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Abstract—To date, because of the computational complexity of
using a general type-2 fuzzy set (T2 FS) in a T2 fuzzy logic system
(FLS), most people only use an interval T2 FS, the result being an
interval T2 FLS (IT2 FLS). Unfortunately, there is a heavy edu-
cational burden even to using an I'T2 FLS. This burden has to do
with first having to learn general T2 FS mathematics, and then spe-
cializing it to an IT2 FSs. In retrospect, we believe that requiring a
person to use T2 FS mathematics represents a barrier to the use of
an IT2 FLS. In this paper, we demonstrate that it is unnecessary to
take the route from general T2 FS to IT2 FS, and that all of the re-
sults that are needed to implement an IT2 FLS can be obtained using T1
FES mathematics. As such, this paper is a novel tutorial that makes
an IT2 FLS much more accessible to all readers of this journal. We
can now develop an IT2 FLS in a much more straightforward way.

Index Terms—Fuzzy logic system, interval type-2 fuzzy sets,
type-2 fuzzy logic system, type-2 fuzzy sets.

1. INTRODUCTION

YPE-2 fuzzy sets (T2 FSs), originally introduced by
Zadeh [24], provide additional design degrees of freedom
in Mamdani and TSK fuzzy logic systems (FLSs), which can
be very useful when such systems are used in situations where
lots of uncertainties are present [18]. The resulting type-2
fuzzy logic systems (T2 FLS) have the potential to provide
better performance than a type-1 (T1) FLS (e.g., [4], [10]-[15],
[21]-[23]). To-date, because of the computational complexity
of using a general T2 FS, most people only use interval T2 FSs
in a T2 FLS, the result being an interval T2 FLS (IT2 FLS)
[9]. The computations associated with interval T2 FSs are very
manageable, which makes an IT2 FLS quite practical [16].
Unfortunately, there is a heavy educational burden even to
using an IT2 FLS, namely, one must first become proficient
about a T1 FLS (this does not change as a result of this paper),
then one must become proficient about general T2 FSs, oper-
ations performed upon them (T2 FS mathematics—join, meet,
negation), T2 fuzzy relations (extended sup-star composition),
and T2 FLSs, after which one can then focus on interval T2 FSs,
their associated operations and relations, and IT2 FLSs, all as
examples of the more general results. To obtain such a level of
proficiency, one has to make a very significant investment of
time, something that many practicing engineers do not have.
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In retrospect, we believe that requiring a person to use T2 FS
mathematics represents a barrier to the use of IT2 FSs and FLSs.
Here, we demonstrate that it is unnecessary to take the above
route, from general T2 FS to IT2 FS, and that all of the results
that are needed to implement an IT2 FLS can be obtained
using T1 FS mathematics. As such, we hope that this paper
makes IT2 FLSs much more accessible to all readers of this
journal.

In order to make this paper as self-contained as possible, we
begin, in Section II, by reviewing the IT2 FS and introducing
the terminology of such sets. Set theoretic operations are the
building blocks of IT2 FLSs, so in Section III, we provide new
derivations of the set theoretic operations of the union of IT2
FSs and the complement of an IT2 FS that are totally within the
framework of T1 FS mathematics. Because the derivation of the
intersection of IT2 FSs is so similar to that of the union, we do
not include it here. We include these derivations here because,
as we just mentioned, these set theoretic operations are widely
used in an I'T2 FLS. In Section IV, we briefly review the basics
of a T1 FLS, because the formulas for such a FLS are used in
our derivations of the formulas for an IT2 FLS. In Section V we
derive all of the formulas that are associated with an IT2 FLS,
beginning with the simplest situation, a single rule with one an-
tecedent and a crisp input (singleton fuzzification), so that the
reader does not get lost in the notation of the more complicated
situations and can focus on how T1 FS mathematics are used
to obtain the key results. Then we explain how these simple re-
sults can be modified to the more complicated situations when
a rule has multiple antecedents but the input is either crisp, or
isaT1 FS or a T2 FS, and also how to handle multiple rules. In
Section V we also review the centroid of an IT2 FLS, because
its calculation is the basis for type-reduction methods that are
used in going from fired-rule IT2 FSs to the defuzzified number
at the final output of such a FLS. Finally, in Section VI we draw
conclusions.

II. INTERVAL TYPE-2 FUZzY SETS

In this section (which is similar to Section II in [20]), we
define an IT2 FS and some important associated concepts, so as
to provide a simple collection of mathematically well-defined
terms that will let us effectively communicate about such sets.
Our motivation is that this material is used extensively in the
rest of the paper. To begin we locate an IT2 FS in the taxonomy
of a general T2 FS.

Imagine blurring the type-1 membership function (MF) de-
picted in Fig. 1(a) by shifting the points on the triangle either to
the left or to the right and not necessarily by the same amounts,
as in Fig. 1(b). Then, at a specific value of z, say z’, there
no longer is a single value for the MF; instead, the MF takes
on values wherever the vertical line intersects the blur. Those
values need not all be weighted the same; hence, we can assign
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Fig. 1. (a) Type-1 MF. (b) Blurred type-1 MF.

an amplitude distribution to all of those points. Doing this for
all x € X, we create a three-dimensional MF—a T2 MF—that
characterizes a T2 FS.

Definition 1: A T2 FS, denoted A, is characterized by a type-2
MF py(x,u), where z € X and u € J, C [0,1], i.e.,

A={((z,u),pz(z,u) |V e X,VueJ, C[0,1]} (1)

in which 0 < p5(,u) < 1. A can also be expressed as

A:./IGX.LGJI“A“’“)/“’“> LLcoa @

where [ | denotes union! over all admissible z and u. For dis-
crete universes of discourse, [ is replaced by . [ |

In Definition 1, the first restriction that V v € .J, C [0,1]
is consistent with the T1 constraint that 0 < pa(z) < 1, ie.,
when uncertainties disappear a T2 MF must reduce to a T1 MF,
in which case the variable u equals?u 4 (z) and 0 < pa(x) < 1.
The second restriction that 0 < 113 (z,w) < 11is consistent with
the fact that the amplitudes of a MF should lie between or be
equal to 0 and 1.

Definition 2: When all 113 (2,u) = 1 then A is an interval
T2 FS (IT2 FS). [ |

Although the third dimension of the general T2 FS is no
longer needed3 because it conveys no new information about
the IT2 FS, the IT2 FS can still be expressed as a special case
of the general T2 FS in (2), as

A:/ / 1/(z,u),  J. C[0,1]. 3)
JreX Ju€d,

In the rest of this paper we will only be interested in IT2 FSs.
Note, however, that in order to introduce the remaining widely
used terminology of a T2 FS we temporarily continue to retain
the third dimension for an IT2 FS.

