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Rule Weight Specification in Fuzzy Rule-Based
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Abstract—This paper shows how the rule weight of each fuzzy
rule can be specified in fuzzy rule-based classification systems.
First, we propose two heuristic methods for rule weight specifica-
tion. Next, the proposed methods are compared with existing ones
through computer simulations on artificial numerical examples
and real-world pattern classification problems. Simulation results
show that the proposed methods outperform the existing ones in
the case of multiclass pattern classification problems with many
classes.

Index Terms—Data mining, fuzzy systems, pattern classification,
rule generation, rule selection.

1. INTRODUCTION

E HAVE already demonstrated that rule weights have

a significant effect on the classification performance of
fuzzy rule-based systems [1]. In this paper, we examine some
heuristic methods for rule weight specification. We use fuzzy
rules of the following type for an n-dimensional pattern classi-
fication problem:

Rule Ry: If 1 is Ag1 and... and z,, is Ay,
then Class C; with CF, (1)

where x = (z1,...,,) is an n-dimensional pattern vector,
Ag;i is an antecedent fuzzy set for the th attribute, C; is a con-
sequent class, and CF, is a certainty grade (i.e., rule weight).
Various types of fuzzy rules have been used for pattern clas-
sification problems. For example, Cordon et al. [2] examined
three types of fuzzy rules. One has a single consequent class
with no rule weight, another is the same as (1), and the other
has multiple consequent classes. The third type with multiple
consequent classes is written for M -class pattern classification
problems as

Rule R;: If ;1 is Ag; and... and z,, is Ay
then Class 1 with CFy; and... and Class M with CF
2

where CF, is a certainty grade for Class h. In this paper, we
mainly use fuzzy rules of the form in (1). Fuzzy rules with mul-
tiple consequent classes in (2) are used only when the three types
of fuzzy rules are compared with one another. Fuzzy rules of
the form in (2) were also examined in [3] from the viewpoint of
fuzzy conditional probability.
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Many studies on fuzzy rule-based classification systems (e.g.,
[4]-[7]) did not use rule weights. In most of those studies, an-
tecedent fuzzy sets were generated and adjusted from numer-
ical data. As shown in [8], the learning of rule weights can be
replaced by the modification of the membership functions of an-
tecedent fuzzy sets. We do not, however, adjust the membership
functions of antecedent fuzzy sets because their adjustment may
degrade the comprehensibility of fuzzy rule-based systems. Of
course, many approaches have been proposed for finding a good
compromise between the accuracy of fuzzy rule-based systems
and their comprehensibility. Those approaches often use con-
straint conditions on the membership functions of antecedent
fuzzy sets (e.g., [9]).

This paper is organized as follows. In Section II, we explain
two heuristic methods for rule weight specification in [2], [10]
using the terminology in data mining: confidence and support
[11]. We also propose different heuristic methods in Section II.
Characteristic features of each method are visually demon-
strated through computer simulations on artificial numerical
examples in Section III. In our computer simulations, we
also compare fuzzy rules of the form in (1) with those in (2).
Moreover, we compare two fuzzy reasoning methods with each
other in Section III: A single winner method and a weighted
vote method. In Section IV, we examine the classification
performance of fuzzy rule-based systems designed by each
heuristic method through computer simulations on real-world
pattern classification problems. Finally, Section V concludes
this paper.

II. HEURISTIC RULE WEIGHT SPECIFICATION

A. Rule Evaluation Measures in Data Mining

In the field of data mining [11], two measures (i.e., confidence
and support) are frequently used to evaluate association rules.
The fuzzy rule in (1) can be viewed as a fuzzy association rule
A, = C, where A, = (A,1,...,A,,). In this section, we
briefly explain fuzzy versions [12], [13] of the two rule evalua-
tion measures.

Let us assume that m labeled patterns

Xp = (Tp1s .-+, Tpn), p=1,2,....m
are given from M classes for an n-dimensional pattern classi-
fication problem. As in our former studies [1], [10], [13], we
define the compatibility grade of each training pattern x, with
the antecedent A, by the product operation as

nA, (Xp) = qul(xpl) X X A, (l'pn) 3)
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where 414, () is the membership function of the antecedent
fuzzy set Ag;.

