
© [2007] IEEE. Reprinted, with permission, from [Mingsheng Ying, Retraction and Generalized Extension of
Computing with Words, Fuzzy Systems, IEEE Transactions on (Volume:15, Issue: 6), Dec.2007] . This material is
posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement
of any of the University of Technology, Sydney's products or services. Internal or personal use of this material is
permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-
permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting
it

CAO, YING, AND CHEN: RETRACTION AND GENERALIZED EXTENSION OF COMPUTING WITH WORDS 1

Retraction and Generalized Extension of
Computing with Words
Yongzhi Cao, Mingsheng Ying, and Guoqing Chen

Abstract— Fuzzy automata, whose input alphabet is a set of
numbers or symbols, are a formal model of computing with
values. Motivated by Zadeh’s paradigm of computing with words
rather than numbers, Ying proposed a kind of fuzzy automata,
whose input alphabet consists of all fuzzy subsets of a set of
symbols, as a formal model of computing with all words. In
this paper, we introduce a somewhat general formal model of
computing with (some special) words. The new features of the
model are that the input alphabet only comprises some (not
necessarily all) fuzzy subsets of a set of symbols and the fuzzy
transition function can be specified arbitrarily. By employing the
methodology of fuzzy control, we establish a retraction principle
from computing with words to computing with values for
handling crisp inputs and a generalized extension principle from
computing with words to computing with all words for handling
fuzzy inputs. These principles show that computing with values
and computing with all words can be respectively implemented by
computing with words. Some algebraic properties of retractions
and generalized extensions are addressed as well.

Index Terms— Computing with words, extension principle,
fuzzy automata, fuzzy control.

I. INTRODUCTION

ONE of the most remarkable capabilities of the human is
the capability of performing a wide variety of physical

and mental tasks by using perceptions in purposeful ways
and approximating perceptions via propositions in natural
language. Thus, developing perception-based machines may
be a feasible approach to constructing intelligent systems.
Motivated by this, Zadeh proposed and advocated the idea
of computing with words in a series of papers [33]–[37].
Computing with words tries to present a conceptual framework
for computing and reasoning with words rather than numbers,
where words play the role of labels of perceptions. Since its
introduction, the concept of computing with words has gained
considerable attention, including some successful applications
in information processing, decision, and control [9], [10], [14],
[27], [28], [38].

Computing, in its traditional sense, is centered on manip-
ulation of numbers and symbols, and is usually represented
by a dynamic model in which an input device is equipped. In
contrast, computing with words is a methodology in which the

This work was supported by the National Foundation of Natural Sciences
of China under Grants 60505011, 60496321, 70231010, and 70321001, and
by the Chinese National Key Foundation Research N Development Plan
(2004CB318108).

Y. Z. Cao and G. Q. Chen are with the School of Economics
and Management, Tsinghua University, Beijing 100084, China (e-mail:
caoyz@mail.tsinghua.edu.cn, chengq@em.tsinghua.edu.cn).

M. S. Ying is with the State Key Laboratory of Intelligent Technology
and Systems, Department of Computer Science and Technology, Tsinghua
University, Beijing 100084, China (e-mail: yingmsh@mail.tsinghua.edu.cn).

objects of computation are words and propositions drawn from
a natural language. It is worth noting that most of the literature
on computing with words is devoted to developing new
computationally feasible algorithms for uncertain reasoning.
In these works, the word “computing” in the phrase “com-
puting with words” means computational implementations of
uncertain reasoning; it is irrelevant to the formal theory of
computing.

In his paper [30], Ying incorporated the initial idea of
computing with words together with classical models of com-
putation and then proposed a formal model of computing
with words in terms of fuzzy automata. It is well known
that automata are the prime example of general computational
systems. In an automaton, the input alphabet consists of a
finite number of discrete input symbols. These input symbols
may be reasonably thought of as the input values that we are
going to compute. Fuzzy automata initiated by Santos [23]
resulted from combining automata theory with fuzzy logic, in
which state transitions are imprecise and uncertain. It is this
property that makes it possible to model uncertainty which is
inherent in many applications (see, for example, [5], [11], and
[15]). Nevertheless, the input alphabet of a fuzzy automaton
appearing in the literature on computation is the same as that of
an automaton, although a certain impreciseness or uncertainty
is involved in the process of computation. Consequently, these
fuzzy automata can still be thought of as models of computing
with values. The key idea underlying Ying’s formal model
of computing with words is the use of words in place of
values as input symbols of a fuzzy automaton, where words
are formally represented as fuzzy subsets of the input alphabet,
i.e., possibility distributions over the input alphabet. Such an
idea has been developed by Qiu and Wang in [21] and [24].

