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Uncertainty Modeling by Bilattice-Based Squares
and Triangles

Chris Cornelis, Ofer Arieli, Glad Deschrijver, and Etienne E. Kerre

Abstract—In this paper, Ginsberg’s/Fitting’s theory of bilat-
tices, and in particular the associated constructs of bilattice-based
squares and triangles, is introduced as an attractive framework
for the representation of uncertain and potentially conflicting
information, paralleling Goguen’s -fuzzy set theory. We recall
some of the advantages of bilattice-based frameworks for handling
fuzzy sets and systems, provide the related structures with ade-
quately defined graded versions of the basic logical connectives,
and study their properties and relationships.

Index Terms—Bilattices, bilattice-based squares and triangles,
implicators, MV-algebras, negators, t-norms and t-conorms.

I. INTRODUCTION

B ILATTICES are algebraic structures that were introduced
by Ginsberg in [1], [2] as a general and uniform framework

for a diversity of applications in artificial intelligence. In partic-
ular, he treated first-order theories and their consequences, truth
maintenance systems, and formalisms for default reasoning. In
a series of papers, Fitting then showed that bilattices are very
useful tools for providing semantics to logic programs (see,
e.g., [3]–[5]), a thesis that was later vindicated in [6]–[8]. Sev-
eral works have shown that bilattices may serve as a founda-
tion of other areas, such as computational linguistics [9] and
distributed knowledge processing [10]. In particular, a family
of bilattice-based logics and corresponding proof systems were
introduced in [11]–[13], where it was shown that bilattices are
useful as the underlying algebraic structures of formalisms for
reasoning with imprecise information (see also [14], [15]). This
point was recently made explicit in the context of fuzzy set
theory, where we have shown (see [16], [17]) that bilattices, and
in particular the associated constructs of bilattice-based squares
and triangles, provide an elegant framework for bridging be-
tween intuitionistic fuzzy sets [18] and interval-valued fuzzy
sets [19], [20], two common extensions of fuzzy sets.

The aim of this paper is to substantiate this bilattice-based
framework by equiping it with suitable implementations for the
common logical connectives of negation, conjunction, disjunc-
tion and implication. As is well known from fuzzy set theory, an
adequate choice for these operations, inspired by the properties
we want them to satisfy, often determines to a great extent the
strength of the applications that rely on them.
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Fortunately, we do not have to start our investigation from
scratch. Instead, it turns out that ideas from both -fuzzy set
theory [21] and bilattice theory [1], [22] can go a very long way
in helping us pinpoint the “best” choice for these connectives,
allowing for a positive synergy between the contributing the-
ories. Incidentally, the present paper can also be viewed as a
generalization to the lattice-valued and bilattice-valued case of
previous papers [23]–[26] that refer to particular forms of ‘tri-
angle’ and ‘square’, in which the underlying structure is the unit
interval.

The rest of the paper is organized as follows: first, in Sec-
tion II, we recall some elementary concepts of bilattices and bi-
lattice-based squares and triangles. Section III is the heart of
this paper, in which we consider proper representations of log-
ical connectives in our framework: the first part (Section III-A)
establishes the representation of involutive negators, the second
part (Section III-B) explores the idea of -representability in
the definition of t-norms and t-conorms for modeling conjunc-
tion and disjunction, and the last part (Section III-C) introduces
several ways of representing implication connectives and exam-
ines the relationships among them, as well as their relations to
other connectives. In particular, the choice of the “right” negator
and the existence of an associated MV-algebra are explored. Fi-
nally, in Section IV we hint on the application potential of our
bilattice-based framework and conclude.

II. PRELIMINARIES

In this section, we review some basic definitions and notions
that pertain to bilattices in general, and bilattice-based squares
and triangles in particular. For other expositions of these struc-
tures and the motivations behind them, we refer to [16] and [17].

Definition: A prebilattice [22] is a structure
, such that is a nonempty set containing at

least two elements, and are complete lattices.
A bilattice [1] is a structure , such that

is a prebilattice, and (the “negation”) is a unary
operation on satisfying, for every in , the following
properties:

1) ;
2) if then ;
3) if then .
In the sequel, following the usual notations for the basic

bilattice operations, we shall denote by (respectively, by
) the -meet (the -join) and by (respectively, by )

the -meet (the -join) of a bilattice . and denote
the -extreme elements, and denote the -extreme
elements of . Intuitively, these elements can be perceived
as “false,” “true,” “unknown” (i.e., neither true nor false) and
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“contradictory” (both true and false), respectively. The two par-
tial orders and are taken to represent differences in the
degree of truth and in the amount of information (respectively),
conveyed by the assertions.

By Definition 1, the negation of a bilattice
is an involution with respect to the lattice and an order
preserving operation of the lattice . Conversely, a con-
flation, , is an involution of and an order preserving
operation of . When a conflation can be defined in a
given bilattice, it is usual to require also that both kinds of invo-
lution commute: for every in , .

The following proposition recalls some important properties
of bilattices.

Proposition 1: Let be a bilattice. Then:
• [1] For every in

a)
.

b) .
• [22] If is a bilattice with a conflation , then for every

in
a)

.
b) .

Definition 2: A bilattice is distributive
if all (twelve) possible distributive laws concerning ,
and hold. A distributive bilattice is called classical if it has a
conflation that commutes with , such that for
every in .