IRecall that the union of two sets A and B is by definition another set that
contains the elements in either A or B. When we view each element of a T2 FS
as a subset, then the unions in (2) conform to the classical definition of union,
since each element of that set is distinct. At a specific value of = and « only one
term is activated in the union.

2In this case, the third dimension disappears.

3There is equivalence between an IT2 FS and interval-valued fuzzy sets (e.g.,
[2] and [3]).
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Fig. 2. Example of an interval T2 MF for discrete universes of discourse. The
shaded area in the x — w plane is the FOU.

A uy (x,u)
|

Fig. 3. Example of a vertical slice for the T2 MF depicted in Fig. 2.

Definition 3: At each value of z, say x = x’, the 2-D plane
whose axes are u and p (2, u) is called a vertical slice of
pi(z,u). A secondary MF is a vertical slice of p 5 (z,u). It is
pi(z =2’ u) fora’ € XandVu € J» C[0,1],ie,

pile =1 u) = py(a’) :/ i 1/u Jo C[0,1]. @
ued s

Because V ' € X, we drop the prime notation on 1 3 ('), and
refer to 413 () as a secondary MF; it is a T1 FS, an interval FS,
which we also refer to as a secondary set. ]
Example 1: The T2 MF that is depicted in Fig. 2 has five
vertical slices associated with it. The one at z = 2 is depicted in
Fig. 3. The secondary MF at z = 21is 13(2) = 1/0+1/0.2 +
1/0.44+1/0.6 +1/0.8. [ |
Based on the concept of secondary sets, we can reinterpret an
IT2 FS as the union (see footnote 1) of all secondary sets, i.e.,
using (4), we can re-express A in a vertical-slice manner, as

A={(z,p3(x)) | Vo e X} )



810

or, alternatively, as

A:/ZEX,LA(@/;U:/IGX [/EJ 1/u] /x J. C [0,1].

(6)
Definition 4: The domain of a secondary MF is called the
primary membership of x. In (6), J,, is the primary membership
of z, where J, C [0,1] forVz € X. ]
Definition 5: The amplitude of a secondary MF is called a
secondary grade. The secondary grades of an IT2 FS are all
equal to 1. ]
If X and .J, are both discrete (either by problem formula-
tion—as in Example 1—or by discretization of continuous uni-
verses of discourse), then the right-most part of (6) can be ex-
pressed as

x[z/

z€X Lu€eld,

i > 1/u /x

1=1 UE Sy,
My My
:[Zl/ulk]/$1+---+ Zl/uNk]/a:N. 7
k=1 k=1

In this equation, + also denotes union. Observe that = has been
discretized into [V values and at each of these values u has been
discretized into M; values. The discretization along each
does not have to be the same, which is why we have shown a
different upper sum for each of the bracketed terms; however,
if the discretization of each u; is the same, then M; = M5 =
o= My =M.

Example 1 (Continued): In Fig. 2, the union of the five sec-
ondary MFs at z = 1,2,3,4,5 is p3(z,u). Observe that the
primary memberships are

Jl = Jz = J4 = Js = {0,02,04,06,08} and
J3 ={0.6,0.8}

and we have only included values in J3 for which 5 (z, u) # 0.
Each of the spikes in Fig. 2 represents j3(x,u) at a specific
(z,u) -pair, and its amplitude of 1 is the secondary grade. ®

Definition 6: Uncertainty in the primary memberships of an
IT2 FS, /1, consists of a bounded region that we call the foor-
print of uncertainty (FOU). It is the union of all primary mem-
berships, i.e.,

FOU(A) = ] /.. (8)
zeX

This is a vertical-slice representation of the FOU, because each
of the primary memberships is a vertical slice. ]
The shaded region on the = — w plane in Fig. 2 is the FOU.
Because the secondary grades of an IT2 FS convey no new in-
formation, the FOU is a complete description of an IT2 FS. The
uniformly shaded FOU of an IT2 FS denotes that there is a uni-
form distribution that sits on top of it. The uniformly blurred T1
FS in Fig. 1(b) is another example of the FOU of an IT2 FS.
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Comment: Mendel and John [20] introduced the concept of
the domain of uncertainty (DOU) for a T2 FS, A, as the union of
all the primary memberships of A, i.e., DOU(A) = Usex Jo-
They did so in order to distinguish between primary variables
that are or are not naturally ordered,* and T2 FSs that are ei-
ther discrete, continuous, or hybrid.5 If a T2 FS is continuous
with a naturally ordered primary variable, as in this paper, then
DOU(A) = FOU(A). If a T2 FS is discrete with a naturally or-
dered primary variable, also as in this paper (e.g., Fig. 2), then
it is technically more correct to use DOU(A) because a shaded
region (which, in this case, is an artistic liberty) implies the ex-
istence of all points in it, but for discrete universes of discourse
only a finite number of separate points exist in it; however, be-
cause the term FOU is already so well entrenched in the T2 lit-
erature, we will continue to use FOU(A) for both cases. [

Definition 7: The upper membership function (UMF) and
lower membership function (LMF) of A are two T1 MFs that
bound the FOU (e.g., see Fig. 4). The UMF is associated with

the upper bound of FOU(A) and is denoted ji;(z), V= € X,

and the LMF is associated with the lower bound of FOU(A)
and is denoted [_LA(.’E), Vze X, ie,

VzeX ©)
VzelX. (10)

=FOU(A)
=FOU(A)
Note that for an IT2FS J, = [p4(z), ia(2)]. V2 € X.

Definition 8: For discrete universes of disgourse X and U, an
embedded IT2 FS has N elements, where A, contains exactly
one element from .J,,,J.,,..., and J,,, namely w1, us, ...,
and u, each with a secondary grade equal to 1, i.e.,

N
J. = Z[l/ui]/xi wel, CU=[01. (1
=1

Set fie is embedded in /Nl, and, there are a total® of Hfil Mt-fie.
[ |

An example of an embedded IT2 FS is depicted in Fig. 4; it is
the wavy curve for which its secondary grades (not shown) are
all equal to 1. Other examples of A are 1/i(z) and 1/p4(2),
V x € X, where it is understood that in this notation the sec-
ondary grade equals 1 at all values of /13 () and p1 4 ().

Definition 9: For discrete universes of discourse X and
U, an embedded T1 FS A. has N elements, one each from

Joys Jzgs .- and J,, namely uq, us, .. ., and un, i.e.,
N
A= wifz; wi€J,, CU=[0,1]. (12)
i=1

4Examples of primary variables that are (are not) naturally ordered are tem-
perature, pressure, height, etc. (beautiful, ill, happy, etc.).