Following [30], we identify a value with a symbol from
the input alphabet and also a word with a fuzzy subset of the
input alphabet, and use them exchangeably. For clarity, it is
convenient to name three kinds of fuzzy automata explicitly.
Informally, we say a fuzzy automaton is a fuzzy automaton
for computing with values (FACV) if its input alphabet is a
finite set of symbols (values). A fuzzy automaton is said to
be a fuzzy automaton for computing with words (FACW) if
its input alphabet consists of some (not necessarily all) fuzzy
subsets of a finite set of symbols; in particular, the fuzzy
automaton is called a fuzzy automaton for computing with
all words (FACAW) if its input alphabet consists of all fuzzy
subsets of the set of symbols. The point of departure in [30]
is an FACV. By exploiting extension, the FACV gives rise
to an FACAW that models formally computing with words.
This process of obtaining a formal model for computing with

CAO, YING, AND CHEN: RETRACTION AND GENERALIZED EXTENSION OF COMPUTING WITH WORDS 2

Computing with All Words

Computing with Words

Computing with Values

6

?

K

extension

extension

retraction

generalized

(a)

(c)

(b)

Fig. 1. Interrelation among retractions, extensions, and generalized exten-
sions.

words just corresponds to the extension (c) in Fig. 1. Roughly
speaking, Ying’s formal model of computing with words is
an FACAW arising from a certain FACV. As a consequence,
the FACAW inevitably depends on the underlying FACV.
This observation motivates us to propose a somewhat general
formal model of computing with words.

In this paper, we adopt FACWs to model formally com-
puting with words. The new features of the model are that
the input alphabet consists of some (not necessarily all) fuzzy
subsets and the fuzzy transition function can be specified
arbitrarily. After introducing this model, we embark upon two
directional extensions: retractions and generalized extensions.
The start point of the extensions is an FACW modeling
computing with (some special) words. For the retraction, we
establish a retraction principle from computing with words
to computing with values which means that computing with
values can be implemented by computing with words with
the price of a large number of extra computations; for the
generalized extension, we establish a generalized extension
principle from computing with words to computing with all
words which means that computing with all words can be
implemented by computing with words with the price of a
large number of extra computations. In fact, the generalized
extension provides an interpolation approach which helps
reduce the complexity of devising a model for computing with
words.

The motivation behind retractions and generalized exten-
sions comes from fuzzy control theory, where the underlying
fuzzy logic system is used to deal with crisp inputs as well
as fuzzy inputs by different fuzzifications. Both the retrac-
tion principle and the generalized extension principle here
are derived by employing the methodology of fuzzy control
(see, e.g., [7], [17], [25]). The purpose of developing the
principles in this way is twofold. Firstly, it aims to provide a
background semantics in doing so. Secondly, it aims to give a
paradigm for establishing other extension principles by using
other fuzzifications and inference engines which have been

intensively studied in the field of fuzzy control (see Chapters
7 and 8 of [25] for some examples).

As a result, the retraction that corresponds to the process
(a) in Fig. 1 yields an FACV for handling crisp inputs and
the generalized extension that corresponds to the process
(b) in Fig. 1 yields an FACAW for handling fuzzy inputs.
By identifying each symbol from the input alphabet with
a singleton, each FACV can be viewed as an FACW. In
this sense, we see later that the process (c) in Fig. 1 is a
special case of the process (b), which justifies the name of
generalized extension on the one hand. On the other hand,
the name is also justified by the fact that the generalized
extension is not an extension in a strictly mathematical sense
which will be made precise. Further, we will verify that the
process (b) in Fig. 1 produces the same outcome as that of
the composition of processes (a) and (c). Finally, in order to
render retractions and generalized extensions more useful for
real-world applications (for example, large-scale systems), we
turn to investigating the preservation property of retractions
and generalized extensions under the use of product operators
and homomorphisms.

The remainder of this paper is structured as follows. In
Section II, we briefly review some basics of fuzzy automata
and introduce the formal model of computing with words.
Sections III and IV are devoted to retractions and generalized
extensions, respectively. Some relationships among retractions,
extensions, and generalized extensions are explored in Section
V. We discuss certain algebraic properties of retractions and
generalized extensions in Section VI and conclude the paper in
Section VII. The proofs of our theorems are given in Appendix
I.

II. FORMAL MODEL OF COMPUTING WITH WORDS

To introduce a formal model of computing with words, let
us first review some notions on fuzzy set theory and fuzzy
automata. For a detailed introduction to the notions, the reader
may refer to [12], [18], and [15].

Let X be a universal set. A fuzzy set A [31], or rather a
fuzzy subset A of X , is defined by a function assigning to
each element x of X a value A(x) in the closed unit interval
[0, 1]. Such a function is called a membership function, which
is a generalization of the characteristic function associated to
a crisp set; the value A(x) represents the membership grade
of x in A, which characterizes the degree of membership of
x in A.

