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Fuzzy Interpolative Reasoning via Scale
and Move Transformations

Zhiheng Huang and Qiang Shen

Abstract—Interpolative reasoning does not only help reduce the
complexity of fuzzy models but also makes inference in sparse
rule-based systems possible. This paper presents an interpolative
reasoning method by means of scale and move transformations. It
can be used to interpolate fuzzy rules involving complex polygon,
Gaussian or other bell-shaped fuzzy membership functions. The
method works by first constructing a new inference rule via
manipulating two given adjacent rules, and then by using scale
and move transformations to convert the intermediate inference
results into the final derived conclusions. This method has three
advantages thanks to the proposed transformations: 1) it can
handle interpolation of multiple antecedent variables with simple
computation; 2) it guarantees the uniqueness as well as normality
and convexity of the resulting interpolated fuzzy sets; and 3) it sug-
gests a variety of definitions for representative values, providing
a degree of freedom to meet different requirements. Comparative
experimental studies are provided to demonstrate the potential of
this method.

Index Terms—Fuzzy model simplification, fuzzy rule interpola-
tion, scale and move transformations, sparse rule base, transfor-
mation-based interpolation.

I. INTRODUCTION

FUZZY rule interpolation helps reduce the complexity of
fuzzy models and supports inference in systems that em-

ploy sparse rule sets [7], [10]. With interpolation, fuzzy rules
which may be approximated from their neighboring rules can
be omitted from the rule base. This leads to the complexity
reduction of fuzzy models. When given observations have no
overlap with the antecedent values of the rules, classical fuzzy
inference methods have no rule to fire, but interpolative rea-
soning methods can still obtain certain conclusions. Despite
these significant advantages, earlier work in fuzzy interpolative
reasoning does not guarantee the convexity of the derived fuzzy
sets [12], [17], which is often a crucial requirement of fuzzy rea-
soning to attain more easily interpretable practical results.

In order to eliminate the nonconvexity drawback, there has
been considerable work reported in the literature. For instance,
Vas et al. have proposed an algorithm [14] that reduces the
problem of nonconvex conclusions. Qiao et al. [11] have pub-
lished an improved method which uses similarity transfer rea-
soning to guarantee the attainment of convex results. Hsiao et al.
[4] have introduced a new interpolative method which exploits
the slopes of the fuzzy sets. General fuzzy interpolation and ex-
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trapolation techniques [1], and a modified -cut based method
[2], [13], have also been proposed. In addition, Bouchon et al.
have created an interpolative method by exploiting the concept
of graduality [3], and Yam and Kóczy [15], [16] have proposed a
fuzzy interpolative technique based on Cartesian representation.

Nevertheless, some of the existing methods include complex
computation. It becomes more difficult when they are extended
to multiple variables interpolation. Others may only apply to
simple fuzzy membership functions limited to triangular or
trapezoidal. Almost all existing techniques lack the flexibility
to generate results that meet different application requirements,
whilst the work of [15] and [16] generates multiple reasoning
results without showing how to make a choice amongst them.
This paper, based on the initial work carried out by the authors
[5], [6], proposes a novel interpolative reasoning method which
avoids the problems mentioned above. First, intermediate fuzzy
rules are constructed by their adjacent rules. These, together
with the observations, are then converted into the final fuzzy
consequences by the scale and move transformations, ensuring
unique, normal and convex results in an elegant manner.

The rest of the paper is organized as follows. Section II re-
views the relevant background of fuzzy interpolative techniques.
Section III describes the new interpolative reasoning method.
Section IV gives examples to illustrate the use and power of this
method by comparing it against typical existing approaches. Fi-
nally, Section V concludes the paper and points out important
further work.

II. BACKGROUND OF FUZZY RULE

INTERPOLATIVE TECHNIQUES

Fuzzy rule interpolation [7]–[9], proposed first by Kóczy and
Hirota, is an inference technique for fuzzy rule bases where the
antecedents do not cover the whole input universe. Such tech-
niques are essential for sparse rule-based fuzzy systems. The ini-
tial rule interpolation method, which is hereafter referred to as
the KH algorithm for presentational simplicity, requires the fol-
lowing conditions to be satisfied: The involved fuzzy sets have
to be of continuous, normal and convex membership functions,
with bounded support. This is not so restrictive as it might sound
as such fuzzy sets are those typically used in both theoretical and
practical fuzzy systems.

An important notion in [7] is the “less than” relation between
two fuzzy sets. Fuzzy set is said to be less than , denoted
by , if , the following conditions hold:

(1)

where and are, respectively, the -cut of and that
of , is the infimum of , and is the
supremum of , .

1063-6706/$20.00 © 2006 IEEE



HUANG AND SHEN: FUZZY INTERPOLATIVE REASONING VIA SCALE AND MOVE TRANSFORMATIONS 341

Fig. 1. Fuzzy interpolative reasoning with a nonconvex conclusion on a sparse
fuzzy rule base.

For simplicity, suppose that two fuzzy rules are given

If is then is

If is then is

which are briefly denoted as and , respec-
tively. Also, suppose that these two rules are adjacent, i.e., there
is no any such a rule existing that the antecedent value of that
rule is between the regions of and . To entail the inter-
polation between the consequent values of these two rules, i.e.,
to determine a new conclusion when an observation lo-
cated between fuzzy sets and is given, it is commonly
assumed, for convenience, that rules in a given rule base are ar-
ranged with respect to a partial ordering among the normal and
convex fuzzy sets (NCF sets) of the antecedents variables. For
the previous two rules, this means that

(2)

The simplest interpolation which is linear can thus be written as

(3)

where is typically the Euclidean distance between two
fuzzy sets (though other distance metrics may be used as alter-
natives for this). This is illustrated in Fig. 1, where the lower
and upper distances between -cuts and are defined
as follows:

(4)

(5)

From (4) and (5), (3) can be rewritten as

(6)

(7)

Alternatively, let

(8)

The same solution can then be obtained but represented differ-
ently as follows:

(9)

(10)

From this, results. From , in
turn, the conclusion fuzzy set can be constructed by the rep-
resentation principle of fuzzy sets:

(11)

However, this linear interpolation cannot guarantee the con-
vexity of the derived fuzzy sets (although they may be normal,
as shown in Fig. 1), even when the fuzzy sets concerned in both
the given rules and the observations are all convex and normal.
Such work may even return a conclusion that is not possible to
be represented as a fuzzy membership function (see Example 1
in Section V). Thus, much work remains to improve such an
interpolation method to ensure not only normality but also con-
vexity of inferred consequences.

