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Abstract—In this paper, a new scheme for constructing 

parsimonious fuzzy classifiers is proposed based on the L2-
support vector machine (L2-SVM) technique with model 
selection and feature ranking performed simultaneously in an 
integrated manner, in which fuzzy rules are optimally generated 
from data by L2-SVM learning. In order to identify the most 
influential fuzzy rules induced from the SVM learning, two novel 
indices for fuzzy rule ranking are proposed and named as α -
values and ω -values of fuzzy rules in this paper. The α -values 
are defined as the Lagrangian multipliers of the L2-SVM and 
adopted to evaluate the output contribution of fuzzy rules, while 
the ω -values are developed by considering both the rule base 
structure and the output contribution of fuzzy rules. As a 
prototype based classifier, the L2-SVM based fuzzy classifier 
evades the curse of dimensionality in high-dimensional space in 
the sense that the number of support vectors, which equals the 
number of induced fuzzy rules, is not related to the 
dimensionality. Experimental results on high-dimensional 
benchmark problems have shown that by using the proposed 
scheme the most influential fuzzy rules can be effectively induced 
and selected, and at the same time feature ranking results can 
also be obtained to construct parsimonious fuzzy classifiers with 
better generalization performance than the well-known 
algorithms in literature.  
 

Index Terms—Feature Ranking, Fuzzy Classifier, L2-SVM, 
Prototype Based Classifier, Rule Induction, Rule Ranking. 
 

I. INTRODUCTION 
VM and kernel based learning systems are a powerful 
class of algorithms for classification or regression. The 

advantage of the SVM learning algorithm lies in that based on 
quadratic programming it leads to parsimonious model 
structure for regression and classification [1]. In data-driven 
fuzzy modeling, the commonly used scheme for achieving a 
parsimonious fuzzy system is to perform rule base reduction 
by removing redundant rules based on heuristic criteria or 
selecting relevant variables based on their influence on the 
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output. Although some researchers have made efforts to apply 
the “kernel tricks” to fuzzy systems for regression and 
classification [2][3][4], the advantage of the SVM in yielding 
parsimonious solutions has not been fully exploited in fuzzy 
systems yet. This is mainly because it is difficult to link the 
basis functions or membership functions (MFs) used in fuzzy 
systems to the kernel functions used in the SVM. Chen and 
Wang [5] indicated that if the MFs associated with the same 
input variable are generated from location transformation of a 
reference function [6], then the if-part in each fuzzy rule 
defined as the t-norm of every variable’s MF is proven to be a 
Mercer kernel under the condition that the Fourier transform 
of the reference function is non-negative [7]. Thus, fuzzy 
classifiers can be constructed based on the SVM technique, 
leading to a parsimonious model structure. However, one 
challenging problem has not been addressed in [5] for the 
SVM based fuzzy classifier, that is, how to select optimal 
parameters for kernel functions and the regularization 
parameter in SVM so as to improve the generalization 
performance. 

As a matter of fact, the problem of optimal kernel parameter 
selection for kernel functions remains open for most kernel 
machine models [4][8][9][10][11]. Facing so many parameters 
in the SVM based fuzzy classifier, methods based on 
exhaustive search become intractable. Recently, Chapelle et al 
suggested a technique of choosing parameters for SVMs by 
minimizing radius-margin bound [12]. However, the radius-
margin bound only holds in L2-SVM. For the L1-SVM, which 
was used in [5] for constructing parsimonious fuzzy classifier, 
the radius-margin bound can not be applied. In order to 
perform the automatic model selection in SVM based fuzzy 
classification, this paper proposes a L2-SVM based fuzzy 
classifier construction method which automatically choose the 
number of fuzzy rules and identify the important input 
features at the same time.  

It is noteworthy that fuzzy rule selection is an important 
issue in fuzzy systems. Even though the SVM learning 
produces sparse support vectors, it is demonstrated in our 
experiments that there exist redundant or correlated fuzzy 
rules in the fuzzy classifier initially induced by the L2-SVM 
learning and that a fuzzy rule selection procedure results in 
more parsimonious L2-SVM based fuzzy classifiers with 
better generalization performance. Currently, in traditional 
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fuzzy modeling, one strategy for rule ranking and rule subset 
selection that has received much attention in recent literature 
[13][14][15][16][17] is based on the singular value 
decomposition (SVD) of the firing strength matrix (FSM) of 
fuzzy rules. Specifically speaking, SVD-QR with column 
pivoting algorithm is applied to the FSM to produce rule 
ranking information. However, the rule ranking result by the 
SVD-QR with column pivoting algorithm is heavily 
dependent on the estimation of an effective rank which is 
related to the number of near zero singular values. The 
problem is that there is usually no clear gap between the small 
singular values and other “large” singular values, and different 
ranks often produce dramatically different rule ranking results 
[17]. A method to avoid the estimation of the effective rank is 
to apply the pivoted QR decomposition directly to the FSM, in 
which the R-values defined as the absolute values of diagonal 
elements of matrix R in QR decomposition tend to track the 
singular values of the FSM [17][18] and can be used for rule 
ranking to identify the influential rules. However, when the 
pivoted QR decomposition algorithm or the SVD-QR with 
column pivoting algorithm is applied to fuzzy rule ranking, 
they ignore the effects of the rule consequents. A more 
effective rule ranking should consider the output contribution 
of the fuzzy rules [17]. Moreover, as indicated in [17], it is 
highly expected for a rule ranking method to take into account 
both the rule base structure and the output contribution of 
fuzzy rules in order to generate a compact rule base with good 
generalization performance. To the best of our knowledge, 
this kind of more reasonable rule ranking scheme (i.e. taking 
into account both the rule base structure and the output 
contribution of fuzzy rules) has not been reported in literature 
yet. Thereupon, this paper is also committed to address this 
difficulty.  

In fact, in the L2-SVM induced fuzzy classifier, the 
Lagrangian multipliers TN ],,[ )()1( ααα = of the SVM 
(where N is the number of training samples) are closely 
related to the effect of the rule consequents and can be 
considered as the measures of the output contribution of fuzzy 
rules. In this paper two novel rule ranking indices named as 
α -values and ω -values of fuzzy rules are proposed in terms 
ofα . The rule ranking by α -values takes into account the 
output contribution of induced fuzzy rules but ignores the rule 
base structure, while the rule ranking by ω -values considers 
both the rule base structure and the output contribution of 
fuzzy rules. 