SA T2 FS is discrete if the primary variable = takes discrete values and the
secondary MFs are also discrete. It is continuous if the primary variable x is
from a continuous domain and all the secondary MFs are also continuous. It is
hybrid if the values of the primary variable x are discrete (continuous) and the
secondary MFs are continuous (discrete).

SFor a continuous IT2 FS, although there are an uncountable number of em-
bedded IT2 FSs, the concept of an embedded IT2 FS (as well as of an embedded
T1 FS (Def. 9)) is still a theoretically useful one.
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Fig. 4. FOU (shaded), LMF (dashed), UMF (solid) and an embedded FS (wavy line) for IT2 FS A.

A ,u/; (.’C, ”)

1

Fig. 5. Example of an embedded IT2 FS associated with the T2 MF depicted
in Fig. 2.

Set A, is the union of all the primary memberships of set A, in
(11), and, there are a total of Hf\;l M; A,.. Note that A, acts as
the domain for /Nle. [ ]

An example of an embedded T1 FS is depicted in Fig. 4; it
is the wavy curve. Other examples of A, are /i3 (z) and pi4 (z),
Vze X.

Example 2: Fig. 5 depicts one of the possible 5% x 2 = 1,250
embedded IT2 FSs for the T2 MF that is depicted in Fig. 2.
Observe that the embedded T1 FS that is associated with this
embedded IT2FS is A, = 0.6/1 + 0.4/2 + 0.8/3 + 0.8/4 +
0.4/5. ]

Comparing (11) and (12), we see that the embedded IT2 FS
/ie can be represented in terms of the embedded T1 FS A., as

A, =1 /A, (13)
with the understanding that this means putting a secondary
grade of 1 at all points of A.. We will make heavy use of this
new way to represent A, in the sequel.

So far we have emphasized the vertical-slice representation
(decomposition) of an IT2 FS as given in (6). Next, we provide
a different representation for such a fuzzy set that is in terms
of so-called wavy slices. This representation, which makes very
heavy use of embedded IT2 FSs (Definition 8), was first pre-
sented in [19] for an arbitrary T2 FS, and is the bedrock for the
rest of this paper. We state this result for a discrete IT2 FS.

Theorem 1 (Representation Theorem): For an IT2 FS, for
which X and U are discrete, A is the union of all of its em-
bedded IT2 FSs, i.e.,

(14)

=1
and
N
na =[] M (16)
i=1
in which M; denotes the discretization levels of secondary vari-
able u] at each of the N x;. |

Comment 1: This theorem expresses A as a union of simpler
T2 FSs, the Ag . They are simpler because their secondary MFs
are singletons. Whereas (6) is a vertical slice representation of
A, (14) is a wavy slice representation of A.

Comment 2: A detailed proof of this theorem appears in [19].
Although it is important to have such a proof, we maintain that
the results in (14) are obvious using the following simple geo-
metric argument.

* The MF of an IT2 FS is three-dimensional (3-D) (e.g., Fig.
2). Each of its embedded IT2 FSs is a 3-D wavy slice (a
foil). Create all of the possible wavy slices and take their
union to reconstruct the original 3-D MF. Same points,
which occur in different wavy slices, only appear once in
the set-theoretic union.
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With reference to Fig. 4, (14) means collecting all of the em-
bedded IT2 FSs into a bundle of such T2 fuzzy sets. Equiva-
lently, because of (13), we can collect all of the embedded T1
FSs into a bundle of such T1 FSs.

Corollary 1: Because all of the secondary grades of an IT2
FS equal 1, we can also express (14) and (15) as

A =1/FOU(A) (17
where
FOU(A):iA:Aé: {EA(ZE)’?[A(l)} Vl'EXd
=1 [ﬁg(w%ﬂa(x)] VeeX
(18)
and [see (12)]
N > .
Al=D uifz wied,, CU=[1]. (19
i=1

The top line of (18) is for a discrete universe of discourse, X4,
and contains n 4 elements (functions), where n 4 is given by
(16), and the bottom line is for a continuous universe of dis-
course and is an interval set of functions, meaning that it con-
tains an uncountable number of functions that completely fills
the space between fi; (z) — H,ﬁx)’ forVz e X.

Proof: From (13), each Aﬁ in (14) can be expressed as
1/AJ; hence

A= g: (1/4%) = 1/nZA Al =1/FOU(A)  (20)

whichis (17). Note that, as already mentioned yz -, (=) and fi 5 ()
are two legitimate elements of the n 4 elements of A. In fact,
they are the lower and upper bounding functions, respectively,
for these n 4 functions. For discrete universes of discourse, we
can therefore express FOU(A) as in the top line of (18), whereas
for continuous universes of discourse we can express FOU(A)
as in the bottom line of (18). |

Equation (18) is a new wavy-slice representation of FOU(A) ,
because all Ag are functions, i.e., they are wavy-slices. We will
see in the sequel that we do not need to know the explicit natures
of any of the wavy slices in FOU(A) other than () and

fiz(z).

III. SET THEORETIC OPERATIONS

Our goal in this section is to derive formulas for the union and
intersection of two IT2 FSs and also the formula for the comple-
ment of an IT2 FS, because these operations are widely used in
an IT2 FLS. Present approaches to doing this use the Extension
Principle [24], alpha-cuts, or interval arithmetic (e.g., [8]). Our
approach will be based entirely on Representation Theorem 1,
already well-known formulas for the union and intersection of
two T1 FSs, and the formula for the complement of a T1 FS.

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 14, NO. 6, DECEMBER 2006

Theorem 2: a) The union of two IT2 FSs, Aand B ,1s

VzelX.
2n

AUB =1/[u3(0) V p(0).13(2) V fip (@)

b) The intersection of two IT2 FSs, A, and B, is

ANB =1/[py (@) A (). i3 (@) A ()] V€ X,

Ll |
. (22)
¢) The complement of IT2 FS A, A, is
A=1/[1-fAz(2),1 - py(x)] YreX. (23)

Proof: Because the proofs of parts a) and b) are so similar,
we only provide the proofs for parts a) and c).
a) Consider two IT2 FSs A and B. From Representation The-
orem 1 and Corollary 1, it follows that:

AUB=S 0N B =YY Aius;
j=1 i=1 j=1li=1

=1/FOU(AU B) (24)

where n 4 and g denote the number of embedded I'T2 FSs that
are associated with A and B, respectively, and [see the first part
of (18)]

na N

FOU(AUB) =YY" AluB..

j=11i=1

(25)

What we must now do is compute the union of the ny X np
pairs of embedded T1 FSs A7 and B?. Recall that the union8 of
two T1 FSs is a function, e.g.,
AgUBé:max{qu(a:k),uBi(a:k)}, k=1,2,...,N.
(26)

Consequently, (25) is a collection of n 4 X n g functions that con-
tain a lower-bounding function and an upper-bounding function
since both 4,5 (1) and jup: (1) are bounded for all values of
Tk.