III. THE PROPOSED METHOD

A. Single Antecedent Variable With Triangular Fuzzy Sets

Triangular fuzzy membership functions are firstly considered
to demonstrate the basic ideas of the present work, due to its
simplicity and popularity. This is to be followed by more com-
plex functions such as trapezoidal and Gaussian in the next sub-
sections. Also for presentational simplicity, only rules involving
one antecedent variable are dealt with here, with a generalized
case to be given later.

To facilitate this discussion, the representative value of a tri-
angular membership function is defined as the average of the

coordinates of its three key points: the left and right extreme
points (whose membership values are 0) and the normal point
(whose membership value is 1). Without losing generality, given
a fuzzy set , denoted as ( , , ), as shown in Fig. 2, its rep-
resentative value is

(12)

This representative value happens to be the coordinate of the
centre of gravity of such a triangular fuzzy set [5].

Suppose that two adjacent fuzzy rules ,
and the observation , which is located between fuzzy sets



342 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 14, NO. 2, APRIL 2006

Fig. 2. Representative value of a triangular fuzzy set.

Fig. 3. Interpolation with triangular membership functions.

and , are given. The case of interpolative fuzzy reasoning
concerning two variables and can be described through the
modus ponens interpretation (13), as illustrated in Fig. 3

observation is
rules if is then is

if is then is

conclusion is

(13)

Here, , , , and
, .

To perform interpolation, the first step is to construct a new
fuzzy set which has the same representative value as . For
this and by analogy to (8), the following is created first:

(14)

where represents the dis-
tance between two fuzzy sets and .

From this, , and of are calculated as follows:

(15)

(16)

(17)

which are collectively abbreviated to

(18)

Now, has the same representative value as .
Proof:

With (15)–(17) and (14)

Importantly, in so doing, is generated to be a convex fuzzy
set as the following holds given ,

and :

The second step of performing interpolation is carried out in
a similar way to the first, such that the consequent fuzzy set
can be obtained as follows:

(19)

(20)

(21)

with abbreviated notation

(22)

As a result, the newly derived rule involves the use of
only normal and convex fuzzy sets.

As is derived from and , it is
feasible to perform fuzzy reasoning with this new rule without
further reference to its originals. The interpolative reasoning
problem is therefore changed from expression (13) to the new
modus ponens interpretation

observation is
rule if is then is

conclusion is
(23)

This interpretation retains the same results as (13) in dealing
with the extreme cases: If , then it follows from (14)
that , and according to (18) and (22), and

, so the conclusion . Similarly, if ,
then .
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Fig. 4. Triangle scale transformation.

Other than the extreme cases, similarity measures are used
to support the application of this new modus ponens as done in
[11]. In particular, (23) can be interpreted as

The more similar to the more similar to (24)

Suppose that a certain degree of similarity between and
is established, it is intuitive to require that the consequent parts

and attain the same similarity degree. The question is
now how to obtain an operator which can represent the similarity
degree between fuzzy sets and , and to allow transforming

to with the desired degree of similarity. In this respect,
two transformations are proposed as follows.

Scale Transformation: Given a scale rate , in order
to transform the current support , of fuzzy set

, into a new support while keeping
the same representative value and ratio of left-support
to right-support of the transformed fuzzy set,

, as those of its original, that is,
and , the new

, and must satisfy (as illustrated in Fig. 4)

(25)

(26)

(27)

In fact, to satisfy the conditions imposed over the transforma-
tion, the following linear equations must hold simultaneously:

Solving these equations leads to the solutions as given in
(25)–(27). Note that this scale transformation guarantees that
the transformed fuzzy sets are convex as the following holds
given and :

Fig. 5. Triangle move transformation.

The above shows how to obtain the resultant fuzzy set
when the original fuzzy set and a scale rate are given. Con-
versely, in the case where two fuzzy sets and

which have the same representative value are
given, the scale rate is calculated as follows:

(28)

This measure reflects the similarity degree between and :
the closer is to 1, the more similar is to . It is therefore
used to act as, or to contribute to (see Section III-E for inte-
grated transformation), the desirable similarity degree in order
to transform to .

Move Transformation: Given a moving distance , in order to
transform the current fuzzy support from the starting
location to a new starting position while keeping the
same representative value and length of support of the trans-
formed fuzzy set as its original, i.e., and

, the new , and must be (as shown
in Fig. 5)

(29)

(30)

(31)

These can be obtained by solving the equations which are im-
posed to the transformation

To ensure to be convex, the condition of
must hold. If , the transformation will gen-

erate nonconvex fuzzy sets. For instance, consider the extreme
case in which is transformed to , where the left slope of

becomes vertical (i.e. ) as shown in Fig. 5. Here,
. Any further increase in will lead to the resulting
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transformed fuzzy set being a non-NCF set. To avoid this, the
move ratio is introduced

(32)

The closer is to 0, the less move (in terms of moving dis-
placement ) is being made, and the closer is to 1, the more
move is being made. If move ratio , then
holds. This ensures that the transformed fuzzy set is normal
and convex if is itself an NCF set.