When is classical, then is
a Boolean algebra. The reason for considering this confla-
tion-negation combination rather than, e.g., by itself is that,
amongst others, , making an inadequate
choice for a Boolean negation (see, also Section III-C, and in
particular the paragraph that surrounds Proposition 13). In the
sequel we shall sometimes abbreviate the combination by .

Definition 3: Let be a complete lattice. A (bi-
lattice-based) square is a structure ,
where, for every in ,

1) ;
2) and ;
3) and .
An element of a square may intuitively be

understood such that represents the amount of belief for
some assertion, and is the amount of belief against it.
This corresponds to Atanassov’s idea [18] of distinguishing
between a membership component and a nonmembership
component , with the amendment that in the case of a
square no restriction like for every in

is imposed. It follows, then, that squares can be regarded
as a generalized form of Atanassov’s [18] intuitionistic fuzzy
sets (see, also [17]).

Example 1: Let and ,
where in each case is the usual ordering. The corresponding
squares and are shown in Fig. 1.1 It is easy to verify that
both squares are distributive, but only is classical.

1These structures are commonly referred to as FOUR (after Belnap’s [27],
[28] original four-valued logic) andNINE (see, e.g., [12], [13]), respectively.

Fig. 1. Squares L and L .

Denoting the join and meet operations of a complete lattice
by and , respectively, for every in ,
we have

Moreover, denoting and , it holds that

and when is an involution of , then defined for every
in by , is a confla-

tion of .
It is easy to verify that every square is distributive when
is distributive. Structures of the form and their general-

ization to the cartesian product of two lattices were studied by
Fitting [3], [5], [22] and Avron [29], [30] as a general method
for constructing bilattices.

The second bilattice-based structure under investigation here
is due to Fitting [22].

Definition 4: Let be a complete lattice, and
let and . A
(bilattice-based) triangle is a structure ,
where, for every in

1) and ;
2) and .
Note that, in fact, a triangle is not a (pre-) bilattice, since

the substructure is not a lattice (the supremum of
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Fig. 2. Triangles I(L ) and I(L ).

any two elements does not necessarily exist). Still, triangles are
very much in the same spirit as bilattices, since the -ordering
also represents differences in the amount of information that
each interval exhibits. For this reason, is sometimes called
a “ -lower prebilattice” [31] or a “weak interlaced bilattice”
[32].

Example 2: The triangles and are shown in Fig.
2.

When is the unit interval with the usual ordering, is
a structure that corresponds to interval-valued fuzzy sets [19].
It follows, then, that triangles are generalized forms of these
extensions of fuzzy sets (see again [17]).

We conclude this section by a result that relates the consistent
elements of a given square and the associated triangle.2 First, we
need some additional terminology and notations.

Definition 5: Let be a bilattice with a
conflation . An element in is called exact with respect to
this conflation if ; it is consistent if .

Definition 6: Let be a conflation of a bilattice
. Denote by the substructure of that consists of

the consistent elements (with respect to ) of .
Proposition 2: [22], [17] Suppose that is a complete lattice

with an involution . Then is isomorphic to .

III. GRADED (BILATTICE-BASED) LOGICAL CONNECTIVES

In this section, which is the main part of this paper, we show
how common extensions to -fuzzy set theory of the main con-
nectives of classical logic can be related to bilattices in general,
and to bilattice-based squares and triangles in particular. We di-
vide this section to three parts, each one considers a basic con-
nective (or two dual connectives, in case of Section III.B).

In what follows is a complete lattice, and
.

2We refer to [16] and [17] for a further discussion on applications of this
result in the context of fuzzy sets, and in particular its use for bridging between
intuitionistic fuzzy set theory and interval fuzzy set theory.

A. Negation

Definition 7: A negator on is any -decreasing mapping
such that and . If for

every , then is an involutive negator on .
In the context of bilattices, the operation that appears in

Definition 1 is an involutive negator on the lattice . As a
consequence, the operation , defined on the square by

is an involutive negator on . If a bilattice has a con-
flation , then by its definition this operation is an involutive
negator on the lattice .

Suppose now that is an involutive negator on , i.e., every
in has an -involutive element in . Then, as we

noted before, a conflation of may be defined by

In this case, another natural definition of a negator on
is obtained by combining and , i.e., for every in

3

Note 1: One might wonder if there exist other ‘interesting’
negators apart from the prototypical ones described above. In
[24], for the particular structure , it was shown that
all involutive negators can be generated by simple transforma-
tions of the two basic choices and . The next proposition
is a generalization of that result to squares.

Definition 8: For every element in , define:
and .

Proposition 3: Let be a complete lattice that is
a chain. An operation is an involutive negator on iff
either

(1)

where and are two involutive negators on such that
and , or

(2)

where is an increasing permutation of such that
.

Proof: We shall show that if is an involutive negator on
then either or
(Lemma 3-A); in the first case (1) applies (Lemmas

3-B,C,D) and in the second case (2) applies (Lemmas 3-E,F,G).
Lemma 3-A: Let be a complete lattice that is

a chain. For any involutive negator on it holds that
either or .

