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Modeling Proportional Membership in
Fuzzy Clustering

Susana Nascimento, Boris Mirkin, and Fernando Moura-Pires

Abstract—To provide feedback from a cluster structure to the memberships. All these methods show how a cluster structure
data from which it has been determined, we propose a framework is determined from the data, but they are not oriented to provide
for dm:ni?gh typoLogigaI structures bas(;aofl on a fIUZZY clustering  feedback on generation of the data from a cluster structure. De-
o elate doall:at eentit?ets oe C?uesr;galtoer ot ort(;/g]e: ?Nuestgrsssjmgtut;]eét veloping models with explicit mechanisms for data generation
the observed entities share parts of the prototypes in such a from cluster structures can be of interest, because such a model
way that the membership of an entity to a cluster expresses can provide a theoretical framework for cluster structures
the proportion of the cluster's prototype reflected in the entity found in data. In [11], Hathaway and Bezdek propose a fuzzy
(proportional membership). In the generic version of the model, clystering approach for switching regression models where
any entity may independently relate to any prototype, which is data are assumed to be generated froregression models in

similar to the assumption underlying the fuzzyc-means criterion. o
The model is referred to as fuzzy clustering with proportional such a way that each data point fits several (or all) of ¢he

membership (FCPM). Several versions of the model relaxing the models to \{arying degrees (i.e_.', membership valges). This idga
generic assumptions are presented and alternating minimization can be carried out toward traditional fuzzy clustering as well, if

techniques for them are developed. The results of experimental the data are assumed to come from a cluster structure model.
studies of FCPM versions and the fuzzye-means algorithm are Especially appealing in this respect seems the so-called ty-

presented and discussed, especially addressing the issues of fittin . . . . . .
the underlying clustering model. An example is given with data gpologlcal structure in which observed entities relate in various

in the medical field in which our approach is shown to suit degrees to one or several “prototypes.” Such structures are rele-
better than more conventional methods. vant in many areas such as medicine where any patient may ad-

Index Terms—Alternating minimization, fuzzy clustering, fuzzy here, in different degrees, to one or several prototype disorder

model identification, least-squares, proportional membership, pro- OF disease. Obviously, problems of revealing hidden prototypes
totype, semi-soft clustering. and extent of the entities’ adherence to them from a data set be-

long to the realm of data mining.
In this paper, we propose a framework for mining for typo-
logical structures based on a fuzzy clustering model of how the
UZZY clustering techniques have been applied effe¢lata are generated from a cluster structure to be identified. Some
tively in image processing, pattern recognition and fuzzyreliminary results are described in [12], [13], and [14]. In this
modeling. The best known approach to fuzzy clustering is tlagproach, the underlying fuzzypartition is supposed to be de-
method of fuzzyc-means (FCM), proposed by Bezdek [1] andined in such a way that the membership of an entity to a cluster
Dunn [2], and generalized by other authors. A good survey expresses a part of the cluster’s prototype reflected in the en-
relevant works on the subject can be found in [3]. In FCMity. This way, an entity may bear 60% of a prototydeand
membership functions are defined based on a distance functi#@% of prototypel3, which simultaneously express the entity’s
and membership degrees express proximities of entities e@mbership to the respective clusters. This type of a member-
cluster centers (i.e., prototypes). By choosing a suitable dghip function will be referred to as a proportional membership
tance function different cluster shapes can be identified [4]-[gHnction.
Another approach to fuzzy clustering due to Krishnapuram The idea of proportional membership was initially described
and Keller [10] is the possibilistie-means (PCM) algorithm by Mirkin and Satarov in the so-called ideal type fuzzy clus-
which eliminates one of the constraints imposed on the seatehing model [15], in which observed entities are represented
for ¢ partitions leading to possibilistic (absolute) fuzzy memas convex combinations of the prototypes; the convex combina-
bership values instead of FCM probabilistic (relative) fuzzijon coefficients are considered as the entity membership values.
However, this approach as is invokes the extremal rather than
" o ed b ber 6. 2000: revised Sentember 30. 2002 averaged properties of the data, which may lead to unrealistic
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(PRAXIS XXI program). This work was supported in part by DIMACS, Rutgerd0 do with those found with the FCM method. The ultimate goal
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fuzzy c-means, but the membership is treated as a multiplicatiwden the data are generated by a preference relation. Thus, our
factor to the prototype in a manner similar to that of the ideassumption does not necessarily apply to any data set.
type fuzzy clustering. We refer to our modelfagzy clustering  The idea of proportional membership can be formalized dif-
with proportional membershigFCPM, (which slightly differs ferently. In the so-called ideal type model [15], any observed
from the denotation “FCMP” used in [12] and [13]). It shouldentity is a convex combination of the prototypes and the coeffi-
be pointed out that the FCPM suggests a specific mechanismdnts are the entity membership values. Accordingly, the pro-
data generation from a cluster structure, which does not necesypes found with the ideal type model are extremes or even
sarily fit any data set. outsiders with regard to the “cloud” of points constituting the
We begin Section Il by introducing FCM. Then, the FCPMjata [16]. This makes the ideal type model much different from
approach is introduced: a generic form of FCPM is describedtifle other fuzzy clustering techniques: the prototypes found with
Section II.C, and extensions of the model to the case in whighe other methods tend to be centroids of the corresponding clus-
only large membership values are taken into account in the critgrs rather than their extremes. The extremity/externality of pro-
rion are presented in Section I1.D. The alternating minimizatiagtypes may become an issue when the feature values must be
approach of FCM is extended to FCPM criteria in Section Il1. Iﬂonnegative or belong to a Scoring System W|th fixed bound_
contrast to FCM, the fuzziness constraints are not automaticaiyes. However, even if no prior constraints are imposed, inter-
satisfied for the FCPM solutions. This requires the use of & COfyetation of the prototypes may be difficult. Indeed, to define a
venient nonlinear constrained optimization method. As sucpnceptually meaningful ideal type, fundamental properties of
the so-called gradient projection method is utilized and adaptgg opjects must be utilized:; this may not be the case in a typical
forall versions of the FCPM. A combination of FCPM and FCMitation in which relations between the observed features and
is suggested in Section I11.E following the approach outlined iflygerlying conceptual properties of the phenomenon are either
[17]. In Section IV, the results of experimental studies with g€ §irect or unclear or both.
erated data are presented and discussed. In Section V, we give &) ring the model-based approach closer to traditional fuzzy
example from the field of psychiatry at which mental disordey;stering techniques, we consider here a different way of asso-
syndromes represent ideal rather than average cases. It appagfﬁ]g observed entities to the prototypes: any entity may in-

that FCPM is quite suitable in such a situation; in contrast iR G
o pendently relate to any prototype, up to the condition that the
FCM, FCPM does not change the mental disorder prototyp ms of memberships for any entity must sum up to unity, which

when pat.|ents with less severe symptpms are addeq to the & milar to the assumption in the fuzzymeans criterion de-
set. Section VI concludes with the main results and issues. scribed next

Il. Fuzzy CLUSTERING MODEL WITH PROPORTIONAL
MEMBERSHIP(FCPM)

A. Data-Driven Cluster Modeling

B. FCM

The FCM [1] is one of the most popular methods in fuzzy
clustering. It involves the concept of fuzzyartition proposed
To provide feedback from a cluster structure to the data froby Ruspini [18], summarized here as follows.