In the case of IT2 FSs, for which each primary membership
is defined over a continuous domain, n4 = oo and ng = 00;
however, (26) is still true, and the doubly infinite union of em-
bedded T1 FSs in (25) still contains a lower-bounding function
and an upper-bounding function, because A and B each have
a bounded FOU. We now obtain formulas for these bounding
functions.

Recall (see the examples given after Definition 9) that the
upper and lower (discrete, or if continuous, sampled) MFs for
an IT2 FS are also embedded T1 FSs. For A4, ji5 () and py (@)

denote its upper MF and lower MF, whereas for B, fiz () and

TThis equation involves summation and union signs. As in the T1 case, where
this mixed notation is used, the summation sign is simply shorthand for lots of
+ signs. The + indicates the union between members of a set, whereas the
union sign represents the union of the sets themselves. Hence, by using both the
summation and union signs, we are able to distinguish between the union of sets
versus the union of members within a set.

8 Although we present our derivation for maximum, it is also applicable for a
general t-conorm.
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Fig. 6. Type-1 FLS.

Ky (z) denote its comparable quantities. It must, therefore, be
true that

sup max {1 (1) (1)}
Vi
:max{ﬁ;l(x),ﬂé(x)} VeeX
=pi(z) V() VreX 27
é%&lﬂax{ﬁbg(xk%ﬁﬂﬁ(wk)}
= max {Eg(x)7ﬁg(x)} VoeX
= p;(2) V pg() VzeX. (28)
From (24)—(28), we conclude that
AuB=1/>"3 AlUB:
j=1i=1
=1/[p; (@) V pg (@), pa(z) vV iagr)]  29)

which agrees with results that appear in the T2 FS literature
(e.g., [17]); however, we have derived (29) entirely within the
framework of Representation Theorem 1, Corollary 1 and wavy
slices, and did not have to use any T2 FS mathematics to obtain
it.

c) Starting with (14), and Corollary 1, we see that

~ nl‘ ~ TLA ~ ] ~
A=Y A=Y A =1/FOU(A) (30)
j=1 j=1

where [focusing on continuous universes of discourse; see also
the second line of (18)]

FOU(A) = ZA{;’ - [ﬁz(x),ﬂ;‘(x)} VeeX. (3
j=1

Using the well-known fact that the MF of the complement of T1
FS Ais 1 — pa(z), it follows that

pai(2) = 1= (). (32)

Equation (31) is a bundle of functions that has a lower bounding
[115 ()] and an upper bounding [/ 5 ()] function; hence

Fale) = sup 1=y o)

=1—p;(z) VeeX (33)
(@) = inf (1= o ()]
=1— () VzeX. (34)

In obtaining the right-hand parts of (33) and (34), we have used
the facts that it is always true that fiz(2) > p(), conse-
quently, it is always true that 1 — 5 (z) > 1 — fiz(2).

From (30), (31), (33), and (34), we conclude that

na
A=1> B =1/l - p5(x),1 - py(a)]  VoeX
=1
’ (35)
which is (23), and also agrees with results that appear in the
T2 FS literature, and again we have not had to use any T2 FS
mathematics to derive it. [ |
The generalizations of parts a) and b) of Theorem 2 to more
than two IT2 FSs follows directly from (21) and (22) and the as-
sociative property of T2 FSs, e.g., see the equation at the bottom
of the page.

IV. REVIEW OF TYPE-1 FLS

Because our derivations of equations for an IT2 FLS in Sec-
tion V use the equations for a T1 FLS, we provide a brief re-
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Fig. 8. Type-2 FLS.

view of the latter here. A T1 FLS is depicted in Fig. 6. Recall
that this FLS is also known as a Mamdani FLS (or fuzzy-rule-
based system, fuzzy expert system, fuzzy model, fuzzy system,
FL controller [5], [6]). In general, this FLS has p inputs 1 €
X1,...,mp, € Xp, and one output y € Y, and is characterized
by M rules, where the [th rule has the form

R :IF zyis F! and - - and z, is F;,

THEN y is G, l=1,...,M. (36)
This rule represents a type-1 fuzzy relation between the input
space X; x --- x X, and the output space, Y, of the FLS. In
the fuzzy inference engine (which is labeled Inference in Fig. 6),
fuzzy logic principles are used to combine fuzzy IF-THEN rules
from the fuzzy rule base into a mapping from fuzzy input sets in
Xy x---x X, tofuzzy output sets in Y. Each rule is interpreted
as a fuzzy implication. With reference to (36), let F{ x- - -x F} =
Al then, (36) can be re-expressed as

l=1,....M

Rl:Fll><-~-><F1§—>Gl:Al—>Gl7 , M.
(37)

Rule R! is described by the MF pup: (x, ), where

pr (%) = paic (X, 9) (38)
and x = (21,...,7,)7. So, pri(X,y) = pgi(21,...,2p,Y)
and

pr (X, y) = par—e (X,Y) = bpi s r o (X, Y)
= HFlx--xF} (X)*pe (y)
= pp(z1)k kg (2p) kg (y)
= [Th —pp (Tm)] > (y) (39)

where it has been assumed that Mamdani implications are used,
multiple antecedents are connected by and (i.e., by t-norms) and
T is short for a t-norm.

The p -dimensional input to R! is given by the fuzzy set Ay
whose MF is that of a fuzzy Cartesian product, i.e.,

Py (X) = pux, (w1)x - K, () = Ty pix,, (Tm). - (40)

Each rule R' determines a fuzzy set B' = A, o R' in Y such
that when we use Zadeh’s sup-star composition, we obtain (I =

=M A, oR! (?/)

sup [/J'Ax (X)*IU’A’—>G’ (X7 y)] )
xeX

y €Y. (4l)

This equation is the input—output relationship in Fig. 6 between
the fuzzy set that excites a one-rule inference engine and the
fuzzy set at the output of that engine.

Substituting (39) and (40) into (41), we see that

pp(y) = sup [fa, ()% a1 gt (X, y)]
xXe

= sup (T8 _y pix,, (@ )% [Th_y gt ()] *pc1 ()]
xXe

= Slel)% { [Tfr)L:WXm (xm)*NF,’n (xm)] *fig (y>}

{{ sup fix, (1) ppr (171)}*
z1€X1

* [ sup px, (:EP)/LFzg ($1))] }
T, €X)p

*pgi(y), yevY. (42)

The inputs to a T1 FLS can be a type-0 (i.e., crisp input) or a
type-1 FS, where the former is commonly referred to as a sin-
gleton input, with associated singleton fuzzification (SF) and the
latter is commonly referred to as a nonsingleton input, with as-
sociated nonsingleton fuzzification (NSF). For a singleton input

(43)

Hence, substituting (43) into (42) for SF, (42) can be ex-
pressed for both SF and NSF, as (I = 1,...,M); see
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X—P>Ay » Iy

Fig. 7. Mapping from X to Y valid for all rules.