The organization of this paper is as follows. Section II 
describes a new L2-SVM based fuzzy classification algorithm. 
Two new fuzzy rule ranking indices and a fuzzy rule subset 
selection procedure are proposed in Section III. Section IV 
evaluates the performance of the proposed scheme with high-
dimensional benchmark problems, followed by discussions 
about additional advantages of the proposed scheme in 
Section V. Section VI concludes the paper. 

II. THE PROPOSED L2-SVM BASED FUZZY CLASSIFICATION 
SYSTEM 

A. Formulation of the L2-SVM Based Fuzzy Classifier  
Consider a fuzzy model with L fuzzy rules in the following 

form:  

ii
n
inii bythenAisxandandAisxifR =1

1:    (1) 

where i=1, 2, …, L,
 jx  and iy  are the input and output 

variables of the ith rule Ri respectively, and j
iA  are the 

linguistic labels expressed as fuzzy sets with specific semantic 
meanings of behaviors of the system being modeled, which 
are characterized by membership functions ( )j

i jA x  

generated by expert knowledge or from data, ib  is the 
consequent parameter of the ith rule. In order for the input 
space to be thoroughly covered by the fuzzy rule “patches”, 
the following auxiliary rule is added into the rule base [5]:  

000
1
010 : bythenAisxandandAisxifR n

n =    (2) 

where 0
jA  denotes the domain of jx  and 0 ( ) 1j

jA x ≡ , and 

0b ∈ℜ . The overall output of the system is expressed by  
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where iτ  is the firing strength of the ith rule and is usually 
calculated in terms of an appropriate T-norm operator such as 
the product as follows: 

( ) ( )j
i i j

j

x A xτ = ∏              (4) 

Apparently, this is a zero order Takagi-Sugeno (TS) fuzzy 
system [19], a kind of linguistic model with attractive 
properties such as the automatic determination of system 
parameters from data [20].  A binary fuzzy classifier can be 
defined as follows: 

0
1

( ) sgn ( )
L

i i
i

f x x b bτ
=

 = + 
 
∑           (5) 

In order to apply SVM learning to (5), ( )i xτ  must be a 
Mercer kernel. Fortunately, as analyzed in [5], if the MFs 

( )j
i jA x  are generated from a reference function ( )ja ⋅  

through location shift [6], i.e., ( )( )j j j
i j j iA x a x m= − , and 

the Fourier transform of the reference function is non-
negative, then ( )i xτ  is proved to be a Mercer kernel. There 
are several reference functions defined in [5] that ensure the 
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multi-dimensional MF ( )i xτ  to be a Mercer kernel. In this 
paper, the following reference function is adopted:  

2

( ) ( 0)jrj
ja r e η η−= >          (6) 

whose Fourier transform is non-negative, hence 

∏
=

−==
n

j

j
ij

j
ii mxamxx

1

)(),()( ττ  is a Mercer kernel, 

where ( )1, ,
Tn

i i im m m=  is called prototype or kennel 

centre. It should be noted that parameters jη
 
in the reference 

function (6) are kernel parameters indicating the importance 
of input variables, which were manually selected in the 
modelling scheme used in [5]. However, it is impractical to 
manually choose different values of jη

 
for different features 

in a high-dimensional input space in order to obtain a 
classification system with good generalization performance. 
This paper adopts a learning scheme to automatically update 
parameters jη . 

In order to perform input feature/variable ranking 
automatically, input variables are scaled by the following 
modulator function: 

ˆ j j jx x θ=                            (7) 

where )1,0(∈jθ  indicates the importance of the input 

variable jx to the classification task and is defined as  
2

1 j
j e ϕθ −= −                          (8) 

where ℜ∈jϕ . The above definition of jθ  is to ensure 

)1,0(∈jθ  when jϕ  is adjusted by a learning algorithm. Let 
2
jj θη =  in (6), then a SVM based fuzzy classifier can be 

expressed as 
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can be seen from (1), (4) and (9) that each ( , )ix mθτ  
corresponds to a fuzzy rule. To construct a L2-SVM based 
fuzzy classifier described by (9), the following parameters 
should be determined: the number of rules L, prototypes mi, 
weights bi, bias b0, and scaling parameters jθ .  

Given a training dataset { }( ) ( )

1
,

Nl l

l
x y

=
, where 

( ) { 1, 1}ly ∈ − , the L2-SVM learning algorithm seeks the 
optimal hyperplane with maximal margin by minimizing the 
following function over TN ],,[ )()1( ααα = : 

( ) ( ) ( ) ( ) ( ) ( ) ( )

1 , 1

1( , ) ( , )
2

N N
l l k l k l k

l l k

W y y x xθα θ α α α τ
= =

= −∑ ∑            

  (10) 
under the constraints 

∑
=

=
N

l

ll y
1

)()( 0α  and )(0 lα≤                (11) 

where ),(~ )()( kl xxθτ  is a kernel function used in the L2-
SVM and is defined as  

Cxxxx lk
klkl /),(),(~ )()()()( δττ θθ +=         (12) 

and 1=lkδ  for kl = , and 0 for kl ≠ , C is a regularization 
parameter penalizing the training error. By solving the dual 
optimization problem (10)~(11), one obtains the optimal 

coefficient vector (1) ( )
0 0 0, ,

TNα α α =   . There would be 

many zero coefficients in 0α , and only those samples that 
correspond to non-zero coefficients will play a role in the 
determination of model parameter values and are called 
support vectors. Let L be the number of non-zero coefficients 
which are denoted as )(

0
~ iα . Then the output of the ith fuzzy 

rule can be calculated as  
 )()(

0
~~ ii

i yb α=                         (13) 

where )(~ iy , i=1, 2, …, L, are the class labels of the 
corresponding support vectors. Hence, the non-linear decision 
function (9) becomes 








 += ∑
=

0
1

)()(
0

)( ~~)~,(sgn)( byxxxf
L

i

iii ατθ      (14) 

where )(~ ix  represent support vectors which will be set as 
prototypes mi in fuzzy rule induction, and the bias term 0b  
can be computed as follows, 

( ) ( ) ( ) ( ) ( )
0 0

1 1

1 ( , )
L L

j i i j i

j i

b y y x x
L θα τ

= =

 = − 
 

∑ ∑  (15) 

In the above solution, the values of  jθ  and C are 

assumed known. In [5] these parameter values are chosen 
manually. This paper automatically identifies the values of jθ  

and C from data based on L2-SVM techniques. The following 
radius-margin bound [1] is adopted in this paper as the 
objective function:  

