relative number of value combinations, which we used in
the simple example above: It is the binary logarithm of the
reciprocal value of that number.

In the possibilistic case the Hartley information gain is gen-
eralized to thespecificity gain[22], [4], [6], [8] as a measure
of possibilistic dependence (cf. figure 9): It is integrated over
all α-cuts of a given possibility distribution.

Sgain(A,B) =
∫ sup π

0

log2

( ∑
a

[π]α(A = a)
)

+ log2

( ∑
b

[π]α(B = b)
)

− log2

( ∑
a,b

[π]α(A = a,B = b)
)

dα.

Another approach to derive a measure for the strength of
possibilistic dependence starts from the observation that the
minimum of marginal possibility distributions cannot be less
than the joint distribution. If the attributes are independent,
then the minimum of the marginals coincides with the joint
distribution (see above). Hence we may measure the strength
of dependences by summing the (square of) the difference be-
tween the minimum of the marginals and the value of the joint
distribution [6], [8]. Like the specificity gain, this measure
is the larger, the more strongly dependent the attributes are.
Note that this measure is closely related to theχ2 measure of
classical statistics, which may be used to learn a probabilistic
graphical model.
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Surveys of other evaluation measures—which include prob-
abilistic measures—can be found in [4], [6], [8].

D. Search Methods

As already indicated above, a search method determines
which graphs are considered in order to find a good graphical
model. Since an exhaustive search is impossible due to the
huge number of graphs4, heuristic search methods have to
be used. Usually these heuristic methods introduce strong
restrictions w.r.t. the graphs considered and exploit the value
of the evaluation measure to guide the search. In addition they
are often greedy w.r.t. the model quality.

The simplest instance of such a search method is, of course,
the Kruskal algorithm [35], which determines an optimum
weight spanning tree for given edge weights (see above). This
algorithm has been used very early in the probabilistic set-
ting, using theShannon information gain(also calledmutual
information or cross entropy) of the connected attributes as
edge weights [11]. In the possibilistic setting, we may simply
replace the Shannon information gain by thespecificity gain
[22] or the sum of (squared) differences [6], [8] in order to
arrive at an analogous algorithm.

A natural extension of the Kruskal algorithm is a greedy
parent selection for directed graphs, which is often carried
out on a topological order of the attributes that is fixed in
advance5: At the beginning the value of an evaluation measure
is computed for a parentless child attribute. Then in turn each
of the parent candidates (the attributes preceding the child in
the topological order) is temporarily added and the evaluation
measure is recomputed. The parent candidate yielding the
highest value of the evaluation measure is selected as a
first parent and is permanently added. In the third step each
remaining parent candidate is added temporarily as a second
parent and again the evaluation measure is recomputed. As
before, the parent candidate that yields the highest value of the
evaluation is permanently added. The process stops if either
no more parent candidates are available, a given maximum
number of parents is reached, or none of the parent candidates,
if added, yields a value of the evaluation measure exceeding
the best value of the preceding step.

This search method has been used in the well-known K2 al-
gorithm [12], which constructs a Bayesian network (a directed
probabilistic network) from a database of sample cases. The
evaluation measure used has become known as theK2 metric,
which was later generalized to theBayesian-Dirichlet metric
[28]. Of course, in the possibilistic setting we may also apply
this greedy search method, again relying on the specificity gain
or on the sum of the (squared) differences as the evaluation
measure. In order to handle multiple parent attributes with it,
we simply combine all parents into one pseudo-attribute and

4There are2

(
n
2

)
possible undirected graphs overn attributes. In our simple

example we could carry out an exhaustive search only, because we had merely
three attributes.

5A topological order is an order of the nodes of a graph such that all parent
nodes of a given node precede it in the order. That is, there cannot be an edge
from a node to another, which precedes it in the topological order. By fixing
a topological order in advance, the set of possible graphs is severely restricted
and it is ensured that the resulting graph is acyclic.

