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Modeling Proportional Membership in
Fuzzy Clustering

Susana Nascimento, Boris Mirkin, and Fernando Moura-Pires

Abstract—To provide feedback from a cluster structure to the
data from which it has been determined, we propose a framework
for mining typological structures based on a fuzzy clustering
model of how the data are generated from a cluster structure.
To relate data entities to cluster prototypes, we assume that
the observed entities share parts of the prototypes in such a
way that the membership of an entity to a cluster expresses
the proportion of the cluster’s prototype reflected in the entity
(proportional membership). In the generic version of the model,
any entity may independently relate to any prototype, which is
similar to the assumption underlying the fuzzy -means criterion.
The model is referred to as fuzzy clustering with proportional
membership (FCPM). Several versions of the model relaxing the
generic assumptions are presented and alternating minimization
techniques for them are developed. The results of experimental
studies of FCPM versions and the fuzzy -means algorithm are
presented and discussed, especially addressing the issues of fitting
the underlying clustering model. An example is given with data
in the medical field in which our approach is shown to suit
better than more conventional methods.

Index Terms—Alternating minimization, fuzzy clustering, fuzzy
model identification, least-squares, proportional membership, pro-
totype, semi-soft clustering.

I. INTRODUCTION

FUZZY clustering techniques have been applied effec-
tively in image processing, pattern recognition and fuzzy

modeling. The best known approach to fuzzy clustering is the
method of fuzzy -means (FCM), proposed by Bezdek [1] and
Dunn [2], and generalized by other authors. A good survey of
relevant works on the subject can be found in [3]. In FCM,
membership functions are defined based on a distance function,
and membership degrees express proximities of entities to
cluster centers (i.e., prototypes). By choosing a suitable dis-
tance function different cluster shapes can be identified [4]–[9].
Another approach to fuzzy clustering due to Krishnapuram
and Keller [10] is the possibilistic-means (PCM) algorithm
which eliminates one of the constraints imposed on the search
for partitions leading to possibilistic (absolute) fuzzy mem-
bership values instead of FCM probabilistic (relative) fuzzy
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memberships. All these methods show how a cluster structure
is determined from the data, but they are not oriented to provide
feedback on generation of the data from a cluster structure. De-
veloping models with explicit mechanisms for data generation
from cluster structures can be of interest, because such a model
can provide a theoretical framework for cluster structures
found in data. In [11], Hathaway and Bezdek propose a fuzzy
clustering approach for switching regression models where
data are assumed to be generated fromregression models in
such a way that each data point fits several (or all) of the
models to varying degrees (i.e., membership values). This idea
can be carried out toward traditional fuzzy clustering as well, if
the data are assumed to come from a cluster structure model.

Especially appealing in this respect seems the so-called ty-
pological structure in which observed entities relate in various
degrees to one or several “prototypes.” Such structures are rele-
vant in many areas such as medicine where any patient may ad-
here, in different degrees, to one or several prototype disorder
or disease. Obviously, problems of revealing hidden prototypes
and extent of the entities’ adherence to them from a data set be-
long to the realm of data mining.

In this paper, we propose a framework for mining for typo-
logical structures based on a fuzzy clustering model of how the
data are generated from a cluster structure to be identified. Some
preliminary results are described in [12], [13], and [14]. In this
approach, the underlying fuzzypartition is supposed to be de-
fined in such a way that the membership of an entity to a cluster
expresses a part of the cluster’s prototype reflected in the en-
tity. This way, an entity may bear 60% of a prototypeand
40% of prototype , which simultaneously express the entity’s
membership to the respective clusters. This type of a member-
ship function will be referred to as a proportional membership
function.

The idea of proportional membership was initially described
by Mirkin and Satarov in the so-called ideal type fuzzy clus-
tering model [15], in which observed entities are represented
as convex combinations of the prototypes; the convex combina-
tion coefficients are considered as the entity membership values.
However, this approach as is invokes the extremal rather than
averaged properties of the data, which may lead to unrealistic
solutions [16]. Moreover, these solutions typically have nothing
to do with those found with the FCM method. The ultimate goal
of this paper is to develop a proportional membership model
whose solutions would be more similar to the FCM solutions.
Although, for every entity, its memberships to clusters are re-
lated by the condition that they sum up to unity, the bottom
line is that any entity may independently relate to any proto-
type, which is akin to the assumption in the fuzzy-means cri-
terion. Our approach takes the adherence to centroids from the
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fuzzy -means, but the membership is treated as a multiplicative
factor to the prototype in a manner similar to that of the ideal
type fuzzy clustering. We refer to our model asfuzzy clustering
with proportional membership(FCPM, (which slightly differs
from the denotation “FCMP” used in [12] and [13]). It should
be pointed out that the FCPM suggests a specific mechanism for
data generation from a cluster structure, which does not neces-
sarily fit any data set.

We begin Section II by introducing FCM. Then, the FCPM
approach is introduced: a generic form of FCPM is described in
Section II.C, and extensions of the model to the case in which
only large membership values are taken into account in the crite-
rion are presented in Section II.D. The alternating minimization
approach of FCM is extended to FCPM criteria in Section III. In
contrast to FCM, the fuzziness constraints are not automatically
satisfied for the FCPM solutions. This requires the use of a con-
venient nonlinear constrained optimization method. As such,
the so-called gradient projection method is utilized and adapted
for all versions of the FCPM. A combination of FCPM and FCM
is suggested in Section III.E following the approach outlined in
[17]. In Section IV, the results of experimental studies with gen-
erated data are presented and discussed. In Section V, we give an
example from the field of psychiatry at which mental disorder
syndromes represent ideal rather than average cases. It appears
that FCPM is quite suitable in such a situation; in contrast to
FCM, FCPM does not change the mental disorder prototypes
when patients with less severe symptoms are added to the data
set. Section VI concludes with the main results and issues.