» Y

(44) at the bottom of the page. For NSF, we must calcu-
late sup, cx. /x,, (Zm)*0F,, (Tm), i.e., we must first find
! where

m,max?

xin,max = arg sup px,, (xm)*:u’F,ln (.Tm) (45)
T €Xm
and then determine px,, (xﬁmmax) *UFL (xﬁmmax). This can

be done once MF formulas are specified for px, (z,,) and
gt (Tr) (e.g., [17D).

From a graphical viewpoint, it will be very useful for us in
Section V to interpret the flow of the T1 FLS calculations as in
Fig. 7.

As is well known, going from the fired rule output FSs in (44)
to a number can be accomplished by means of defuzzification
(Fig. 6) in many different ways, including®: 1) centroid defuzzi-
fication, where first the fired output FSs are unioned and then the
centroid of the union is computed; 2) center-of-sums defuzzifi-
cation, where first the MFs of the fired output FSs are added
and then the centroid of the sum is computed; and 3) height,
modified height or center-of-sets defuzzification, where proper-
ties about the fired rule output FSs (e.g., centroid of consequent
FS) are used in a centroid calculation. Regardless of which de-
fuzzification method is chosen, this now completes the chain of
calculations for the T1 FLS in Fig. 6.

V. INTERVAL TYPE-2 FLS

A. Introduction

A general T2 FLS is depicted in Fig. 8. It is very similar to
the T1 FLS in Fig. 6, the major structural difference being that
the defuzzifier block of a T1 FLS is replaced by the output pro-
cessing block in a T2 FLS. That block consists of type-reduction
followed by defuzzification. Type-reduction maps a T2 FS into
a T1 FS, and then defuzzification, as usual, maps that T1 FS
into a crisp number. Here we assume that all the antecedent and
consequent fuzzy sets in rules are T2; however, this need not
necessarily be the case in practice. All results remain valid as
long as just one FS is T2. This means that a FLS is T2 as long
as any one of its antecedent or consequent (or input) FSs is T2.

Inthe T1 case, we have rules of the form stated in (36). As just
mentioned, the distinction between T1 and T2 is associated with

90ther defuzzification methods such as maximum and mean-of-maxima
could also be used; however, in actual applications of a FLS, such defuzzifi-
cation methods are rarely used.
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the nature of the MFs, which is not important when forming the
rules. The structure of the rules remains exactly the same in the
T2 case, but now some or all of the FSs involved are T2. As for
aT1 FLS, the T2 FLS has p inputs 21 € X7,...,z, € X,,, and
one output ¥y € Y, and, is characterized by M rules, where the
[th rule now has the form

RY:TF zyis Fland ---and z, is Fpl7

THEN yis G, l=1,...,M. (46)

When all of the antecedent and consequent T2 fuzzy sets are
IT2 FSs, then we call the resulting T2 FLS an interval T2 FLS
(IT2 FLS). These are the FLSs that we focus on in the rest of
this paper.

In order to see the forest from the trees, so-to-speak, we will
focus initially on a single rule (i.e., [ = 1) that has one an-
tecedent and that is activated by a crisp number (i.e., SF), after
which we shall show how those results can be extended first to
multiple antecedents, then to NSF, and finally to multiple rules.
Because a T2 FLS affords us with the opportunity for either a
T1 FS or a T2 FS input (in our case, it will be an IT2 FS), we
consider these two different kinds of nonsingleton input situa-
tions separately

B. Singleton Fuzzification and One Antecedent

In the rule!0

IF z; is Fy, THEN y is G (47)

let F! 1 be an IT2 FS in the discrete universe of discourse X4 for
the antecedent, and G be an IT2 FS in the discrete universe of
discourse Y for the consequent. Decompose ﬁl into np, em-
bedded IT2 FSs F{! (j1 = 1,...,np, ), whose domains are the
embedded T1 FSs FY!, and decompose (G) into n¢ embedded
IT2FSs GJ (j = 1,...,n¢), whose domains are the embedded
T1FSs Gﬁ According to (14) of Representation Theorem 1 and
Corollary 1, we see that Fy and G can be expressed as:

nFl
Py =) Fj! =1/FOU(F) (48)
Ji=1
where
nFl ) npl N“”l )
FOU(F) =Y Fi=%"> ufi/z
ji=1 ji=11i=1
uwlt eJ,, CU=[0,1] (49)

10A]Ithough it is unnecessary to use the subscript 1 on z for a single-antecedent
rule, by doing so we will make the multiple-antecedent case easier to understand
because we will understand where the subscript 1 appears in all of the notation
and formulas.

np(y) =

{ (T8 _ypre (),)] *pg (y), SF
(T8 _y (sup,, ex,, wx,, (Tm)*pp: (£m))] *ue(y), NSF

(44)
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>B(y)

Fig. 9. Fired output FSs for all possible n3 = nr, X ng combinations of the embedded T1 antecedent and consequent FSs for a single antecedent rule.

and
nag . N
G=> GI=1/FOU(G) (50)
Jj=1
where
N nag nag Ny
FOU(G) =) GI=" " wi/u
j=1 j=1k=1
IelJ, CU=10,1] (51)

Consequently, we have n g, X ng possible combinations of em-
bedded T1 antecedent and consequent FSs so that the totality
of fired output sets for all possible combinations of these em-
bedded T1 antecedent and consequent FSs will be a bundle of
functions B(y) as depicted in Fig. 9, where

nF ng

25> uBGip®)

Ji=1j5=1

VyeYy (52)

in which the summations denote union. The relationship be-
tween the bundle of functions B(y) in (52) and the FOU of the
T2 fired output FS is summarized by the following theorem.
Theorem 3: The bundle of functions B(y) in (52), computed
using T1 FS mathematics, is the same as the FOU of the T2
fired output FS, which is computed using T2 FS mathematics.
The specific connections are given in (60), (61), (57), and (58).
Proof: From Fig. 9, we see that the fired output of the com-
bination of the j1th embedded T1 antecedent FS and the jth em-
bedded T1 consequent FS can be computed for SF using Mam-
dani implication as in the top line of (44) with p = 1, i.e.,!!

186 W) = e (1) g (y) Yy €Yo  (53)
Since for any j; and j, pp(;, ;) (y) in (53) is bounded in [0, 1],
B(y) in (52) must also be a bounded function in [0, 1], which
means that (52) can be expressed as!2:

B(y) = {/L (Y),---, g (1/)}

UTn (44), the superscript I denotes rule number. Since we are focusing on a
single rule, we do not use this superscript here. Our superscripts are associated
with specific embedded T1 FSs.