Proof: Assume first that ,
where . Then and

3This operator has also been studied by Wagner [33], mainly in the context of
four-valued logics, and by Doherty, Driankov, and Tsoukias [34] in the frame-
work of DDT-logic (an operational version of Belnap’s four-valued logic [27],
[28]; see also [35]), where it is simply called “complement”).
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, but and are in-
comparable w.r.t. . Since is decreasing and involu-
tive, we obtain and

. Hence, the second
component of both and must be , thus,

and are -comparable. Now, since
is decreasing and involutive, it also follows that and

are -comparable, which is a contradiction.
Next, assume that , where
. Then and , but

and are -incomparable. Similarly as above,
a contradiction can be found.

When , for , we have that
and are two -incomparable elements that

are greater than or equal to ; likewise, if
, for , we have that and

are two -incomparable elements which are greater than or
equal to . In both cases, a contradiction can be found
in a similar way as previous cases.

Finally, assume that , where
and . Then

and , but and are -in-
comparable. Similarly as above, a contradiction can be found.

Summarizing, the only possible values of are
and .

Lemma 3-B: Let be a complete lattice that
is a chain. For any involutive negator on such
that , the following holds for all
in

and .
Proof: Immediate from the fact that is an involutive

negator and the assumption that .
Lemma 3-C: Let be a complete lattice that

is a chain. For any involutive negator on such
that , it holds that

and .
Proof: Let in . We prove that

(the proof that
is completely analogous). When , the

claim trivially holds; likewise, when , by Lemma
3-B and the fact that it holds that

.
It remains to consider the case in which and

. Since is decreasing, ,
so if we suppose for a contradiction that

, we have that .
Note also that by Lemma 3-B, . We distin-
guish between the following two cases.

• If , then by Lemma 3-B, it follows that
, which is a contradiction.

• If , then let
and

. It is easy to check, then, that and
are -incomparable. Moreover, it can be ver-

ified that and
. Since is decreasing, we

obtain that and
. Thus, ,

so and are -comparable. But since is
decreasing and involutive, this would mean that and
are also -comparable, which is a contradiction.

Lemma 3-D: Let be a complete lattice that is a
chain and let be a negator on such that

. Furthermore, let and be the mappings
defined by and .
Then is involutive if and only if and are involutive
negators on , and for all in

Proof: Assume first that is an involutive negator on
such that . Define the

mappings and by

It is clear that and
. Moreover, since is decreasing, so are and

. Hence, and are negators on .
By Lemma 3-C,

and . In other
words, . Moreover, since

is involutive, we obtain
, so and are involutive.

Assume conversely that and are involutive negators
on and define the mapping by

Then clearly
and . Also, since and are de-
creasing, so is . Moreover,

, so is an involutive negator on
.

Lemma 3-E: Let be a complete lattice that
is a chain. For any involutive negator on such
that , the following holds for all
in

and .
Proof: Immediate from the involutivity of , the assump-

tion that and the fact that under that as-
sumption also .

Lemma 3-F: Let be a complete lattice that
is a chain. For any involutive negator on such
that , it holds that

and for all
in .

Proof: Let be an element in . We
prove that (the proof that

is completely analogous).
When , the claim trivially holds; likewise it is
true when , by Lemma 3-E and the fact that

. Assume now that
and . Then, since

is decreasing, . Note also that
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by Lemma 3-E, . We distinguish between
the following two cases.

• If , then by Lemma 3-E, it follows that
, which is a contradiction.

• If , then let
and

. It is easy to check, then, that
and are -incomparable. Moreover, it can be

verified that and
. Since is decreasing, we

obtain that and
. Thus, ,

so and are -comparable. But since is
decreasing and involutive, this would mean that and
are also -comparable, which is a contradiction.

Lemma 3-G: Let be a complete lattice that is a
chain and let be a negator on such that

. Furthermore, let be the mapping defined by
. Then is involutive if and only if is

an -increasing permutation of , and for all in

Proof: Assume first that is an involutive negator on
such that . Define the

mappings and by

It is clear that and
. Also, since is decreasing, and

are increasing. Moreover, due to the fact that is
an involutive negator, and since Lemma 3-E asserts that

, it holds that and are
permutations of (i.e., bijections from to itself).

By Lemma 3-F, for every element in it
holds that and

. In other words,
for every in .
Moreover, since is involutive, we have that

, hence, .
Assume conversely that is an increasing permutation of

and define the mapping as follows:

Clearly, and
. Since is increasing, is decreasing.

Moreover,
, so is an involutive negator on .

This completes the Proof of Lemma 3-G and Proposition 3.
Clearly, is obtained from Proposition 3 by (1) where

, and is obtained from (2) where is the
identity permutation of . One of the advantages of is that
it preserves the following weakened version of the law of the
excluded middle.

Definition 9: An involutive negator on is called Kleene
negator, if for all in

The intuition behind Kleene’s condition is that even in a con-
text where excluded middle and/or the contradiction law do
not hold, “intended” contradictions should still not surpass “in-
tended” tautologies with respect to the truth order. The fol-
lowing claim is easily verified:

Proposition 4: If is a Kleene negator on , then is a
Kleene negator on .