II. FUZZY CLUSTERING MODEL WITH PROPORTIONAL

MEMBERSHIP(FCPM)

A. Data-Driven Cluster Modeling

To provide feedback from a cluster structure to the data from
which it has been determined, we employ a framework based
on the assumption that the data are generated according to the
cluster structure. The structure underlies the data in the format
of a traditional statistical equation

observed data model data noise (1)

In statistics, such an equation is accompanied by a proba-
bilistic model of the noise. In our case, however, the model
is not prespecified but rather derived from the data. Thus we
concentrate on the “model data” part and leave thenoiseto be
considered as just the set of differences between the observed
and model data. The differences are treated here as mere resid-
uals; they just should be made as small as possible by fitting the
model.

In our clustering model, we assume the existence of some pro-
totypes which serve as “ideal” patterns to data entities. To relate
the prototypes to observations, we assume that the observed en-
tities share parts of the prototypes. It is these parts that constitute
the model data. The underlying structure of this model can be
described by a fuzzy partition defined in such a way that the
membership of an entity to a cluster expresses the proportion of
the cluster’s prototype reflected in the entity. This, to an extent,
models the concept of typology in descriptive sciences. The ty-
pological structure may be absent from the data as, for instance,

when the data are generated by a preference relation. Thus, our
assumption does not necessarily apply to any data set.

The idea of proportional membership can be formalized dif-
ferently. In the so-called ideal type model [15], any observed
entity is a convex combination of the prototypes and the coeffi-
cients are the entity membership values. Accordingly, the pro-
totypes found with the ideal type model are extremes or even
outsiders with regard to the “cloud” of points constituting the
data [16]. This makes the ideal type model much different from
the other fuzzy clustering techniques: the prototypes found with
the other methods tend to be centroids of the corresponding clus-
ters rather than their extremes. The extremity/externality of pro-
totypes may become an issue when the feature values must be
nonnegative or belong to a scoring system with fixed bound-
aries. However, even if no prior constraints are imposed, inter-
pretation of the prototypes may be difficult. Indeed, to define a
conceptually meaningful ideal type, fundamental properties of
the objects must be utilized; this may not be the case in a typical
situation in which relations between the observed features and
underlying conceptual properties of the phenomenon are either
indirect or unclear or both.

To bring the model-based approach closer to traditional fuzzy
clustering techniques, we consider here a different way of asso-
ciating observed entities to the prototypes: any entity may in-
dependently relate to any prototype, up to the condition that the
sums of memberships for any entity must sum up to unity, which
is similar to the assumption in the fuzzy-means criterion de-
scribed next.

B. FCM

The FCM [1] is one of the most popular methods in fuzzy
clustering. It involves the concept of fuzzypartition proposed
by Ruspini [18], summarized here as follows.

Let be a set of given data points, where
each data point ( ) is a vector in . Let us
denote the set of all real matrices by , where is a
prespecified integer . Then, the fuzzy partition
space for is the set such that if and
only if

for all (2a)

(2b)

where is interpreted as the membership of an entityin
cluster ( ).

The aim of the FCM algorithm is to find a fuzzypartition
and corresponding prototypes minimizing the objective function

(3)

In (3), is a matrix of unknown cluster
centers (prototypes) , is an inner product norm, and
the weighting exponent is a constant which affects
the membership values, determining the degree of fuzziness of
the cluster partition.
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Clustering criterion belongs to the class of least-squares
criteria. Since it may be difficult to globally minimize (3),
Bezdek [1] proposed a version of the alternating minimization
algorithm defined as follows. Specify integer, and , a
small positive constant; then set iteration number and
initialize . Any iteration consists of two steps.
First, given the membership values , calculate the cluster

centers ( ), with

(4)

where denotes the scalar product of vectors, and, for
, denotes vector .

Second, given the new cluster centers , update member-
ship values

(5)

The process stops when , or a predefined
maximum number of iterations is reached.

The FCM alternating (4) and (5) follow from the first-order
optimality conditions (cf. [1] for the derivations). Since cri-
terion is not convex, the stationary point of the process
may fail to give the global solution. However, the generated
solutions { } always converge to
local minima or saddle points of [19].

The FCM clustering criterion (3) aims to minimize the total
distance between entities and prototypes weighted by the corre-
sponding membership values. To decide for whata resulting
fuzzy partition better fits the data, the FCM algorithm has to
be run for different values of ( ). Then each partition
can be evaluated by an expert or, sometimes, with formal cri-
teria such as the so-calledvalidation function[1].

The FCM method can be applied in a wide range of applica-
tions, leading to hyperspherical cluster shapes due to the aver-
aging nature of formulas (4) and (5). However, this clustering
criterion does not follow the pattern of (1) and it may be diffi-
cult sometimes to explicitly express how to reconstruct the data
from a cluster solution.

C. Generic Proportional Membership Model

Let the data matrix be preprocessed into by shifting the
origin to the gravity center of all the entities (rows) inand
rescaling features (columns) by their ranges. Thus, is
a entity-to-feature data table where each entity, described
by features, is defined by the row-vector
( ; ).

Let us assume that each entity of is related
to each prototype ( ), as in the FCM.
Moreover, we further assume that the membership valueis
not just a weight, but it expresses the proportion ofwhich

is present in . That is, we assume that approximately
for every feature . More formally, we suppose that

(6)

where the residual values are as small as possible.
A clustering criterion according to (6) can be defined as fit-

ting of each data point to a share of each of the prototypes, rep-
resented by the degree of membership. This goal is expressed in
the least-squares criterion

(7)

which is to be minimized over all and admissible satis-
fying the constraints (2a) and (2b).

Equation (6) along with the least-squares criterion (7)
to be minimized by unknown parameters and

for given, will be referred
to as the genericfuzzy clustering proportional membership
model, FCPM-0, for short. In this model, the principle of the
least-squares criterion in the fuzzy-means is extended to the
framework of (1).

Let us point out some aspects of this approach.

1) Each prototype according to (6) is a “model” or “ideal”
point such that any entity bears a proportion of it
up to the residuals. The proportion is considered as
the value of membership of to the cluster. This way,
both the prototypes and memberships are reflected in the
model of data generation.

2) Equation (6) can be considered as a device to reconstruct
the data from the model. The clustering criterion follows
the least-squares framework to warrant that the recon-
struction is, on average, as exact as possible. Other scalar-
izations of the idea of minimization of the residuals can
be considered as well.