1 2

3 4 5 6

7 8 9 10

11 12

13

14 15 16 17

18 19 20 21

1 – dam correct?
2 – sire correct?
3 – stated dam phenogroup 1
4 – stated dam phenogroup 2
5 – stated sire phenogroup 1
6 – stated sire phenogroup 2
7 – true dam phenogroup 1
8 – true dam phenogroup 2
9 – true sire phenogroup 1

10 – true sire phenogroup 2
11 – offspring phenogroup 1
12 – offspring phenogroup 2
13 – offspring genotype
14 – factor 40
15 – factor 41
16 – factor 42
17 – factor 43
18 – lysis 40
19 – lysis 41
20 – lysis 42
21 – lysis 43

21 attributes with 2 to 8 values.
The grey nodes correspond to
observable attributes.

Fig. 10. Domain expert designed network for the Danish Jersey cattle blood
type determination example.

compute the specificity gain/sum of (squared) differences for
this pseudo-attribute and the child attribute.

A drawback of the greedy parent selection is that it may lead
to a graph that is not well suited for evidence propagation. The
reason is that a directed graphical model is often preprocessed
in order to simplify the evidence propagation, namely by turn-
ing it into a so-calledjoin tree [36], [9]. This transformation
involves adding edges to the model and thus may lead to a
more complex evidence propagation than the original graph
suggests. An approach to overcome this drawback has been
suggested in [6], [7], [8]: The idea is to skip the construction
of a directed graphical model and to learn directly a join tree.
The learning algorithm is based on simulated annealing and
has lead to promising results, especially in the possibilistic
setting.

VI. A N EXAMPLE APPLICATION

As an example of a possible application of learning pos-
sibilistic networks we consider the problem of blood group
determination of Danish Jersey cattle in the F-blood group
system [42]. For this problem there is a Bayesian network
(a directed probabilistic network) designed by human domain
experts, which serves the purpose to verify parentage for
pedigree registration.

The section of the world modeled in this example is
described by 21 attributes, eight of which are observable. The
size of the domains of these attributes ranges from two to eight
values. The total frame of discernment has26 · 310 · 6 · 84 =
92 876 046 336 possible states. This number makes it obvious
that the knowledge about this domain must be decomposed in
order to make reasoning feasible, since it is clearly impossible
to store a probability or a degree of possibility for each
state. Figure 10 lists the attributes and shows the conditional
independence graph of the Bayesian network.

As described above, a conditional independence graph
enables us to decompose the joint probability distribution
into a product of conditional probabilities. In the Danish
Jersey cattle example, this factorization leads to a considerable
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TABLE II

AN EXAMPLE OF A CONDITIONAL PROBABILITY DISTRIBUTION THAT IS

ASSOCIATED WITH THE NETWORK SHOWN IN FIGURE10.

sire true sire stated sire phenogroup 1
correct phenogroup 1 F1 V1 V2

yes F1 1 0 0
yes V1 0 1 0
yes V2 0 0 1
no F1 0.58 0.10 0.32
no V1 0.58 0.10 0.32
no V2 0.58 0.10 0.32

TABLE III

AN EXTRACT FROM THEDANISH JERSEY CATTLE DATABASE.

n y y f1 v2 f1 v2 f1 v2 f1 v2 v2 v2 v2v2 n y n y 0 6 0 6
n y y f1 v2 ** ** f1 v2 ** ** ** ** f1v2 y y n y 7 6 0 7
n y y f1 v2 f1 f1 f1 v2 f1 f1 f1 f1 f1f1 y y n n 7 7 0 0
n y y f1 v2 f1 f1 f1 v2 f1 f1 f1 f1 f1f1 y y n n 7 7 0 0
n y y f1 v2 f1 v1 f1 v2 f1 v1 v2 f1 f1v2 y y n y 7 7 0 7
n y y f1 f1 ** ** f1 f1 ** ** f1 f1 f1f1 y y n n 6 6 0 0
n y y f1 v1 ** ** f1 v1 ** ** v1 v2 v1v2 n y y y 0 5 4 5
n y y f1 v2 f1 v1 f1 v2 f1 v1 f1 v1 f1v1 y y y y 7 7 6 7

simplification: Only 308 conditional probabilities have to be
specified. An example of a conditional probability table, which
is part of the factorization, is shown in table II. It states the
conditional probabilities of the phenogroup 1 of the stated sire
of a given calf conditioned on the phenogroup 1 of the true sire
and whether the sire was correctly identified. The probabilities
in this table are derived from statistical data and the experience
of human domain experts.