Unlike , the negator never satisfies Kleene’s condition.
To see this, consider, for instance, and

. Then

On the other hand, also has some disadvantages. For
instance, it cannot serve as a (bilattice) negation on in the
sense of Definition 1, since it does not preserve the -order.
Indeed, in , for example, although , still

.
Consider now negators in triangles , or—equivalently

(see Proposition 2)—in the substructure of the con-
sistent elements in the square . As the following proposition
shows, it is rather straightforward to find an analogous defini-
tion of for these structures, while for this is not possible.

Proposition 5: Let be a complete lattice with an involutive
negator . Then is closed under but not under .

Proof: For the first part of the claim we have to
show that if in , so is . Indeed,

and so
and . Thus,

.
For the second part of the claim, consider, e.g., .

Then is in , since
. On the other hand,

, since .
Thus, for the negator , a corresponding triangle operation

may be obtained by applying the isomorphism
, used in [22] for the proof of Proposition 2, to ob-

tain an operation defined, for every in , by

(3)

Clearly, is an interval, and so is an involutive
negator on .

Next we show, as we did for squares (cf. Proposition 3), that
(3) is a characterization of involutive negators in many common
triangles.

Definition 10: For every interval in , de-
note: and .
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Definition 11: Denote by (respectively, ) the in-
terval without (respectively, without ). Denote by
the interval without and .

Proposition 6: Let be a complete lattice that
is a chain with at least four elements. An operation is an
involutive negator on iff

where is an involutive negator on , such that
.

Proof: In the proof we shall use the following notation:
.

Lemma 6-A: Let be a complete lattice that is a
chain with at least four elements. For any involutive negator
on it holds that .

Proof: Assume first that ,
where . Then and

, where if
(such an exists since there are at least four elements in )
and otherwise. Note that and are
incomparable w.r.t. . Since is decreasing and involutive,

and
, so . Hence,

and are -comparable. Since is
decreasing and involutive, it follows that and
are -comparable, which is a contradiction.

Assume now that , where . If
and , then, since there are at least

four elements in , there exists an . Thus,
and are incomparable with respect to , but both are
smaller than or equal to . Since is decreasing, we ob-
tain and . Sim-
ilarly as above, we find a contradiction.

If , then and are incomparable with
respect to , but both are greater than . Since is de-
creasing and involutive, it follows and

. Similarly as above, we find a contra-
diction.

If , but , then similarly as in the
previous case, two incomparable elements can be found which
are greater than , and similarly a contradiction can be
obtained.

Corollary 6-B: Let be a complete lattice that is
a chain with at least four elements. For any involutive negator

on it holds that and
, for all in .

Lemma 6-C: Let be a complete lattice that is
a chain with at least four elements. For any involutive negator

on it holds that
and .

Proof: We prove that , for all
in (the proof that ,

for all in , is similar). When , the claim
trivially holds, so assume that , and that

. Then, since is decreasing,
we have that . Note also that, by

Corollary 6-B, . We discuss the following
cases.

• If , then from Corollary 6-B it follows that
, which is a contradiction.

• If , then let

From it follows that ,
so . Since from Corollary
6-B it follows that , we obtain
that . Hence, .
Since from the assumptions about it follows that

, we find that and are -incomparable.
It can be easily verified that
and . Since is de-
creasing, we obtain that and

. Thus, ,
so and are -comparable. Since is
decreasing and involutive, it follows that and are

-comparable, which is a contradiction.
Corollary 6-D: Let be a complete lattice that

is a chain with at least four elements. For any involutive negator
on it holds that

and

for all in .
Lemma 6-E: Let be a complete lattice that is a

chain with at least four elements. For any involutive negator
on it holds that .

Proof: Obviously, and
. Assume that there exists an

in such that , with
in and . From Corollary 6-D it follows

that ,
using the fact that is involutive. Furthermore, since is a
decreasing bijection, , so

, which
is a contradiction.

Lemma 6-F: Let be a complete lattice that is
a chain with at least four elements and let be a negator on

. Then is involutive if and only if there exists an
involutive negator on such that, for all in

Proof: Assume first that is an involutive negator on
. Define the mappings and

as follows:

Then, from Lemma 6-A it follows that . Obvi-
ously, . Since is decreasing, is decreasing.
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Hence, is a negator on . Similarly, is a negator
on .

From Corollary 6-D it follows that

and

for all in . Since from Lemma 6-E it follows
that is an element of , for all

in , we obtain that .
Let from now on . From Corollary 6-B it

follows, for all in

Since is involutive, we obtain
, for all in . Hence,

is involutive.
Assume conversely that is an involutive negator on

and define the mapping by, for all
in

Then from the fact that is a negator on it easily fol-
lows that and .
Since is decreasing, is decreasing. So is a negator on

. Since is involutive, we obtain that
, for all

in . Hence, is involutive.
This completes the Proof of Lemma 6-F and Proposition 6.
Note that Proposition 6 is not true unless the chain has at

least four elements. To see this, consider the following example.
Example 3: Consider a mapping on , defined

as follows:
if
if
otherwise

It is easy to check that this is an involutive negator on
, which is not of the form of (3) (thus, it is not generated as

described in Proposition 6).
In [36] it is shown that there does not exist a Kleene negator

on . Note, however, that as the following exam-
ples show, this does not hold in general for any triangle.