Note that the move transformation has two possible moving
directions, the above discusses the right-direction case (from the
viewpoint of ) with , the left direction with should
hold by symmetry

(33)

As with the description for scale transformation, the above
describes how to calculate resultant fuzzy set given the orig-
inal fuzzy set and a moving distance (or move ratio ).
Now, consider the case where two convex triangular sets

and which have the same repre-
sentative value and the same support length are given, the move
ratio can be calculated as follows:

(34)

This reflects the similarity degree between and : the closer
is to 0, the more similar is to . As and are both
convex, (when ) or (when

) must hold.
Thus, in general, the third step of the interpolation process is

to calculate the similarity degree in terms of scale rate and move
ratio between and , and then obtain the resulting fuzzy set

by transforming with the same scale rate and move ratio.
Through interpolation steps 1–3, given a convex and normal

triangular fuzzy set as the observation, a new convex and normal
fuzzy set can be derived using two adjacent rules.

B. Single Antecedent Variable with Trapezoidal Fuzzy Sets

It is potentially very useful to extend the above interpolative
reasoning method to applying to rules involving more complex
fuzzy membership functions. This subsection describes the in-
terpolation involving trapezoidal membership functions.

Consider a trapezoidal fuzzy set , denoted by
for notation convenience, as shown in Fig. 6.

The bottom support, left slope, right slope and top support of
are defined as , , , and ,

respectively. The representative value of is defined as:

(35)

Fig. 6. Trapezoid representative value.

This definition subsumes the representative value of a trian-
gular set as its specific case. This is because when and
in a trapezoid are collapsed into a single value , it degener-
ates into a triangle. In this case, the representative value defini-
tions for trapezoidals (35) and triangles (12) remain the same.
Of course, alternative definitions (e.g.,

) may be used to represent the overall location of a
trapezoidal set, but this will destroy its compatibility to the tri-
angular representation.

The calculation of the intermediate fuzzy rule fol-
lows a similar process as applying to triangular membership
functions except that and here are trapezoidals rather
than triangles. It is straightforward to verify the extreme cases
(such as if then ) in the same way as
with triangle cases. To adapt the proposed method to be suit-
able for trapezoidal fuzzy sets, attention is only drawn to the
two transformations.

Scale Transformation: Given two scale rates and (
and ) for bottom support scale and top support scale

respectively, in order to transform the current bottom support
to the new bottom support , and the

top support to the new top support
while keeping the representative value and the ratio of left slope

to right slope of the transformed fuzzy set
the same as those of its original, that is,
and , the new

, , and must satisfy (as illustrated in Fig. 7)

(36)

(37)

(38)

(39)

where , ,
and . These results can be
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Fig. 7. Trapezoid scale transformation.

achieved by solving the following conditions, imposed over the
transformation:

Note that the scale transformation guarantees that the trans-
formed fuzzy sets are convex given that and ensure the
bottom support of the resultant fuzzy set is wider than the top
support and both left and right slopes are nonnegative. This can
be shown by

where and stand for the bottom and top sup-
ports’ lengths of transformed fuzzy set , respectively. How-
ever, arbitrarily choosing when is fixed may lead the top
support of the resultant fuzzy set to becoming wider than the
bottom support. To avoid this, the scale ratio , which rep-
resents the actual increase of the ratios between the top sup-
ports and the bottom supports, before and after the transforma-
tion, normalized over the maximal possible such increase (in the
sense that it does not lead to nonconvexity), is introduced to re-
strict with respect to

(40)

Thus, if (when ) or (when
), , i.e.,

. This can be shown as follows.

Proof: When , assume
,

This conflicts with and, hence, the assumption is
wrong. So

When ,

If, however, two convex trapezoidal fuzzy sets
and happen to have the

same representative value, the bottom scale rate of , , and
the top scale ratio of , , can be calculated as

(41)

(42)

Thus, in this case, is free to take on any positive value while
or (depending on whether

or not) must hold
given that and are both convex. The closer is to 0, the
closer is the ratio between and to that between

and . Correspondingly, the closer is to 1, the
closer is the ratio between and to 1. Similarly,
the closer is to 1, the closer is the ratio between and

to 0. The ranges of values are proven as follows.
Proof: When

,

When

Move Transformation: Given a moving distance , in order to
transform the current fuzzy set from the starting location to
a new starting position while keeping the representative
value, the length of bottom support and the length of
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Fig. 8. Trapezoid move transformation.

the top support all to remain the same, i.e.,
, and , the new

, , and must be (as shown in Fig. 8):

(43)

(44)

(45)

(46)

These can be obtained by solving the equations which are im-
posed to the transformation:

To ensure to be convex, the condition of
must hold. If , the transformation will gen-

erate nonconvex fuzzy sets. As with triangular case, the move
ratio is introduced to avoid nonconvexity:

(47)

If the move ratio , then holds. Similar to
triangle move transformation, there is another moving direction
with . In that case the condition

(48)

is imposed to ensure the convexity of the transformed fuzzy sets.
As with the scale transformation, if two convex trapezoidal

sets and which have
the same representative value and the same support lengths are
given, the move ratio can be calculated as follows:

(49)

As and are both convex, if or
if .

It is easy to see that triangular transformation is a specific case
of trapezoidal transformation. In fact, if the trapezoid
becomes a triangle. Substituting and in trape-
zoidal transformation formulae (36)–(39) and (43)–(46) leads to
the same results as triangular transformation formulae (25)–(27)
and (29)–(31).

C. Single Antecedent Variable with Hexagonal Fuzzy Sets

A fairly general case, the interpolation of the hexagonal fuzzy
sets, is described in this subsection. This is to be followed by a
straightforward extension in order to deal with the interpolation
of any complex polygonal fuzzy membership functions later.
One open issue for such an extension is to determine the rep-
resentative value for a given complex, asymmetrical polygonal
fuzzy set. For computational simplicity, the average of the co-
ordinate values of all odd points is defined as the representative
value for any more complex polygon than trapezoidals.