3) The least-squares criterion (7) differs from other least-
squares criteria, such as that of FCM, by the fact that
the trivial structure in which each of the observed enti-
ties forms a prototype on its own is not its solution. The
trivial structure obviously reduces the FCM criterion to
its absolute minimum 0, but it does not bring (7) to the
minimum.

4) The model (6) may be considered overspecified: any
observed entity must share a proportion of each of the
prototypes, which, ideally, may occur only if all the
entities and prototypes belong to the same unidimensional
space. Such a solution is obviously not realistic, especially
when contradictory tendencies are present in the data.
This property of the generic model may lead to some
over-estimation effects which may require modification
of the criterion to a more realistic form in which the
entities pertain to not all but only a few or just one of
the prototypes.

5) A property of the clustering criterion (7) is that it re-
mains constant if vectors and are changed for

and for some , where is an arbitrary real.
In particular, tending to zero, the membership vector,
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, tends to zero while the prototype to infinity,
without any change in the corresponding differences in
criterion (7). This way, the following phenomenon may
occur in the process of adjusting solutions during alter-
nating minimization of criterion (7): to decrease some
of the differences in (7) the membership values involved
can be increased while simultaneously decreasing other
membership values to zero along with moving corre-
sponding prototypes to infinity. Some prototypes tending
to infinity is a specific pattern of nonconvergence of
the alternating minimization, which may occur in the
generic FCPM model.

6) The latter two properties may make the model sensitive to
the number of clustersto be identified in the data. When
this number is greater than the number of prototypes
fitting well in the model, some of the prototypes in a
computation may be driven out to infinity in the process of
alternating minimization of the criterion (7) as described
in the previous comment. If such a phenomenon can be
confirmed with simulation experiments, this model could
be utilized as a device for attacking such difficult issues
as: 1)“what is the correct number of clusters?”; and 2)
“does the found clustering structure correspond to the
data or not?”. These issues can be made meaningful
only under an assumption of a rigid cluster structure the
data may have come from, such as in FCPM. This is
confirmed, to an extent, in our experiments (Section IV.B).

D. Modifying the FCPM Criterion

As has been pointed out in our comments to (6) and (7), the
requirement of FCPM that each entity can be expressed as a part
of each prototype may be too strong and unrealistic sometimes.
The intuition leads us to consider that only meaningful propor-
tions, those expressed by high membership values, should be
taken into account in (6).

We consider two ways to implement this idea in the FCPM
framework: in a “smooth” manner and in a “hard” one, as spec-
ified in the next two sections.

1) Smooth Version:In order to decrease the effect of the
residual values corresponding to small memberships ,
let us weigh the squared residuals in (7) by a powerof corre-
sponding

(8)

subject to the fuzziness constraints (2a) and (2b).
The models corresponding to these criteria will be denoted

as FCPM-1, for , and FCPM-2, for ; no other
will be considered here. Criterion (7) is a special case of (8)

corresponding to .
2) Hard Version: A “hard” version of the FCPM model

should only involve those equations in (6) that contain large
values of . By specifying a threshold, between 0 and 1.0,
only those differences are left in the criterion (7) that
satisfy the inequality, . In such a model, in-
troduced in [20], entities may relate to as few prototypes as we
wish. In particular, leads to the exclusive relationship

of any entity to one prototype only. Thus, in only
differences in which are left in criterion (7). This
leads to the clustering criterion defined as follows:

(9)

where

(10)

and such that for all

(11a)

(11b)

(11c)

The idea of removing all small interactions between proto-
types and entities from the criterion has been considered in the
context of FCM by Selim and Ismail [21] in several versions,
one of which relates to directly thresholding the membership
weights as in the approach. The authors of [21] refer
to this approach as to the “soft clustering,” an intermediate be-
tween crisp clustering and fuzzy clustering.

III. FCPM METHOD AND ITS MODIFICATIONS

A. Alternating Minimization: Major and Minor Iterations

Let us consider the aforementioned FCPM criteria in the gen-
eral format of criterion , to be minimized

(12)

The alternating minimization algorithm applied to this
problem involves two iterating steps. First, given ,
minimize with regard to . Second, given
the solution from the first step, , minimize
over . Based on this, an alternating minimization
algorithm can be defined as follows.

Initialize
Repeat
given
set ;
given , set

until .

Given , minimization of with regard to
can be done according to the first-order condition of opti-

mality. This condition implies that

(13)

where parameter takes value for either version
of FCPM- . This equation resembles (3) in the FCM method,
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which suggests that the FCPM does capture the averaging fea-
ture of FCM. However, there is a difference as well. In (13),
the power of in the numerator differs from the power

of in the denominator, while these powers coincide in
(3). Thus, the FCM prototypes are convex combinations of the
observed points, which is not the case for the FCPM prototypes.

The minimization of criterion with regard to
is not as straightforward as in FCM, because of the con-

straints (2a) and (2b). This distinguishes the FCPM criteria from
those of FCM for which the first-order solutions automatically
satisfy constraints (2a) and (2b). After preliminary experiments
with several options, the gradient projection method [22], [23]
has been selected for the latter problem. This method works es-
pecially well for criterion in (7) as will be shown in the next
section.

The gradient projection method is iterative. To distinguish
between the alternating minimization iterations and iterations
of the gradient projection method, we will refer to the former
ones as “major” iterations and to the latter as “minor” iterations.
The complete cycle of “minor” iterations is performed at each
“major” iteration.

B. Gradient Projection Method for FCPM

In this section, we introduce the gradient projection method
(GPM) and explain how it can be applied to minimize
over .

GPM: Let be a function to be minimized over a
subset . For any in , let us denote its projection in

by , so that minimizes over all .
The gradient projection method for solving this optimization

problem, starts with arbitrary and iteratively trans-
forms it according to the following rule:

(14)

where is a positive constant and the gradient of at
.

Let us introduce conditions of convergence of the gradient
projection method [22], [23].

A vector function is said to satisfy the Lipschitz
continuity condition with constant if

(15)

Let us refer to as strictly convex with constant if

(16)

For a twice differentiable function, this is equivalent to its
Hessian, , being bound over , that is, ,
where is the diagonal matrix, and means that
is a positive semidefinite matrix.