Example 4: The operation , defined by
and is a Kleene negator on

.
Example 5: Consider a mapping on , defined

by . This is an involutive negator,
but it does not satisfy Kleene’s condition, since, e.g.,

Note that by a slight modification of this definition we get the
involutive negator of Example 3, which is a Kleene negator on

.

In general, we have the following result:
Proposition 7: Let be a complete lattice that is

a chain with at least four elements. Then there does not exist a
Kleene negator on .

Proof: Let be an involutive negator on . By
Lemma 6-A, . Since contains more
than three elements, there exists an for which

is incomparable to w.r.t. . Furthermore,
is incomparable to , since otherwise, if

, then from Corollary 6-B it would
follow that , which is a contradiction.
Similarly, the assumption leads to a
contradiction. Therefore, .

Now, since is a chain, iff or .
Thus, .
It follows that

, and so is not a Kleene negator on .

B. Conjunction and Disjunction

Definition 12: A triangular norm (a t-norm, for short) on
a lattice is a mapping that
is -increasing in both arguments, commutative, associative,
and satisfies, for every in .

Definition 13: A triangular conorm (a t-conorm, for short)
on a lattice is a mapping that
is -increasing in both arguments, commutative, associative,
and satisfies, for every in .

Given a prebilattice , its -meet and
-meet are clearly t-norms on and , respec-

tively. Also, the -join and the -join of are t-conorms
on , and , respectively. This implies that for a
complete lattice with a meet and a join , the
following operations are t-norms on and , re-
spectively

Similarly, the operations below are, respectively, t-conorms on
and

Clearly, is the -greatest t-norm on and
is the -greatest t-norm on . Also, it is easy to see
that and are, respectively, the -smallest t-conorm
on and the -smallest t-conorm on . Inter-
estingly, as the following proposition shows, the -extreme
-(co)norms are definable by the -extreme -(co)norms and

the other way around (see also [37]).
Proposition 8: In every square

1)
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2)

3)

4)

Proof: We show only part 1); the proof of the other parts
is similar.

By the absorption law, , so the element
in the last line above is equal to , which is

.
The definition of , and is an example of

an effective way of generating t-(co)norms on (substructures of)
squares by taking advantage of existing connectives on the
underlying lattice . Intuitively, this amounts to a kind of divide-
and-conquer strategy, where conjunction and disjunction on
are split up into simpler operations on . This leads us to define
the notion of -representability.4

Definition 14: Let be a complete lattice. A
t-norm on (respectively, a t-conorm ) is called -
representable, if there exist a t-norm and a t-conorm on
(respectively, a t-conorm and a t-norm on ) such that,
for every in

(4)

(5)

and (respectively, and ) are called the representants
of (respectively, ).

Analogously, -representable t-(co)norms on can
be defined in the obvious way. In the sequel, if the identity of
the lattice is clear from the context, we shall simply be speaking
about representable t-(co)norms.

This definition allows a straightforward construction of
t-(co)norms by operations that meet Definitions 12 and 13; it
suffices to take any t-norm and t-conorm on , and to use
them as representants in (4) and (5). The converse, however, is

4This definition extends the notion of t-representability, introduced in [38].
To avoid confusion with the� -ordering of a bilattice, we will not use the latter
terminology in this paper.

not true; not any t-(co)norm on can be obtained by a rep-
resentation. For instance, in [39] it is shown that the mapping

, given by

(6)

is indeed a t-norm on , but clearly it is not -repre-
sentable, since its first component also depends on and .

Proposition 9: Let (respectively, ) be an -representable
t-norm (respectively, t-conorm) on . Then (respec-
tively, ) is monotonic with respect to both and .

The same property holds for -representable t-(co)norms
with respect to .

Proof: Let be a t-norm and a t-conorm on .
Consider the -representable t-norm on , de-
fined by , and
suppose that . Then and

, and so, for every in
and . This implies that for every
in , and
therefore . The
proof of the other cases is similar.

When a t-norm is not -representable the proposition above
is no longer true.

Example 6: Let be the t-norm defined in (6). Consider
, and .

Then , but

Hence, .
Next we relate t-norms and t-conorms by appropriate nega-

tors. A natural way of doing so is to impose de Morgan’s laws.
Definition 15: Let be a t-norm on , and let be an in-

volutive negator on . The -dual of is a t-conorm on
defined by

The -dual of a given t-conorm is defined as a t-norm on in
a similar way.

It is interesting to note that for -representable t-norms
with -dual representants on, e.g., , the choice of
the negator or does not affect the identity of the dual
t-conorm.

Proposition 10: Suppose that is an -representable t-norm
on with representants , such that is the

-dual t-norm of and is an involutive negator on . Then
the -dual and the -dual of are the same.

Proof: For in we have
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and

Thus

A similar discussion as above also applies to the definitions
of t-(co)norms on (substructures of) the triangle , with the
caveat that

• there are neither t-norms nor t-conorms on , and
• in the choice of representants on it must be assured that

the resulting composite operation always yields an element
of .

C. Implication

Definition 16: An implicator on a lattice is
a mapping that is -increasing in its first
component and -decreasing in its second component, such
that

Given a t-norm and an implicator on , it is usual to
require the soundness of fuzzy modus ponens, i.e., for
in , it should hold that

if and then

In particular, therefore, if for some in then
. On the other hand, to allow to be as

large as possible, one would like to require the converse, that
implies . Eventually, then

(7)

a condition which is known also as the residuation principle,
and which leads to the following class of implicators.