Consider a generalized hexagonal fuzzy set , denoted as
, as shown in Fig. 9, and are the two

normal, odd points (whose membership values are 1), and
are the two extreme, odd points (whose membership values are
0), and and are the two intermediate, odd points (whose
membership values are the same and both are between 0 and
1 exclusively). For notational convenience, three supports (the
horizontal intervals between a pair of odd points which involve
the same membership value) are denoted as the bottom support

, middle support and top support ,
and four slopes (nonhorizontal intervals between two consecu-
tive odd points) are denoted as , , and

. Also, as indicated before, for computational simplicity,
the average representative value of is defined as

(50)

Note that alternative definitions may be used to apply the trans-
formations. For example, the compatible representative value,
which is compatible to the less complex fuzzy sets (including
triangular, trapezoidal and pentagonal fuzzy sets), can be de-
fined as:

(51)

where and
(see Fig. 9). Another alternative definition, weighted average
representative value makes use of fuzzy membership values:

(52)

where is the membership value of both and . This defini-
tion assumes that the weights (from 1/2 to 1) assigned to points
increase upwards from the bottom support to the top support,
to reflect the significance of the fuzzy membership values. The
weighted average of the odd points is then taken as the repre-
sentative value of such a fuzzy set. Of course, the range of the
weights ([1/2,1]) is optional. One of the most widely used de-
fuzzification methods—the center of core can also be used to
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Fig. 9. Hexagon representative value.

define the center of core representative value. In this case, the
representative value is solely determined by those points with a
fuzzy membership value of 1:

(53)

The interpolation by using either of these alternative definitions
follows the same procedure as the one employing simple defi-
nition (50).

The calculation of intermediate fuzzy rule follows
the triangular and/or trapezoidal cases. The attention is again
drawn to the scale and move transformations as described as
follows.

Scale Transformation: Given three scale rates , and
( , and ) representing the scales applied
to bottom support, middle support and top support, respectively,
the fuzzy set can be transformed to

by solving

The solution of this is omitted here. As with the trapezoidal case,
the resultant fuzzy set must be of the property that

, given that the desired top support
is narrower than the middle support and the middle support is
narrower than the bottom support. Therefore, certain constraints
should be imposed over if is fixed, and over if is
fixed. For this reason, the scale ratios of middle and top supports
of , denoted as and , are introduced to constrain the scale
rates and respectively:

(54)

(55)

If (when ) or (when
) and (when ) or

(when ), then . The
proof is referred to Section III-D for the general polygonal fuzzy
membership function case. The constraints of and along
with the scale transformation thus lead to a unique, normal and
convex fuzzy set .

Conversely, if two convex hexagonal fuzzy sets
and which

have the same representative value are given, the scale rate of
the bottom support, , and the scale ratios of the middle and
top supports, and , are calculated as

(56)

(57)

(58)

Again, the proof of and given that
and both are convex is referred to Section III-D.

Move Transformation: It is slightly more complicated to
apply move transformation to hexagonal fuzzy sets although
it still follows the same principle. Compared to the cases of
triangular and trapezoidal fuzzy sets, where only one move
transformation is carried out in order to obtain the resultant
fuzzy set, this case needs two moves (referred to as sub-moves
hereafter) to achieve the resultant fuzzy set.

Given two moving distances and , in order to transform
the bottom support of the fuzzy set
from the starting location to a new starting position

, and to transform the middle support from to
while keeping the representative value and the lengths

of three supports to remain the same (as shown in Fig. 10), two
sub-moves are carried out.

First, a sub-move to the desired bottom support position is
attempted. If it is to be moved to the right direction from ’s
point of view,

must hold. In the extreme position where , the
resultant fuzzy set , i.e., the dotted
hexagonal set in Fig. 10, has . If , it
will lead to a nonconvex fuzzy set. As with the triangular and
trapezoidal cases, the bottom move ratio is introduced to avoid
this potential nonconvexity

(59)
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Fig. 10. Hexagon bottom move transformation.

If the move ratio , then holds. The
moving distance of the point ( ) is calculated by
multiplying with the distance between the extreme position

and itself. In so doing, , , and will
move the same proportion of their respective distance to the ex-
treme position. The other three points , , and can there-
fore be determined by attaining the same lengths of the three
supports, respectively. The fuzzy set after this sub-move is
thus calculated by

(60)

(61)

(62)

(63)

(64)

(65)

From (60)–(65), it is clear that is convex as the following
holds given :

It can be verified that has the same representative value as
. This is because, according to (60)–(65),

For the opposite moving direction where , the condition

(66)

is imposed to ensure the convexity of the transformed fuzzy set.
The results of can be similarly written as

(67)

(68)

(69)

(70)

(71)

(72)

Of course, it can be proved from (67)–(72) that this resultant
fuzzy set is indeed convex given

Again, and have the same representative value, ensured
by (67)–(72).

In both cases ( and ), holds.
This means the bottom support of is moved to the desired
place after the first sub-move. So the second sub-move is aimed
to move the middle and the top supports to the desired places
from to as shown in Fig. 10. This sub-move does not af-
fect the place of the bottom support as it has already been in
the right place. Thus this step is almost the same as the move
proposed for a trapezoidal fuzzy set except that the maximal
moving distance (in the sense that it does not lead to noncon-
vexity) should be less than, or at most equal to (not

as in trapezoidal case due to the difference in the
representative definition for hexagonal fuzzy sets), if moving
the middle support to the right direction (i.e., the new move dis-
placement ). This is because the
maximal moving distance is also constrained to the bottom sup-
port (i.e., ) as it may move to a place exceeding

. It is intuitive to pick the minimal values of the two distances
as the maximal moving distance. The move ratio can, therefore,
be defined as

(73)
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When applying the second sub-move, consider that both above
and below nonconvexity may arise, the applied move ratio
is introduced as

(74)

If , . The introduction of applied
move ratio avoids the potential below nonconvexity when ap-
plying sub-move as follows:

(75)

(76)

(77)

(78)

(79)

(80)

Merging (73) and (74) into (76) and (77) leads to
and , which are the desired positions for and

to be moved on to, respectively. It can also be shown that
is an NCF set and . All these
properties are maintained if on the opposite case where .