( )
( )

SJ θ
γ θ

=                    (16) 

where )(θS  represents the squared radius of the smallest 
sphere containing all the training samples in the feature space 
and )(θγ  denotes the squared margin from the SVM 
hyperplane to the closest training sample. It was shown [1] 
that the margin can be expressed as 
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( )0( ) 1/ 2 ( , )Wγ θ α θ= . Therefore, the radius-margin 

bound becomes 
),()(2 0 θαθ WSJ ⋅=             (17) 

On the other hand, the squared radius of the smallest sphere 
enclosing all the training samples can be estimated by solving 
the following quadratic programming problem [1]: 

( ) ( ) ( ) ( ) ( ) ( ) ( )

1 , 1

( ) max ( , ) ( , )
N N

l l l l k l k

l l k

S x x x xθ θβ
θ β τ β β τ

= =


= − 

 
∑ ∑

       (18) 
subject to  

1
1

)( =∑
=

N

l

lβ  and )(0 lβ≤               (19) 

Parameters jϕ  ( jθ  by (8)) and C can be learnt optimally 

from data in terms of the gradients of J with respect to jϕ
 

and C respectively. Detailed analysis of training L2-SVM can 
be found in [12]. 
 

B. Extraction of Fuzzy Rules after the L2-SVM Learning 
Process 

After the L2-SVM learning process is completed, a 
parsimonious fuzzy classifier can be induced, in which the 
fuzzy rules are extracted in the form of (1) based on the 
decision function of the SVM. Specifically speaking, the 
induction process is performed as follows: 

Step 1. Set the number of fuzzy rules as the number of 
support vectors; 

Step 2. The premise parts of fuzzy rules are evaluated from 
support vectors and modulator function values: the 
MFs of the ith rule are ( ) ( )j j j

i j j iA x a x m= − , 

where j
im  is the jth element of the ith support 

vector N
l

li xx 1
)()( }{~

=∈ ),,1( Li = . Here, the 

learned value of jϕ  is used to calculate the kernel 

parameter jθ  in (8). 

Step 3. The consequent parts of fuzzy rules are induced 
from 0α and class labels: the consequent value of 

the ith rule is ( ) ( )
0 , 1, ,i i

ib y i Lα= = , where 
( )
0

iα  represent non-zero )(
0

lα , and ( )iy  the class 
labels corresponding to the L support vectors. 

 

C.  Feature Ranking  

After the L2-SVM learning process, the goodness of 
features can also be identified based on the values of 
parameters jθ . It is clear that a larger value of jθ  indicates 

that feature jx
 
is more important. In this paper the most 

appropriate features relevant to the classification task are 

identified based on a relative ranking index jθ
 
defined as 

follows: 

max
j

j
jj

θ
θ

θ
=                      (20) 

 

D. A Comparison between the Proposed Method and 
Radial Basis Function Classifier 

Radial basis function networks (RBFNs) have been a topic 
of extensive research with wide applications in machine 
learning and engineering. The output of a binary RBFN 
classifier can be computed by the following expression 

)||(||sgn()(
1

)(∑
=

−=
M

i

i
i cxxf ϕϖ     (21) 

where ||)(|| )(icx −ϕ are called radial basis functions (RBFs) 

with prototypes )(ic , and iϖ  are the network weights. From 
(9) and (21), it can be seen that the proposed classifier and 
RBFN classifier have a similar decision function for 
classification, and both RBFN classifiers and SVM based 
classifiers can be interpreted as fuzzy classifiers. Some 
researchers actually suggested to treat RBFN as a special case 
of SVM [21]. However, there are essential differences 
between RBFN classifiers and SVM based classifiers. Firstly 
the learning objective functions and the learning algorithms 
are substantially different. The parameters of a RBFN can be 
learned via nonlinear optimization using Levenberg–
Marquardt method [22][23], evolutionary algorithm [24], EM 
algorithm [25], or structured nonlinear optimization method 
[26]. Additionally, the network prototypes are usually 
determined via other means such as unsupervised clustering 
algorithms, and the linear weights may then be estimated by 
the standard least squares solution. Obviously, although this 
sort of method using least square techniques may give a rough 
approximation, it cannot yield optimal parameters [26]. 
Moreover, the number of prototypes in RBFN has to be 
determined via other means, such as cross validation or cluster 
validity index. Another interesting approach to constructing 
RBFNS is to use the orthogonal least squares (OLS) algorithm 
to identify a parsimonious RBFN by formulating the problem 
as a linear learning one [27], in which training samples act as 
candidate RBFN prototypes.   

Unlike RBFN, the invention of SVM was driven by 
underlying statistical learning theory, i.e., following the 
principle of structural risk minimization that is rooted in VC 
dimension theory, which makes its derivation even more 
profound [28]. Vapnik’s theory [1] shows that the SVM 
solution is found by minimizing both the error on the training 
set (empirical risk) and the complexity of the hypothesis 
space, expressed in terms of VC-dimension. In this sense, the 
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decision function found by SVM is a tradeoff between 
learning error and model complexity. Hence, SVM classifiers 
usually achieve good generalization performance. 
Additionally, SVMs have a clear geometrical interpretation 
and a global minimum of the cost function can be surely 
found by SVM training, because the parameters of a SVM, 
including the number of kernel functions, their prototypes, 
i.e., support vectors, and the linear weights and bias levels, are 
determined by solving a convex quadratic programming 
problem with linear inequality and equality constraints. 
Except for the kernel function parameters, the above 
mentioned parameters of a SVM are all computed 
automatically in one model structure. The proposed L2-SVM 
based fuzzy classifier not only inherits the above properties of 
SVM, but also learns the kernel function parameters 
adaptively from data. 

III. FUZZY RULE RANKING AND RULE SUBSET SELECTION 
The parsimony of the L2-SVM based fuzzy classifier hails 

from the inherent sparse solutions in the SVM, i.e., the 
support vectors with non-zero Lagrangian multipliers ( )

0
iα . 

However, these induced fuzzy rules are equally treated in the 
induced fuzzy classifier without fuzzy rule selection. In this 
section, a fuzzy rule ranking is produced according to the 
importance of induced fuzzy rules, aiming to generate a more 
parsimonious fuzzy classifier based on the most influential 
fuzzy rules. First the so-called R-values of fuzzy rules are 
briefly introduced. After that, two new indices for fuzzy rule 
ranking and a fuzzy rule selection procedure are developed. 
 