Besides the domain expert designed reference structure there
is a database of 500 real world sample cases (an extract of
this database is shown in table III). This database can be used
to test learning algorithms for graphical models, because the
quality of the learning result can be determined by comparing
it to the reference structure. However, there is a problem
connected with the database, namely that it contains a fairly
large number of unknown values—only a little over half of
the tuples are complete (This can already be guessed from the
extract shown in table III: the stars denote missing values).

As already indicated above, missing values make it difficult
to learn a Bayesian network, since an unknown value can be
seen as representing imprecise information: It states that all
values contained in the domain of the corresponding attribute
are possible. Nevertheless it is still feasible to learn a Bayesian
network from the database in this case, since the dependences
are rather strong and thus the remaining small number of tuples
is still sufficient to recover the underlying structure. However,
learning a possibilistic network from the same dataset is much
easier, since possibility theory was especially designed to
handle imprecise information. Hence no discarding or special
treatment of tuples with missing values is necessary.

In order to check this conjecture, we implemented the learn-
ing methods discussed above (together with their probabilistic
counterparts) in a prototype program called INES (Induction

TABLE IV

EVALUATION OF LEARNED POSSIBILISTIC NETWORKS.

network edges params. min. avg. max.

indep. 0 80 10.064 10.160 11.390

ref. 22 308 9.888 9.917 11.318

treeSgain 20 415 8.878 8.990 10.714

treedχ2 20 462 8.662 8.820 10.334

dagSgain 31 1630 8.524 8.621 10.292

dagdχ2 36 1488 8.154 8.329 10.200

sian 20 332 8.318 8.589 10.172

of NEtwork Structures).6 Evaluations of the learned networks
showed that the learning task was successfully solved and
that the quality of the networks is comparable to that of
learned probabilistic networks and the (probabilistic) reference
structure w.r.t. reasoning.

As an illustration, table IV shows some results.7 “indep.”
means a possibilistic network with isolated nodes (i.e., no
edges), “ref.” the reference structure. “tree” means that an
optimum weight spanning tree was constructed, “dag” that a
directed acyclic graph was learned by greedy parent selection.
“sian” refers to the simulated annealing approach mentioned
above, using a penalty on the number of parameters. “Sgain”
means that specificity gain was used as the evaluation measure,
dχ2 that a possibilistic analog of theχ2 measure was used (see
above). The second column of the table lists the number of
edges of the model, the third the number of parameters (i.e.,
the number of degrees of possibility that have to be stored).
The last three columns list evaluations of the network w.r.t. the
database, which were computed as follows: For each (possibly
imprecise) tuple of the database the minimum, the average, and
the maximum of the degree of possibility of the precise tuples
compatible with it is computed. Then these values are summed
over all tuples in the database. The smaller these numbers, the
better the network.

That the reference structure yields bad results is due to the
fact that it is a Bayesian network and therefore employs a
different notion of conditional independence. The simulated
annealing approach yields the best result, especially, if the
model complexity is taken into account. It has the advantage
that it needs no topological order like the greedy parent search,
i.e., no background information that has to be provided by a
human expert.

VII. C ONCLUSIONS

In this paper we surveyed possibilistic graphical models and
approaches to learn them from a database of sample cases as an
alternative to the better-known probabilistic approaches. Based
on the context model interpretation of a degree of possibility
we showed that imprecise information is easily handled in
such a possibilistic approach. W.r.t. learning algorithms a lot of
work done in the probabilistic counterpart of this research area

6The source code of this program can be retrieved free of charge at
http://fuzzy.cs.uni-magdeburg.de/˜borgelt/software.html .

7Shell scripts and datasets for the reported results can be found at
http://fuzzy.cs.uni-magdeburg.de/books/gm/software.html .
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can be transferred. In general all search methods are directly
usable, only the evaluation measures have to be adapted.
Experiments done with an example application showed that
learning possibilistic networks from data is an important
alternative to the established probabilistic methods.
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