As discussed above, if given two move ratios
and , the two sub-moves transform the given
NCF set to a new NCF set

while keeping the representative values
and the lengths of supports to be the same.

Conversely, if two convex hexagonal fuzzy sets
and are

given, which have the same representative value and the same
support lengths, the move ratios which are calculated in an
order from bottom to top must lie between [ ]. First, the
bottom move ratio is computed by

(81)

It is used to carry out the first sub-move of to generate
according to (60)–(65) or (67)–(72). Then,

the middle move ratio can be calculated by:

(82)

The proof of the ranges of and is omitted here.

D. Single Antecedent Variable With More Complex Fuzzy Sets

Any complex polygonal fuzzy sets can be similarly dealt with
by following an analogous procedure to the hexagonal fuzzy

Fig. 11. Polygonal fuzzy membership functions.

TABLE I
VALUES OF bn=2c, 2dn=2e � 2 AND dn=2e � 1 GIVEN n

Fig. 12. A polygonal fuzzy membership function without evenly paired odd
points.

sets. Fig. 11 shows the whole range of polygonal membership
sets from the triangular to the polygonal function with arbitrary

odd points. Clearly, a general fuzzy membership function with
odd points has supports (horizontal intervals between

a pair of odd points which have the same membership value)
and slopes (nonhorizontal intervals between two
consecutive odd points). Several specific cases are summarized
in Table I.

However, a given polygonal fuzzy set does not need to have
such evenly paired odd points. For example, a fuzzy member-
ship function with 5 odd points (as shown in Fig. 12) has two
pairs of odd points and , and and , but lack an odd
point to form a pair with . In this case, an additional point

is artificially created so that the fuzzy set can still have pairs
of “odd” points. Without losing generality, it is therefore per-
mitted to assume that any given polygonal set can be represented
by evenly paired odd points (with or without artificially created
additional points).

Consider applying scale transformation to an arbitrary polyg-
onal fuzzy membership function (as shown
in Fig. 13) to generate such that they have
the same representative value, and

, . In order to achieve this,
equations ,

, are imposed to obtain the supports with desired lengths, and
equations

,
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Fig. 13. Arbitrary polygonal fuzzy membership function with n odd points.

are imposed to equalise the ratios between the left
slopes’ lengths and the right slopes’ lengths of
to those counterparts of the original fuzzy set . The equation

which ensures
the same representative values before and after the transforma-
tion is added to make up of
equations. Solving these equations simultaneously results in
an unique and convex fuzzy set given that the resultant set
has the descending order of the support lengths from the bottom
to the top. This can be guaranteed if the scale ratio of th sup-
port , denoted as , lies in the range
[0,1] or [ 1,0] (depending on whether or not). It can
be mathematically expressed as:

(83)

Proof: When , assume

Also

This conflicts with . The assumption is therefore
wrong. So .

When

Conversely, if two convex sets and
which have the same representative value are

given, the scale rate of the bottom support, , and the scale

ratio of the -th support, ( , ) can be
calculated by

(84)

(85)

Given that and both are convex, the ranges of can be
proved as follows.

Proof: When

When

Now, consider the move transformation applied to an
arbitrary polygonal fuzzy membership function

to generate such that
they have the same representative value and the same lengths
of supports, and , .
In order to achieve this, the move transformation is de-
composed to sub-moves. The th sub-move

moves the th support (indexed
from the bottom to the top beginning with 0) to its desired
place. It moves all the odd points on and above the th support,
whilst keeping unaltered for those points under this support. In
particular, in the th sub-move, the move ratio is calculated
by

(86)
where the notation represents ’s new position after the

th sub-move (not to be confused with the conventional
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use of such a representation for powers). Initially, . If
when , or when

, the sub-move carried out similarly to (75)–(80)
leads to an NCF set which has the
same representative value as and which has the new point

on the desired position, i.e., and
.

Proof: In the th sub-move , the
odd points under the th support are not changed:

while the other points are being moved.
Initially, when , all odd points are being moved of
course. If moving to the right direction from the view-
point of , i.e., , the new positions of

which are on the left side of
fuzzy set can be computed by

(87)

where (88), as shown at the bottom of the page, holds. is the
applied move ratio for the th sub-move. If ,

. This avoids the possible below nonconvexity. In the case
where , substituting (86) and (88) to (87) leads to

, which is the desired position for to be moved to. As the
th support length is fixed, is also moved to the desired

position via this sub-move. Initially, the th sub-move moves
and to the correct positions, and the first sub-move

moves and to the correct positions while keeping and
unchanged. Following this by induction, the -th sub-move

moves to the correct positions.
The distances between and

are calculated as follows, according to
(87):

Initially, when ,
as is convex. This

leads to , , which in

turn leads to , . Also,

as this sub-move causes moves to the right direction,
. So , . By

induction, it follows that

The new positions of which
are on the right side of can be calculated similarly:

(89)
Thus, the distances between and

are calculated by

Initially,

. This leads to

), which in turn leads to

. Also, this sub-move ensures
, so .

Again, by induction

Thus, it can be summarized that

i.e., is an NCF set.

(88)
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The representative value of after the th sub-move,
, is the same as its original . This is because

the following holds according to (87) and (89):

The proofs of these properties for moving to the left direction
(i.e., ) are omitted as they mirror the derivations as
given before.

In summary, if given move ratios ,
, the ( ) sub-moves

transform the given NCF set to a new NCF
set while keeping their representative
values the same.