The next two theorems from [22] and [23] state some conver-
gence results for the gradient projection method.

Theorem 1: Let be convex and closed. Let be a
convex differentiable function in , whose gradient satisfies
the Lipschitz condition over with constant . Let be a real
such that . Then, converges to a globally
optimal point when tends to infinity.

Theorem 2: In the conditions of Theorem 1 , if, supplemen-
tarily, is twice differentiable and
for all in , then (geometric progression
convergence) where .

Applying the Gradient Projection Method to FCPM:Let us
denote the set of membership vectors satisfying conditions 2(a)
and 2(b) by , which is a convex set (cf. [1, Th. 6.2.]). With

fixed, the function is to be minimized over such
whose columns, , belong to .
The gradient projection method (14) applied to minimize

can be stated as

(17)
The possibility of translating the problem defined over ma-

trices in terms of separate membership vectors in (17) is due to
the fact that for each its components only depend on

.
To apply (17), one needs to specify the following three parts

of it:

i) computation of ;
ii) choice of stepsize length;
iii) finding the projection for

.
To address the former two problems, and for the sake of sim-

plicity, we start from the criterion of the generic model in
(7) as the . Then, we extend the analysis to the other
criteria (8).

The function is convex and twice differentiable
over its variables . The elements of its gradient are

(18)
and its Hessian is a diagonal matrix whose
( )th element is . Let us denote

and . Then,
. We assume all are nonzero

which implies .
The gradient satisfies the Lipschitz condition over

with constant thus defined. Indeed

(19)

which implies the same inequality for the vector norms, that is,
the Lipschitz condition (15).

We have proven the following.
Proposition 3: Given , and defined above, function

is strictly convex with constant in the space of
membership vectors , and its gradient satisfies the Lip-
schitz condition over with the constant .

This shows that both of the Theorems 1 and 2 are applicable
here so that the process (17) converges with anybetween 0
and . Let us consider , so that spans
the interval between 0 and when changes from 0 to in-
finity. In such a case the speed of convergence is controlled by
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. A computa-
tional experiment has been conducted starting from
and repeatedly incrementing it by 0.1, to watch the rate of con-
vergence for function The value has been chosen as
giving most stable convergence, thus leading to .
This way, issues i) and ii) have been addressed for criterion.

The situation for functions ( ) is different:
neither is convex over , though each satisfies the Lipschitz
condition.

The elements of the gradients are defined by

(20)

Note that (18) is a particular case of (20) with . On the
other hand

(21)
with the norm, and a constant equal to

(22)

with , and
. This shows that (with ) satisfies

Lipschitz condition for the -norm with constant previously
defined.

Although Lipschitz continuity condition (15) is defined for
the -norm, it is known that the condition holds or does not
hold in both and -norms simultaneously, though the con-
stant in (15) may change [22].

When a function is not convex and satisfies Lipschitz con-
dition, the gradient projection method may converge to a local
optimum only, adding this to the general local search nature of
the method of alternating optimization.

In order to specify the stepsize length, we used the same
as for with . Substituting from

(22) in the formula, this leads to

(23)

with , and previously defined, and coefficients de-
fined by

Notice that (23) is compatible with the defined above for
criterion , since it is defined by the same rule.

Now, we can turn to the problem iii) of projection of the dif-
ference vectors onto the set

of vectors satisfying conditions (2a) and (2b).

For each criterion , vectors to be projected
onto are defined by

(24)

derived from (17) with in (20) substituted for .
Projecting a Vector on the Simplex of Membership Vec-

tors: Let us consider the problem of finding a vector
( ), which is at the minimum distance

from a prespecified vector . This problem can be stated
as follows:

(25)

subject to constraints (2a) and (2b).
In order to solve this problem, let us assume without any loss

of generality that .
Proposition 4: The optimal in (25) has the same order of

components, that is, .
To prove the statement, let us assume that it is not true, thus,

for instance, . Then, we can further decrease criterion
(25) by shifting a small amount of to . Indeed, let us take

such that and put and
in instead of and , respectively. Then, the value of
will change by

. With a little arithmetic, this can be
reduced to which is negative
because, in our assumptions, and

. Thus, criterion (25) has been further decreased, which
contradicts the optimality of and proves the proposition.

Thus, for some and the
final components are zero. For the nonzero components,
the following equations hold for an optimal :

Otherwise, we could transform as above in the proof of
Proposition 4 by redistribution of values among the positive

in such a way that its distance fromdecreases,
which would contradict the assumption that the distance had
been minimized by . Thus, for the optimal , ,

, where is the common
value of the differences; it can be determined as the result of
summation of

(26)

The value is not known beforehand. To find it, the fol-
lowing iterative process can be applied. Start with ,
and at each iteration compute with formula (26) and take
the difference . If it is less than or equal
to zero, decrease by 1 and repeat the process until the dif-
ference becomes positive. Then, define all the otheras fol-
lows: for and for
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. The process can be accelerated if, at each
iteration, is decreased by the number of negative values in
the set of differences ( ). This is
reflected in algorithm A4.1, below.

C. FCPM Algorithm Reviewed

The FCPM algorithm is defined as an iterative alternating
minimization algorithm in which each “major” iteration con-
sists of two steps as follows. First, given prototype matrix,
the optimal membership values are found with (17). This re-
quires an iterative process described in Section III-B. Second,
given membership matrix , the optimal prototypes are deter-
mined according to the first-degree optimality conditions (13).

Algorithm A4.1:
1 Given ( )
2 sort in the descending order;
3 ;
4 Repeat
5 calculate by (26)
6 ; ;
7 Repeat
8 ;
9 ;
10 If then ; endIf
11 until ( .or. zeros );
12 If zeros then
13 For do ; endFor
14 ;
15 endIf
16 until ( .or. not zeros );
17 return .

The algorithm starts with a set of arbitrarily selected
prototype points in and in ; it stops when the dif-
ference between successive prototype matrices becomes small
(according to an appropriate matrix norm, ).