which it has been determined, we employ a framework based_et X = {x;,...,x,} be a set of given data points, where
on the assumption that the data are generated according togaeh data poink, (k = 1,...,n) is a vector inR?. Let us
cluster structure. The structure underlies the data in the forna&inote the set of all real x n matrices byU..,,, wherec is a
of a traditional statistical equation prespecified intege2 < ¢ < n. Then, the fuzzy partition
space forX is the setMy., C U,y such thal/ € My., if and
observed data- model data- noise (1) only if
In statistics, such an equation is accompanied by a proba- wi €[0, 1], foralli=1,...,c (2a)
bilistic model of the noise. In our case, however, the model c
is not prespecified but rather derived from the data. Thus we Z““‘ =1 (2b)
concentrate on thenfodel data part and leave th@oiseto be i=1

considered as just the set of differences between the observed o . o
and model data. The differences are treated here as mere re¥ftRreui is interpreted as the membership of an entifyin

uals; they just should be made as small as possible by fitting fHESter: (i = 1,..., ). S N
model. The aim of the FCM algorithm is to find a fuzzypartition

In our clustering model, we assume the existence of some pqa@_d corresponding prototypes minimizing the objective function
totypes which serve as “ideal” patterns to data entities. To relate n e
i - m 2
t_h_e prototypes to observations, we assume that the observe_d en Im(U, V) = Z Z (wie)™ ||xi — vil| . A3)
tities share parts of the prototypes. Itis these parts that constitute

k=11=1
the model data. The underlying structure of this model can be
described by a fuzzy partition defined in such a way that the In (3),V = (v1,va,...,V.) is a matrix of unknown cluster
membership of an entity to a cluster expresses the proportiorcehters (prototypes); € 2, ||-|| is an inner product norm, and

the cluster’s prototype reflected in the entity. This, to an exterthe weighting exponent: € [1, co) is a constant which affects
models the concept of typology in descriptive sciences. The thie membership values, determining the degree of fuzziness of
pological structure may be absent from the data as, for instanttes cluster partition.
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Clustering criterionJ,,, belongs to the class of least-squareis present iny,. That is, we assume that approximately, =
criteria. Since it may be difficult to globally minimize (3),u;,v;, for every featurér. More formally, we suppose that
Bezdek [1] proposed a version of the alternating minimization
algorithm defined as follows. Specify integer m ande, a
small positive constant; then set iteration numbet 0 and
initialize U(®) € My,,,. Any iteration consists of two steps.where the residual valuesy,, are as small as possible.

First, given the membership valua%), calculate the cluster A clustering criterion according to (6) can be defined as fit-
centersv(® — |:/U(t):| _ ting of each data point to a share of e_ach o_f the pr_ototypes, rep-
¢ h 1y Y resented by the degree of membership. This goal is expressed in
the least-squares criterion

ugt) " » X SR
<( ) h> 4) Eo(U,V) = E E 3 (Y — wirvin)®
=1

i=1 k=1h

(6)

Ykh = UikVih + Eikh

S0 () i

where(x, y) denotes the scalar product of vectarsy and, for
x = [z3], (x)™ denotes vectof}’].
Second, given the new cluster centefé), update member-

. t
ship valuesuz(.k)

(1)

which is to be minimized over all;;, and admissible;;, satis-
fying the constraints (2a) and (2b).

Equation (6) along with the least-squares criterion (7)
to be minimized by unknown parametets € M., and
V = (v1,va,...,v.) € R? for Y given, will be referred

to as the generiduzzy clustering proportional membership

2/m—1

‘ . B

®

%

j=1 ka - Vg-t)

¢ ka -V

(t4+1) _
ik

The process stops whéti*+1) — U()| < ¢, or a predefined 2

maximum number of iterations is reached.

The FCM alternating (4) and (5) follow from the first-order
optimality conditions (cf. [1] for the derivations). Since cri-
terion .J,,, is not convex, the stationary point of the process
may fail to give the global solution. However, the generated
solutions {(V(),UM) (VA U®) .. }always converge to
local minima or saddle points of,, [19].

The FCM clustering criterion (3) aims to minimize the total
distance between entities and prototypes weighted by the corre-
sponding membership values. To decide for whatresulting
fuzzy c partition better fits the data, the FCM algorithm has to
be run for different values of (¢ > 2). Then each: partition
can be evaluated by an expert or, sometimes, with formal cri-
teria such as the so-calledlidation function[1].

The FCM method can be applied in a wide range of applica-
tions, leading to hyperspherical cluster shapes due to the aver-
aging nature of formulas (4) and (5). However, this clustering
criterion does not follow the pattern of (1) and it may be diffi-
cult sometimes to explicitly express how to reconstruct the data
from a cluster solution.

2)

3)

4)

C. Generic Proportional Membership Model

Let the data matrixXX” be preprocessed inio by shifting the
origin to the gravity center of all the entities (rows) ¥hand
rescaling features (columns) by their ranges. Thus; [yxs] IS
an x p entity-to-feature data table where each entity, described
by p features, is defined by the row-vectpr = [yrn] € R?
ey D)

Let us assume that each entity = [yx] of Y is related
to each prototype; = [v;] (i@ = 1,...,¢), as in the FCM.
Moreover, we further assume that the membership vajés
not just a weight, but it expresses the proportiornvpfwhich

5)

mode| FCPM-O0, for short. In this model, the principle of the
least-squares criterion in the fuzzymeans is extended to the
framework of (1).

Let us point out some aspects of this approach.

Each prototype; according to (6) is a “model” or “ideal”
point such that any entity;, bears a proportion of it

up to the residuals. The proportien; is considered as
the value of membership gf;. to the clustei. This way,
both the prototypes and memberships are reflected in the
model of data generation.

Equation (6) can be considered as a device to reconstruct
the data from the model. The clustering criterion follows
the least-squares framework to warrant that the recon-
struction is, on average, as exact as possible. Other scalar-
izations of the idea of minimization of the residuals can
be considered as well.

The least-squares criterion (7) differs from other least-
squares criteria, such as that of FCM, by the fact that
the trivial structure in which each of the observed enti-
ties forms a prototype on its own is not its solution. The
trivial structure obviously reduces the FCM criterion to
its absolute minimum 0, but it does not bring (7) to the
minimum.

The model (6) may be considered overspecified: any
observed entity must share a proportion of each of the
prototypes, which, ideally, may occur only if all the
entities and prototypes belong to the same unidimensional
space. Such asolution is obviously not realistic, especially
when contradictory tendencies are present in the data.
This property of the generic model may lead to some
over-estimation effects which may require modification
of the criterion to a more realistic form in which the
entities pertain to not all but only a few or just one of
the prototypes.

A property of the clustering criterion (7) is that it re-
mains constant if vectors; and u; are changed for
v;/v andu;v for somei, where~y is an arbitrary real.

In particular, tendingy to zero, the membership vector,
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u;7, tends to zero while the prototype /v to infinity, of any entity to one prototype only. Thus, FCPMg only
without any change in the corresponding differences thifferences;x, in whichw;, > (3 are left in criterion (7). This
criterion (7). This way, the following phenomenon mayeads to the clustering criterion defined as follows:

occur in the process of adjusting solutions during alter-

n P
nating minimization of criterion (7): to decrease some Ea(U.V.I.) = a2 9
of the differences in (7) the membership values involved s(U V1) ZZZ(ykh ikvi) ®)

can be increased while simultaneously decreasing other FetEnA=

membership values to zero along with moving correvhere

sponding prototypes to infinity. Some prototypes tending _ )

to infinity is a specific pattern of nonconvergence of Iy ={icuwi 2 i=1,....¢} (10)

the alternating minimization, which may occur in th
generic FCPM model.