In the converse case, where two convex fuzzy sets
and are given

which have the same representative value, the move ratio ,
, is computed by

if

if
(90)

where is the ’s new position after the th sub-
move. Initially, when , . This sub-move (bottom
sub-move) will not lead to underneath nonconvexity as there
are no odd points below it, whilst the other sub-moves need to
consider situations where nonconvexity arises both above and
below. Initially, when , , and

are not defined. In order to keep integrity of (90), both of
them take an infinite value to represent the bottom case.

Given that and
are both convex, the ranges of (i.e., when

or when ) are obvious and
hence no proof is needed.

Note that this work is readily extendable to rules involving
variables that are represented by Gaussian and other bell-shaped
membership functions. For instance, consider the simplest case
where two rules , and the observation
all involve the use of Gaussian fuzzy sets of the form (Fig. 14)

(91)

Fig. 14. Gaussian scale transformation.

where and are the mean and standard deviation, respec-
tively. The construction of the intermediate rule is slightly dif-
ferent from the polygonal fuzzy membership function cases in
the sense that the standard deviations are used to interpolate.
Since the Gaussian shape is symmetrical, is chosen to be the
representative value of such a fuzzy set. In so doing, the an-
tecedent value of the intermediate rule has the same repre-
sentative value as that of observation . That means only scale
transformation from to as depicted in Fig. 14 is needed to
carry out interpolation. Heuristics can be employed to represent
the scale rate in terms of the standard deviation . One of the
simplest definitions is to calculate the ratio of two fuzzy sets’
values when considering transformation from one to the other.
The scale rate can, therefore, be written as

(92)

The transformations involving other bell-shaped membership
functions follows this idea analogously.

E. Integrated Transformation and the Summary of
Interpolation Procedure

On top of the scale and move transformations, an integrated
transformation, denoted as , between two arbitrary
fuzzy sets and can
be introduced such that is the derived NCF set of by
applying both transformation components. An integrated trans-
formation includes: 1) the information of a scale rate and one
or more scale ratios used in scale transformation, depending
upon whether triangular or more complex polygonal fuzzy
membership functions are dealt with, and 2) the information
of one or more move ratios in move transformation, again de-
pending upon whether triangular, trapezoidal or more complex
polygonal fuzzy membership functions are used. In general, an
integrated transformation can be represented as

(93)
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Fig. 15. Proposed interpolative method.

Obviously, the integrated transformation and another,
say

are said to be identical if and only if both of their corresponding
scale rate, scale ratios, and move ratios are equal, respectively

(94)

where and .
As indicated earlier, it is intuitive to maintain the similarity

degree between the consequent parts and
to be the same as that between the an-

tecedent parts and ,
in performing interpolative reasoning. Now, that the integrated
transformation allows the similarity degree between two fuzzy
sets to be measured by the scale rate, scale ratios, and move
ratios, the desired conclusion can be obtained by satisfying
the following (as shown in Fig. 15 for an interpolation involving
triangular fuzzy sets):

(95)

That is, the scale rate, scale ratios, and move ratios calculated
from to are used to compute from . The computa-
tion procedure is summarized as follows.

1) Calculate scale rates of the
th support from to as follows:

(96)

2) Calculate scale rate of the bottom support and scale ra-
tios of the th support from
to according to (85)

(97)

if

if

(98)

As and are both convex, (when
) or (when ) must hold ac-

cording to the proof given in III-D.
3) Apply scale transformation to with scale rates

calculated in the first step to ob-
tain by simultaneously solving linear equations. As

, it enables to
have all its support lengths arranged in descending order
from the bottom to the top. This, together with the scale
transformation, guarantees to be a unique, normal and
convex fuzzy set, which has the same representative value
as and has the same support lengths as those of

.
4) Assign scale rate of the bottom support of to the value

of (i.e., ) as it does not give rise to nonconvexity.
The scale ratios , of the th
support of are in the form

(99)
They are required to equal in
step 2). Solving this along with the initial status
leads to the following scale rates

:

(100)
5) Apply scale transformation to with

calculated in step 4) to obtain
, by simultaneously solving the

linear equations. As is convex and ,
it enables to have descending support lengths from
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the bottom to the top. This, together with the scale trans-
formation, ensures to be a unique, normal and convex
fuzzy set.

6) Decompose the move transformation to
sub-moves. For , carry out the
following.

a) Calculate move ratio of the th support from
according to (90)

if

(101)
where is ’ new position after sub-
moves. Initially, when ,

. As and are both convex,
.

b) Apply move transformation to with to ob-
tain . As
and is convex, must be convex according
to the proof given in III-D.

c) Apply move transformation to with to ob-
tain . Again, it must be
convex.

7) When the for loop of step 6) is terminated, the procedure
returns that and , which is the
resultant fuzzy set .

Clearly, and will then retain the same similarity degree
as that between the antecedent parts and .

Note that the summarized procedure above implicitly as-
sumes that all fuzzy sets involved in the interpolation have the
same number of the odd points. However, this is not always
the case. Fortunately, this can be easily extended by assigning
all fuzzy sets the same odd point number, which is set to the
number of the odd points of the fuzzy set that has the most such
points among all the fuzzy sets involved.

There are two specific cases worth noting when applying the
scale transformation. The first is that if is a singleton while

is a regular normal and convex fuzzy set, the scale transfor-
mation from to is 0. This case can be handled by setting
the result to a singleton whose value interpolates between

and in the same way as does between
and . The second case (which only exists if

both antecedents and are singletons) is that if is a
regular normal and convex fuzzy set while is a singleton, the
scale transformation from to would be infinite. Since in-
finity cannot be used to generate the resulting fuzzy set, a modi-
fied method is created for this. The ratio between the support
length of and the distance from to is
calculated. It is used to equalize the ratio between the support

length of and the distance from to , by
which the support length of can be obtained. Note that the
fuzzy set obtained by the scale transformation from a singleton
is an isosceles polygon.