The global convergence of the FCPM algorithm is not
guaranteed. Moreover, with a “wrong” number of clusters pre-
specified, FCPM-0 may not converge at all since FCPM-0 may
shift some prototypes to infinity as was observed in comments
for the generic FCPM model. In our experiments, the number
of major iterations in FCPM-0 algorithm when it converges is
rather small, which is exploited as a stopping condition: when
the number of major iterations in an FCPM-0 run goes over a
large number (in our calculations, over 100), that means the
process does not converge.

The FCPM- ( ) algorithm is defined in A4.2.

D. Hard Version of FCPM

The “hard” version of the FCPM model described in Sec-
tion II-D.II can be implemented with corresponding adjustments
of both major and minor iterations of FCPM.

The clustering criterion (9) is a nonconvex function
(as are the other FCPM criteria). Constraints (11a)–(11c) also
define nonconvex sets. This adds to the difficulty of constructing
an algorithm to solve this problem. To minimize (9), the FCPM
algorithm has been modified in two places: 1) the initial set-
ting ( ) has been set to be the result of running one
FCPM-1 major iteration, and the initial ( ) are
calculated accordingly, and 2) in the projection algorithm, the
boundary value defining null membership is to be taken as the
threshold ( ) rather than zero. The modified pro-
jection algorithm finds solutions in the set

or rather than in . The sets are then ad-
justed at each iteration so that (10) holds. This version of FCPM
algorithm will be referred to as .

Algorithm A4.2: FCPM- Algorithm
1 Given
2 choose ( ), ( ), , ,

;
3 initialize , , ;
4 Repeat
5
6
7 Repeat
8 ;
9 For do
10 calculate with , by

(24) ;
11
12 endFor
13 until ( .or. );
14
15
16 calculate with by (13) ;
17 until ( .or.

);
18 return .

The calculations of membership vectors are

based on vectors , where (27a)-(27b), shown at the

bottom of the page, hold, and such that the projection ofin
is to be taken as .

The algorithm is defined in A4.3.
For small , this method may show the same pattern of non-

convergence as FCPM-0, removing some of the prototypes to
infinity.

(27a)

(27b)



180 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 11, NO. 2, APRIL 2003

In our computations, the thresholdhas been taken as the
minimum value for which converges, by starting
from and repeatedly incrementing it by 0.1.

E. Combining FCPM and FCM: FCPM-AE

Criteria (8) and (9) for fitting the FCPM model may be too
restrictive in revealing cluster structures in data that have been
generated differently from what the FCPM model suggests. In
particular, FCPM-0 criterion (6) may underestimate the number
of clusters present in data.

As we already have mentioned, FCM prototypes are convex
combinations of data points whereas FCPM prototypes are not.
Therefore, FCPM prototypes are not guaranteed to lie in the
convex hull of the data set and may move out of the data set
area.

Algorithm A4.3: FCPM Algorithm
1 Given
2 choose ,

;
3 initialize with

;
4
5 set by (10) ;
6 Repeat
8 ;
9 ;
10 Repeat
11 ;
12 For do
13 calculate with , by

(27) ;
14
15 endFor
16 until ( .or. )
17 update by (10) ( );
18 ;
19
20 calculate with by (13) with

;
21 until ( .or. )
22 return

In order to overcome this without losing the interpretability of
the model-based FCPM proportional membership, it would be
desirable to combine the advantages of FCM prototypes (4) with
FCPM proportional memberships, this way relaxing the rigidity
of FCPM.

Runkler and Bezdek [17] propose an approach to fuzzy clus-
tering in which the unique objective function model is aban-
doned and substituted by a more general framework defined
by the architecture of the alternating minimization algorithm
and by user-specified equations for updatingand . When
the user selects updating equations not from a unique objective
function model, clusters and cluster centers are referred to as
estimatedby alternatingly updating partitions and prototypes.
This framework is called by the authors thealternating cluster
estimation(ACE), and is considered a flexible version of theal-
ternating optimizationFCM approach [8].

To accomplish our goal, we follow the ACE framework to
combine the FCPM and FCM approaches in the following
FCPM-AE method: prototypes are updated as the gravity
cluster centers (4), and partitions by the FCPM proportional
membership function.

IV. EXPERIMENTAL STUDY

The main goal of this experimental study is threefold:

1) to analyze the ability of FCPM to recover the original
prototypes from which data have been generated;

2) to study the behavior of FCPM-0 as an index of the
number of clusters present in data;

3) to compare FCPM and FCM methods by using generated
data sets.

A. Setting of Experiments

A number of distinct approaches have been proposed in the
literature for generating artificial clustering data. In these ap-
proaches, data points are assumed to have been generated from
some probability distribution, usually using multivariate normal
clusters ranging from simple to complex covariance structures
[24], [25].

The FCPM model should be tested on data exhibiting a ty-
pological structure, according to assumptions underlying the
FCPM model, in particular: 1) there is a cluster structure under-
lying the model of data generation, and 2) in such a structure,
each prototype is a “model” or “ideal” point such that any en-
tity, , bears a proportion of it. In contrast to traditional data
generation models (like ones in [24] and [25]) we do not pursue
any specific geometric shape of the clusters, except for that in
accordance with the generic proportional membership assump-
tion: each observation can be associated with a proportion of
corresponding cluster prototype. To accomplish this, a data gen-
erator has been constructed as follows.

Data Generator:

1) The dimension of the space (), the number of clusters ()
and numbers are randomly generated within
prespecified intervals. The data set cardinality is defined as

.
2) cluster directions are defined as follows: vectors

( ) are randomly generated within a prespecified
hyper-cube with side length between -100.0 and 100.0; then,
their gravity center is taken as the origin of the space.

3) For each , define two -dimensional sampling boxes, one
within bounds and the other within

; then generate randomly 0.2points in and 0.8
points in .

4) The data generated are normalized by centering to the origin
and scaling by the range.

All randomly generated items are generated from a uniform
distribution in the interval [0,1]. This way we could provide
rather complex data structures with a small number of easily in-
terpretable parameters, which would be much more difficult to
achieve with more traditional multivariate normal distributions.

To visualize data, they are projected into a two-dimen-
sional/three-dimensional (2-D/3-D) space of the best principal
components (see Fig. 1).
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Fig. 1. Architecture of the data generator on a 3-D projection of the best three
principal components, withp-dimensional sampling boxesA andB , for a data
structure with six original prototypes.