A.  R-values of Fuzzy Rules 

For an induced fuzzy classifier, its FSM is defined as 
follows: 

LNL

L

NgNg

gg
G

×















=

)()(

)1()1(

1

1

            (22) 

where  
( )

( )

1

( )( )
( )

k
i

i L
k

i
i

xg k
x

τ

τ
=

=

∑
                     (23) 

It can be seen that each column of the matrix G corresponds to 
one fuzzy rule. Therefore, the important fuzzy rules 
correspond to the columns that are linearly independent of 
each other. As indicated in [14][15], redundant fuzzy rules 
(corresponding to linearly dependent or zero-valued columns) 
are associated with near zero singular values of G. As a matter 
of fact, the smaller are the singular values, the less influential 
are the associated rules, which is the starting point of the 
SVD-QR with column pivoting algorithm and the pivoted QR 
decomposition algorithm that have been applied to fuzzy rule 

ranking [13][14][15][16][17]. The pivoted QR decomposition 
algorithm for ranking fuzzy rules is summarized as follows:  

1) Calculate the QR decomposition of G and get the 
permutation matrix Π  via QRG =Π , where Q is an 
unitary matrix, R is an upper triangular matrix. The 
absolute values of the diagonal elements of R, denoted 
as || iiR , decrease as i increases and are named as R-
values.  

2) Rank fuzzy rules in terms of the R-values and the 
permutation matrix Π  in which each column has one 
element taking value 1 and all the other elements 
taking value 0. Each column of Π  corresponds to a 
fuzzy rule. The numbering of the rule that corresponds 
to the jth column is the same as the numbering of the 
row where the “1” element of the jth column is located. 
For example, if the “1” of the 1st column is in the 4th 
row, then the 4th rule is the most important one and its 
importance is measured as || 11R  . The rule 
corresponding to the first column is the most important, 
and in descending order the rule corresponding to the 
last column is the least important. 

By applying the pivoted QR decomposition algorithm to the 
induced fuzzy classifier, each rule can be assigned a R-value, 
which measures the importance of the fuzzy rule. However, 
the R-values reflect the rule base structure only, without 
considering the output contribution of the induced fuzzy rules. 
Two new indices based on the L2-SVM learning results are 
proposed in the following.  
 

B.  α -values of Fuzzy Rules 

It can be seen from the induction procedure described in the 
above section that for each induced fuzzy rule, its associated 
Lagrangian multiplier ( )

0
iα  determines the depth of the effect 

of the rule consequent. Hence ( )
0

iα  is a very useful index for 
measuring the output contribution of the induced fuzzy rule. 
These Lagrangian multipliers are called α -values of fuzzy 
rules in this paper. 

 

C. ω -values of Fuzzy Rules 

Although the fuzzy rule ranking by α -values takes into 
account the output contribution of induced fuzzy rules, it 
ignores the rule base structure. In order to consider both the 
rule base structure and the output contribution of fuzzy rules, 
a ω -value for Rulei is suggested as follows: 

( )

( )
| |

max max | |

i
o ii

i i
o iii i

R
R

αω
α

⋅
=

⋅
          (24) 
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where ( )i
oα  and || iiR  are the α -value and R-value of Rulei 

respectively.  
 

D. Fuzzy Rule Selection  

Given a fuzzy classifier )0(
SVMFC  induced by the L2-SVM 

learning process, the α -values and ω -values can be used to 
identify the most influential fuzzy rules that ensure the 
smallest possible model that explains the available data well. 
Let V be the validation dataset and T the test dataset. The 
fuzzy rule selection procedure is described by the following 
steps: 

Step 1. Evaluate the misclassification rates (MRs) of the 
)0(

SVMFC  on the validation dataset V and the test 
dataset T separately, which are represented as 

)0(Verr  and )0(Terr ;  
Step 2. Set s=1 and assign a small value to threshold 

)0( >ss hh ; 
Step 3. Select the most influential fuzzy rules by 

{ }*

* *
( )i
o si i

Rule or hα ω > ; 

Step 4. Construct a fuzzy classifier )(s
SVMFC by using the 

influential fuzzy rules selected in Step 3; 
Step 5. Apply )(s

SVMFC  to the validation dataset V and the 

test dataset T to obtain new MRs: )(serrV  and 

)(serrT ; 

Step 5. If )(serrV  > )0(Verr , stop the selection and use 
)1( −s

SVMFC  as the final compact classifier and 

)1( −serrT  as the measure of generalization 

performance for )1( −s
SVMFC ; Otherwise, increase s 

by 1, assign a higher value to threshold sh , and 
go to Step 3. 

 

E. Implementation of the Proposed L2-SVM Based Fuzzy 
Classifier Construction 

Given a training dataset { }( ) ( )

1
,

Nl l

l
x y

=
, where 

( ) { 1, 1}ly ∈ − , the proposed scheme includes the following 
steps: 

Step 1. Initialization 
Assign the same small value to parameters jϕ , i.e., 

treat each feature equally at the beginning; Assign 
an initial value to the regularization parameter C 
and a small positive value to Jε ; 

Step 2. Perform the L2-SVM learning to obtain the optimal 
solution 0α  and the margin )),(2/(1 0 θαW ; 

Step 3. Solve the quadratic programming problem (18)~(19) 
to get the optimal solution 0β  and the squared 

radius )(θS ; 

Step 4. Update parameters jϕ  and C in terms of the 

gradients of J with respect to jϕ  and C separately, 

and update jθ
 
according to (8); 

Step 5. Go to Step 2 until the radius-margin bound 
decrement JJ ε<∆ ; 

Step 6. Extract fuzzy rules as indicated in section II-B.  
Step 7.Conduct fuzzy rule ranking and rule subset selection 

as indicated in subsections III-B, C, and D to obtain 
a more compact fuzzy classifier. 

 

IV. EXPERIMENTAL RESULTS 

In this section we evaluate the performance of the proposed 
L2-SVM based fuzzy classification algorithm on the 
benchmark problems based on ringnorm data and german 
data, which are available from the DELVE repository 
(http://www.cs.toronto.edu/~delve/data/ringnorm/) and the 
UCI repository (http://www.ics.uci.edu/~mlearn/ 
MLRepository.html), in comparison with some well-known 
fuzzy and non-fuzzy classifiers. 

