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Fuzzy Predictive Control of a Solar Power Plant
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Abstract—This paper presents the application of fuzzy pre-
dictive control to a solar power plant. The proposed predictive
controller uses fuzzy characterization of goals and constraints,
based on the fuzzy optimization framework for multi-objective
satisfaction problems. This approach enhances model based pre-
dictive control (MBPC) allowing the specification of more complex
requirements. A brief description of the solar power plant and its
simulator is given. Basic concepts of predictive control and fuzzy
predictive control are introduced. Two fuzzy predictive controllers
using different membership functions are designed for a solar
power plant, and they are compared with a classical predictive
controller. The simulation results show that the fuzzy MBPC
formulation, based on a well proven successful algorithm, gives a
greater flexibility to characterize the goals and constraints than
classical control.

Index Terms—Fuzzy constraints, fuzzy goals, fuzzy optimiza-
tion, predictive control, solar power plant.

I. INTRODUCTION

ONE OF THE main characteristics of a solar power plant
is that the primary energy source (solar radiation) cannot

be manipulated. Besides, the solar radiation intensity depends
on daily and seasonal cycle variations, like clouds, atmospheric
humidity, and air transparency. This justifies the relevance of
solar power plant control.

This study considers the Acurex distributed collector solar
field, located at the Almería Solar Platform, Almería, Spain.
In this solar power plant, the main control goal is to maintain
constant outlet oil temperature, despite the operation condi-
tions changes, by manipulating the field oil flow. To maintain
constant outlet temperatures during the day while the solar
conditions changes, significant flow variations are required.
This produces considerable variations in the dynamics of
the process. Hence, conventional control algorithms based
on a simplified model of the process, for example the linear
quadratic Gaussian (LQG) regulator, proves to be ineffective
[1]. However LQG/linear transfer recovery (LTR) regulator
gives better results even when the working conditions are far
from the ones that LQG controller has been designed for [2].

Due to its nonlinear characteristics, the Acurex solar collector
field has been used as an experimental platform for the applica-
tion of many modern control algorithms [3].
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In 1992, Camacho et al. [4] described a self-tuning propor-
tional–integral (PI) controller for this solar plant, based on a pole
assignment approach. In order to compensate the measured dis-
turbances, a feedforward controller is included. The self-tuning
controller is capable to deal with changes in the operating con-
ditions of the plant.

Later, several model based predictive control algorithms have
been implemented and experimentally tested. For example, Ca-
macho et al. [5] presented an adaptive generalized predictive
controller (GPC). The algorithm is based on reaction curve mod-
eling that uses recursive least squares estimation. The proposed
controller is successfully compared with a self-tuning PI con-
troller [4].

Camacho et al. [6] proposed a gain scheduling GPC, based
on the fact that the controller’s parameters depend on the same
variables that define the operating condition. In this case, the dy-
namics of the field are mainly conditioned to the oil flow, which
can be used to change the controller’s parameters. The main ad-
vantage of this controller compared to the previous adaptive al-
gorithms is that the controller parameters are fixed.

Camacho and Berenguel [7] described a GPC algorithm
based on a nonlinear model. In this case, the nonlinear model
is used to generate an estimation of the free response of the
process, due to past control actions and disturbances. This term
is combined with the forced response, which is calculated using
a linear model. The nonlinear model allows the controller to
deal with changes in the dynamics of the process. Camacho et
al. [8] described an extension of the mentioned algorithm, in
which the free response is based on a neural network obtaining
a control scheme that shows very good performance.

In 1995, Rubio et al. [9] presented a fuzzy logic controller for
the solar plant. The fuzzy controller is based on rules obtained
using expert knowledge of the process. Subsequently, Gordillo
et al. [10] proposed a genetic design of a fuzzy logic controller.
The genetic algorithm is used to optimize the parameters of the
fuzzy controller.

Cardoso et al. [11] and Henriques et al. [12] described a fuzzy
switching supervisor PID control strategy for the solar plant.
The fuzzy supervisor controller measures actual data available
from the plant providing a way to switch between several fixed
controllers. Additionally, the local PID controllers are offline
tuned, with a dynamic recurrent neural network with pole place-
ment. In 1999, Henriques et al. [13] proposed the same idea but
the fuzzy switching is made using -means clustering.

Distinctly, Juuso et al. [14] presented a fuzzy PI controller
applied to the solar plant. The results show that the fuzzy algo-
rithm is very robust in various difficult operating conditions.