The confidence of the fuzzy rule A, = C is written as
follows [12], [13]:

pr eClass ¢, HA, (xp)
ZIT:1 1a, (Xp)

The confidence can be viewed as measuring the validity of
A, = (. It can be also viewed as a numerical approximation
of the conditional probability [3]. On the other hand, the support
of A, = C is written as follows [12], [13]:

c(Ay = Cy) =

“)

pre Class ¢, HA, (xp)
- :

s(Ay = Cy) =

)

The support can be viewed as measuring the coverage of training
patterns by A, = C,.

B. Heuristic Methods for Rule Weight Specification

First, we explain the determination of the consequent class.
Let us assume that a set of antecedent fuzzy sets is given for
each attribute. The antecedent part of each fuzzy rule (i.e., A4) is
constructed by combining antecedent fuzzy sets for n attributes.
The consequent C; of the fuzzy rule A, = C, in (1) is deter-
mined by finding the class with the maximum confidence for the
antecedent A

(A, = Cy) =max{c(A, = Classh)|h=1,2,...,M}.
(6)

When the consequent C;, cannot be uniquely determined in (6),
we do not generate any fuzzy rule with the antecedent A,,.

The confidence ¢(A, = C;) can be used as the rule weight
CF, of the fuzzy rule A; = C; asin [2] and [3]. That is, one
definition of the rule weight is

CF, = c(A, = C,) (7

where the superscript “T” shows that CF; is the first definition
of CF . In our former studies [1], [10], [13], we used a different
definition of the rule weight

CF' = c(Aqg = Cy) — cave (8)

where cave is the average confidence over fuzzy rules with the
same antecedent A, but different consequent classes from C,

M

> c(Ag = Class h). )

h=1
h#Cq

1

CAve = M—_1

In this paper, we propose more intuitive definitions of the rule
weight. One definition is based on the difference between the
largest and the second largest confidence. That is

CF" = c(Ay = Cy) — cand (10)

where cop,q is the second largest confidence for the antecedent
A

q

Cona = max{c(Ay = Classh) |h =1,2,...,M;h # Cg}.
1D

We also propose the following definition:

CF}Y = c(Ay = Cy) — csum (12)
where csym 1s the sum of the confidence over fuzzy rules with

the same antecedent A, but different consequent classes from
C("I

M
CSum = Z c(Ag = Class h).

h=1

h#Cq

13)

While CF, is always positive in the first three definitions, CF}IV
can be negative. We do not use fuzzy rules with negative rule
weights in fuzzy rule-based systems. Note that the third and
fourth definitions in (10) and (12) are the same as the second def-
inition in (8) when our pattern classification problem involves
only two classes (i.e., when M = 2). This is because caye =
Cond = Csum holds for the case of M = 2 in (9), (11), and (13).

For the fuzzy rule with multiple consequent classes in (2), we
directly use the confidence as the certainty grade for each class
(21, 3]

CFyn = ¢(A, = Class h), h=1,2,....,M. (14)

C. Fuzzy Reasoning for Pattern Classification

First we explain fuzzy reasoning for fuzzy rules with a single
consequent class. Let .S be a set of fuzzy rules of the form in (1).
We use a single winner method [14] for classifying new patterns
by the rule set S. The single winner rule R,, is determined for
anew pattern X, = (Zp1,...,Tpn) as

pA, (%p) - CFy = max{pa,(x,) - CF,| R, € S} (15)
The new pattern x,, is classified as Class C,,,, which is the conse-
quent class of the winner rule R,,. If multiple fuzzy rules have
the same maximum value but different consequent classes for
the new pattern x,, in (15), the classification of x,, is rejected.
The classification is also rejected if no fuzzy rule is compatible
with the new pattern x,,.

Next, let us consider fuzzy reasoning by fuzzy rules with mul-
tiple consequent classes. In this case, the single winner method
in (15) is rewritten as

pa., (Xp) - CFyhs

= max{pa,(xp) CFqn |R, € S,h=1,2,... . M}. (16)

The new pattern x,, is classified as Class h* in (16). It can be
easily shown that (16) can be reduced to (15) by defining CF,
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for each fuzzy rule R, with multiple consequent classes in (2)
as

CF, = max{CF, |h =1,2,...,M}. 17)
This means that multiple consequent classes are not necessary
when we use the single winner method.