A. Experiments on Ringnorm Dataset 

The ringnorm dataset contains 7400 samples, each 
consisting of 20 attributes (features). This is a 2-class 
classification problem proposed by Breiman who reported that 
the theoretically expected MR is 1.3% [29]. For such a high-
dimensional problem, it is very difficult to apply grid 
partitioning to generate fuzzy rules. Imagine that in the 
simplest case, if two fuzzy sets were used to partition each 
attribute, then a grid partitioning based method would 
generate 202  fuzzy rules. However, prototype based fuzzy 
classifiers like the proposed one can avoid this dilemma of 
dimensionality. 

In the following experiment, the radius-margin bound is 
normalized as NWSJ N /),()(2 0 θαθ= , and the parameter 
C is updated by using a transform 

CuCCu /1//),log( ⋅∂∂=∂∂=  to meet the requirement of 

0C > . C was initially set to 1, parameters jθ  were initialized 

to be 0.5 by setting the initial value of jϕ  as 0.8326, the 

learning rates for updating u and jϕ
 
were set as 0.0001 and 

0.01 separately, and the threshold for updating the radius-
margin bound was set as 5105 −×=Jε . From the available 
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7400 ringnorm samples, 400 samples were randomly selected 
for the training process, 5000 samples for the testing process, 
and the remaining 2000 samples as a validation dataset for 
fuzzy rule subset selection. After the L2-SVM learning 
process, 249 support vectors were generated, that is, 249 
fuzzy rules were generated for the induced fuzzy classifier. 
The induced fuzzy classifier produced 66 misclassifications 
on the test dataset with a MR of 1.32%, which shows that the 
L2-SVM based fuzzy classifier possesses good generalization 
ability on the ringnorm problem. The feature ranking results 
are given in Table 1, in which the 20 attributes are sorted by 

the values of jθ~  in a descending order.  

 
{To insert Table 1 here} 

      
For the purpose of comparison, one linear classification 

method and five nonlinear ones were applied to the ringnorm 
data with the same training set, test set, and validation set. 
These methods include linear discriminant analysis (LDA), 
quadratic discriminant analysis (QDA) [30], RBFN with OLS 
based forward selection (OLS-RBFN) [27], multilayer 
perceptron (MLP) [28], fuzzy learning vector quantization 
(FLVQ) [31], and FLVQ combined with a MLP (FLVQ-
MLP). The LDA misclassified 1227 samples with a MR of 
24.54% on the test dataset, and the QDA produced 130 
misclassifications on test samples with a MR of 2.6%, which 
implies that the ringnorm data is not linearly separable. Based 
on the function package provided by Orr [32], the OLS-RBFN 
was implemented to classify the ringnorm data. In our 
experiment, the bias term was considered in the decision 
function, and the generalized cross-validation (GCV) was 
used as a model selection criterion for OLS-RBFN to balance 
the bias and variance and optimally select a subset of RBFs. 
The widths of RBFs were also optimized as indicated in [33]. 
Two types of RBFs were used in our experiment: Gaussian 
basis functions (BFs) and Cauchy BFs. The OLS-RBFN with 
Gaussian BFs achieved a MR of 2.52% by misclassifying 126 
test samples, and there were 156 misclassifications produced 
by the OLS-RBFN with Cauchy BFs leading to a MR of 
3.12% on the test dataset. The generalized delta rule [28] was 
used to train the MLP network with 15 hidden neurons, in 
which the momentum parameter and the learning rate were set 
as 0.3 and 0.7 separately. The trained MLP misclassified 650 
test samples with a MR of 13%.   

It is worthily noted that RBFN with Gaussian BFs can be 
regarded as a sort of fuzzy classifier, as there exists 
equivalence between fuzzy systems and RBFNs with Gaussian 
BFs [34][35][36]: i) The number of RBF units is equal to the 
number of fuzzy IF-THEN-rules; ii) The output of each fuzzy 
rule is a constant (the fuzzy system is a zero-order TS fuzzy 
system); iii) The MFs within each fuzzy rule are chosen as 
Gaussian functions with the same variance in RBFN: iv) The 
T-norm operator used in fuzzy system to compute the 
activation of each rule is multiplication. Hence, we treat the 
above OLS-RBFN with Gaussian BFs as a neural-fuzzy 

system with automatic model selection. However, in order to 
further compare the proposed L2-SVM based fuzzy classifier 
with the well-known fuzzy classifiers, we also applied the 
FLVQ to the ringnorm problem. FLVQ requires its user to 
specify the number of prototypes, the initial exponent 0ex , 

the final exponent fex , and the maximum number of epochs. 

In [31], a heuristic constraint 07 1.1fex ex> > >  is 

recommended. As FLVQ is a clustering algorithm, in our 
experiment the labels were not used in the clustering process, 
but used for calculating the clustering error rate MR to 
evaluate the performance of FLVQ. From our experiment, it is 
found that the choice of the maximum number of epochs had 
great influence on the performance of FLVQ, whereas the 
variations of 0ex  and fex in the interval ( )1.1, 7  did not 

much impact the performance of FLVQ. Hence, the available 
validation dataset with 2000 samples was used to find an 
optimal maximum number of epochs for FLVQ, and then the 
FLVQ was applied to the dataset with 5400 samples including 
the above training dataset and the test dataset. This is because 
FLVQ is an unsupervised clustering algorithm which does not 
need to divide an available dataset into training one and test 
one. On the ringnorm problem, the trained FLVQ 
misclassified 1320 samples with a MR of 24.44%. This result 
is not surprising, because the clustering is completely 
unsupervised and does not take the given desired output 
information (class labels) into account, which could become a 
possible problem of the approach in classification as noted by 
Bishop [37]. To make a fairer comparison, FLVQ combined 
with a MLP was tested, in which the FLVQ worked as a 
feature extractor in the first stage and the MLP as classifier in 
the second stage. This FLVQ-MLP classifier achieves a MR 
of 2.46% by misclassifying 123 test samples.  
 