Pickardt [15], [16] described an indirect adaptive controller
LQG and GPC for the solar plant. The algorithm uses three or
five linear auto regressive with moving average and exogenous
inputs (ARMAX) models and contains an online identification
procedure to determine and to update the corresponding model
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Fig. 1. Panoramic view of the Acurex solar collectors.

of the operating point. In this case, adaptive LQG and GPC are
designed and compared, obtaining similar satisfactory results.

Johansen et al. [17] proposed a gain-scheduled control for
the solar plant. In this case, the algorithm uses high-order
local linear auto regressive with exogenous inputs (ARX)
models and the local linear controllers are designed based on
pole placement. This author’s forecoming work describes a
distributed model based controller for the solar plant. Stability
of the closed-loop is proven using Lyapunov conditions.

In order to compare fuzzy predictive control with classical
predictive control, this paper considers a simple MBPC con-
troller based on a linear model of the solar collector field. The
system is kept around the operation point and no “hard” con-
straints are imposed to the process. A fuzzy predictive controller
is designed using the same linear model, but applying fuzzy
characterization to goals for the controlled variable error and
constraints over the manipulated variable.

This paper starts with a brief description of the solar power
plant, including the process and simulator description. Next, a
classical predictive control algorithm for the solar power plant
is described. The fuzzy goals and constraints characterization of
the predictive algorithm is explained. Finally, the application to
the solar power plant simulator is shown.

II. SOLAR POWER PLANT

A. Process Description

The considered solar power plant is located in Almería, Spain.
The main objective of the solar plant, based on a distributed
collector field, is to collect solar energy by heating oil passing
through the field (see Fig. 1).

Fig. 2. Schematic diagram of the Acurex distributed collector field.

As shown in Fig. 2, the field consists of 480 collectors. These
collectors are arranged in 20 rows that form ten parallel loops
and lie along an east–west axis [4].

The field is also provided with a tracking system, which
causes the mirrors to revolve around an axis parallel to the pipe,
to enable the varying inclination of the sun to be followed. The
cold inlet oil is extracted from the bottom of a storage tank and
is passed through the field using a pump located in the field
inlet. This fluid is heated and then introduced back into the
storage tank to be used for electricity generation.

B. Simulator Description

The plant can be described by a set of nonlinear distributed
parameter equations obtained from energy and mass balance.
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The dynamic of the process is given by the following main
partial differential equations [18]:

(1)

(2)

where and subscripts are related to the metal and oil fluid
(l/s), respectively. Also

time (s);
position (m);
oil density ;
specific heat of oil (J/kgK);
cross-section of the pipeline ;
outlet oil temperature C ;
solar radiation ;
optical efficiency;
width of the mirror (m);
overall thermal loss coefficient ;
exterior diameter of the pipeline (m);
environment temperature C ;
inner diameter of the pipeline (m),
metal-fluid transmission coefficient ,
volumetric oil flow rate .

In order to develop the solar power plant simulator, a hundred
distributed parameter models representing different sections of
the collector field are merged into a model of the plant [3].

III. CLASSICAL PREDICTIVE CONTROL ALGORITHMS

Model based predictive control (MBPC) involves a complete
family of controllers whose basic concepts are (see Fig. 3).

1) Use of an explicit model to predict the process outputs at
discrete future time instants, over a prediction horizon.

2) Computation of a sequence of future control actions
through the optimization of a certain objective function,
which considers given operation constraints and desired
reference trajectories for processes’ outputs.

3) Receding horizon strategy, i.e., the optimization process
is repeated at each sampling instant and the first action in
the calculated control sequence is applied [19].

These three characteristics allow MBPC to handle multivari-
able, nonminimum phase, open loop unstable and nonlinear pro-
cesses, with a long time delay or including constraints for ma-
nipulated and/or controlled variables, if necessary.

At instant , future process outputs are predicted using an ex-
plicit model over the prediction horizon . The predictions de-
pend on known values of the manipulated and controlled vari-
ables and the future control actions over the control
horizon (where the notation indicates that the fu-
ture control signals depend on the conditions at time ). It is
assumed that and that remains constant
for . The constant is related to the response
time of the process and is usually chosen to be equal to the
model order.