All the algorithms and data generator have been written in
MatLab 5.2 [26], and the experimental study was conducted on
a PC with a PENTIUM II processor at 267 MHz.

In the discussion of the experimental results, the emphasis
will be given to the clustering results rather than the perfor-
mance of the algorithms. Our criteria (8) and (9) are more com-
plex than that of FCM and thus require more calculations.

In our experiments, each of the six algorithms outlined above
(FCM, FCPM-0, FCPM-1, FCPM-2, , and FCPM-AE)
has been run on the same data set (with the same initial setting)
for different values of ( ). The parameters of
the algorithms are specified as: ,
and is -norm in . The parameters of FCM have been
specified as and equal to the Euclidean norm. Also,
the FCM algorithm has been slightly modified to start with the
prototypes rather than with the membership matrix in
the original version (a similar modification has been adopted in
[8] and [17]).

Cluster solutions found with FCPM algorithms have been
characterized by the following four features: 1) the number of
clusters found, ; 2) the separability index, ; 3) the dissimi-
larity from the FCM found prototypes; and 4) the dissim-
ilarity from the original prototypes. The separability index
was also calculated for FCM solutions. The separability index

is

(28)

as defined in [1]. This index assesses the fuzziness of partition
; it takes values in the range [0,1]; for hard partitions

and for the uniform memberships (cf. [1, p. 157]).
The dissimilarity between FCPM prototypes and “refer-

ence” prototypes (in our experiments, either the original pro-
totypes or FCM ones), is defined as

(29)

which measures the squared relative quadratic mean difference
between corresponding prototypes and . Matching be-
tween prototypes is determined according to minimal distances.
In the case in which the number of prototypesfound by
FCPM-0 is smaller than, only prototypes participate in
(29). Coefficient is not negative, and it equals 0 if and only
if for all ; . In a typical
situation, when and are in the same orthants, is not
greater than 1. Notice that the dissimilarity measureis more
or less independent of the original’s, their cardinality ( )
and dimension (); thus, it can be used to compare cluster
prototypes in different settings.

For a fixed pair, and , a group of 15 data sets were gener-
ated with different numbers of entities and different prototypes.
The experiments comprised seven such groups withranging
from 5 to 180 and from 3 to 6.

For each group of data sets of the same dimensionand
the number of generated prototypes, the FCPM algorithms
have been compared based on the number of major iterations

, number of prototypes found, separability coefficient ,
the dissimilarity from FCM prototypes and dissimilarity

from the original prototypes ( ).

B. Summary of the Results

Results of our experiments with FCM and FCPM algorithms
lead us to distinguish between three types of data dimension-
ality: low, intermediate, and high, because the algorithms be-
have differently across these categories. With several hundred
entities, is considered small and high.

In the following, we refer to three types of the numbers of
prototypes: (1) the number of originally generated prototypes,

, (2) the number of prototypes prespecified in a run,, and
(3) the number of prototypes found by an algorithm,. The
numbers and , in the same computation, may differ because
of either of two causes:

C1) some of the initial prototypes converge to the same
stationary point;

C2) some of the initial prototypes have been removed by
the algorithm from the data cloud (this concerns mostly
FCPM-0).

In either case, .
In order to illustrate the kind of cluster structures we operate

with in the experiments, a small data set was generated with
original prototypes in ( ) with points, as

displayed in Fig. 2. The FCM and FCPM algorithms have been
run starting from the same initial setting, seeking for
prototypes, which are also displayed in Fig. 2. The FCPM-0 al-
gorithm has moved one of the prototypes (that corresponding to
cluster 2) far away to the left from cluster 2, so that its points,
in the end, share the prototype with cluster 3. Concerning the
other FCPM and FCM algorithms, all of them found their parti-
tions with prototypes. Method FCPM-2 produced the
most extremal prototypes close to the original ones, and the
others FCPM methods produced prototypes close to the proto-
types found by FCM.

In the main series of experiments the number of prototypes
looked for is taken coinciding with the number of original pro-
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Fig. 2. Results of clustering for the illustrative data set (c = 3, p = 2,
n = 49). All FCPM and FCM algorithms findc = 3 prototypes,
except FCPM-0. The FCPM-0 algorithm has moved one of the prototypes
(corresponding to cluster 2) far away to the left of cluster 2. Therefore, its
points share the prototype with cluster 3.

totypes, (Table I). Another set of experiments have been
carried out for (Table II).

Table I shows the average results of running FCM and FCPM
algorithms with for each of the three groups of data
sets: small dimension ( ), intermediate dimension
( ), and high dimension ( ).
When , the cause, either C1 or C2, is shown in the upper
index.

The results of the experiments can be summarized as follows.

1) With regard to correctness of the number of clusters iden-
tified in the data, the methods fall in three groups:

a) methods retaining a prespecified number of clusters
(FCPM-1, FCPM-2 and FCPM-AE);

b) methods which can reduce the number of clusters
(especially in the high-dimension data case) by ei-
ther cause C1 (FCM) or C2 (FCPM-0);

c) method whose behavior depends on the
threshold value.

For low and intermediate dimension data sets, FCPM-0
almost always finds the correct number of clusters gen-
erated (column in Table I). In the high-dimensional
spaces, FCPM-0 finds the correct number of clusters in
50% of the cases and it underestimates the number of
clusters in other cases. This is carried out by moving some
of the prototypes out of the data set area. In the high-di-
mensional spaces, FCM typically leads to even smaller
number of clusters, making the initial prototypes con-
verge to the same point. Further experiments show that
this feature of FCM depends not only on the space dimen-
sion but also follows the generated data structure. Specif-
ically, for the high dimension data, FCM seems to view
the entire data set as just one cluster around the origin of
the space, because there are not that many points gener-
ated “outside” of it. When the proportion of points gen-
erated around the original prototypes (within the boxes

in step 3 of the data generator) is increased from 0.2

TABLE I
AVERAGE RESULTS OFRUNNING FCM AND FCPM ALGORITHMS FORTHREE

GROUPS OFDATA SETS: SMALL DIMENSION (p = 5), INTERMEDIATE

(p = 50), AND HIGH DIMENSION (p = 180)

TABLE II
NUMBERS OFPROTOTYPESFOUND BY THE FCM AND FCPM ALGORITHMS

WITH c = c + 1

to 0.8, FCM identifies the correct number of prototypes.
(See also [27] for discussion of issues related to high-
dimensional spaces).