{To insert Table 2 here} 
 

The above classification results are summarized in Table 2, 
which shows that the L2-SVM based fuzzy classifier 
outperforms the well-known pattern classification methods. 
Another important objective of our experiments on the 
ringnorm problem is to test the effectiveness of the proposed 
fuzzy rule selection method. Therefore, after the L2-SVM 
learning fuzzy rule ranking was conducted in terms of the R-
values,α -values, and ω -values of fuzzy rules separately. 
Fig. 1, Fig. 2, and Fig. 3 illustrate the R-values,α -values, and 
ω -values of the induced fuzzy rules respectively. It can be 
seen that each rule has different R-value,α -value, and ω -
value relatively, and that a rule with higher R-value does not 
mean it definitely has higher α -value or ω -value, and vice 
versa. Hence, these three indices evaluate the importance of 
fuzzy rules in their own ways. In the following, in order to 
construct the possible smallest classifier with good 
generalization performance, these three indices were 
separately used to select the most influential fuzzy rules. 
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Table 3 summarizes the rule subset selection results, in which 
0=sh  corresponds to applying the initially induced fuzzy 

classifier )0(
SVMFC  (i.e., without rule selection). It can be seen 

that in terms of R-values, the smallest fuzzy classifier, which 
keeps the MR of 1.32% on test samples, consists of 214 fuzzy 
rules. In terms of α -values of fuzzy rules, taking into account 
the effects of rule consequents, the rule selection procedure 
identified 90 most influential fuzzy rules with the MR of 
1.32% reserved on the test dataset. Similar rule selection result 
was obtained by using ω -values of fuzzy rules, which 
produced a fuzzy classifier with 89 rules and led to the MR of 
1.32% on test samples. As a matter of fact, fuzzy rule ranking 
in terms of R-values is based on the QR decomposition 
method [17]. It is clear that the proposed scheme using α -
values and ω -values outperforms the QR decomposition 
method in fuzzy rule selection by identifying much more 
compact rule bases. 

 
{To insert Fig. 1 here} 

       
{To insert Fig. 2 here} 

 
{To insert Fig. 3 here} 

  
{To insert Table 3 here} 

 
In order to demonstrate the effect of dropping the least 

important features on fuzzy rule selection and classification 
performance, 18 firstly ranked features were selected to 
construct the fuzzy model. Before fuzzy rule selection, the 
induced fuzzy classifier based on the 249 fuzzy rules using 18 

features, denoted as 
)0(

SVMFC , achieved a MR of 2.06% on 
test samples. It is noted that the α -values of fuzzy rules in 

)0(
SVMFC  are the same as the ones in )0(

SVMFC , whereas the R-

values and ω -values of the fuzzy rules in 
)0(

SVMFC  are 

different from the ones in )0(
SVMFC  respectively. Table 4 gives 

the corresponding rule subset selection results using 18 
features in terms of the R-values, α -values, and ω -values of 

the fuzzy rules in 
)0(

SVMFC . The smallest fuzzy classifier 
produced by using R-values, with the MR of 2.06% on test 
samples, contains 230 fuzzy rules. By using α -values of 
fuzzy rules in the rule selection procedure, 89 fuzzy rules 
were selected for the induced fuzzy classifier with the MR of 
2.06% on test samples. As shown in Table 4, in terms of ω -
values of fuzzy rules, a fuzzy classifier with 83 fuzzy rules 
was induced and achieved a MR of 1.78% on test samples, 
which is better than using all the 249 fuzzy rules. 

 
{To insert Table 4 here} 

 

B. Experiments on German Dataset 
 

In the following, the german dataset was used to further 
evaluate the proposed method in comparison with the well-
known classifiers. The german credit dataset with 1000 
samples is known as a benchmark problem for its 2 classes 
with many odd samples in 20-dimensional space. In this 
experiment, 300 samples were randomly selected for training 
L2-SVM, 400 samples for testing process, and the remaining 
300 samples as a validation dataset for fuzzy rule subset 
selection. The learning rates for updating u and jϕ  were set 

as 0.00005 and 0.006 separately by a trial and error approach, 
parameters jθ  were all initialized as 0.5 with initial 

jϕ =0.8326,  C was initialized to 1, and the threshold for 

updating radius-margin bound was set as 46 10
NJε −= × . 

After the L2-SVM learning process, 195 support vectors were 
generated, that is to say, 195 fuzzy rules were generated for 
the induced fuzzy classifier, which produced 98 
misclassifications on the test dataset with a MR of 24.5%. 
Similar to the experiment with the ringnorm dataset, the well-
known classification methods, LDA, QDA, OLS-RBFN, 
MLP, FLVQ, and FLVQ-MLP, were used to compare with the 
L2-SVM induced fuzzy classifier. The LDA misclassified 125 
samples with a MR of 31.25% on the test dataset, and the 
QDA produced 118 misclassified test samples with a MR of 
29.5%. In the experiment on OLS-RBFN, the bias term was 
also considered in the decision function, and GCV was used 
as a model selection criterion for OLS-RBFN to balance the 
bias and variance, and optimally select a subset of RBFs. The 
widths of RBFs were also optimized. The OLS-RBFN with 
Gaussian BFs achieved a MR of 28.5% by misclassifying 114 
test samples, and there were 110 misclassifications produced 
by the OLS-RBFN with Cauchy BFs leading to a MR of 
27.5% on the test dataset. The MLP network with 15 hidden 
neurons was trained by the generalized delta rule with 
momentum parameter 0.3 and the learning rate 0.7. The 
trained MLP misclassified 112 test samples with a MR of 
28%. When FLVQ was applied to a dataset with 700 samples 
including the above training samples and test samples, it 
achieves a MR of 37.85%. By combining FLVQ and a MLP 
with 15 hidden neurons, the momentum parameter as 0.1 and 
the learning rate 0.2, the FLVQ-MLP classifier misclassified 
113 test samples with a MR of 28.25%. The above 
classification results are summarized in Table 5. As analyzed 
in [38], there exists too much noise in the german credit 
dataset, which weakens the predictive capability of the 
features. From Table 5, it can be seen that the L2-SVM 
induced fuzzy classifier also outperforms the well-known 
classification methods in terms of the generalization 
performances on the german credit problem. 
 

{To insert Table 5 here} 
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Furthermore, in order to construct the possible smallest 
classifier with good generalization performance, the three 
indices: R-values,α -values, and ω -values of fuzzy rules 
were separately used to select the most influential fuzzy rules. 
Fig.4, Fig.5, and Fig.6 illustrate the R-values,α -values, and 
ω -values of the fuzzy rules respectively. Table 6 summarizes 
the rule subset selection results. It can be seen that in terms of 
R-values, the smallest fuzzy classifier, which achieves a MR 
of 25.25% on test samples, consists of 112 fuzzy rules. In 
terms of α -values, 77 most influential fuzzy rules were 
identified with a MR of 25.00% on the test dataset. The rule 
selection by using ω -values produced a fuzzy classifier with 
70 rules and led to a MR of 24.75% on test samples.  