Definition 7: Let be a t-norm on . An -implicator
(the residuum of ) is defined, for every in , by

.
Note 2: In [40, Property 2.48], it was shown that (7) holds if

and only if and if satisfies, for any set in
.

In the sequel, we will say that a t-norm satisfies the resid-
uation principle if (7) holds for together with . The
following proposition will be important for our further exposi-
tion.

Proposition 11: Let be a complete lattice and
a t-norm on satisfying the residuation principle. Then

is -representable.

Proof: In [41] it was proven that if satisfies
, then is -representable. Now, the

claim immediately follows from Note 2.
Another definition of a family of implicators is motivated by

the classical definition of the material implication as
.

Definition 18: Let be a t-conorm and a negator on .
The -implicator (generated by and ) is defined for
every in by .

It is easy to verify that each -implicator and each -impli-
cator is in particular an implicator. Moreover, these definitions
reveal that very often implicators are linked to “simpler” con-
nectives. Also, we can exploit the classical equivalence between
the formulas and , to define the following special kind
of negator on .

Definition 19: Let be a complete lattice with
an implicator . The induced negator of is a mapping ,
defined for every in by .

Examples of all the above operations on bilattice-based
squares and triangles are, thus, easy to generate using the con-
structs introduced in the previous sections. As an illustration,
and in view of its importance for the sequel, the following
proposition derives an explicit representation of -implicators
of -representable t-norms on .

Proposition 12: Let be a complete lattice
and let be an -representable t-norm on with
representants and , where is the -dual t-conorm of
a t-norm for some involutive negator . Then, for every

in

Proof: Indeed

and

The question of implicator classification, i.e., which partic-
ular instance to use in which case, has received considerable at-
tention in the literature. A comprehensive account for the situa-
tion in the lattice appears in [25] and
is examined in [24] and [36].
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Here, in the context of bilattices, it is in particular interesting
to investigate the light that implicators shed on the choice of the
“right” negator. To that aim, first observe that in classical bilat-
tices, the most “natural” -implicator, i.e., the one based on ,
coincides with an -implicator on condition that the associated
negator is chosen as (i.e., the combination ):

Proposition 13: Let be a classical bilat-
tice with conflation . Then , and so is both an

-implicator and an -implicator on .
Proof: First, as is a t-norm, is a t-conorm, and
is a negator of is indeed an -implicator and

is an -implicator. Second, by Definition 2 and Propo-
sition 1, in every classical bilattice it holds that
for every in . Now, for every in

Thus, . On the other hand, by the definition of

Thus, also , and so .
Proposition 13 substantiates the claim, hinted at by Definition

2, that in classical bilattices the combination “ ” is the one
that really plays the role of Boolean negation, and the formulas

are the analogies of classical tautologies. An alternative
proof of the above result can be given in terms of MV-algebras,
of which Boolean algebras are a special case; the following def-
inition is not a reproduction of the original, lengthy one given
in [42], but is rather a minimal characterization in terms of re-
quired properties (see, e.g., [43]).

Definition 20: Let be a complete lattice, and
let be a t-norm on that satisfies the residuation principle (7)
and such that, for every in

(8)

Then is called an MV-algebra.
Proposition 13 then follows from the following observation,

along with the fact that any Boolean algebra
is an MV-algebra in which coincides with (see e.g., [43]).

Proposition 14: In an MV-algebra , the mappings
and , where and is the -dual of , are

identical.
Now we investigate what happens in squares that correspond

to nonclassical bilattices. In this context it is easy to show that
the converse of Proposition 14 is not true in general, that is:
coinciding - and -implicators would not necessarily lead to
an MV-algebra. To see this consider, e.g., the lattice .

It is easy to verify that the nilpotent minimum, defined for every
in by

if
otherwise

is a t-norm on this lattice. Now, for and the -dual
of , we have that

if
otherwise

Still, this implicator does not satisfy (8) of Definition 20, and so
is not an MV-algebra.

The last example can also be extended to with a
representable t-norm on it, whose representants are the above
nilpotent minimum and the t-conorm , which is the dual of

with respect to the standard negation on . By Proposition
11, the residual implicator of is given by

and the induced negator of , is given by

The associated -implicator is, thus

So the - and -implicators that are associated with coincide,
but by the same argument as in the previous example, does not
generate an MV-algebra on .

A necessary and sufficient condition for having coinciding
- and -implicators in arbitrary squares (not only those that

correspond to classical bilattices; cf. Propositions 13 and 14), is
given in the following proposition.

Proposition 15: Let be a complete lattice, and
let be a t-norm on . Then the -implicator of

on is equal to the -implicator generated by
an involutive negator on and the -dual t-conorm

of , if and only if there exist t-norms and on for
which and , where and are
involutive negators on and where (respectively, ) is the

-dual (respectively -dual) t-conorm of (respectively, )
such that is -representable with representants and .

Proof: For the proof we need the following lemma:
Lemma 15-A: Let be a complete lattice. If

the -implicator of a t-norm on is equal to the -im-
plicator generated by an involutive negator on and
the -dual t-conorm of , then satisfies the residuation
principle.
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Proof: If for a t-norm on it holds that ,
then by the definition of residual implicator we obtain that, for
all

Let . If , then
, so .