12We choose to call the lower and upper bounding functions in B(y) Py (y)
and fi 5 (y) rather than o (y) and iz (y) because doing so will let us more
easily connect our T1 FS S derivation with the already known IT2 FS results.

VyeYy (54)

aset of np, X ng functions, where

piy) = vi;llf (B p(Y)  VYyeYq (55)

fip(y) = sup (up,.5(y) Yy €Y (56)

V1.3
denote the lower bounding and upper bounding functions of
B(y), respectively.

Let fiz, (71) and B, (z1) denote the upper and lower MFs
for Fy, and jig(y) and p&(y) denote the upper and lower
MFs for G. Additionally, let fir, (z1) and p, ( 1) denote
the embedded T1 FSs associated with fiz, (xl) and B ( 1),
respectively, and fig(y) and p,(y) denote the correspondmg
embedded T1 FSs of fis(y) and p(y), respectively. From
(53), we see that to compute the infimum of jupj, ;j)(y) we need
to choose the smallest embedded T1 FS of both the antecedent
and consequent, namely . (z1) and p,(y), respectively. By
doing this, we obtain the following equation for - (y):

VyeYy.

(57

Similarly, to compute the supremum of pp;, ;)(y), we need

to choose the largest embedded T1 FS of both the antecedent

and consequent, namely i, (z1) and fig(y), respectively. By
doing this, we obtain the following equation for i 5 (y):

By(y) = Vi?lf:j(lLB(jl W) = g (1) *p ()

fig(y) = sup (kB () = ir (2))*ic(y) Yy € Ya

AN

(58)
Obviously, when the sample rate becomes infinite, the sam-
pled universes of discourse X145 and Y; can be considered as
the continuous universes of discourse X; and Y, respectively.
In this case, B(y) contains an infinite and uncountable number
of elements, which will still be bounded below and above by
b5(y) and fip(y), respectively, where these functions are still
given by (57) and (58) (with Y; — YY), such that (54) can be

expressed as

By) = [nyw)isw)]  Vyey. (9
Comparing (59) and the second line of (18), we see that
B(y) = FOU(B) (60)
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where

FOUB) = [up).ip(w)]  Vyey (6D
and by (17) we conclude that
B =1/FOU(B). (62)

The combined results of (61), (62), (57), and (58) are exactly
the same as those in [9]; hence, we have been able to obtain the
FOU of the T2 fired output FS using T1 FS mathematics. ®

C. Singleton Fuzzification and Multiple Antecedents

In the rule (46), let Fy, Fy, ..., F, be IT2 FSs in discrete uni-
verse of discourses X4, X4, . .., Xpa, respectively, and G be
an IT2 FS in universe of discourse Y;. Decompose each ﬁ’i into
its np, (i = 1,...,p) embedded IT2 FSs F'  i.e.,

e’

(63)

nry;
F = Zﬁ’g; =1/FOU(F}), i=1,...,p.

Ji=1

The domain of each F* is the embedded T1 FS /. As in the
preceding section, we decompose G into ng embedded IT2 FSs
ég, whose domains are the embedded T1 FSs ng, respectively,
0 (50) and (51) remain unchanged for this case.

The Cartesian product of Fl, Fy, -, Fp, Fl X 13’2 Xee X f?p,
has [[Y_, np, combinations of the embedded T1 FSs, F7. Let
F7 denote the nth combination of these embedded T1 FSs, i.e.,

Fr=F{! x - x Fir
P
lgnSHnFi and1 < j; < np,. (64)
=1

This equation requires a combinatorial mapping from
(j1,742+---,Jp) — n; however, in the sequel we will not
need to perform the specific mapping. All we need to un-
derstand is that it is theoretically possible to create such
a mapping. To represent this mapping explicitly, we show
.., Jp(n)), so that (64) can
be expressed as

F: :Flj;(n) X -+ X Fzgg(n)7

P
1<n< HnFi and 1 < j;(n) < np,
1=1

(65)
in which case
l’l’Fe” (X) = T’rl:],:ll’l’F;ilrg (n) (xm)
p
1<n < [[np and1 < jm(n) <np,.  (66)

i=1
Additionally, let

(67)

With ng embedded T1 FSs for the consequent, we obtain np X
ng combinations of antecedent and consequent embedded T1
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FSs, which generate the bundle of ny X ng fired output conse-
quent T1 FS functions, i.e.,

nr ng

B(y)=>> pmpmi)

n=1 j=1

Observe how similar (68) and (52) are.
Theorem 3 is valid for this case, but in its proof the following
changes must be made.
1) In (53), instead of computing xp(j, jy(y), we must now
compute /15, j)(¥), by using the top line of (44) in which
T _ippr (w7,) is replaced by (66), i.e.,

m

VyeY, (68)

VyeYy
(69)

1B () (1Y) = [Tﬁl:luﬁﬁw (win)] *hci (Y)

2) Equation (54) is unchanged.

3) In (55) and (56), replace the index j; by the index n.

4) Let fig, (7,,) and p P (zm) denote the upper and lower
MEFs for F,,,. Additionally, let jir,, (,,) and By (Tm) de-
note the embedded T1 FSs associated with f,:(xm) and
Bg (%), respectively. Note that fir,, (2,,) and p - (Zm)
are two of the nr, embedded T1 FSs that are associated
with F),,. They will be the ones that are used in the next
step.

5) Equations (57) and (58) are changed to

up(y) = jof (LBm.H W)
= [T sy, @) *ugw)  Yyeva 0)
ip(y) = sup (1B(n,j)(¥))
n,j

= [T} _iir,, (z,)]*0c(y)  VyeYe (71

6) Equations (59)—(62) remain unchanged.

D. Type-1 Nonsingleton Fuzzification and Multiple
Antecedents

The results for this case build upon the results for the just-con-
sidered case of singleton fuzzification and multiple antecedents.
Equations (63)—(68) hold for the present case, and again (50)
and (51) remain unchanged. Theorem 3 is also valid for this
case, but in its proof the following changes must now be made.

1) For NSF, in order to compute i (n,;)() in (68) we must
use the second line of (44) in which!3 up_ (z,) is replaced
by i (n) (Zm), i.e.,

patn () = ey (50 i Com s o) )|
Ty €Xom ‘

*lG (y) v yeYy (72)
2)-4) Same as 2)-4) in Section V-C.
5) Equations (70) and (71) are changed to
uy(y) = jnf (LB W)
= 22y (sup ot (o))
Ty €Xomp
*/1,,(Y) VyeYy (73)

BFootnote 11 also applies here.



fip(y) = sup (upen.j(Y))

n,J

[Tzzzl( sup pix., (em)iip, (xm>)}
Ty EX o

*MiG(y) VyeYy (74)

6) Equations (59)—(62) again remain unchanged.