It is desirable for any fuzzy interpolation technique to give
prompt response when it is used to handle time critical applica-
tions. Therefore, complexity analysis in terms of time and space
is an important issue for the present method as well as for others.
Most attention is drawn to the analysis of time complexity as the
space problem nearly vanishes due to the rapid development of
the storage capacity and the method’s embedded power of being
able to handle sparse rule bases. With respect to (the largest
number of odd points for any fuzzy sets involved), the trans-
formation-based interpolation needs computation time
mainly owing to step 6) in the calculation of the interpolative
results. This is acceptable given that is not significantly large
in most cases, and that high-speed processors are more and more
popularly used.

F. Multiple Antecedent Variables Interpolation

The one variable case described above concerns interpolation
between two adjacent rules with each involving one antecedent
variable. This is readily extendable to rules with multiple an-
tecedent attributes. Of course, the attributes appearing in both
rules must be the same to make sense for interpolation.

Without losing generality, suppose that two adjacent rules
and are represented by

if and and then is

if is and and is then is

Thus, when a vector of observations ( is
given, by direct analogy to one variable case, the values and

of , , are used to obtain the new NCF
set

(102)

where

Clearly, the representative value of will remain the same as
that of the -th observation .

The resulting and the given are used to compute the
integrated transformation

just like the one variable case. From this, the combined scale
rate , scale ratios , and move
ratios over the conditional
attributes are, respectively, calculated as the arithmetic averages
of , and ,

(103)
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(104)

(105)

Note that, other than using arithmetic average, different mecha-
nisms such as the medium value operator may be employed for
this purpose. However, the average helps to capture the intuition
that when no particular information regarding which variable
has a more dominating influence upon the conclusion, all the
variables are treated equally. If such information is available, a
weighted average operator may be better to use.

Regarding the consequent, by analogy to expression (22),
can be computed by

(106)

Here, is deemed to be the average of , , to
mirror the approach taken previously

(107)

As the integrated transformation

reflects the similarity degree between the observation vector and
the values of the antecedent variables in the given rules, the
fuzzy set of the conclusion can then be estimated by trans-
forming via the application of the same .

IV. EXPERIMENTAL RESULTS

In this section, the example problems given in [4] and [17],
together with several new problem cases are used to illustrate the
newly proposed interpolative method and to facilitate compar-
ative studies. All the results except Example 7 discussed below
concern the interpolation between two adjacent rules
and , while Example 7 shows a case of interpolation
between rules involving two antecedent variables. In reporting
these results, HCL stands for the work of [4] and HS stands for
the work proposed in this paper (and KH stands for the method
given in [7] and [8], as stated before).

Example 1: This example demonstrates the use of the pro-
posed method involving only triangular fuzzy sets. All the con-
ditions are shown in Table II and Fig. 16, which also include the
results of interpolation. Suppose . First, according
to (18) and (22), and
are calculated by interpolation of , and , , respec-
tively, with , which is calculated from (14). Then,
the scale rate and the move rate in the
integrated transformation from and are calculated with
regard to (28) and (34). Finally, the and are used to trans-
form according to (25)–(27) and (29)–(31), resulting in con-
sequence . For this case, the KH method re-
sulted in a nonconvex conclusion while the other two concluded

TABLE II
RESULTS FOR EXAMPLE 1, WITH A = (7; 8; 9)

Fig. 16. Example 1.

with normal and convex fuzzy sets. Note that the consequent ob-
tained by the KH method is not even a membership function.

Example 2: The second case considers when the scale
rate is infinity. The given observation is a triangular fuzzy
set (5,6,8). Table III and Fig. 17 present the antecedents
and interpolated fuzzy sets. The result of the interpolation

is obtained as follows: First, the ratio
between the support of and the distance of and

is calculated, then the support of is computed by
retaining the same ratio but based on the distance of
and , and finally, the move transformation is applied
as usual. The comparative results show that the KH and HCL
methods performed similarly (the supports of the resultant
fuzzy sets are identical since they are computed in the same
way) while the HS method also generated a very reasonable
outcome.

Example 3: The third case considers a similar situation to
example 1 but the observation is a singleton .
Table IV and Fig. 18 present the results. In this case, the KH
method once again generated a nonconvex fuzzy set and the
HCL method even produced a nontriangular fuzzy set. How-
ever, the method proposed in this paper resulted in a singleton
conclusion, which is rather intuitive given the singleton-valued
condition.
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TABLE III
RESULTS FOR EXAMPLE 2, WITH A = (5; 6; 8)

Fig. 17. Example 2.

TABLE IV
RESULTS FOR EXAMPLE 3, WITH A = (8;8; 8)

Example 4: This example concerns a trapezoidal interpo-
lation. As there is no obvious indication for HCL method
to handle trapezoidal fuzzy sets, only KH method is used in
comparison. All the attributes and results with observation

are shown in Table V and Fig. 19. First,
and

are calculated by interpolation of , and , , re-
spectively, with , which is calculated from (14).
Then, the interpolation via scale and move transformations
is carried out according to the steps listed in Section III-E:
1) The bottom support scale rate (0.88) and top support
scale rate (3.0) from to are calculated, respectively,
according to (96). 2) The top support scale ratio (0.68) from

to is calculated with respect to (98). 3) is scaled
to generate using the bottom
and top scale rates calculated in step 1). Note that is a
convex fuzzy set which has the same representative value and
has the same bottom and top support lengths as . 4) Ac-
cording to (100), the bottom and top support scale rates (0.88

Fig. 18. Example 3.