Since is involutive, then

(9)

If we replace in (9) by and by , we have the
following:

(10)

Combining (9) and (10), we get, for all

and so satisfies the residuation principle.
Now we can show Proposition 15.

Let . If is a t-norm on for
which , for some involutive negator on ,
then satisfies the residuation principle by Lemma 15-A. Note
that it also follows that .

From Propositions 11 and 12, it follows that is -repre-
sentable (we call the representants and ), and that, for all

(11)

where denotes the -dual t-norm of , for an arbitrary in-
volutive negator on . The negator induced by is
given, for all , by

Consider now the -implicator generated by and the
-dual of . Using the fact that , the implicator

is defined, for all , by

where denotes the -dual of and denotes the
-dual of . Combining this with (11), we obtain that

and . Now, since the arguments
above hold for every involutive negator on , we can choose

. Then and we are done.

Assume that and are t-norms on for which
and , where and are involu-

tive negators on and where is the -dual of and is the
-dual of . Let be the -representable t-norm on

with representants and . From Proposition 12 again, it fol-
lows that the -implicator of is given, for all ,
by

Using the fact that and , we obtain,
for all

where is the involutive negator on defined, for all
, by , and where is the

-dual t-conorm of . Hence, .
The following example advances some interesting observa-

tions about the choice of a proper negator for a given square,
and how this affects the relationships between the corresponding
implicators as well as the existence of associated MV-algebras.

Example 7: Consider . In [36] it was shown that
the mapping , defined by

is a representable t-norm that satisfies the residuation principle,
and, moreover, that , where and

is the -dual of . On the other hand, . This is
another clear hint in favour of the negation-conflation combina-
tion .

Moreover, is an MV-algebra; below we show
that property (8) in Definition 20 holds. Indeed, note that in our
case is given by

Now, for and in we have the
following:
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Note that for the above example it holds that is
an MV-algebra, and that is the -dual t-conorm of . So,
the structure “contains,” by way of its representants,
two underlying MV-algebras. The following proposition clari-
fies the general picture.

Proposition 16: Let be a complete lattice, and
let be a t-norm on . Then is an MV-al-
gebra if and only if there exist t-norms and on such that

and are both MV-algebras, and such
that is -representable with representants and , where

is the -dual t-conorm of a t-norm for some involutive
negator .

Proof: Let be an MV-algebra. By Propo-
sition 11, is -representable, i.e., there exist a t-norm and a
t-conorm on , such that

. Since is an MV-algebra, it holds that

or equivalently, by Proposition 12

and

and

where is the -dual t-norm of with respect to some negator
. Thus

and

and

which means that both and satisfy the residuation condi-
tion. To see that and also satisfy the condition of (8), note
that since is an MV-algebra

By Proposition 12, the left-hand side of the last equality is

and the right-hand side is given by

Therefore

and

which means that both and satisfy (8), and so
and are MV-algebras.

We shall show that satisfies the conditions of (7) and
(8). To see that the residuation principle holds, note that

and

and

and

and

To see (8), note that

It follows, then, that is an MV-algebra.
We turn now to triangles. In these structures the situation

is complicated by the fact that there need not exist a Kleene
negator on , while this is a prerequisite of an MV-al-
gebra (see, [44]).5 The following example summarizes previous
findings when is the unit interval (see, e.g., [24]).

Example 8: Consider the triangle . The map-
ping , defined by

is a nonrepresentable t-norm that satisfies the residuation prin-
ciple (7). Moreover, here , where is the -dual of

. However, since there is no Kleene negator on ,
the triple is not an MV-algebra.

Example 8 shows that the property of having coinciding -
and -implicators is not unique to MV-algebras. Conversely,
one might also wonder if substructures of bilattice-based trian-
gles can ever be MV-algebras; the following example answers
this question in the affirmative.

Example 9: Consider the triangle . As we have seen,
the mapping defined in Example 4 is a Kleene negator on

. Consider the following truth tables that define a
t-norm and an implicator on

We have that , the residuation principle is satisfied in
this case, and as the following truth table shows,
is an MV-algebra.

5Indeed, if (L;� ; T ) is an MV-algebra, then N is a Kleene negator on
L; see [44, Theorem 2.31].
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Now, the following question might be raised: if a Kleene
negator exists on , can a t-norm always be found
such that would be an MV-algebra? The fol-
lowing example gives a negative answer to this question.

Example 10: Suppose that there exists a t-norm
on the triangle , sat-

isfying (7) and (8). Then
,

and so and , where
.

Since , we have
, hence,

.
But is not possible, since and

. Now, , thus, ,
where .
Hence, . On the other hand, since is the
greatest t-norm on

, so .
Thus, .

Since satisfies the residuation principle, from
it follows that

. Since , we obtain that
.

Since satisfies (8), we find that
, where

This is only possible if . Furthermore, ,
since otherwise , a con-
tradiction. Hence,

. Since, from the above we know that
, it follows that
, so . By the

residuation principle, from ,
we obtain that , which is a
contradiction.

We have shown, then, that although there exists a Kleene-
negator on , there does not exist a t-norm on

such that is an MV-algebra.