We also use a weighted vote method [14] for comparison.
When we have fuzzy rules with a single consequent class, each
fuzzy rule casts a vote for its consequent class. The strength of
the vote is defined by the product of the compatibility grade and

the certainty grade. Thus, the total strength of the vote for each
class is calculated as follows:

VClass h(Xp) = Z /LAq (Xp) . CF‘I7

Rg€S
Cg=h

h=1,2,...,M. (18)
The new pattern x,, is classified as the class with the maximum
total strength of the vote.

On the other hand, the total strength of the vote for each class
is written in the case of fuzzy rules with multiple consequent
classes as

VClass h(xp) = Z KA, (Xp) . Cth7
R,€S
h=1,2,...,M. (19)
While each fuzzy rule casts a vote for its single consequent class
in (18), it votes for all classes in (19).

In the single winner method as well as the weighted vote
method, we multiply the compatibility grade 14, (x,) by the
rule weight CF,. Interpretation of this operation is not straight-
forward. For example, the first definition of the rule weight is a
numerical approximation of the conditional probability of the
consequent class. In this case, our fuzzy reasoning methods
are viewed as combining two different measures: A linguistic
compatibility and a probabilistic validity. In the single winner
method, we handle the rule weight as the rule strength, which
is an expression of the applicability of each fuzzy rule. That
is, the rule weight is related to the choice of a single winner
rule among compatible rules. Operationally the multiplication
of the compatibility grade by the rule weight is equivalent to
the modification of the heights of antecedent fuzzy sets [1], [8].
Thus the rule weight can be viewed as adjusting the compat-
ibility grade (i.e., applicability) of each fuzzy rule to the cur-
rent input vector. When there is exactly one rule per class in
neuro-fuzzy naive Bayes classifiers [15], the rule weight and
the compatibility grade are explained as being the prior proba-
bility of the consequent class and the probability density func-
tion, respectively. Under this interpretation, the multiplication
of the compatibility grade by the rule weight becomes natural.
In the case of multiple rules per class, this interpretation is not
directly applicable (i.e., we have to split each class into multiple
subclasses).
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Fig. 2. Distribution of training patterns in our artificial numerical example.

III. ILLUSTRATION OF THE EFFECT OF RULE WEIGHTS

A. Simulation Results on Single-Dimensional Problems

For visually illustrating characteristic features of each defini-
tion of rule weights, let us consider a two-class pattern classi-
fication problem on a single-dimensional pattern space [—2, 2]
with the homogeneous fuzzy partition by triangular fuzzy sets
in Fig. 1. We assume that an infinite number of training patterns
are uniformly distributed in the interval [—2, 2]. We also assume
that each training pattern x,, belongs to Class 1 or Class 2 de-
pending on its location as shown in Fig. 2. That is, if z, < 0
then z,, belongs to Class 1, otherwise x,, belongs to Class 2.

Using the homogeneous fuzzy partition in Fig. 1 and the uni-
form distribution of training patterns in Fig. 2, we can generate
the following fuzzy rules:

Ry o: Ifz is A;_» then Class 1 with CF,_» (20)
Ry_y1: Ifx is A;—y then Class 1 with CFy_q 21
Ry: If z is A, then Class 1 with CF, (22)
Ryy1: Ifz is Agyy then Class 2 with CF g4 (23)
Ryyo: Ifz is Ay then Class 2 with CFgqo.  (24)

From Figs. 1 and 2, we can see that compatible training pat-
terns with A,_» and A,_; always belong to Class 1. Thus the
rule weights of R;_» and Ry_; are CFy_» =1andCF,_; =1
independent of the choice of their definition. The rule weight
CF g42 of R4 isalso CFy 2 = 1 because compatible training
patterns with Ao always belong to Class 2.

On the other hand, the rule weights of R, and 44, are cal-
culated from each definition using the uniform distribution of
training patterns in Fig. 2 as

CF, =0.549 CF. ; = 0.999 (25)
CF,' =0.098 CF;,, = 0.998. (26)
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Fig. 3.
problem.

Comparison of the two definitions of rule weights for our two-class

Since our numerical example is a two-class problem (i.e., M =
2), the second definition is exactly the same as the third and
fourth definitions of rule weights. In (25) and (26), we can ob-
serve a large difference in the rule weight CF, of the fuzzy rule
R, between the first definition and the other definitions. From
Fig. 2, the confidence is calculated for “A4, = Class 1” and
“Ay = Class 2” as

49

c(A; = Class 1) = 0.5
= 0.451.

c(A, = Class 2) 27
The difference between these confidence values is small. Thus
the rule weight of the fuzzy rule “R,: A, = Class 1 is also
small in the second definition while it is not so small in the first
definition.