E. Type-2 Nonsingleton Fuzzification and Multiple
Antecedents

The difference between this case and the previous one is
the type-2 nonsingleton fuzzification, which, as we explain
next, further increases the number of functions contained in the
bundle of functions in (68). Most generally, the p -dimensional
input to a rule is now given by the IT2 FS Ay, where (as is
commonly done) we assume a separable MF, and we let X;
denote the labels of the IT2 FSs describing each of the p inputs.
More specifically, )~(1,)~(2,...,)~(p are IT2 FSs in discrete
universes of discourse X4, Xag, - .., X;q4. Decompose X ; into

their nx, (i = 1,...,p) embedded IT2 FSs X, i.e.,

nx,;
X; = E X;g.,
vi=1

i=1,...,p. (75)

The domain of each X} is the embedded T1 FS X" The Carte-
sian product of X1, Xo,..., X, X7 X Xg X --- x X, has
[1%_, nx, combinations of the embedded T1 FSs X;". Let X*
denote the kth combination of these embedded T1 FSs, i.e.,

XF=X!x-x X
p
1§k§HnX5and1g%an5. (76)
6=1

This equation requires a combinatorial mapping from
need to perform the specific mapping. All we need to again
understand is that it is theoretically possible to create such a
combinatorial mapping. To represent this mapping explicitly,
we show (71,72, - -
(76) can be expressed as

XF =X ™ o X

pe
p

1<k < [[nx, and 1 < s < nx, (7
6=1
in which case
m(k
e (%) = ooy 3P ()
P
1<k < [[nx, and 1 <y (k) < mx,..  (78)
6=1
Additionally, let
P
nx = H nx;. (79)
6=1

There are still ng embedded T1 FSs for the consequent, np =
P nr, embedded T1 FSs for the antecedents, and now nx

m=1
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embedded T1 FSs for the inputs; hence, we obtain nx Xnpg Xng
combinations of input, antecedent and consequent embedded T1
FSs, which generate a bundle B(y) of nx X np xng fired output
consequent T1 FS functions, where now

nx NnNgp ng

By) =Y "> pnmy ).

k=1n=1j=1

(80)

In order to again see the forest from the trees, we depict (80) in
Fig. 10, for the simple case of a single-antecedent rule (in which
case ny = ny, and ngp = ng).
Theorem 3 is also valid for this case, but in its proof the fol-
lowing changes must now be made.
1) In order to compute fip(n jx)(y) in (80), we must
again use the second line of (44) in which yx, (z,,) and
ur,, (z,,) are replaced by ;L}Ygl(f)(a:m) and u}’:l(e")(xm),
respectively, i.e.,

MB(n,j,k)(y)

= [qu:l( sup /Jme(k)(xm)*Mijw(flim)ﬂ
em€Xm T it

*pgi(y) VyeYy. (81)

2)—4a) Same as 2)-4) in Section V-C.

4b) Let fig (zm) and pi (7,,) denote the upper
and lower MFs for X,,. Additionally, let fix, ()
and p . (Zm) denote the embedded T1 FSs associated
with iz (2m) and pg (z.,), respectively. Note that

fix, (zm) and p (zm) are two of the nx,, embedded

T1 FSs that are associated with X,,,. They will be the ones
used in the next step.
5) Equations (73) and (74) are changed to

) = it (kpn.) ()

= [Tf;zl < SUp i (T kit (:Em)>:|
o X, —Xm m
*ﬁa(y) VyeY

sup (/LB(k,n,j)(y))
vV k,n,j

- [T,i:l( sup ux,n(xm)wm(xm)}
T €EX o

VyeY.

(82)

=
[ss[d
=
S—
Il

*iic(y) (83)

6) Again, (59)—(62) remain unchanged.

F. Multiple Rules

So far, all of the derivations in Sections V-B—G have been for
a single rule. In general, there are M rules that characterize an
IT2 FLS, and frequently more than one rule fires when input x
is applied to that system. What this means is that, as in the case
of a T1 FLS, we need to include another index—I/—in all of the
IT2 FLS formulas. So, for example, for the I/th rule, we would
express (62), (61), (82), and 83)as (I =1,..., M)

B! =1/FOU(BY)

FOU(B') =

(84)

[ﬁgl (), i (y)} VyeY (85)
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Fig. 10. Fired output FSs for all possible n g = nx, X nr; X ng combinations of the embedded T1 antecedent and consequent FSs for a single antecedent rule.

Vlkn£ y (MBl(k n J)(y))

T? _ su Tm )kl (T
T (s (ot ()
*p,(y)  Vyey

VSl:,lg,j (B (k) ()

|:T727)z_1 ( sup  ix,, (Tm)*ip ( ‘m)ﬂ
Tm €EXm
VyeY.

EB! (y) =

(86)

*iigt (y) (87)

As in the T1 case, fired rule sets are combined either before or
as part of output processing. For illustrative purposes only,!4 let
us assume that the [ fired rule sets are combined using the union
operation. In this case, we have the following.

Theorem 4: 1f the [ fired rule sets are combined using the
union operation, leading to a composite IT2 FS B, then

B =1/FOU(B) (88)

FOU(B) = [py(0)ip(0)]  Yyey — (9)

here BeW) =pz @)V gV Vipg,(y)  (90)
Bp(y) =ip @)V ig(y) V- Vigu(y) O

and specific formulas for i, (y) and fi. (y) are given in Sec-
tions V-B-F.

14We do not necessarily advocate combining IT2 FSs using the union opera-
tion, just as many people do not advocate combining fired T1 FSs in a T1 FLS
using the union operation. This is explained in great detail in [17] where more
computationally tractable ways of blending the IT2 fired rule sets are described.
Conceptually, one merely needs to think of some final (aggregated) IT2 FS, say
B(y) as having been obtained from the B'(y).

Proof: Equations (90) and (91) follow from M —1 repeated
applications of (21) to vail B! ]

G. Output Processing

With reference to the T2 FLS depicted in Fig. 8, we now
explain how to perform output processing. Type-reduction, the
first step of output processing computes the centroid of an IT2
FS, where the specific IT2 FS that it does this for is one that
is associated with the IT?2 fired-rule output FSs whose formulas
have just been obtained in Sections V-B-F. We are motivated
to compute the centroid of an IT2 FS because when all sources
of uncertainty that are present in an IT2 FLS disappear, we re-
quire that the IT2 FLS must reduce to a T1 FLS, and many T1
defuzzification methods are based on computing the centroid of
a T1 FS. Because computing the centroid of an IT2 FS is so im-
portant, we provide a brief description of it next.