6) The latter two properties may make the model sensitive to wi, €[6,1], = (11a)
the number of clustersto be identified in the data. When Wi —0 i ¢l (11b)
this number is greater than the number of prototypes . = k
fitting well in the model, some of the prototypes in a Zuik —1. (11c)
computation may be driven out to infinity in the process of 1

alternating minimization of the criterion (7) as described ) ) ) )
in the previous comment. If such a phenomenon can beThe idea of removing all small interactions between proto-

confirmed with simulation experiments, this model couldyPes and entities from the criterion has been considered in the

be utilized as a device for attacking such difficult issuecontext of FCM by Selim and Ismail [21] in several versions,
as: 1)*what is the correct number of clusterspand 2) ©Ne of which relates to directly thresholding the membership

“does the found clustering structure correspond to th¥€ights as in th&CPM; approach. The authors of [21] refer
data or not?”. These issues can be made meaningfif this approach as to the “soft clustering,” an intermediate be-

only under an assumption of a rigid cluster structure tH#/€€n crisp clustering and fuzzy clustering.
data may have come from, such as in FCPM. This is
confirmed, to an extent, in our experiments (Section IV.B). Ill. FCPM METHOD AND ITS MODIFICATIONS

A. Alternating Minimization: Major and Minor Iterations

&nd such that for alt = 1,....n

D. Modifying the FCPM Criterion Let us consider the aforementioned FCPM criteria in the gen-

As has been pointed out in our comments to (6) and (7), tagal format of criterionz : M., x R — R, to be minimized
requirement of FCPM that each entity can be expressed as a part

of each prototype may be too strong and unrealistic sometimes. min E(U,V),U € Mjcn, V e RP. (12)
The intuition leads us to consider that only meaningful propor-

tions, those expressed by high membership values, should b&he alternating minimization algorithm applied to this
taken into account in (6). problem involves two iterating steps. First, givéh € R,

We consider two ways to implement this idea in the FCPinimize E(U, V') with regard toU' € Mj.,. Second, given
framework: in a “smooth” manner and in a “hard” one, as spetie solution from the first step/ € Mjy.,,, minimize E(U, V')
ified in the next two sections. over V. € R°. Based on this, an alternating minimization

1) Smooth Versionin order to decrease the effect of thealgorithm can be defined as follows.
residual values;;, corresponding to small membershipg,
let us weigh the squared residuals in (7) by a powenf corre- Initialize v,
spondingu,;x. Repeat

c n given (tX)/“—U 0.y
_ m )2 set U\ :=argminyen,,, E(U, VYY),
En(U,V) = ; kz::l hzz:luzk(ykh UikVin) (8) given U®, set V® {: arg miny eper E(UD,V);
untl  V® ~ y-D),
subject to the fuzziness constraints (2a) and (2b).

The models corresponding to these criteria will be denoted
as FCPM-1, form = 1, and FCPM-2, form = 2; no other
m Will be considered here. Criterion (7) is a special case of (
corresponding ten. = 0.

GivenU®), minimization of E(U®, V') with regard toV’ €
P can be done according to the first-order condition of opti-
ality. This condition implies that

2) Hard Version: A “hard” version of the FCPM model @\
should only involve those equations in (6) that contain large ) <(“v ) ,yh>
values ofu;;,. By specifying a threshold} between 0 and 1.0, Vi = p— (13)
only those differences;x, are left in the criterion (7) that <(11§t)) -ugt)>

satisfy the inequalityy;, > (. In such a modell'CPMg in-
troduced in [20], entities may relate to as few prototypes as wdere parametet: takes valuen = 0, 1, 2 for either version
wish. In particular3 > 0.5 leads to the exclusive relationshipof FCPM-m. This equation resembles (3) in the FCM method,
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which suggests that the FCPM does capture the averaging feaFheorem 2: In the conditions of Theorem 1 , if, supplemen-

ture of FCM. However, there is a difference as well. In (13}arily, f(x) is twice differentiable and. - I = V2f(x) = [-1

the powenn + 1 of u in the numerator differs from the powerfor all x in @, then||x — x*|| < ¢- ¢* (geometric progression

m + 2 of u in the denominator, while these powers coincide inonvergence) wherg = max {|1 — «!|, |1 — aL|}.

(3). Thus, the FCM prototypes are convex combinations of theApplying the Gradient Projection Method to FCPM:et us

observed points, which is not the case for the FCPM prototypeenote the set of membership vectors satisfying conditions 2(a)
The minimization of criterior® (U, V®) with regard to/ €  and 2(b) byQ, which is a convex set (cf. [1, Th. 6.2.]). With

M., is not as straightforward as in FCM, because of the cof=t) fixed, the functionE (U, V') is to be minimized over such

straints (2a) and (2b). This distinguishes the FCPM criteria frobh whose columnsyy, belong toQ.

those of FCM for which the first-order solutions automatically The gradient projection method (14) applied to minimize

satisfy constraints (2a) and (2b). After preliminary experimenfs(U, 17) can be stated as

with several options, the gradient projection method [22], [23]

has been selected for the latter problem. This method works esl,(f) = PQ(qu_l) - onE(uff_l), V), k=1,...,n.
pecially well for criterionE, in (7) as will be shown in the next (7)
section. The possibility of translating the problem defined over ma-

The gradient projection method is iterative. To distinguistices in terms of separate membership vectors in (17) is due to
between the alternating minimization iterations and iteratiotise fact that for eaclu,(f) its componentmgtk) only depend on
of the gradient projection method, we will refer to the formeaz(.z—l),
ones as “major” iterations and to the latter as “minor” iterations. To apply (17), one needs to specify the following three parts
The complete cycle of “minor” iterations is performed at each it:
“major” iteration. i) computation ofV E(ul"", V);
i) choice of stepsize length;

B. Gradient Projection Method for FCPM iiiy finding the projection Py (dy) for dp — ug_l) _

In this section, we introduce the gradient projection method aVE(u,(:_l)7 ‘7) eER(k=1,...,n).
(GPM) and explain how it can be applied to minimiz¢U, V') To address the former two problems, and for the sake of sim-
overU € Myep. plicity, we start from the criterion of the generic modg} in

GPM: Letf: R — R be afunction to be minimized over a(7) as theE (U7, 7). Then, we extend the analysis to the other
subset) C R°. For anyy in R, let us denote its projection in criteria 7, 8).

Q by Pq(y), so thatPo(y) minimizes||x — y|| overallx € Q. The function Eo(U, V) is convex and twice differentiable
The gradient projection method for solving this optimizatiogy ey its variables.;;,. The elements of its gradient are
problem, starts with arbitrarx(?) € @ and iteratively trans-

forms it according to the following rule: VE, ([uk] 7‘7> = 2((v;, Vi) wir — {yn, i), i=1,... ¢
X = Po(x — aV f(x") (14) . - . U8
and its Hessian is an x c¢n diagonal matrix whose
wherea is a positive constant and f(x) the gradient off at  ((4, k), (¢, k))th element is 2(v;,v;). Let us denote
x € Q. [ = 2min; <Vi7Xi> and L = 2max;(v;,v;). Then,
Let us introduce conditions of convergence of the gradieht- I = V?Ey(U,V) = [ - 1. We assume al; are nonzero
projection method [22], [23]. which impliesZ > [ > 0.
A vector functiong : ¢ — R¢ is said to satisfy the Lipschitz ~ The gradientV E, satisfies the Lipschitz condition oveé}
continuity condition with constant if with constantL thus defined. Indeed

lox) =g < Llx -yl ¥xyeR.  15)  VE ([, V) = VEo (2], ¥) =2 (vi, vi) (wie = 220)
<L(uik — zik)
Yuyg, z, €Q. (29)

Let us refer tof (z) as strictly convex with constaht> 0 if

T
+y)-— > (V JY)+ = Vx,y € ®°. (16 , . .
faxty) =) > {(Vfx).3) 2 Iy Y (16) which implies the same inequality for the vector norms, that is,
For a twice differentiable functiotf, this is equivalent to its the Lipschitz condition (15).

Hessian,V2f, being bound oveRe, that is,V2f(x) = (-1, e have proven the following. . _
where! is the diagonal matrix, and > B means thatl — B Propclsmon 3: Given V, [ and L. defined above, function
is a positive semidefinite matrix. FEo (U, V) is strictly convex with constant in the space of

The next two theorems from [22] and [23] state some convenembership vectorg, and its gradienV E satisfies the Lip-
gence results for the gradient projection method. schitz condition ovefit“ with the constant..