Using the five fuzzy rules in (20)—(24), let us estimate the
class boundary between Class 1 and Class 2. When we use the
single winner method in (15), the estimated class boundary 6 is
calculated as = 0.355 by the first definition and 6 = 0.089 by
the second definition from the equation

pa,(x)-CFy = pa,,, (z) CF 1. (28)
The estimated class boundary f has a large error in the case
of the first definition while it is almost the same as the actual
threshold 6 = 0.05 in the second definition. The large error by
the first definition is due to the large rule weight CF}I of the
fuzzy rule R,.

In the same manner, we calculated the estimated class
boundary f for various specifications of the threshold value
§:6 = 0.00,0.02,...,1.00. Simulation results are summarized
in Fig. 3 where the desired result § = 6 is depicted by the
diagonal line. On the other hand, the dotted line corresponding
to # = 0.5 shows the estimated class boundary in the case
of the fuzzy rules with no rule weights. The estimated class
boundary # has a large error except for the case where the
actual class boundary 6 is close to 0.5 (i.e., the crossing point
of the membership functions A, and A,1). This observation
suggests that the learning of membership functions is necessary
when fuzzy rules have no rule weights.
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Fig. 4. Simulation results by the second definition of rule weights for M -class
problems.

From Fig. 3, we can see that the estimated class boundary g
is close to the actual threshold # independent of the value of 6
when we use the second definition. On the other hand, the dif-
ference between 6 and 6 is large in the case of the first definition.
This observation suggests that the direct use of the confidence as
the rule weight (i.e., the first definition) may lead to large clas-
sification errors.

Since our numerical example in Fig. 2 involves only two
classes, exactly the same results are obtained from the second,
third and fourth definitions. Let us extend our numerical
example in Fig. 2 to an M-class problem (M > 2). For
simplicity of discussion, we assume that the interval [—2,2]
in Fig. 2 is a part of a larger pattern space (e.g., [—10, 10]).
We also assume that training patterns from the other classes
(i.e., Class 3,..., Class M) exist far from the interval [—2, 2]
in the pattern space (e.g., ¢ < —5 or 5 < ). From these
assumptions, we can discuss the specification of rule weights
locally in the unit interval [—2, 2]. In this situation, the increase
in the number of classes has no effect on the first, third and
fourth definitions of rule weights. On the other hand, the second
definition depends on the value of M as shown in (9). Thus,
the second definition is not the same as the third and fourth
definitions when pattern classification problems involve more
than two classes.

In the same manner as Fig. 3, we calculated the estimated
class boundary f using the second definition for three specifi-
cations of M (i.e., M = 2,5,10). Simulation results are sum-
marized in Fig. 4. From this figure, we can see that the differ-
ence between the actual class boundary 6 and the estimated class
boundary 6 increases as the value of M increases. When M = 5
and M = 10, the simulation results by the second definition in
Fig. 4 are similar to those by the first definition in Fig. 3.

For discussing the difference between the third and fourth
definitions, let us consider the situation where several minor
classes exist in the region of Class 2 in Fig. 2 (i.e., 0 < z < 2).
More specifically, let us assume that Class 2 patterns in Fig. 2
can be further divided into a single major class (say Class 2)
and several minor classes (say Class 3,4, ..., M). In this case,
the rule weight of “R,: A; = Class 1” is calculated by the
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TABLE 1
EXAMINED COMBINATIONS OF FuzzYy RULES AND FUZZY REASONING
METHODS
Case Consequent Rule weight  Classification
Case 1 Single class  No rule weight ~ Single winner
Case 2 Single class  No rule weight Weighted vote
Case 3 Single class 1st definition  Single winner
Case 4 Single class Ist definition ~ Weighted vote
Case 5 Single class  2nd definition ~ Single winner
Case 6 Single class  2nd definition ~Weighted vote
Case 7 Multiple classes 1st definition  Single winner
Case 8 Multiple classes 1st definition =~ Weighted vote

fourth definition as CF(IIV = 0.098 independent of the subdivi-
sion of Class 2 patterns. On the contrary, the rule weight CF;H
by the third definition is increased by the subdivision of Class 2
patterns. Such an increase in the rule weight may lead to the in-
crease in the estimation error similar to Fig. 4. This suggests the
possibility that better results are obtained for multiclass pattern
classification problems by the fourth definition than the other
definitions.