We denote by F(X) the set of all fuzzy subsets of X . For
any A,B ∈ F(X), we say that A is contained in B (or B
contains A), denoted by A ⊆ B, if A(x) ≤ B(x) for all
x ∈ X . We say that A = B if and only if A ⊆ B and B ⊆ A.
A fuzzy set is said to be empty if its membership function is
identically zero on X . We use ∅ to denote the empty fuzzy
set.

The support of a fuzzy set A is a crisp set defined as
supp(A) = {x ∈ X : A(x) > 0}. Whenever supp(A) is a
finite set, say supp(A) = {x1, x2, . . . , xn}, we may write A
in Zadeh’s notation as

A =
A(x1)

x1
+

A(x2)
x2

+ · · ·+ A(xn)
xn

.

CAO, YING, AND CHEN: RETRACTION AND GENERALIZED EXTENSION OF COMPUTING WITH WORDS 3

For any family λi, i ∈ I , of elements of [0, 1], we write
∨i∈Iλi or ∨{λi : i ∈ I} for the supremum of {λi : i ∈ I},
and ∧i∈Iλi or ∧{λi : i ∈ I} for the infimum. In particular, if
I is finite, then ∨i∈Iλi and ∧i∈Iλi are the greatest element
and the least element of {λi : i ∈ I}, respectively. For any
A ∈ F(X), the height of A is defined as

height(A) = ∨x∈XA(x).

Given A,B ∈ F(X), the union of A and B, denoted A∪B,
is defined by the membership function

(A ∪B)(x) = A(x) ∨B(x)

for all x ∈ X; the intersection of A and B, denoted A ∩ B,
is given by the membership function

(A ∩B)(x) = A(x) ∧B(x)

for all x ∈ X . Let λ ∈ [0, 1] and A ∈ F(X). The scale
product λ ·A of λ and A is defined by

(λ ·A)(x) = λ ∧A(x)

for every x ∈ X; this is again a fuzzy subset of X .
For later need, let us recall Zadeh’s extension principle. If

X and Y are two crisp sets and f is a mapping from X to
Y , then f can be extended to a mapping from F(X) to F(Y)
in the following way: For any A ∈ F(X), f(A) ∈ F(Y) is
given by

f(A)(y) = ∨{A(x) : x ∈ X and f(x) = y}
for all y ∈ Y .

We are ready to review the concepts of fuzzy automaton and
fuzzy language. The fuzzy automata here have been known as
max-min automata in some mathematical literature [11], [23].

Definition 1: A fuzzy automaton is a five-tuple M =
(Q,Σ, δ, q0, F), where:

1) Q is a finite set of states.
2) Σ is a finite input alphabet.
3) q0, a member of Q, is the initial state.
4) F is a fuzzy subset of Q, called the fuzzy set of final

states and for each q ∈ Q, F (q) indicates intuitively the
degree to which q is a final state.

5) δ, the fuzzy transition function, is a function from Q×Σ
to F(Q) that takes a state in Q and an input symbol in
Σ as arguments and returns a fuzzy subset of Q.

For any p, q ∈ Q and a ∈ Σ, we can interpret δ(p, a)(q) as
the possibility degree to which the automaton in state p and
with input a may enter state q.

Denote by Σ∗ the set of all finite strings constructed by
concatenation of elements of Σ, including the empty string ε.
In the literature of classical automata theory, a string is often
called a “word”. Like [30], to avoid confusion in this paper,
we do not use the term “word” in this way and only use it to
refer to what we mean by “word” in the phrase “computing
with words.”

To describe what happens when we start in any state and
follow any sequence of inputs, we extend the fuzzy transition
function to strings.

Definition 2: Let M = (Q,Σ, δ, q0, F) be a fuzzy automa-
ton.

1) The extended fuzzy transition function from Q × Σ∗

to F(Q), denoted by the same notation δ, is defined
inductively as follows:

δ(p, ε) =
1
p

δ(p, wa) = ∪q∈Q[δ(p, w)(q) · δ(q, a)]

for all w ∈ Σ∗ and a ∈ Σ, where 1/p is a singleton in
Q, i.e., the fuzzy subset of Q with membership 1 at p
and with zero membership for all the other elements of
Q. In addition, δ(p, w)(q) · δ(q, a) stands for the scale
product of the membership δ(p, w)(q) and the fuzzy set
δ(q, a).

2) The language L(M) accepted by M is a fuzzy subset
of Σ∗ with the membership function defined by

L(M)(w) = height(δ(q0, w) ∩ F)

for all w ∈ Σ∗. The membership L(M)(w) is the degree
to which w is accepted by M .