Theorem 1:Let Q be convex and closed. Left(x) be a This shows that both of the Theorems 1 and 2 are applicable
convex differentiable function ift¢, whose gradient satisfieshere so that the process (17) converges with ametween 0
the Lipschitz condition ovef) with constantL. Leta be areal and2/L. Let us considerx = 2/(1 +¢) L, so thata spans
such thatd < a < 2/L. Then,x® converges to a globally the interval between 0 ary L whene changes from 0 to in-
optimal pointx* whent tends to infinity. finity. In such a case the speed of convergence is controlled by
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g = max{|1—2l/(1+¢)L|,|]1—-2/(1+¢€)|}. Acomputa- For each criterior¥,,, vectorsd, = [d;z] to be projected
tional experiment has been conducted starting feors 0.1  onto @ are defined by

and repeatedly incrementing it by 0.1, to watch the rate of con-

vergence for functio®y. The values = 0.5 has been chosen as dg? :ugz—l) —2a,, [(m +2) (v, Vi) (ugz—1)>
giving most stable convergence, thus leading:te: 1/0.75L.

m—+1

This way, issues i) and ii) have been addressed for critdtipn —2(m + 1) (vi, &) (’U,(.Z_l))m

The situation for function&,,, (U, V') (m = 1, 2) is different: ;71
nelth_e_r is convex ove€), though each satisfies the Lipschitz +m (i, Vi) (UEZ_I)) } (24)
condition.

The elements of the gradierist,,, are defined by derived from (17) withV E,,, in (20) substituted foR E.

Projecting a Vector on the Simplex of Membership Vec-
VE,, ([uk] f/) =(m +2) (vi, Vi) u§;n+1) tors: Let us consider the problem of finding a vector
u=[uy] €Q@=1,...,¢c),whichis at the minimum distance

= 2(m + 1) (vi, 3:’;> ik from a prespecified vectat = [d;]. This problem can be stated
+m (Y, yr) ugy - (20)  as follows:

Note that (18) is a particular case of (20) with= 0. On the min f(u) = |ju — d|? (25)
other hand "
subject to constraints (2a) and (2b).
> > o In order to solve this problem, let us assume without any loss
‘VE’“ ([u’“]’v) = VEm ([Z"’] ’V)‘ < Ll =z of generality thatly > dy > --- > d..
(21) Proposition 4: The optimaha* in (25) has the same order of
components, that isy; > u3 > --- > u?.
To prove the statement, let us assume that it is not true, thus,
L=(m+2)(m+1)V+2m(m+1)YV+m(m—1)Y (22) forinstanceu? < uj. Then, we can further decrease criterion
(25) by shifting a small amount af; to u}. Indeed, let us take
with V' = max; (v, vi), YV = max; |(vi,yx)| andY = § > 0 such that < u} — v} and putu}* = u} + 6 andul* =
maxy (yk, Yr). This shows thaV E,, (with m > 1) satisfies % —ginu* instead ofu* andu3, respectively. Then, the value of
Lipschitz condition for thel.;-norm with constanL previously = 7 (u) will change byA = (u? + 6 — dy)* — (u — 6 — dy)” —
defined. (ut — dq)® + (ui — dy)”. With a little arithmetic, this can be
Although Lipschitz continuity condition (15) is defined forreduced taA = 26 [u¥ — u} + § — dy + d»] which is negative
the L,-norm, it is known that the condition holds or does nd$ecause, in our assumptions;, — u% + 6 < 0 and —d; +
hold in bothZ, and L;-norms simultaneously, though the conyj, < 0. Thus, criterion (25) has been further decreased, which
stantL in (15) may change [22]. contradicts the optimality ofi* and proves the proposition.
When a function is not convex and satisfies Lipschitz con- Thus,u? > uj > --- > u*, > 0for somect < ¢ and the
dition, the gradient projection method may converge to a loc@hal c — ¢+ components are zero. For the nonzero components,

optimum only, adding this to the general local search nature #fe following equations hold for an optimat:
the method of alternating optimization.

with |-| the Ly norm, andL a constant equal to

In order to specify the stepsize length we used the same up —dy =y —dy = - = ugy —des
a =2/(1+ €)L as for £y with e = 0.5. Substitutingl, from Otherwise, we could transform* as above in the proof of
(22) in the formula, this leads to Proposition 4 by redistribution of values among the positive

ui,...,u’, insuch a way that its distance frodhdecreases,
Uy, = ! ) m=0,1,2 (23) Which would contradict the assumption that the distance had
L5(cp,V 4+ YV +cY) o been minimized byi*. Thus, for the optimah*, u} = d; —a,.+,

_ ) ] o uy = do—ac+, ..., u% = d.+—a.+,wherea + isthe common
with V, Y’V andY” previously defined, and coefficients, de-  yajye of the differences; it can be determined as the result of
fined by summation of

et
1 1
Qe+ :c—+gldz—c—+ (26)

The valuect is not known beforehand. To find it, the fol-
lowing iterative process can be applied. Start with = ¢,
Notice that (23) is compatible with the defined above for and at each iteration compute: with formula (26) and take
criterion Ey, since it is defined by the same rule. the differenceu’, = d.+ — a.+. If it is less than or equal
Now, we can turn to the problem iii) of projection of the difto zero, decrease" by 1 and repeat the process until the dif-
ference vectord;, = u,(f_l) - aVEm(ug_l)./ 17) onto the set ference becomes positive. Then, define all the otljeas fol-
Q of vectors satisfying conditions (2a) and (2b). lows: uf = d; — a.+ fori = 1,...,¢" andu} = 0 for
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i = ct +1,...,c. The process can be accelerated if, at eaéh Hard Version of FCPM
iteration,c™ is decreased by the number of negative values in The “hard”
the set of differences! = d; —a.+ (1 = 1,..
reflected in algorithm A4.1, below.

< ot version of the FCPM model described in Sec-
- ¢"). TS IS i5n 11-D.11 can be implemented with corresponding adjustments
of both major and minor iterations of FCPM.
TheFCPM;g clustering criterion (9) is a nonconvex function
C. FCPM Algorithm Reviewed (as are the other FCPM criteria). Constraints (11a)—(11c) also
define nonconvex sets. This adds to the difficulty of constructing
The FCPM algorithm is defined as an iterative alternatingn algorithm to solve this problem. To minimize (9), the FCPM
minimization algorithm in which each “major” iteration con-algorithm has been modified in two places: 1) the initial set-
sists of two steps as follows. First, given prototype matfix ting (V(®), 7(?) ) has been set to be the result of running one
the optimal membership values are found with (17). This réCPM-1 major iteration, and the initid}, (k = 1,...,n) are
quires an iterative process described in Section IlI-B. Secondlculated accordingly, and 2) in the projection algorithm, the
given membership matrik/, the optimal prototypes are deter-boundary value defining null membership is to be taken as the
mined according to the first-degree optimality conditions (13}hreshold3 (0 < 8 < 1.0) rather than zero. The modified pro-
jection algorithm finds solutions in the s@t; = {u = [u,] :
u; > [ oru; = 0} rather than inQ. The setd), are then ad-

m Algorithm A4.1: Projectiong(d) justed at each iteration so that (10) holds. This version of FCPM
1 Given d=[d] (i=1,..., c) N algorithm will be referred to aBCPMp.

2 sort d=][d;] in the descending order; ) .

3 ¢t = m Algorithm A4.2: FCPM-+n Algorithm

4 Repeat 1 Given Y = [y]

5 calculate  a.+ by (26) 2 choose ¢(2<c<mn), m (m=0,1,2), T, 1,
6 zeros := false; 1:=0; e >0

7 Repeat / 3 initialize VO, U u® e My, t:=0;

8 i=i41 4 Repeat

9w = di— g > =0

10 If w; <0 then zeros:=true; endlf 6 U™ = U™

11 until  (i=c¢t .or.  zeros ); 7 Repeat .