In Table I, the threshold parameter in is
chosen as the lowest value for which the algorithm con-
verges. This depends on the space dimension: the higher
the dimension, the larger minimumfor the algorithm to
converge ( , and , for the small,
intermediate and high-space dimensions, respectively).

2) The prototypes found by FCPM-AE, , FCPM-1
and FCPM-0 almost coincide with those found by FCM
when the number of centroids is determined by FCM
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Fig. 3. 3-D plot of the prototypes found by FCM and FCPM withc = c

prototypes (a high-dimension case withp = 180, c = 6).

correctly. These prototypes differ from those originally
generated. In contrast, FCPM-2 identifies the originally
generated prototypes and, thus, yields results differing
from FCM. This effect is especially visible when the
ratio increases. The prototypes found by FCPM-0
can be considered intermediate between those found
by FCM and FCPM-2. Fig. 3 illustrates these aspects,
displaying the relative locations of FCPM and FCM
found prototypes, with regard to the original prototypes,
for a high-dimensional data set.

3) According to the partition separability coefficient, ,
FCPM-0, FCPM-1, and FCPM-AE partitions
have more contrasting than FCM ones. In particular, in
high-dimensional cases FCPM-1 and lead to
hard clustering solutions. The FCPM-2 gives the fuzziest
partitions, typically differing from those of FCM. On the
other hand, the FCPM-AE partitions are more contrast
than FCM ones. This probably can be explained by the
fact that the proportional membership is more sensitive
to the discriminate attribute values characterizing a
cluster, when compared with the FCM distance-based
membership.

4) On average, the number of major iterations () in
FCPM-1, FCPM-2, and FCPM-AE is smaller
than that in FCM, while in FCPM-0 this number does
not differ significantly from that in FCM (for small
dimensions). However, the running time is greater for
FCPM algorithms, due to time spent in minor iterations
with the gradient projection method. Fig. 4 displays the
average CPU times (in seconds), on a logarithmic scale,
taken by each algorithm, for the three groups of (15)
data sets of low, intermediate and high space dimension,
respectively. FCM is the fastest algorithm followed by
FCPM-AE. The discrepancy in computational times of
FCPM-0 from the other FCPM algorithms, is due to the
fast convergence to a (global) optimum of the minor
iteration cycle in FCPM-0, in contrast to the other FCPM
algorithms.

Another series of experiments have been performed in order
to analyze the sensibility of FCPM algorithms to prespecifying
a larger number of clusters than those from which data are gen-
erated. Depending on the ratio , the FCM and FCPM algo-

Fig. 4. Average CPU times (seconds on a log scale) taken by FCM and FCPM
algorithms, for the three groups of data sets with low (diamonds), intermediate
(squares), and high (triangles) space dimensions.

Fig. 5. 3-D plot of the prototypes found by FCM and FCPM withc = c +1

(small dimension case withp = 5, c = 3). Only FCPM-0 finds the correct
number of prototypes by moving the extra prototype out of the data space; all
the other FCPM and FCM algorithms findc = c + 1 distinct prototypes.

Fig. 6. 3-D plot of the prototypes found by FCM and FCPM withc = c +1

(intermediate dimension case withp = 50, c = 4). FCPM-0 and FCPM-2
find the correct number of prototypes by moving the extra prototype out of the
data area. In case of FCM, FCPM-1 and FCPM-AE, the corresponding extra
prototype coincides with one of the remaining ones. OnlyFCPM finds c =

c + 1 distinct prototypes.

rithms behave differently in this case. The results are as follows
(Table II).

For the small dimension, FCM, FCPM-1, FCPM-2,
and FCPM-AEfind distinct prototypes. The FCPM-0
removes the extra prototype out of the data space (Fig. 5).
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For the intermediate dimension case, FCM, FCPM-1, and
FCPM-AE find just distinct prototypes; the extra pro-
totype almost always coincides with one of the others. Both
FCPM-2 and FCPM-0 also find prototypes but by
removing an extra prototype out of the data set area (Fig. 6),
rather than by merging two different prototypes. On the con-
trary, can identify the required (and wrong) number of
clusters with parameter increased to 0.5, thus leading to hard
cluster structures.

For the high dimension cases both FCM and FCPM-0 lead to
“degenerate” solutions by their respective means: FCM merges
some prototypes and FCPM-0 removes some prototypes out
of the data area, preventing the algorithm from convergence
(see corresponding entry in Table II). The methods FCPM-1,
FCPM-AE and FCPM-2, recover the number of prototypes that
have been generated (Fig. 7). Only finds the required
number of prototypes with parameter increased to 0.5. How-
ever, FCPM-1 and lead to hard clusters in the high-
dimension cases, which leaves FCPM-AE as the only genuine
fuzzy clustering method in high dimension cases for this type
of data.

Behavior of the other features ( , , and ), does
not differ from that shown in Table I. Overall, in the high
dimension cases, the winners are FCPM-2 and FCPM-AE.
These two differ in the structures found: FCPM-2 recovers
the original “extremal” prototypes while FCPM-AE follows
the averaged pattern of FCM.

We also have experimented with simple data sets taken from
the literature (butterfly [18], MS [15], wine [28], and Iris [29]).
The results are concordant to the observations above. In partic-
ular, in these experiments, FCPM-0 behaves as an indicator of
the number of clusters present in data: for the butterfly, wine
and MS data sets the maximal numbers of prototypes at which
FCPM-0 converges correspond to those in the original data (2,
3, and 3, respectively). For the Iris data set, FCPM-0 converges
only when , even though the original data set contains
three classes (i.e., ). This is consistent with the claim made
by some authors that the underlying structure in the Iris data set,
actually, may consist of two clusters only [1].