The control sequence is obtained from the optimization of an
objective function, which describes the goals that the control

Fig. 3. MBPC strategy.

strategy wants to achieve. The optimization process can include
“hard” or “soft” constraints if they are considered in the objec-
tive function [20]. Classical MBPC uses an objective function
that minimizes the control effort and the error between the
predicted outputs and the set points , during the prediction and
the control horizon, respectively, as is shown in (3) [19]

(3)

where is the expected value of the predicted output
at instant with known history up to time . Parameters

and weight every term involved in the optimization
problem. These values can change while the time is evolving to
priorize, for example, the final error or the transient period. The
value of the parameter usually is settled as the “dead time”
of the control action over the process, but if it is necessary, it
can be greater.

For linear unconstrained systems, this tractable convex opti-
mization problem can be solved analytically. However, in gen-
eral applications it is common to consider constraints or nonlin-
earities of the process, and in these cases the problem must be
solved by using numerical (usually iterative) methods. Further
considerations about this subject will be discussed in Section IV.

IV. FUZZY GOALS AND CONSTRAINTS CHARACTERIZATION

Model-based fuzzy predictive control combines the basic
idea of traditional predictive control using an objective function
which results from the aggregation of different fuzzy criteria
based on operator knowledge about the process and its require-
ments. This principle is represented in Fig. 4 [21].

As in classical MBPC, predictions for future values of process
outputs for a given control sequence are obtained through linear
or nonlinear models and a receding horizon strategy is applied.
Because in reality the cost function is generally only an approx-
imation of the desired control performance, this new method-
ology suggests the use of fuzzy goals and constraints instead of
the typical quadratic criterion.
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Fig. 4. Classical and fuzzy MBPC basic schemes.

Fig. 5. Membership functions representing satisfaction. (a) Fuzzy goal
consisting on minimizing an error. (b) Fuzzy constraint that keeps the change
in the control action in a desired range.

There is more flexibility in the definition of the optimization
criteria than in the case of traditional predictive control; in fact,
both the fuzzy membership function for the goals or constraints
and their aggregation operator can be arbitrary selected.

It is even possible to add some desirable objectives that play
also an important role in the process, but they do not have the
same relevance compared to the strict goals and constraints of
classical MBPC [22].

The goals and constraints that define a fuzzy predictive con-
trol problem can be represented by a fuzzy membership function
as is shown in Fig. 5. This problem can be solved using the fuzzy
decision framework introduced by Bellman and Zadeh [23]. For
each instant of time, there exists fuzzy goals
and fuzzy constraints . Then, it is possible to
define a global objective by intersecting every fuzzy member-
ship function over the time horizons defined in the fuzzy MBPC
problem [see (4)]

(4)

It is important to notice that the fuzzy decision framework ap-
proach treats goals and constraints similarly, therefore the rela-
tive weighting of goals and constraints is restricted by the choice
of the fuzzy membership functions.

The optimization must be made for the whole future control
sequence and in that case the optimization problem becomes

(5)

The maximization of defines a fuzzy decision problem,
which consists on achieving the greatest degree in which fuzzy
criteria, fuzzy goals, and fuzzy constraints are satisfied simulta-
neously. For example, if the fuzzy intersection is evaluated using
the -norm the problem is to maximize the minimum de-
gree of satisfaction among fuzzy goals and fuzzy constraints.
The “hardness” of the intersection can be changed choosing a
different -norm.

In order to define the minimization problem, a fuzzy com-
plement is applied to the cost function of (5), resulting in the
following equivalent problem:

(6)

Different operators like the algebraic product, maximum,
sum, or other -norm can be used to make the fuzzy aggre-
gation. The election of the method must consider the desired
softness in the control outputs, shape of utilized membership
functions and available computational resources. Literature
suggests using the Yager operator [24]. This operator is defined
by the following expressions:

(7)

co- (8)

The parameter , , adjusts the degree of the fuzzy
aggregation. A greater represents a “harder” fuzzy aggrega-
tion.

In order to compare the minimization problem of (6) with the
classical MBPC formulation, membership functions like those
of Fig. 5 and the Yager -norm will be considered [see (7)].
With these considerations, an equivalent problem to the one in
(3) can be solved in fuzzy predictive control by minimizing the
following objective function:

(9)

and .
Because of nonlinearity in the process model and/or the deci-

sion function, the optimization problem is usually nonconvex
and cannot be solved using standard optimization algorithms
such as quadratic programming (QP). In order to solve the op-
timization problem represented in (9) using a gradient method
like sequential quadratic programming (SQP), the Yager oper-
ator must be relaxed, not limiting its value to a fuzzy number
between 0 and 1; the relaxation consists in modifying expres-
sion (7) to consider only the second argument of the maximum
operator.
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Fig. 6. Feedback-feedforward control system.