 
{To insert Fig. 4 here} 

 
{To insert Fig. 5 here} 

 
{To insert Fig. 6 here} 

 
{To insert Table 6 here} 

 
From the above results it can be seen that the two new 

indices, α -values and ω -values of fuzzy rules, can generate 
much more compact rule bases than the classifier generated by 
the traditional R-values and the initially induced 
classifier )0(

SVMFC . This indicates that the induced fuzzy rules, 
corresponding to the support vectors in the SVM, should not 
be treated equally in the classification even though the 
inherent mechanism of the SVM has the potential of 
producing sparse solutions. Some support vectors or fuzzy 
rules are much more important than the others.  

 

V. DISCUSSIONS 

The proposed L2-SVM based fuzzy classifier and the rule 
ranking indices possess some additional merits that are worthy 
of being delineated further. One additional merit is that the 
proposed fuzzy rule ranking indices are also very useful for 
identifying the most influential support vectors for SVM 
itself. Although the SVM learning process produces sparse 
support vectors, it treats the support vectors equally in the 
classification process in the sense that all support vectors are 
equally considered for the classification. To the best of our 
knowledge, currently there is no special mechanism to select 
the most influential support vectors by considering the 
different depths of real contributions to the classification from 
different support vectors. A potential problem is that there 
may be redundant or correlated support vectors in the SVM. If 
a support vector ranking is produced for the SVM 
classification according to the importance of support vectors, 
a more parsimonious SVM classifier can be obtained in terms 
of the ranking results. Because each fuzzy rule in the induced 
fuzzy classifier corresponds to a support vector in L2-SVM, 

the proposed two rule ranking indices can be directly used to 
identify the most influential support vectors for SVM 
classification. 

The second additional merit is that the proposed method 
provides a new way of constructing prototype based fuzzy 
classifiers, which is different from the most currently used 
prototype based fuzzy classifiers. It is known that the 
outstanding advantage of prototype based fuzzy classifiers 
over grid based fuzzy classifiers lies in that the prototype 
based fuzzy classifiers can overcome the curse of 
dimensionality. However, there are three fundamental issues 
needed to be addressed in designing a prototype-based 
classifier [39]: i) How many prototypes are to be generated; ii) 
How to generate the prototypes; and iii) How to use the 
prototypes to design a classifier. Currently, in most efforts 
made to design prototype based fuzzy classifiers, these three 
issues are addressed independently and separately. For 
example, unsupervised clustering algorithms such as c-means 
[40], fuzzy c-means [41], and FLVQ [31], are widely used to 
generate prototypes, but most of the clustering algorithms 
require the number of clusters (prototypes) to be supplied 
externally or to be determined by using some cluster validity 
indices. Once the prototypes are generated, there are different 
ways of using the prototypes to design the classifier. One 
commonly used strategy is that these currently generated 
prototypes are used as initial fuzzy partitions, and an adaptive 
learning algorithm such as neural network learning algorithm 
is then applied to update these prototypes. Finally, based on 
training dataset, the adaptive prototype based classifier is 
trained optimally with good generalization performance on 
test dataset. An example of using this strategy is the neuro-
fuzzy classifier NEFCLASS [42], which uses fuzzy clustering 
to initialize its prototypes in [43]. Recently, new efforts have 
been made to develop prototype based classifiers by 
integrating the above issues into one modeling process. 
Mountain clustering method can automatically estimate the 
number of prototypes whilst generating the prototypes [44]. 
Laha and Pal [39] suggested two approaches to designing 
nearest prototype classifiers by addressing the problem of 
finding the required number of prototypes as well as the 
prototypes themselves together. The proposed method of 
constructing fuzzy classifiers based on L2-SVM in this paper 
can fulfill the integration of all the three issues together. In the 
L2-SVM based fuzzy classifier, one does not need to specify 
the initial number of fuzzy rules in advance, because each 
fuzzy rule corresponds to a support vector, and the number of 
support vectors or fuzzy rules depends on the number of non-
zero Lagrangian multipliers ( )iα . After the L2-SVM learning 
process, not only the support vectors, i.e., the prototypes, are 
generated, its classifier defined by the support vectors in a 
decision surface is also produced. These Lagrangian 
multipliers are naturally obtained from solving a quadratic 
programming. That is to say, all the above three issues in 
designing a prototype based classifier are addressed together 
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and automatically identified from data in one model structure 
in the proposed scheme. 

The third additional advantage of the proposed method is 
that not only the fuzzy rules are generated optimally from data 
through the SVM learning, but also the ranking results of all 
the input features are simultaneously obtained. Although 
traditional methods for feature ranking are capable of 
identifying the influential features for fuzzy modeling 
[45][46], most of them perform feature ranking in a separate 
phase from the classifier construction process. Importantly, if 
feature ranking and classifier construction are performed 
simultaneously in an integrated way, the goodness of features 
can be learned automatically from data and the most 
appropriate set of features relevant to the task could be found 
[47][48]. As a result, a parsimonious fuzzy model with good 
generalization performance would be obtained. In the 
proposed L2-SVM based fuzzy classification system, after the 
training process, an importance rank of each feature is 
discovered and the values of parameters characterizing MFs 
can also be evaluated based on the feature ranking results. In 
such a way, both feature ranking and automatic updating of 
MF parameters can be realized in an integrated manner. 

 

VI. CONCLUSION 

In this paper a new scheme is proposed for constructing 
parsimonious fuzzy classifiers with simultaneous model 
selection and feature ranking based on the L2-SVM technique. 
Another contribution of this paper is to have proposed two 
novel indices, α -values and ω -values of fuzzy rules, for 
fuzzy rule selection based on the L2-SVM learning results. 
Because the number of induced fuzzy rules in the L2-SVM 
based fuzzy classifier is not related to the dimensionality of 
input space, the proposed scheme provides an efficient way of 
avoiding the “curse of dimensionality” during constructing 
fuzzy classifiers in high-dimensional space. Furthermore, the 
combination of model selection, feature ranking, and fuzzy 
rule selection in the proposed scheme leads to parsimonious 
fuzzy classifier construction, which is demonstrated by 
experiments on two benchmark high-dimensional problems. 
The experimental results have also shown that α -values and 
ω -values are more effective than the traditional R-values in 
fuzzy rule ranking and selection. 
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Captions of Figures 
 

Fig. 1 R-values of induced fuzzy rules using 20 features of 
ringnorm data 

Fig. 2 α -values of induced fuzzy rules using 20 features of 
ringnorm data 

Fig. 3. ω -values of induced fuzzy rules using 20 features of 
ringnorm data 

Fig. 4 R-values of induced fuzzy rules using 20 features of 
german data 

Fig. 5 α -values of induced fuzzy rules using 20 features of 
german data 

Fig. 6 ω -values of induced fuzzy rules using 20 features of 
german data 
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Captions of Tables 