12 If zeros then 8 ty:=ta+1;

13 For j=i4,...,ct do u;:=0; endFor 9 For k:L“-:g)do_ (tae)

14 ot —i—1: 10  caleulate  d;* with V), w7 by

15  endlf (24) @ o e o

16 untli (¢t =0 .or. not  zeros ); 11w, := Projectiong(d;*’)  %(Alg.A4.1)

17 return  u = [ug,...,uq+,0,...,0]. 12 endFor

13 until  (|Ut) —Ut"D| <e orn by =)
14 ty =t + 1;

The algorithm starts with a s&t(© of ¢ arbitrarily selected 12 Ut .= Ul &) wi &)
prototype points ifR? andU®) in M;,.,,; it stops when the dif- 16 calculate " )V ' (tW_'tB Ut by(13)
ference between successive prototype matrices becomes sr]nzallu_m'I ([vt)—v=b] - <e or # =Ty
(according to an appropriate matrix norfy,,...). '
The global convergence of the FCPM algorithm is no]t8 return (V.U) = (V(tl)’ U(tl))'
guaranteed. Moreover, with a “wrong” number of clusters pre-
specified, FCPM-0 may not converge at all since FCPM-0 may The calculations of membership vectorg) = [uf?} are
shift some pr_ototypes to infinity as was obs_,erved in commerggsed on vectonﬂ;ff) _ [d?} . where (27a)-(27b), shown at the
for the generic FCPM model. In our experiments, the number g
of major iterations in FCPM-0 algorithm when it converges igottom of the page, hold, and such that the projectio{8fin
rather small, which is exploited as a stopping condition: whepg is to be taken aagf).
the number of major iterations in an FCPM-0 run goes over aThe FCPMjg algorithm is defined in A4.3.
large number (in our calculations, over 100), that means theFor smallg3, this method may show the same pattern of non-
process does not converge. convergence as FCPM-0, removing some of the prototypes to
The FCPMm (m = 0,1, 2) algorithm is defined in A4.2. infinity.

dfz) _ uE’,;‘” — 2ag [(Vi7Vi>U§Z_1) - <Yk7vi>i|7 i € Iy, (27a)
' 0, ieC—1I, (27b)
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In our computations, the thresholtihas been taken as the To accomplish our goal, we follow the ACE framework to
minimum £ value for whichFCPMg converges, by starting combine the FCPM and FCM approaches in the following
from 8 = 0 and repeatedly incrementing it by 0.1. FCPM-AE method: prototypes are updated as the gravity

cluster centers (4), and partitions by the FCPM proportional
E. Combining FCPM and FCM: FCPM-AE membership function.

Criteria (8) and (9) for fitting the FCPM model may be too
restrictive in revealing cluster structures in data that have been IV. EXPERIMENTAL STUDY
generated differently from what the FCPM model suggests. In
particular, FCPM-0 criterion (6) may underestimate the number . .
of clusters present in data. 1) to analyze the abll!ty of FCPM to recover the original

As we already have mentioned, FCM prototypes are convex _ Prototypes from which data have been generated;
combinations of data points whereas FCPM prototypes are not2) {0 study the behavior of FCPM-0 as an index of the

Therefore, FCPM prototypes are not guaranteed to lie in the  number of clusters present in data; _
convex hull of the data set and may move out of the data set3) t0 compare FCPM and FCM methods by using generated

The main goal of this experimental study is threefold:

area. data sets.
m Algorithm A4.3: FCPM ;5 Algorithm A. Setting of Experiments
1 Given Y = [yk] A number of distinct approaches have been proposed in the
2 choose c(2<c<n), B(0<B<1.0) literature for generating artificial clustering data. In these ap-
Ty, T5,e > 0; proaches, data points are assumed to have been generated from
3 initialize (VO,U®) := FCPM — 1 with  some probability distribution, usually using multivariate normal
Ty =1, clusters ranging from simple to complex covariance structures
4 1, :=0 [24], [25].
5 set I, by (10) (k=1,...,n); The FCPM model should be tested on data exhibiting a ty-
6 Repeat pological structure, according to assumptions underlying the
8 1y :=0; FCPM model, in particular: 1) there is a cluster structure under-
9 UM = U®); lying the model of data generation, and 2) in such a structure,
10 Repeat each prototype is a “model” or “ideal” point such that any en-
11ty =t + 1 tity, y, bears a proportion of it. In contrast to traditional data
12 For k=1,.. 'n,do _ - generation models (like ones in [24] and [25]) we do not pursue
13 calculate  d{"?) with V@) {27 py

any specific geometric shape of the clusters, except for that in

(27) t o . accordance with the generic proportional membership assump-
14 u®) .= Projection (d( 2)) ; ; ; ; i
15 ené Fo.r_ J Qs\"k tion: each observation can be associated with a proportion of

corresponding cluster prototype. To accomplish this, a data gen-
erator has been constructed as follows.
Data Generator:

16 untl  (|Ut) —Ut-b| T <e or. ty =1Th)
17 update [, by (10) (k=1,...,n);
18 t; :=t1 +1;

19 Ut .— ) 1) The dimension of the spacg)( the number of clusters:(
20 calculate V) with U®) py (13) with and numbers.y, no, ..., n. are randomly generated within
m =0 prespecified intervals. The data set cardinality is defined as
21 until  (|[VO) —v=D| <eoor ty =T) no= i i _
22 return  (V,U) := (V) U(t2)). 2) c.cluster directions are defined as foIIovys:_vectoxs 3%1"_ _
(i =1,...,c)arerandomly generated within a prespecified

hyper-cube with side length between -100.0 and 100.0; then,

In order to overcome this without losing the interpretability of their gravity centep is taken as the origin of the space.

the model-based FCPM proportional membership, it would b F . define twon-di ional lina b
desirable to combine the advantages of FCM prototypes (4) wi E)[L.e al;: ' d(;llne— gp ) |1mlenS|on§thsarr;E ng 'trc])')r(gs,_one
FCPM proportional memberships, this way relaxing the rigidity wi |n. ounds; = [.90;,1.1o;] an € otherwithi; =
of ECPM. [0, 0;]; then generate randomly @.2points inA; and 0.8;

Runkler and Bezdek [17] propose an approach to fuzzy clus- points in B;. . _ o
tering in which the unique objective function model is aban?) The datagenerated are normalized by centering to the origin
doned and substituted by a more general framework defined @1d scaling by the range.

by the architecture of the alternating minimization algorithm All randomly generated items are generated from a uniform
and by user-specified equations for updatlfigand V. When distribution in the interval [0,1]. This way we could provide
the user selects updating equations not from a unique objectiagher complex data structures with a small number of easily in-
function model, clusters and cluster centers are referred totagpretable parameters, which would be much more difficult to
estimatedoby alternatingly updating partitions and prototypesachieve with more traditional multivariate normal distributions.
This framework is called by the authors thkkernating cluster ~ To visualize data, they are projected into a two-dimen-
estimation(ACE), and is considered a flexible version of tile  sional/three-dimensional (2-D/3-D) space of the best principal

ternating optimizatiod=CM approach [8]. components (see Fig. 1).
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which measures the squared relative quadratic mean difference
between corresponding prototyp&s and V’/. Matching be-
tween prototypes is determined according to minimal distances.
In the case in which the number of prototypésfound by
FCPM-0 is smaller thar, only ¢’ prototypes participate in
(29). CoefficientDy, is not negative, and it equals 0 if and only

if v, = vj, foralli =1,...,¢;h = 1,...,p. In atypical
situation, wherwv; andv are in the same orthantg)y is not
greater than 1. Notice that the dissimilarity measiires more

or less independent of the originals, their cardinality ¢y)

and dimension #); thus, it can be used to compare cluster
prototypes in different settings.

For a fixed pairp andcg, a group of 15 data sets were gener-
Fig. 1. Architecture of the data generator on a 3-D projection of the best th@ged with different numbers of entities and different prototypes.
principal components, with-dimensional sampling boxes; andB;,, foradata The experiments comprised seven such groups witdinging
structure with six original prototypes. from 5 to 180 and:, from 3 to 6.