B. Simulation Results on Two-Dimensional Problems

Let us consider a two-class pattern classification problem
with a two-dimensional pattern space [—2,2] x [—2,2]. We
assume that each axis of the pattern space is partitioned into
five triangular fuzzy sets in the same manner as Fig. 1. We
also assume that training patterns belong to Class 1 only
when 1 + z2 < 6. In the two-dimensional pattern space, we
generated 160801 training patterns using the 401 x 401 grid
where z; = —2.00,—1.99,...,2.00 for : = 1, 2. Each training
pattern is assigned to Class 1 or Class 2 according to its location
(i.e., if 1 + 2o < 6, then Class 1 otherwise Class 2). We can
generate 25 fuzzy rules from the training patterns using the
five antecedent fuzzy sets on each axis of the two-dimensional
pattern space.

In our computer simulations, we examined eight cases
in Table I. Simulation results are shown in Fig. 5 where
6 = 0.05. In each figure in Fig. 5, the actual class boundary
(i.e., x1 + x2 = 0.05) and the estimated class boundary are
shown by a dotted line and a thick line, respectively. The thin
lines in each figure show the 5 x 5 grid by the five antecedent
fuzzy sets on each axis. The classification rate on the 160 801
training patterns is also shown for each figure.

In Fig. 5, good results were obtained from the second defi-
nition of rule weights (i.e., Cases 5 and 6). Good results were
not obtained from fuzzy rules with no rule weights (i.e., Cases 1
and 2). This is because fuzzy rules with no rule weights cannot
adjust the estimated class boundary. We can also see that simu-
lation results by the first definition of rule weights (i.e., Cases 3
and 4) are inferior to those by the second definition (i.e., Cases
5 and 6). On the other hand, when we used the weighted vote
method for fuzzy rules with multiple consequent classes, good
results were obtained from the first definition (i.e., Case 8 in
Fig. 5). These observations suggest that the choice of a weight
specification method strongly depends on the type of fuzzy rules
and the fuzzy reasoning method.
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Fig. 5. Simulation results for the two-dimensional pattern classification
problem with 8 = 0.05.

IV. COMPUTER SIMULATIONS ON REAL-WORLD PROBLEMS
A. Data Sets and Simulation Conditions

In this section, we compare the four definitions of
rule weights with one another through computer simu-
lations on wine data and glass data. These data sets are
available from the UC Irvine machine learning database
(http://www.ics.uci.edu/~mlearn/MLSummary.html). The wine
data set is a 13-dimensional problem with 178 samples from
three classes. We chose this data set because it involves many
continuous attributes. The glass data set is a nine-dimensional
problem with 214 samples from six classes. We chose this data
set because it involves many classes.

In our computer simulations, we normalized each attribute
value into a real number in the unit interval [0, 1]. For calcu-
lating the average classification rate on test patterns, we used the
leaving-one-out (LV 1) technique where the given samples were
divided in a single test pattern and the other training patterns.
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Fig. 6. Four fuzzy partitions used in our computer simulations.

A fuzzy rule-based system designed from training patterns was
evaluated by a single test pattern. The design-and-test procedure
was iterated so that all the given samples were used as test pat-
terns once. Thus, the number of iterations of the design-and-test
procedure was the same as the number of the given samples in
each data set.

In real-world applications of fuzzy rule-based systems, an ap-
propriate fuzzy partition of each continuous attribute is not al-
ways given. In our computer simulations, we used four fuzzy
partitions in Fig. 6 because we did not know an appropriate
granularity of the fuzzy partition for each attribute. In addition
to the 14 fuzzy sets in Fig. 6, we also used “don’t care” as
an additional antecedent fuzzy set. The shape of the member-
ship function of don’t care is the same as the unit interval (i.e.,
tdon'tcare(Z) = 1 for z € [0,1]). The total number of com-
binations of antecedent fuzzy sets is 15™ for an n-dimensional
pattern classification problem.