V. CAPTURING IDEAL TYPESWITH FCPM

To show how a typological data structure can be caught
with FCPM, we analyzed a specific data set from the field of
psychiatry in which cluster prototypes, syndromes of mental
conditions, are indeed extreme with regard to patients [30]. It is
experimentally shown that prototypes found by FCPM remain
unchanged when the set is augmented with patients having less
severe syndromes. On the contrary, FCM as an averaging method
tends to shift prototypes toward more moderate characteristics
of the data. This highlights FCPM’s suitability to model the
concept of type in some domains.

A. Fuzzy Clustering of Mental Disorders Data

The mental disorders data set consists of 44 patients, de-
scribed by seventeen psychosomatic features (- ) (see [30]
and [16]). The features are measured on a severity rating scale
taking values of 0 to 6. The patients are partitioned into four

Fig. 7. 3-D plot of the prototypes found by FCM and FCPM withc = c +1

(high-dimension case withp = 180, c = 6). FCM and FCPM-0 lead to
different degenerate solutions: FCM makes all the prototypes coincide with
each other, and FCPM-0 removes more than one prototype out of the data area.
FCPM-1, FCPM-2 and FCPM-AE recover the original number of prototypes
that have been generated; onlyFCPM finds c = c + 1 distinct prototypes.

TABLE III
CLUSTER PROTOTYPES(v ,v ,v ,v ), REVEALED BY FCM AND

FCPM-2, PRESENTED IN THEORIGINAL SPACE. VALUES CORRESPONDING

TO THE MOST CONTRIBUTING FEATURESARE MARKED

classes of mental disorders: depressed (), manic ( ), simple
schizophrenic ( ), and paranoid schizophrenic (). Each class
contains eleven entities that are considered “archetypal psychi-
atric patients” of that class. Some properties of the data are as
follows. First, there is always a pattern of features (a subset
of - ) that take extreme values (either 0 or 6) and clearly
distinguish each class. Better still, some of these features take
opposite values among distinct classes. However, some feature
values are shared by classes leading to overlaps. Given these
characteristics, each disease is characterized by “archetypal pa-
tients” that show a pattern of extreme psychosomatic feature
values defining a syndrome.

The algorithms FCPM-2 and FCM (with its parameter
) have been run starting from the same initial points,

setting the number of clusters to four (i.e., ). Table III
shows the prototypes found by FCM and FCPM-2 in the
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TABLE IV
PROTOTYPESFOUND BY FCM AND FCPM-2,IN THE ORIGINAL DATA SET (v’S)

AND IN THE AUGMENTED DATA SET (v ’S), CHARACTERIZING EACH

MENTAL DISORDER: D ,M , S , AND S

original data scale. The marked values in the table belong to
the set of most contributing features within a cluster (this is
based on the concept of contribution weights of features [14]).
The FCPM and FCM prototypes, at least in marked entries, are
rather similar, though the feature values of FCPM-2 prototypes
are somewhat more extremal than corresponding ones of FCM
(which is in accordance with our simulation study).

Concerning the membership values found, both algorithms
assign the highest belongingness of an entity to its original class,
correctly clustering all entities to the corresponding class1 .

B. Clustering of Augmented Mental Disorders Data

In order to see the potential of FCPM-2 with regard to
revealing extreme prototypes, the original data set should be

1The only exception occurs for entity (21) from classM , which is assigned
to classS ; the same phenomenon is reported in [16] for other clustering algo-
rithms such as complete linkage andK-means.

modified by adding less expressed cases. To achieve that,
each class was augmented with six mid-scale patient cases
and three light-scale patient cases. Each new patient case,

, was generated from a randomly selected original
patient, , by applying the transformation

round

with scale-factor to obtain a mid-scale patient case
and to obtain a light-scale patient case. The shift
parameter takes values 0 or 1, randomly selected.

Table IV shows the prototypes (’s) found in the original data
set followed by the corresponding prototypes (’s) found in the
augmented data set by FCPM-2 and FCM, where the values of
most contributing features are boxed again.

We can see that FCM prototypes generally move toward in-
termediate feature values, showing FCM tendency to central
prototypes. Contrastingly, in FCPM-2 prototypes, the most con-
tributing features maintain their extreme values, reinforcing the
extremal nature of FCPM-2 prototypes, despite the presence of
mid- and light-scale patient cases. This is a situation for which
the properties of the method make it an instrument capturing
specifics of the extremal types that cannot be caught by aver-
aging methods such as FCM (see also [14]).

In the augmented data set case all the original patients are
still correctly assigned to the corresponding diseases, based on
found memberships.

VI. CONCLUSION

The FCPM framework proposes a model of how data are gen-
erated from a cluster structure to be identified. This implies
direct interpretability of the fuzzy membership values, which
should be considered a motivation for introducing data-driven
model-based methods. Another motivation comes from a re-
strictive character of such methods: each covers a specific type
of cluster structure such as the FCPM reflected extremal type
structure. On the other hand, the ability to reconstruct the data
from the model is also a powerful characteristic of this approach.

The approach seems appealing in the sense that in many cases
the experts of a knowledge domain have a conceptual under-
standing of how the domain is organized in terms of prototypes.
This knowledge, put into the format of tentative prototypes, may
well serve as the initial setting for data based structurization of
the domain. In our approach, the belongingness of data entities
to clusters is based on how much they share the features of cor-
responding prototypes. This seems useful in such application
areas as mental disorders in psychiatry or consumer behavior in
marketing. The extremal nature of prototypes in these domains
can be well captured by the FCPM, as shown in the previous
section.

Based on the experimental results of this research, we may
conclude that FCPM-2 is able to recover the original prototypes
from which data sets have been generated, while other criteria
from the FCPM family tend to copy the FCM results. In other
words, the FCPM-2 tends to find extremal prototypes while the
other versions of FCPM favor central prototypes. The FCPM-0
(in the low-dimension case) and FCPM-2 (in the high-dimen-
sion case) can serve as indicators of the “natural” number of
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clusters present in the data according to the typological model.
For the high dimension case, FCPM-1 and degenerate
into hard clustering. FCM may decrease the number of proto-
types in high dimension cases.

Results of the approach combining FCM and FCPM
(algorithm FCPM-AE) point out some advantages of the
FCPM proportional membership over the FCM distance-based
membership, including increased discriminating power and
robustness on high dimension spaces to identify a cluster
structure (at least, with the generated data).
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