For each group of data sets of the same dimengi@md

All the algorithms and data generator have been written {ie number of generated prototypes the FCPM algorithms
MatLab 5.2 [26], and the experimental study was conducted Bave been compared based on the number of major iterations
a PC with a PENTIUM Il processor at 267 MHz. t1, number of prototypes found, separability coefficienB3,,

In the discussion of the experimental results, the emphatii§ dissimilarityDrcy from FCM prototypes and dissimilarity
will be given to the clustering results rather than the perfof2o from the original prototypes; (i = 1,...,co).
mance of the algorithms. Our criteria (8) and (9) are more com-
plex than that of FCM and thus require more calculations. B. Summary of the Results

In our experiments, each of the six algorithms outlined above . : .
(FCM, FCPM-0, FCPM-1, FCPM-ZCPM,, and FCPMAE) Results Of.Ol'Jr ex.perlments with FCM and FCPM algorlthms
/ lead us to distinguish between three types of data dimension-

has been run on the same data set (with the same initial settlg “low. intermediate. and hiah. because the algorithms be-
for different values of: (¢ = 2,3,4,...). The parameters of ) ’ ' an, 9

the algorithms are specified a6 = Ty = 100, & — 0.0001 hav_e_ d|fferentlyra_10ross t.hese categories. With s;evgral hundred
. N entities,p/co < 5 is considered small ang/co > 25 high.
and|-|.,.. is L1-norm inRk?. The parameters of FCM have been :
err In the following, we refer to three types of the numbers of

specified asn = 2 and||-| equal to the Euclidean norm. Also, rototypes: (1) the number of originally generated prototypes
the FCM algorithm has been slightly modified to start with th@ ypes. gihally genera P YPes,
co, (2) the number of prototypes prespecified in a rgnand

(0) i i 0)
prototypesl/ rgtherth_an_wnh the_r_nembersmp matix” in f3) the number of prototypes found by an algoritheh, The
the original version (a similar modification has been adopted In , . ’ :
numbers:’ andc, in the same computation, may differ because

[8] and [17]). of either of two causes:
Cluster solutions found with FCPM algorithms have been '

characterized by the following four features: 1) the number &1) ~ some of the initial prototypes converge to the same

clusters found¢’; 2) the separability index3.; 3) the dissimi- stationary point;

larity Dpcy from the FCM found prototypes; and 4) the dissim©2) ~ some of the initial prototypes have been removed by
ilarity Do, from the original prototypes. The separability index the algorithm from the data cloud (this concerns mostly
was also calculated for FCM solutions. The separability index FCPM-0).

B. is In either case¢’ < c.

In order to illustrate the kind of cluster structures we operate

1 with in the experiments, a small data set was generated with
B.=1- ¢ 1—— Z (uik)z’ (28) o = 3 original prototypes ifR? (p = 2) with n = 49 points, as
c—1 o displayed in Fig. 2. The FCM and FCPM algorithms have been
run starting from the same initial setting, seeking foe= 3

as defined in [1]. This index assesses the fuzziness of partitigrototypes, which are also displayed in Fig. 2. The FCPM-0 al-
U; it takes values in the range [0, = 1 for hard partitions gorithm has moved one of the prototypes (that corresponding to
and B, = 0 for the uniform memberships (cf. [1, p. 157]). cluster 2) far away to the left from cluster 2, so that its points,
The dissimilarity between FCPM prototyp&d and “refer- in the end, share the prototype with cluster 3. Concerning the

ence” prototyped (in our experiments, either the original pro-other FCPM and FCM algorithms, all of them found their parti-

totypes or FCM ones), is defined as tions with¢’ = 3 prototypes. Method FCPM-2 produced the
most extremal prototypes close to the original ones, and the
S Xp: (v, — vin)? others FCPM methods produced prototypes close to the proto-
Dy = —i=Lh=1 (29) types found by FCM.

c c p

T S0 43 32 In the main series of experiments the number of prototypes
St st looked for is taken coinciding with the number of original pro-
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Fig. 2. Results of clustering for the illustrative data set & 3,p = 2,

n = 49). All FCPM and FCM algorithms finde’ = 3 prototypes,
except FCPM-0. The FCPM-0 algorithm has moved one of the prototypes
(corresponding to cluster 2) far away to the left of cluster 2. Therefore, its
points share the prototype with cluster 3.

totypes,c = ¢q (Table I). Another set of experiments have been
carried out forc = ¢y + 1 (Table Il).

Table | shows the average results of running FCM and FCPM
algorithms withe = ¢g for each of the three groups of data
sets: small dimensiom(= 5, ¢y = 3), intermediate dimension
(p = 50, ¢g = 4), and high dimensionp(= 180, ¢y = 6).
Whend' < ¢, the cause, either C1 or C2, is shown in the upper
index.

The results of the experiments can be summarized as follows.

1) With regard to correctness of the number of clusters iden-
tified in the data, the methods fall in three groups:
a) methods retaining a prespecified number of clusters
(FCPM-1, FCPM-2 and FCPME);

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 11, NO. 2, APRIL 2003

TABLE |

AVERAGE RESULTS OFRUNNING FCM AND FCPM ALGORITHMS FORTHREE

GROUPS OFDATA SETS. SMALL DIMENSION (p = 5), INTERMEDIATE
(p = 50), AND HIGH DIMENSION (p = 180)

space dimension | small intermediate high
c=co 3 4 6
T
FCM 3 4 1T
FCPM-0 3 4 6 or 5°
FCPM-1 3 4 6
FCPM-2 3 4 6
FCPMg 3 4 6
FCPM-AE 3 4 6
DrcmMm (%)
FCM - - -
FCPM-0 0.49 1.23 143.50
FCPM-1 0.89 0.16 94.20
FCPM-2 7.10 11.44 97.18
FCPMg 0.30 0.10 87.46
FCPM-AE 0.09 0.14 94.84
Do (%)
FCM 14.70 17.90 96.83
FCPM-0 - 12.20 14.34 11.67
FCPM-1 10.20 15.31 15.82
FCPM-2 2.30 1.16 0.45
FCPMg 12.20 15.90 16.34
FCPM-AE 13.38 15.47 15.14
. Be
FCM 0.61 0.47 0.01
FCPM-0 0.84 0.90 0.78
FCPM-1 0.80 0.98 1.00
FCPM-2 0.43 0.36 0.30
FCPMg 0.89 1.00 1.00
FCPM-AE 0.86 0.95 0.89
t1
FCM 12 15 27
FCPM-0 10 20 78/101
FCPM-1 11 9 11
FCPM-2 11 11 27
FCPMpg 4 3 3
FCPM-AE 8 7 7
TABLE I

b) methods which can reduce the number of clusterslumsers oF PROTOTYPESFOUND BY THE FCM AND FCPM ALGORITHMS

(especially in the high-dimension data case) by ei-
ther cause C1 (FCM) or C2 (FCPM-0);
¢) methodFCPMg whose behavior depends on the

thresholdg value.
For low and intermediate dimension data sets, FCPM-0
almost always finds the correct number of clusters gen-
erated (column in Table 1). In the high-dimensional
spaces, FCPM-0 finds the correct number of clusters in
50% of the cases and it underestimates the number of
clustersin other cases. This is carried out by moving some
of the prototypes out of the data set area. In the high-di-
mensional spaces, FCM typically leads to even smaller
number of clusters, making the initial prototypes con-
verge to the same point. Further experiments show that
this feature of FCM depends not only on the space dimen-
sion but also follows the generated data structure. Specif-
ically, for the high dimension data, FCM seems to view
the entire data set as just one cluster around the origin of

WITH ¢ = ¢o + 1

space dimension | small intermediate high
co+1 4 5 7
FCM 4 4T 1T
FCPM-0 3 42 (6;5;4)°
FCPM-1 4 4! 6!
FCPM-2 4 4°? 6°?
FCPMg_o5 4 5 7
FCPM-AE 4 4°! 6°!

to 0.8, FCM identifies the correct number of prototypes.
(See also [27] for discussion of issues related to high-
dimensional spaces).