IV. CONCLUSION

In this paper, we have identified bilattices, and in particular
the constructs of bilattice-based squares and triangles, as a nat-
ural setting for representing and maintaining contradictions (as
we do not restrict ourselves only to the consistent elements).
These structures open the door to new opportunities in mod-
eling imprecise information. Indeed, the “traditional” approach
of evaluating membership functions by values that are arranged
in one (and usually total) order, is replaced here by more ex-
pressive “two-dimensional” measurements that reflect different
interpretations of the underlying orderings, which may be ap-
plied simultaneously.

We have shown that the definition and representation of suit-
able logical connectives for a given setting can benefit a lot from
bringing together results from bilattice theory and -fuzzy set
theory, and—moreover—it raises many nontrivial questions re-
garding the interrelationships among the various alternative def-
initions. From the obtained results it should be clear also that
the situation in squares and triangles is often substantially dif-
ferent; for instance, neither Kleene negators nor MV-algebras
exist on triangles, while for squares these constructs are readily
obtained. Yet, both kinds of structures offer, for every basic log-
ical connective, several graded extensions that reflect the se-
mantic nature of our framework as one that supports different
forms and levels of uncertainty, vagueness, and inconsistency.
This is another vindication to our claim that both squares and
triangles are very useful for modeling and representing impre-
cise information. The choice what structure is more appropriate
for practical applications is strongly affected by the nature of
the problem under consideration, as well as by representation
considerations, such as those given in this paper.

We note, finally, that apart of the intuitive appeal of our frame-
work, it also has an interesting application potential. This is
illustrated in a forthcoming paper, where we consider our ap-
proach in the context of preference modeling, showing that bi-
lattice-based representation of the underlying problem provides
a generic solution strategy that clarifies and simplifies existing
works in this area (e.g., [45]–[48]).
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[48] P. Fortemps and R. Słowiński, “A graded quadrivalent logic for ordinal
preference modelling: Loyola-like approach,” Fuzzy Optimiz. Decision
Making, vol. 1, pp. 93–111, 2002.

Chris Cornelis received the Ph.D. degree in com-
puter science in 2004 from Ghent University, Gent,
Belgium, with a thesis on “two-sidedness in the
representation and processing of imprecise informa-
tion.”

At present, he is a Postdoctoral Fellow with the
Fuzziness and Uncertainty Modelling Research Unit,
Department of Applied Mathematics and Computer
Science, Ghent University. His research interests
include various models of imprecision (fuzzy rough
sets, bilattices, interval-valued and intuitionistic

fuzzy sets, L-fuzzy sets), data mining, approximate reasoning. He is currently
focusing on their application to personalized information access and web
intelligence.

Ofer Arieli received the B.Sc. degree in mathematics
and computer science from the Hebrew University of
Jerusalem in 1987, and the M.Sc. and Ph.D. degrees
in computer science from Tel-Aviv University, Israel,
in 1992 and 1999, respectively.

He is a Senior Lecturer with the Department of
Computer Science, Academic College of Tel-Aviv.
His research interests are related to applications of
logic in artificial intelligence, in particular, non-
monotonic logics for reasoning with incomplete and
inconsistent information, knowledge representation,

and uncertainty modeling.



CORNELIS et al.: BILATTICE-BASED SQUARES AND TRIANGLES 175

Glad Deschrijver received the M.Sc. degree in
mathematics from Ghent University, Gent, Belgium,
in 1999. He received the “Qualified Teacher’s
Degree for Higher Secondary Education—Section
2 in mathematics.” He received the Ph.D. degree in
2004 in science and mathematics, with a thesis on
intuitionistic fuzzy sets .

In summer 2000, he joined the Department of
Applied Mathematics and Computer Science, Ghent
University, where he is a member of the Fuzziness

and Uncertainty Modelling Research Unit. His research interests include the
mathematics of different models of imprecision, including interval-valued
fuzzy sets, intuitionistic fuzzy sets in the sense of Atanassov, L-fuzzy sets
and bilattices. He is currently doing research on triangular norms and related
operators in interval-valued fuzzy set theory.

Etienne E. Kerre received the M.Sc. degree in math-
ematics in 1967 and the Ph.D. degree in mathematics
in 1970 from Ghent University, Gent, Belgium.

Since 1984, he has been a lector, and since 1991,
a full professor with Ghent University. He is a ref-
eree for more than 50 international scientific journals.
In 1976, he founded the Fuzziness and Uncertainty
Modelling Research Unit (FUM), Ghent University,
and since then his research has been focused on the
modeling of fuzziness and uncertainty, and has re-
sulted in a great number of contributions in fuzzy set

theory and its various generalizations. The theories of fuzzy relational calculus
and fuzzy mathematical structures are owed a great deal to him. Over the years,
he has also been a supervisor of 20 Ph.D. students on fuzzy set theory. His
current research interests include fuzzy and intuitionistic fuzzy relations, fuzzy
topology, and fuzzy image processing. He has authored or coauthored 11 books,
and more than 300 papers appeared in international refereed journals and pro-
ceedings.

Dr. Kerre is a member of the editorial board of international journals and
conferences on fuzzy set theory. He was an honorary chairman at various inter-
national conferences.