TABLE I
MAIN SYSTEM VARIABLES

V. APPLICATION TO THE SOLAR POWER PLANT

A. Problem Statement

The main control goal in the solar plant is to keep the outlet
oil temperature as close as possible to a given reference tem-
perature. This should be achieved through changes in the field
oil flow, despite the disturbances that affect the system. These
disturbances are mainly the solar radiation, the inlet oil temper-
ature and the environment temperature.

In order to apply and compare the controllers described in
Sections III and IV to the solar plant, this paper considers a
simple predictive controller that uses a linear model around an
operation point [3]. This control scheme includes a feedforward
controller, shown in Fig. 6, to compensate the effect of mea-
sured disturbances, solar radiation, and inlet oil temperature. In
addition, the main variables are listed in Table I.

The output of the feedforward controller is calculated from
the following expression [3], [18]:

(10)

The simulation study presented in this paper considers two
specific disturbance profiles, which are shown in Fig. 7 [3]. The
solar radiation profile varies according to the year season, day-
time, and geometry of the distributed collector field. Addition-
ally both disturbances are filtered using a moving-average filter
that considers the eight past samples.

B. Classical Predictive Controller

MBPC can be implemented considering a linear model for the
combined dynamic system, plant and the feedforward controller

(see Fig. 6), for an operation oil flow of 6 l/s. This combined
system leads to the following controlled auto regressive with
integrated moving average (CARIMA) model [3]:

(11)

where and

The sampling period of the model and controller is 39 s. Con-
sidering the cost function of (3) the horizon parameters are set to

, and . The weights used are
and , for 1 to 15. Although the oil flow is limited
to the range 2 l/s to 12 l/s, the study is performed around the
operating condition of 6 l/s of oil flow.

In this case, the MBPC algorithm produces the se-
quence that minimizes the cost function, without considering
active constraints. The first value of this sequence is applied to
the feedforward controller that calculates an oil flow that takes
in account the measured disturbances.

As Fig. 8(a) shows, the classical MBPC follows the outlet
oil temperature set-point despite the disturbances profiles (see
Fig. 7). It is clear that the system response present some oscil-
lations. Two possible reasons for this behavior are the presence
of disturbances and the incomplete dynamic modeling due to
a simple linear model obtained through excitation of the plant.
For the given disturbance profiles, it is more likely the oscil-
lations are the outcome to the lack of complete dynamic mod-
eling. In fact, this plant exhibits antiresonance behavior [3] as
a consequence of resonance modes that are excited when fast
responses are required. The characteristic frequencies of these
resonance modes are different depending on the operating point.
The linear model used for control purposes in this paper takes
into account these phenomena when operating near 6 l/s. As it is
shown in Fig. 8, oscillations are lesser as the oil flow approaches
this value, and higher far from this nominal value.

C. Fuzzy Predictive Controller

The structure of the fuzzy predictive controller is similar to
the MBPC presented in Section V, this means the model and
horizons are the same. The cost function is given by (9). The
Yager -norm with is used as fuzzy aggregation operator,
and the minimization problem is solved using SQP.

As explained in Section IV, the fuzzy characterization of
goals and constraints is achieved with fuzzy membership
functions, with for the error and

for the variation. These functions are defined over
the set of possible values for both variables. This is a natural
straightforward way to go from classical predictive control to a
fuzzy one.
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Fig. 7. Disturbance profiles. (a) Solar radiation. (b) Oil inlet temperature.

Fig. 8. Simulation results for classical MBPC. (a) Outlet oil temperature. (b) Error in the outlet oil temperature. (c) Oil flow.

A general triangular-shaped membership function is defined
by three parameters indicating the inflection points of the func-
tion. The following definition will be used:

if
if
otherwise.

(12)

The following membership functions will be considered
(Fig. 9):

(13)
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Fig. 9. Triangular-shaped membership functions for T error and T variation.

Fig. 10. Simulation results for fuzzy MBPC with triangular-shaped membership functions. (a) Outlet oil temperature. (b) Error in the outlet oil temperature. (c)
Oil flow.