It is impractical to use all fuzzy rules corresponding to such
a huge number of combinations of antecedent fuzzy sets. In our
computer simulations, we designed fuzzy rule-based systems in
the following manner. First, we generated short fuzzy rules of
length three or less. Note that the rule length is defined by the
number of antecedent conditions (excluding don’t care condi-
tions). The generated fuzzy rules were divided into M groups
according to their consequent classes (M is three in the wine
data, and six in the glass data). Fuzzy rules in each group were
sorted in a descending order of a rule selection criterion. We
used the product of the confidence ¢( -) and the support s( -)
as the rule selection criterion. When multiple fuzzy rules had
the same value of the rule selection criterion, they were ran-
domly sorted (i.e., random tiebreak). We constructed a fuzzy
rule-based system by choosing the first NV fuzzy rules from each
group (i.e., M - N rules in total). Using various values of N (i.e.,
N =1,2,...,5), we examined the classification performance
of fuzzy rule-based systems with different sizes.

We examined the four definitions of rule weights. We also ex-
amined the case of no rule weights. This case was simulated by
assigning the same rule weight to all the generated fuzzy rules
(i.e., CF, = 1 for Vq). For comparison, we also examined the
classification performance of fuzzy rules with multiple conse-
quent classes. When we constructed a fuzzy rule-based system
from those fuzzy rules, we used the selected M - N fuzzy rules
with a single consequent class whose rule weights were spec-
ified by the first definition. Each of the selected M - N fuzzy
rules with a single consequent class was extended to a fuzzy

TABLE 1II
CLASSIFICATION RATES ON TEST PATTERNS OF THE WINE DATA SET BY THE
SINGLE WINNER METHOD

Number Norule First Second Third Fourth Rules
of rules weights def. def. def. def. in (2)
3 89.89 89.89 89.89 89.33 89.33 89.89
6 80.34 83.15 8596 84.83 8539 83.15
9 88.76 91.57 92.13 9326 93.26 91.57
12 93.26 93.26 92.70 93.26 93.26 93.26
15 88.76 91.57 91.57 94.38* 93.26 91.57
TABLE III

CLASSIFICATION RATES ON TEST PATTERNS OF THE WINE DATA SET BY THE
WEIGHTED VOTE METHOD

Number Norule First Second Third Fourth Rules
of rules weights  def. def. def. def. in (2)
3 89.89 89.89 89.89 89.33 89.33 89.89
6 87.08 87.64 8876 89.33 88.76 89.89
9 93.82 9326 93.26 9438 93.82 94.38
12 9438 9494 9438 9438 9326 94.38
15 95.51* 95.51* 9438 9438 93.82 9494

rule with multiple consequent classes by assigning a certainty
grade to each of the M classes in the consequent part. In our
computer simulations, we used the single winner method and
the weighted vote method.

B. Simulation Results on Wine Data

In Table II, we show average classification rates on test pat-
terns of the wine data set when the single winner method was
used. The best result in each row (i.e., each specification of the
number of fuzzy rules) is shown by boldface. The best result in
the table is indicated by “x.” From this table, we can see that
the classification performance of fuzzy rule-based systems with
no rule weights was improved in some cases by the use of rule
weights. We can also see that the difference in the classification
performance among the four definitions is small. On the other
hand, simulation results by the weighted vote method are shown
in Table III. In this case, good results were obtained indepen-
dent of the choice of a rule weight specification method. From
the comparison between Table II and Table III, we can see that
the classification ability of fuzzy rule-based systems was im-
proved by the use of the weighted vote method independent of
the choice of a rule weight specification method.

C. Simulation Results on Glass Data

Average classification rates on test patterns of the glass data
set are shown in Table IV for the single winner method and
Table V for the weighted vote method. The classification per-
formance of fuzzy rule-based systems strongly depends on the
choice of a rule weight definition in these tables. Good results
were obtained only when we used the fourth definition of rule
weights. Since the glass data set involves six classes (i.e., M =
6), the difference among the four definitions is large. As a re-
sult, we obtained very different simulation results from the four
definitions.
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TABLE IV
CLASSIFICATION RATES ON TEST PATTERNS OF THE GLASS DATA SET BY THE
SINGLE WINNER METHOD

Number Norule First Second Third Fourth Rules
of rules weights def. def. def. def. in (2)
6 4579 49.53 4579 39.25 58.88 49.53
12 4533 48.60 4579 39.72 67.76* 48.60
18 4533 48.60 4579 39.72 66.82 48.60
24 4533 48.60 4533 40.19 65.89 48.60
30 39.72 4813 4533 40.19 54.21 48.13
TABLE V