 
 
 
Table 1 Feature Ranking in the Descending Order for the 20 

Features of Ringnorm Data 
 
Table 2 Generalization Performances of the Well-Known 

Algorithms on Ringnorm Data 
 
Table 3 Fuzzy Rule Subset Selection in Terms of R-Values, 

α -Values, and ω -Values of Fuzzy Rules Using 20 
Features of Ringnorm Data 

 
Table 4 Fuzzy Rule Subset Selection in Terms of R-Values, 

α -Values, and ω -Values of Fuzzy Rules Using 18 
Features of Ringnorm Data 

 
Table 5 Generalization Performances of the Well-Known 

Algorithms on German Data 
 
Table 6 Fuzzy Rule Subset Selection in Terms of R-Values, 

α -Values, and ω -Values of Fuzzy Rules Using 20 
Features of German Data 
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Fig. 1 R-values of induced fuzzy rules using 20 features of ringnorm data 
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Fig. 2 α -values of induced fuzzy rules using 20 features of ringnorm data 
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 Fig. 3. ω -values of induced fuzzy rules using 20 features of ringnorm 

data 
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Fig. 4 R-values of induced fuzzy rules using 20 features of german data 
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Fig. 5 α -values of induced fuzzy rules using 20 features of german data 
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Fig. 6 ω -values of induced fuzzy rules using 20 features of german data 
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Tables 
 
 
 
 
 
 

TABLE 1 
FEATURE RANKING IN THE DESCENDING 

ORDER FOR THE 20 FEATURES OF RINGNORM DATA 
Features 9 1 8 15 12 5 10 2 3 20 
Feature 
ranking 
by θ~  

1.000 0.941 0.858  0.840 0.826 0.825 0.81 0.78   0.77   0.76  

 
Features 6 18 13 16 14 7 4 11 19 17 
Feature 
ranking 
by θ~  

0.755 0.754 0.752  0.751 0.739 0.737 0.72 0.653 0.65   0.64

 
 

 

 
 
 
 
 
 
 
 

TABLE 2 
GENERALIZATION PERFORMANCES OF THE WELL-KNOWN 

ALGORITHMS ON RINGNORM DATA 
Methods LDA QDA OLS-

RBFN 
with 

Gausian 
BFs 

OLS-
RBFN 
with 

Cauchy 
BFs 

MLP FLVQ FLVQ
-MLP

The 
proposed

MRs 24.54% 2.6% 2.52% 3.12% 13% 24.44%2.46% 1.32% 
 
 

 
 

 
 

TABLE 3 
FUZZY RULE SUBSET SELECTION IN TERMS OF R-VALUES, α -VALUES, AND 

ω -VALUES OF FUZZY RULES USING 20 FEATURES OF RINGNORM DATA 
Using R-value index  Usingα -value index  Usingω -value index  

sh  No. of 
rules 

selected 
Verr   Terr  sh  No. of 

rules 
selected 

Verr   Terr  sh  No. of 
rules 

selected 
Verr   Terr  

0 249 1.45% 1.32% 0 249 1.45% 1.32% 0 249 1.45% 1.32% 
0.001 242 1.45% 1.32% 0.001 90 1.45% 1.32% 0.0001 90 1.45% 1.32% 
0.002 214 1.45% 1.32% 0.002 89 1.50% 1.32% 0.0006 89 1.45% 1.32% 
0.003 193 1.80% 1.5% 0.005 88 1.55% 1.38% 0.0008 88 1.50% 1.34% 

 
 
 
 

TABLE 4 
FUZZY RULE SUBSET SELECTION IN TERMS OF R-VALUES, α -VALUES, AND 

ω -VALUES OF FUZZY RULES USING 18 FEATURES OF RINGNORM DATA 
Using R-value index  Usingα -value index  Usingω -value index  

sh  No. of 
rules 

selected 
Verr   Terr  sh  No. of 

rules 
selected 

Verr   Terr  sh  No. of 
rules 

selected 
Verr   Terr  

0 249 2.05% 2.06% 0 249 2.05% 2.06% 0 249 2.05% 2.06% 
0.001 230 2.05% 2.06% 0.001 90 2.05% 2.06% 0.0001 90 2.05% 2.06% 
0.002 197 2.15% 1.92% 0.002 89 2.05% 2.06% 0.0006 88 2.00% 2.02% 

    0.005 88 2.10% 2.04% 0.0016 87 1.90% 2.02% 
        0.002 84 1.85% 1.94% 
        0.0025 83 1.85% 1.78% 
        0.0035 82 2.30% 1.84% 
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TABLE 5 
 GENERALIZATION PERFORMANCES OF THE WELL-KNOWN ALGORITHMS ON GERMAN DATA 

 
Methods LDA  QDA OLS-

RBFN 
with 

Gausian 
BFs 

OLS-
RBFN 
with 

Cauchy 
BFs 

MLP FLVQ FLVQ-
MLP 

The 
proposed

MRs 31.25% 29.5% 28.5% 27.5% 28% 37.85% 28.25% 24.5% 
 
 
 

TABLE 6 
 FUZZY RULE SUBSET SELECTION IN TERMS OF R-VALUES, α -VALUES, AND  

ω -VALUES OF FUZZY RULES USING 20 FEATURES OF GERMAN DATA 

 

Using R-value index  Usingα -value index  Usingω -value index  

sh  No. of 
rules 

selected 
Verr   Terr  sh  No. of 

rules 
selected 

Verr   Terr  sh  No. of 
rules 

selected 
Verr   Terr  

0 195 27.33% 24.50% 0 195 27.33% 24.50% 0 195 27.33% 24.50% 
0.001 182 27.33% 24.50% 0.001 81 27.33% 24.50% 0.00001 81 27.33% 24.50% 
0. 004 126 27.33% 26.00% 0.01 77 27.33% 25.00% 0.00015 75 26.67% 25.00% 
0.0045 118 27.33% 25.75% 0.0102 76 28.00% 25.50% 0.0003 71 27.00% 25.25% 
0.0049 113 27.33% 25.25%     0.00034 70 27.00% 24.75% 

0.00498 112 27.33% 25.25%     0.00035 69 28.33% 25.50% 
0.005 111 28.67% 26.25%         