The parameters of these membership functions were chosen
to replicate the behavior of the classical predictive control with
the weights mentioned in Section V and for the considered op-
eration ranges.

The simulation results for fuzzy predictive control with trian-
gular-shaped membership functions are shown in Fig. 10. Com-
paring Figs. 8 and 10, the responses of the system with either
one of the controllers seem to be identical. The explanation to

this is the fact that the slopes of the fuzzy membership functions
were fixed according to the weights of classical MBPC.

The similarities of both controllers can be further noticed in
the histograms shown in Fig. 11, which presents the error
distribution for both cases.

As it has been mentioned before, model-based fuzzy predic-
tive control offers several degrees of flexibility and one of them
is the election of membership functions. In the next paragraphs,
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Fig. 11. T error histograms. (a) Classical MBPC. (b) Triangular-shaped fuzzy MBPC.

Fig. 12. Custom-shaped membership functions for T error and T variation.

a second controller that uses custom-shaped membership func-
tions is presented.

It will be assumed that one of the goals of the solar power
plant is to maximize the heat transfer from the collector field to
an unknown load. Under this assumption, the outlet oil tempera-
ture set-point is considered to be more strict when the controlled
variable is under this reference and not so much in the opposite
case (always considering that the maximum temperature will not
surpass the physical limits of the installation, 300 C). Unlike
the classical MBPC, the fuzzy predictive controller can easily
incorporate this kind of control goals.

The membership function for the error in the outlet oil tem-
perature, , is customized according to (14). The membership
function for the oil flow variation is kept identical [see (12) and
(13)]

if

if

if
otherwise.

(14)
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Fig. 13. Simulation results for fuzzy MBPC with custom-shaped membership functions. (a) Outlet oil temperature. (b) Error in the outlet oil temperature. (c) Oil
flow.

Fig. 14. T error histograms. (a) Classical MBPC. (b) Custom-shaped Fuzzy MBPC.

New membership functions will be considered (see Fig. 12)

(15)

The simulation results for this new fuzzy predictive controller
with custom-shaped membership functions are shown in Fig. 13.
The response of the plant with this controller is different to the
previous two. Comparing these results to those in Figs. 8 and
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10, it can be seen that the response times when the set-point is
increased are smaller than those when the set-point is decreased.
Additionally the manipulated variable, oil flow, is not as oscil-
latory as with the previous controllers.

After each set-point change there is a positive error that is not
present in the previous controllers. This behavior is completely
consequent with the fuzzy membership function for the outlet
oil temperature error. The modifications on the error profile dis-
tribution can be appreciated looking at the error histograms in
Fig. 14. According to Fig. 14(b), the reduction of negative error
and the increase of positive error in the range 0 C to 5 C are
concordant with the shape of the custom membership function

.

VI. CONCLUSION

In order to apply classical control techniques such as MBPC
to real processes, values of several parameters of the objective
function and constraint limits must be chosen and sometimes
this represents a difficult decision for the control engineer. As an
alternative, it has been proposed the use of fuzzy membership
functions to represent goals and constraints in a more flexible
and transparent way.

A comparison has been made between classical MBPC
and the new fuzzy methodology proposed applied to a solar
power plant. The results show that under certain circumstances
(weights, fuzzy membership functions, and fuzzy -norm) the
solutions of both control algorithms are quite similar.

However, the fuzzy MBPC formulation gives a greater flex-
ibility to characterize the goals and constraints for the process.
This fact can be appreciated in the performance of a fuzzy pre-
dictive controller based on custom-shaped membership func-
tions.

As concluding remarks of the new methodology proposed we
highlight two attributes: 1) It is based on a well-proven suc-
cessful algorithm such a classical MBPC, and 2) It empowers
MBPC with flexibility to consider goals and constraints dif-
ferent to those usually used in classical MBPC. This last remark
is the main advantage of fuzzy predictive control. The flexibility
provided by the fuzzy membership function and the fuzzy ag-
gregation can be used to consider complex goals such as dif-
ferent weights for distinct error situation as shown in this paper.
Other possible complex goals for the solar power plant could be
simultaneous fulfillment of conditions in the outlet oil temper-
ature and the oil flow.

Clearly, the possibilities of fuzzy predictive control are enor-
mous and the role of the control engineer is to search for pro-
cesses suitable for its application.
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