TABLE V
RESULTS FOR EXAMPLE 4, WITH A = (6;6; 9; 10)

Fig. 19. Example 4.

and 2.38) over are computed. 5) is scaled to generate
using the bottom and top scale

rates calculated in step 4). 6) The move ratio is calculated from
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TABLE VI
RESULTS FOR EXAMPLE 5, WITH A = (6; 6:5; 7; 9; 10; 10:5)

to according to (101). Its value is 1.0 as has left
vertical slope. This move ratio is used to move to obtain the
resultant fuzzy set . In this case,
the KH method once again generated a nonconvex fuzzy set
(which does not satisfy the definition of a membership func-
tion). However, the HS method resulted in a convex conclusion,
which still has a left vertical slope.

Example 5: This example shows an interpolation of rules
involving hexagonal fuzzy sets interpolation, and it also demon-
strates the flexibility of the proposed method to generate mul-
tiple results via different representative value definitions (in-
cluding average, compatible, weighted average and center of
core). As all the processes follow in the same way, only the in-
terpolation using the average representative value is described in
details. Again, there is no obvious indication for HCL method to
handle such fuzzy sets, only KH method is used in comparison.

All the attribute values and results with respect to the obser-
vation are shown in Table VI and
Fig. 20. HS1, HS2, HS3, and HS4 indicate the HS interpolation
using average, compatible, weighted average and center of core
representative values respectively. Note that in this example,
the two intermediate points and of each fuzzy set involved
have a membership value of 0.5. First, with respect to the av-
erage definition, and

are calculated by in-
terpolation of , and , (with ), respectively.
Then, the interpolation via scale and move transformations
is carried out according to the steps listed in Section III-E:
1) The bottom support scale rate (1.08), middle support scale
rate (1.20) and top support scale rate (2.0) from to are
calculated according to (96), respectively. 2) The middle and
top support scale ratios (0.25 and 0.35) from to are
calculated with respect to (98). 3) is scaled to generate

using the bottom,
middle and top scale rates calculated in step 1). Note that
is a convex fuzzy set which has the same representative value
and the same three support lengths as . 4) According to
(100), the bottom, middle, and top support scale rates (1.08,
1.18, and 1.60) over are computed. 5) is scaled to
generate using the
scale rates calculated in step 4). 6) Two sub-moves are required
in performing the move transformation in this case: 6.1), The
bottom sub-move ratio (0.29) is calculated from to
according to (101). This sub-move ratio is used to move to
get , and to move

to obtain . Note
that after this sub-move, has the same bottom support as .

Fig. 20. Example 5.

6.2) The second sub-move moves the middle and top supports
of to the desired places. In particular, the sub-move ratio
(0.24) calculated from (101) is used to move to the final
result . As a verifica-
tion, is obtained by moving with the same sub-move
ratio.

In this case, the HS methods still ensure unique, normal and
convex fuzzy sets, compared to the nonconvex result generated
via the KH method. It is interesting to note that the four HS re-
sults have almost the same geometrical shape although their po-
sitions are slightly different. This is because all the calculations
involved are the same except the computation of the representa-
tive values. This empirically shows that although different repre-
sentative values may be chosen for use given a specific problem,
their influence on the final interpolative outcomes is not signif-
icant. This helps ensure the stability of the inference method
developed.

Example 6: This case considers an interpolation with
Gaussian membership functions. As there are no explicitly
Gaussian based interpolation solutions for HCL and KH
methods, only the results of HS method together with the at-
tribute values and observation
are presented in Table VII and Fig. 21. Application of the HS
method results in a sensible Gaussian conclusion in this case.
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TABLE VII
RESULTS FOR EXAMPLE 6, WITH A = e

Fig. 21. Example 6.

TABLE VIII
RESULTS FOR EXAMPLE 7, WITH A = (6; 7; 9; 11) AND A = (6;8; 10; 12)

Example 7: This example concerns an interpolation of mul-
tiple antecedent variables with trapezoidal membership func-
tions. In particular, two rules ,
and the observations , are
given to determine the result . Table VIII and Fig. 22 sum-
marize the results. In this case, the parameters for the first
variable is 0.54 and for the second is 0.44, the average 0.49
is used to calculate the intermediate rule result . Then the
average of two bottom support scale rates (1.14 and 1.69) and
the average of two top support ratios (0.22 and 0.07) are com-
puted, equalling 1.41 and 0.15 respectively, and are used as the
combined bottom support scale rate and top support scale ratio.
These, together with the combined move rate, namely the av-
erage (0.35) of the two move rates (0.53 and 0.18), are employed
to transfer to achieve the final result . Both the KH method

Fig. 22. Example 7.

and the HS method resulted in a convex set in this example. In-
terestingly, the resultant fuzzy set of the present work reflects
better in terms of the shapes of the original observations than
that obtained by the KH method. More investigations into the
underlying reasons for this are currently being carried out.

V. CONCLUSION

This paper has proposed a generalized, scale and move
transformation-based, interpolative reasoning method which
can handle interpolation of complex polygon, Gaussian and
other bell-shaped fuzzy membership functions. The method
works by first constructing a new intermediate rule via ma-
nipulating two adjacent rules (and the given observations of
course), and then converting the intermediate inference result
into the final, derived conclusion, using the scale and move
transformations. This approach not only inherits the common
advantages of fuzzy interpolative reasoning—allowing infer-
ences to be performed with simple and sparse rule bases, but
also has other three advantages. 1) It can handle interpolation
of multiple antecedent variables with simple computation. 2) It
guarantees the uniqueness as well as normality and convexity
of the resulting interpolated fuzzy sets. 3) It suggests a variety
of definitions for representative values, providing a degree of
freedom in fuzzy modeling to meet different requirements.

There is still room to improve the present work. In particular,
as indicated earlier, any underlying theoretical reasons why this
work performs better than the KH method in the interpolation
of rules involving multiple antecedent variables needs further
investigation. In addition, the present work only uses two rules
to conduct interpolation, but interpolation involving more rules
may be utilized in fuzzy modeling. An extension of the proposed
method to cope with such a problem is desirable. Finally, this
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work does not look into the extrapolation problem. Further effort
to investigate this issue seems useful.
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