CLASSIFICATION RATES ON TEST PATTERNS OF THE GLASS DATA SET BY THE
WEIGHTED VOTE METHOD

Number Norule First Second Third Fourth Rules
of rules weights Def. Def. Def. Def. in(2)
6 4579 49.53 4579 39.25 58.88 42.99
12 4533 48.60 4626 39.25 67.76 43.93
18 4533 4720 4720 40.19 68.22* 43.93
24 4533 4720 4860 40.19 68.22* 43.93
30 4579 46.73 4720 42.06 66.36 44.86

D. Discussions on Simulation Results

Simulation results in Tables II-V show that the effect of rule
weights is problem-dependent. In computer simulations on the
wine data set, the choice of a rule weight specification method
did not have a large effect on the classification performance of
fuzzy rule-based systems. One reason for this insensitivity is
that the wine data set does not have large overlap regions be-
tween different classes in the pattern space. On the other hand,
the performance of fuzzy rule-based systems strongly depended
on the choice of a rule weight specification method in computer
simulations on the glass data set.

It should be noted that good results were obtained in Tables IV
and V only from the fourth definition. One may think that the
difference in classification rates between the fourth definition
and the other definitions is suspiciously large in those tables.
We examined why good results were obtained only from the
fourth definition. Then we found that different fuzzy rules were
used in the case of the fourth definition. As we have already
mentioned, CF;V by the fourth definition can be negative while
rule weights by the other definitions are always positive. More
specifically CF}IV becomes negative when CF}I is smaller than
0.5. Since we did not use fuzzy rules with negative rule weights,
fuzzy rules with CF(II < 0.5 were not used in the case of the
fourth definition while they were used in the other definitions.
In computer simulations in Table IV, CF; < 0.5 holds for 2800
rules among 30 x 214 = 6420 rules generated by the first def-
inition during the execution of the LV1 procedure. This means
that the used fuzzy rules were different between the fourth def-
inition and the other definitions in computer simulations on the
glass data set. On the other hand, CF; < 0.5 holds for no rule
among 15 x 178 = 2670 rules generated by the first definition
in Table II for the wine data set.

For evaluating the pure effect of rule weights on the classi-
fication performance of fuzzy rule-based systems for the glass
data set, we executed additional computer simulations. We first
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TABLE VI
CLASSIFICATION RATES ON TEST PATTERNS OF THE GLASS DATA SET WHEN
THE SINGLE WINNER METHOD WAS USED. SAME Fuzzy RULES (EXCEPT FOR
RULE WEIGHTS) WERE USED IN ALL THE Si1X CASES IN THIS TABLE

Number Norule First Second Third Fourth Rules
of rules weights Def. Def. Def. Def. in(2)
6 60.75 60.75 60.28 60.28 58.88 60.75
12 61.22 61.68 6122 56.54 67.76* 61.68
18 60.75 61.68 61.68 5654 66.82 61.68
24 60.75 61.68 61.68 56.07 6589 61.68
30 58.88 59.81 59.35 55.61 5421 59.81

generated a pre-specified number of fuzzy rules using the fourth
definition as in Table I'V. Then only the rule weight of each fuzzy
rule was modified using each definition. In this manner, we gen-
erated the same fuzzy rules (with different rule weights) for all
definitions. Simulation results are summarized in Table VI. We
can see from this table that the best results were still obtained
from the fourth definition while the difference in classification
rates among the four definitions was reduced from Table IV.

V. CONCLUSION

In this paper, we compared four heuristic specification
methods of rule weights with one another. We also compared
two fuzzy reasoning methods with each other: the single winner
method and the weighted vote method. We demonstrated
through computer simulations on artificial test problems that
the first definition of rule weights (i.e., the direct use of the
fuzzy conditional probability) is not appropriate for the single
winner method while it is appropriate for the weighted vote
method. We also demonstrated that the second definition of
rule weights, which was used in our former studies [10], [13],
[14], is not appropriate for the case of multiclass problems with
many classes. In this case, the fourth definition worked well.
While the differences in classification rates among the four
definitions were not large in their application to the wine data
set with three classes, the superiority of the fourth definition
was clear in their application to the glass data set with six
classes. Simulation results also showed that better results were
obtained by the weighted vote method than the single winner
method in many cases. The single winner method, however,
is preferable from the viewpoint of the comprehensibility of
the classification result of each pattern. The use of the single
winner method also makes it easy to decrease the number of
fuzzy rules because only a single winner rule is responsible for
the classification of each pattern.
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