In Table I, the threshold parametgrin FCPMg is
chosen as the lowest value for which the algorithm con-
verges. This depends on the space dimension: the higher
the dimension, the larger minimufhfor the algorithm to
converge = 0.1, 8 = 0.3 and = 0.4, for the small,

the space, because there are not that many points gener- intermediate and high-space dimensions, respectively).

ated “outside” of it. When the proportion of points gen-
erated around the original prototypes (within the boxes
A; in step 3 of the data generator) is increased from 0.2

2) The prototypes found by FCPME, FCPMg, FCPM-1

and FCPM-0 almost coincide with those found by FCM
when the number of centroids is determined by FCM
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Fig.t 3; 3-D pr!'othog'the prototypes fc."g:dll;)é FC'\ﬁ %nd FCPM with= ¢, Fig. 4. Average CPU times (seconds on a log scale) taken by FCM and FCPM
prototypes (a high-dimension case wjt 1o = 6). algorithms, for the three groups of data sets with low (diamonds), intermediate
(squares), and high (triangles) space dimensions.
correctly. These prototypes differ from those originally
generated. In contrast, FCPM-2 identifies the originally
generated prototypes and, thus, yields results differing 4.

AAH

from FCM. This effect is especially visible when the o Original
ratio p/c increases. The prototypes found by FCPM-0 024 _ . g

can be considered intermediate between those found . o ggggg; *
by FCM and FCPM-2. Fig. 3 illustrates these aspects, ° ‘Pi Wl [ s
displaying the relative locations of FCPM and FCM : '@

found prototypes, with regard to the original prototypes,

for a high-dimensional data set.

3) According to the partition separability coefficien,.,
FCPM-0, FCPM-1,FCPMg and FCPMAE partitions
have more contrasting than FCM ones. In particular, in
high-dimensional cases FCPM-1 afiCPMy lead to
hard clustering solutions. The FCPM-2 gives the fuzziebig. 5. 3-D plot of the prototypes found by FCM and FCPM witkr ¢, + 1
partitions typically differing from those of FECM. On the(small dimension case with = 5, ¢, = 3). Only FCPM-0 finds the correct

! " ) number of prototypes by moving the extra prototype out of the data space; all
other hand, the FCPME partitions are more contrastine other FCPM and FCM algorithms find = ¢, + 1 distinct prototypes.
than FCM ones. This probably can be explained by the
fact that the proportional membership is more sensitive
to the discriminate attribute values characterizing a

0.2

cluster, when compared with the FCM distance-based

membership. o) £ e
4) On average, the number of major iteratiorts) (in - B éiﬁiﬂf

FCPM-1, FCPM-2 FCPM; and FCPMAE is smaller 0 Db o B o

than that in FCM, while in FCPM-0 this number does s 0 sicar

not differ significantly from that in FCM (for small

dimensions). However, the running time is greater for

FCPM algorithms, due to time spent in minor iterations
with the gradient projection method. Fig. 4 displays the
average CPU times (in seconds), on a logarithmic scale,
taken by each algorithm, for the three groups of (15)
data sets of low, intermediate and high space dimensigfy . 3-p piot of the prototypes found by FCM and FCPM witks ¢ + 1
respectively. FCM is the fastest algorithm followed byintermediate dimension case with= 50, ¢ = 4). FCPM-0 and FCPM-2
FCPMAE The discrepancy in computational times off e corect number of rootes by noyng he exwa protoype autof e

FCPM-0 from the other FCPM algorithms, is due to theototype coincides with one of the remaining ones. GRIJPM ; finds ¢’ =

fast convergence to a (global) optimum of the minof, + 1 distinct prototypes.

iteration cycle in FCPM-0, in contrast to the other FCPM

algorithms. rithms behave differently in this case. The results are as follows

Another series of experiments have been performed in ord&able II).

to analyze the sensibility of FCPM algorithms to prespecifying For the small dimension, FCM, FCPM-1, FCPMEX;PM 3
a larger number of clusters than those from which data are gemd FCPMAEfind ¢’ = ¢y+1 distinct prototypes. The FCPM-0
erated. Depending on the ratigc, the FCM and FCPM algo- removes the extra prototype out of the data space (Fig. 5).

-0.2 -02
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For the intermediate dimension case, FCM, FCPM-1, and
FCPM-AE find just ¢’ = ¢ distinct prototypes; the extra pro-

0.2

totype almost always coincides with one of the others. Both _

FCPM-2 and FCPM-0 also find = ¢, prototypes but by o1 | gcfj“l ‘

removing an extra prototype out of the data set area (Fig. 6), ¥ FePM0 e

rather than by merging two different prototypes. On the con- 0 ﬁgg?ﬁi bﬁ«i x %
trary, FCPMg can identify the required (and wrong) number of ) | roadia 3 o APy
clusters with3 parameter increased to 0.5, thus leading to hard ' %

cluster structures.

For the high dimension cases both FCM and FCPM-0 lead to
“degenerate” solutions by their respective means: FCM merges
some prototypes and FCPM-0 removes some prototypes out
of the data area, preventing the algorithm from convergence
(see corresponding entry in Table Il). The methods FCPM-dig. 7. 3-D plot of the prototypes found by FCM and FCPM witk ¢, + 1
FCPM-AE and FCPM-2, recover the number of prototypes th#tigh-dimension case with = 180, ¢ = 6). FCM and FCPM-0 lead to

; ; ; different degenerate solutions: FCM makes all the prototypes coincide with
have been generated (Flg. 7)' Om@PMﬂ finds the reqUIred each other, and FCPM-0 removes more than one prototype out of the data area.

number of prototypes wit{¥ parameter increased to 0.5. HOWFCpM-1, FCPM-2 and FCPME recover the original number of prototypes
ever, FCPM-1 and"CPMg lead to hard clusters in the high-that have been generated; oBI¢'PM; finds e’ = ¢, + 1 distinct prototypes.

dimension cases, which leaves FC-as the only genuine

fuzzy clustering method in high dimension cases for this type TABLE Il

of data. CLUSTER PROTOTYPES(V b,V i,Vss,Vsp), REVEALED BY FCM AND
Behavior of the other featureDgcy, Do, and B.), does ~ FCPM-2, FRESENTED IN THEORIGINAL SPACE VALUES CORRESPONDING

not differ from that shown in Table I. Overall, in the high 7O THE MOST CONTRIBUTING FEATURESARE MARKED

dimension cases, the winners are FCPM-2 and FG¥M- FCM FCPM-2
These two differ in the structures found: FCPM-2 recover_ VD UM __ YSs USp | YD M VSs  Usp
the original “extremal” prototypes while FCPME follows Z; 3 % g’ i g (1) (2) g
the averaged pattern of FCM. hs 5 @ 5 3 6 [_—g:' 6 4
We also have experimented with simple data sets taken frc p, 2 3 4 1 3 6
the literature (butterfly [18], MS [15], wine [28], and Iris [29]). hs 1 1 1 |_1E_| 0 0 0
The results are concordant to the observations above. In par he 5 2 4 6 0 5
ular, in these experiments, FCPM-0 behaves as an indicator 7 | 1 1 2 310 0 3 4
the number of clusters present in data: for the butterfly, wir "8 0] @ 5 | 0] @ @ 6
and MS data sets the maximal numbers of prototypes at whi ?o 6] 1 2 2 | [6] 0 1 1
FCPM-0 converges correspond to those in the original data Z‘O ) ;1 ; ;1 i 6
3, and 3, respectively). For the Iris data set, FCPM-0 converg hi; 1 1 1 - 0 1 0 @
only whenc¢’ = 2, even though the original data set contain. his @ 9 @ @ 3 @
three classes (i.e:,= 3). This is consistent with the claim made 4, , 2 ) 1
by some authors that the underlying structure in the Irisdatas ;5 | 3 '3 3 2 2 2 @
actually, may consist of two clusters only [1]. his | 2 lE' 9 3 1
hi7 6] o] 4 |[o] 6 o] 5

V. CAPTURING IDEAL TYPESWITH FCPM

To show how a typological data structure can be caugata . i . .