Using Representation Theorem 1, we define the centroid, C'g,
of an IT2 FS B as the collection of the centroids of all of its em-
bedded IT2 FSs. From (17), and the first part of (18), we see
that this means we need to compute the centroids of all of the
np embedded T1 FSs contained within FOU(B). The results of
doing this will be a collection of np numbers, and these num-
bers will have both a smallest and largest element, ¢;(B) = ¢
and ¢, (B) = c¢,, respectively. That such numbers exist is be-
cause the centroid of each of the embedded T1 FSs is a bounded
number. Associated with each of these numbers will be a mem-
bership grade of 1, because the secondary grades of an IT2 FS
are all equal to 1. This means

92)
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wherel>
N
> yibi
c = min 1:;, (93)
Y 0:€ [, (i) inp (vi)] N
i=1
N
> yibs
¢ = max Z:;, (94)
Y 0:€ [y (wi) i (90)] S0,

1

-
Il

In general, there are no closed-form formulas for ¢; and ¢,.; how-
ever, Karnik and Mendel [7] have developed two very simple
and easy to implement iterative algorithms for computing these
end-points exactly, and they can be run in parallel. Although
space does not permit us to provide the details of these algo-
rithms here, we state the resulting general formulas for ¢; and
Cr

L N
Zybl_l’B(yi)+ Z yL/LB(yz)
1=1 1=L+1
c = ~ 95
> hp(yi)+ X pg(y)
=1 1=L+1
R N
Sying(y) + X ving(yi)
=1 1=R+1
e =0 & (96)
>obp)+ X np(yi)
1=1 1=R+1

In these formulas, L and R are switch points and it is these
two points that are determined iteratively by the Karnik—Mendel
algorithms.

Note that we have stated (92)—(96) in the context of cen-
troid type-reduction; however, there are as many type-reduction
methods as there are T1 defuzzification methods, because each
of the former is associated with one of the latter. Karnik and
Mendel [7] have also developed center-of-sums, height, modi-
fied-height and center-of-sets type-reducers, for which the sym-
bols in (92)-(96) take on different meanings. See [17] for a
careful explanation of these different kinds of type-reduction.

Regardless of which type-reduction method one uses, de-
fuzzification-which follows type-reduction-is based on using
the average of ¢; and ¢, i.e.,

1
S a0 + e, (x)].

We have now completed all of the computations that charac-
terize an IT2 FLS.

y(x) = 97)

H. Comments

It is worth reiterating that although we used the concept of an
embedded T1 FS to derive the fired-rule output FS of various
kinds of IT2 FLSs, we never actually had to compute the nx x
nF X NG MB(km,;)(y), a number of computations that could
be astronomical. Instead, in all cases, we showed that we only
need to compute two functions, pz, (y) and fig(y). It is this

I5When discretizations of the primary variable and primary membership ap-
proach zero, {¢i, ..., ¢} — [c, ¢.], an interval set. In the literature about the
centroid (e.g., [7] and [17]), it is customary to see (92) written as C'z = [cy, ¢r].
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tremendous reduction in computations that distinguishes an IT2
FLS from a general T2 FLS. For the latter, one must not only
compute the FOU of each fired rule but also the secondary grade
at each value of y. At present, such calculations are not practical,
but in the future, research on efficient ways to perform them
may make them practical (e.g., [1]). Such research must not only
address the calculations of the fired-rule T2 FSs but also type-
reduction for general T2 FSs.

After all is said and done, we observe from the various
formulas that we have derived for pz,(y) and figi(y) [e.g.,
(86) and (87)] that they each only make use of the respective
lower or upper MFs of input, antecedent and consequent T2
FSs. This suggests that an I'T2 FLS is performing a worst-case
design—worst case in the sense that y 5, (y) uses just the lower
MFs of input, antecedent and consequent IT2 FSs, whereas
Bz (y) uses just the upper MFs of such IT2 FSs. Most impor-
tantly, these two calculations are totally uncoupled, i.e., there is
no sharing of lower or upper MF values across them.

If the final output of the IT2 FLS is just some combination
of its fired output IT2 FSs [as in (88)—(91)], then that output
would indeed represent a worst-case design. If, however, the
final output is a number, computed as just described in Sec-
tion V-G, then by examining (95) and (96) we see that it is
through the process of type-reduction (i.e., a centroid calcula-
tion) that upper and lower MF information is shared, making the
resulting IT2 FLS more than just a worst-case design. Sharing
can also be accomplished without the Karnik—Mendel kind of
type-reduction by using an ad hoc type-reduction formula for
output y(x) (such as in [3]), e.g.,!6

et + )]

Which way of sharing upper and lower MF information (there
can also be other ways) is better is an open question.

Finally, in (44) the bracketed terms that involve p — 1 t-norms
is often referred to as a firing level, f(x). For an IT2 FLS the
firing level becomes a firing interval, e.g., for SF, examining
(61), (70) and (71), it is easy to see that if

y(x) = (98)

F(x') = [f(x), f(x')] 99)
denotes a firing interval, where
T&X) =T ey (20) (100)
F) =Ty air,, (a7,) (101)
then
FOU(B) =[pz(y), iip(y)]
= [ xp (), F(x)xfic ()]
=), g () ()] Yy €Ya
(102)

We leave it to the reader to show that (102) also applies to all
of the cases we have considered in Sectjons V-B-F, modulo
appropriate modifications for f(x’) and f(x’).

!%Note that, although not explicitly shown g _ (y), and fi 5 (y) depend upon
X, e.g., see (86) and (87), which is why we have used y(x) in (97) and (98).
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It is often useful to use the notion of a firing interval when
contrasting an IT2 FLS with a T1 FLS. Note that when all
sources of uncertainty disappear f(x’) — f(x') = f(x') and
bey) = fc(y) = pe(y), in which case the IT2 FLS results
in (100)—(102) reduce to the T1 FLS results in (44).

VI. CONCLUSION

We have shown that all of the results that are needed to imple-
ment an I'T2 FLS can be obtained using T1 FS mathematics. The
key to doing this is the Mendel-John Representation Theorem
for a T2 FS. We can now develop an IT2 FLS in a much more
straightforward way. Since an IT2 FLS models higher levels of
uncertainty than does a T1 FLS, this opens up an efficient way of
developing improved control systems and for modeling human
decision making.

We believe that the results in this paper will make IT2 FLSs
much more accessible to practitioners of FL since the time and
effort now required to learn about IT2 FLSs is very small. We
also believe that the approach taken in this paper can be used to
extend many existing T1 FS results to IT2 FSs. Whether or not
comparable results can be obtained for general T2 FLSs is an
open question.
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