. e ) sses of mental disorders: depresgeyl (manic (M), simple
with F.CPM.’ we gnalyzed a specific data set from the field 2 hizophrenicg,), and paranoidrs)chizogh(peni%{)%gch cl?';\ss
psychiatry in which cluster prototypes, syndromes of ment@intains eleven entities that are considered “archetypal psychi-

conditions, are indeed extreme with regard to patients [30]. Ité?ric patients” of that class. Some properties of the data are as

experimentally shown tha.‘t prototypes fou_nd by_ FCPM reMaiows. First, there is always a pattern of features (a subset
unchanged when the set is augmented with patients having |

severe syndromes. On the contrary, FCM as an averaging metgéarh”) that take extreme values (either 0 or 6) and clearly

tends to shift prototypes toward more moderate characteristb nguish each class. Better still, some of these features take
A N osite values among distinct classes. However, some feature
of the data. This highlights FCPM’s suitability to model th Cpsp g

. . Ralues are shared by classes leading to overlaps. Given these
concept of type in some domains. characteristics, each disease is characterized by “archetypal pa-
tients” that show a pattern of extreme psychosomatic feature
values defining a syndrome.

The mental disorders data set consists of 44 patients, deThe algorithms FCPM-2 and FCM (with its parameter
scribed by seventeen psychosomatic featuresif7) (see [30] m = 2) have been run starting from the same initial points,
and [16]). The features are measured on a severity rating scsaéting the number of clusters to four (i.e.= 4). Table Il
taking values of 0 to 6. The patients are partitioned into foshows the prototypes found by FCM and FCPM-2 in the

A. Fuzzy Clustering of Mental Disorders Data
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TABLE IV
PrROTOTYPESFOUND BY FCM AND FCPM-2,IN THE ORIGINAL DATA SET (v'S)
AND IN THE AUGMENTED DATA SET (v”'S), CHARACTERIZING EACH
MENTAL DISORDER D, M, S, AND S,

modified by adding less expressed cases. To achieve that,
each class was augmented with six mid-scale patient cases
and three light-scale patient cases. Each new patient case,

x, = [z4,], was generated from a randomly selected original

FCM patient,x;, = [zx], by applying the transformation
h vp vp vM Uiy VSs Vg,  Usp Vs,
Z; j i % % g g i 2 Zgn = round(sp - zpp) + ¢, h=hi,... hiz
Zi g ‘2‘ 0 1] g ‘21 Z ?1 with scale-factorsy = 0.6 to obtain a mid-scale patient case
and sy = 0.3 to obtain a light-scale patient case. The shift
hs 11 1 1|1 1
he 5 4 2 9 4 4 parametert takes values O or 1, randomly selected.
hy 1 1 1 1 2 2 3 2 Table IV shows the prototypes’§) found in the original data
he [0 o]l {6 & [[1 1]| 5 4 set followed by the corresponding prototype&) found in the
hg 6 5 1 1 2 2 2 2 augmented data set by FCPM-2 and FCM, where the values of
hio | 2 2 4 3 2 2 5 4 most contributing features are boxed again.
hi | 2 2 22 2 2 We can see that FCM prototypes generally move toward in-
hip | 11 12 Lo S termediate feature values, showing FCM tendency to central
213 Ig ‘21 | lg }1 | 522 g prototypes. Contrastingly, in FCPM-2 prototypes, the most con-
14 tributing features maintain their extreme values, reinforcing the
his | 3 3 3 3 3 2 |5 5 | .
he | 2 2 0 1 5 3 5 1 ex_tremal qature of FCPM-Z prototype;, QesplFe thg presence of
me |1 11| [6 5 01 4 4 mid- and Ilght—scale patient cases. ThIS is a situation for Wh|_ch
the properties of the method make it an instrument capturing
A vp fspxa vs, vy, vsp v sp(_acifics of the extremal types that cannot be caught by aver-
o 5 5 00 ) 1 4 aging methods such as FCM (see also [14]).
ha 5 5 1 1 0 0 5 5 In the augmented data set case all the original patients are
23 (15 i) 0 o] g g g 451 still correctly assigned to the corresponding diseases, based on
. .
e lﬁ_a PR O 0 o found memberships.
h 1 1 6 6 0 0 5 5
hi 00 3 9 11 VI. CONCLUSION
he |[0 o] [6 6] |0 ofl|] 6 6 The FCPM framework proposes a model of how data are gen-
ho 6 6 0 0 1 1 1 1 erated from a cluster structure to be identified. This implies
hio | 00 4 4 1 1 6 6 direct interpretability of the fuzzy membership values, which
hip [ 11 2 2 1 0 [[6 6] should be considered a motivation for introducing data-driven
hiz | 0 1 1 1 0 0 S model-based methods. Another motivation comes from a re-
';:13 |g gl |2 gl i’ ? 0 0] strictive character of such methods: each covers a specific type
. . of cluster structure such as the FCPM reflected extremal type
his 2 2 2 3 2 1 | 6 6 I -
he | 3 3 00 56 T 1 structure. On the other hand, the ability to. rgconstruct the data
N o ol| [s o 0 5 4 fromthe modelis also a powerfgl characterlstlc of thI.S approach.
17 The approach seems appealing in the sense that in many cases

the experts of a knowledge domain have a conceptual under-
tanding of how the domain is organized in terms of prototypes.

e s e ot s ke, putinone omatoenave propes, may
9 ell serve as the initial setting for data based structurization of

based on the concept of contribution weights of features [14, ie domain. In our approach, the belongingness of data entities

The FCPM and FCM prototypes, at least in marked entries, o clusters is based on how much they share the features of cor-

rather similar, though the feature values of FCPM-2 prototypes

. ponding prototypes. This seems useful in such application
are somewhat more extremal than corresponding ones of F . . : o
ST . . : areas as mental disorders in psychiatry or consumer behavior in
(which is in accordance with our simulation study).

. : ... _marketing. The extremal nature of prototypes in these domains
Concerning the membership values found, both algorithms . .

. . ) . . - can be well captured by the FCPM, as shown in the previous
assign the highest belongingness of an entity to its original class

correctly clustering all entities to the corresponding class Section.
y g P 9 Based on the experimental results of this research, we may

conclude that FCPM-2 is able to recover the original prototypes
from which data sets have been generated, while other criteria
In order to see the potential of FCPM-2 with regard trom the FCPM family tend to copy the FCM results. In other
revealing extreme prototypes, the original data set should Wwerds, the FCPM-2 tends to find extremal prototypes while the
other versions of FCPM favor central prototypes. The FCPM-0
gn the low-dimension case) and FCPM-2 (in the high-dimen-
sion case) can serve as indicators of the “natural” number of

B. Clustering of Augmented Mental Disorders Data

1The only exception occurs for entity (21) from claks, which is assigned
to classS, ; the same phenomenon is reported in [16] for other clustering alg
rithms such as complete linkage afiittmeans.
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clusters present in the data according to the typological modeh9]
For the high dimension case, FCPM-1 &dPM s degenerate
into hard clustering. FCM may decrease the number of protopg;
types in high dimension cases.

Results of the approach combining FCM and FCPM

(algorithm FCPMAE) point out some advantages of the
FCPM proportional membership over the FCM distance-basefti1]
membership, including increased discriminating power and

robustness on high dimension spaces to identify a clustqﬁz]
structure (at least, with the generated data).
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