The above definitions provide a model of computing with
values on fuzzy automata. We shall refer to the fuzzy au-
tomaton in Definition 1 as a fuzzy automaton for computing
with values (or FACV for short). Within the framework of
fuzzy automata, Ying [30] proposed the following formal
model of computing with words by extending further the fuzzy
transition function of an FACV.

Definition 3: Let M = (Q,Σ, δ, q0, F) be an FACV.
1) To deal with words as inputs, δ is extended to a function

from Q× F(Σ) to F(Q), which is denoted by δ̂, with
Zadeh’s extension principle:

δ̂(p,A) = ∪a∈Σ[A(a) · δ(p, a)]

for any p ∈ Q and A ∈ F(Σ). This gives rise to a fuzzy
automaton M̂ = (Q,F(Σ), δ̂, q0, F).

2) To deal with strings of words as inputs, δ̂ in 1) is
further extended to a function from Q×F(Σ)∗ to F(Q),
denoted again by δ̂, as follows:

δ̂(p, ε) =
1
p

δ̂(p,WA) = ∪q∈Q[δ̂(p,W)(q) · δ̂(q, A)]

for all W ∈ F(Σ)∗ and A ∈ F(Σ).
3) The word language Lw(M̂) accepted by M̂ is a fuzzy

subset of F(Σ)∗ with the membership function defined
by

Lw(M̂)(W) = height(δ̂(q0,W) ∩ F)

for all W ∈ F(Σ)∗. The membership Lw(M̂)(W) is
the degree to which the string W of words is accepted
by M̂ .

As we see from Definition 3, the formal model of computing
with words proposed by Ying is dynamic in the sense that
the output generally depends on past words of the input, and
it is essentially a fuzzy automaton that is the same as the
fuzzy automaton in Definition 2. Importantly, however, the

CAO, YING, AND CHEN: RETRACTION AND GENERALIZED EXTENSION OF COMPUTING WITH WORDS 4

strings of inputs are different: in Definition 2 they are strings
of values, whereas in Definition 3 they are strings of words.
It is worth noting that the input alphabet of M̂ consists of
all fuzzy subsets of Σ and the fuzzy transition function δ̂
in 1) of Definition 3 is also dependent on the underlying
fuzzy automaton M . For this reason, we introduce a somewhat
general model of computing with words.

Definition 4: A fuzzy automaton for computing with
words (or FACW for short) is a fuzzy automaton M̃ =
(Q, Σ̃, δ̃, q0, F), where the components Q, q0, F have their
same interpretation as in Definition 1 and the following hold:

2)’ Σ̃ is a subset of F(Σ), where Σ is a finite set of symbols,
called the underlying input alphabet.

5)’ δ̃ is a fuzzy transition function from Q× Σ̃ to F(Q).

The new features of the model in Definition 4 are that the
input alphabet consists of some (not necessarily all) fuzzy
subsets of a finite set of symbols (i.e., the underlying input
alphabet) and the fuzzy transition function can be specified
arbitrarily. In particular, when Σ̃ = F(Σ), we say that the
FACW is a fuzzy automaton for computing with all words (or
FACAW for short). By and large, the choice of Σ̃ and the
specification of the fuzzy transition function δ̃ are subjective;
they are provided by the expert in an ad hoc (heuristic)
manner from experience or intuition. Nevertheless, in order
to provide more information for computing with values and
computing with all words, it is better to choose suitably more
words for Σ̃ and require Σ̃ to be complete. (The completeness
means that for each a ∈ Σ, there exists a word A ∈ Σ̃
such that A(a) > 0.) There are also some methods (see,
for example, pages 256-260 of [6] and pages 19-26 of [18])
for estimating the fuzzy transition function δ̃ that determines
by some membership functions. Definition 2 is applicable to
FACWs, and we thus get a direct way of computing the string
of words.

Example 1: Let us assume that we are considering a gas
cooker. The temperature of the gas cooker is experientially
classified as three states: q0, q1, and q2, where q0, q1, q2 repre-
sent “low”, “medium”, and “high”, respectively. We consider
the flux of gas as inputs, which is described by linguistic
expressions (namely, words): S = small, M = medium,
and L = large. More explicitly, these words interpreted as
fuzzy sets are defined as follows:

S = small =
1
1

+
0.5
2

+
0.1
3

,

M = medium =
0.2
2

+
1
3

+
0.2
4

,

L = large =
0.1
3

+
0.5
4

+
1
5
,

where the underlying input alphabet Σ consists of discretized
flux, i.e., Σ = {1, 2, 3, 4, 5}. We take q0 as the initial state and
F = 0.1/q0+1/q1+0.1/q2 as the fuzzy set of final states. The
fuzzy transition function δ̃ is depicted in Fig. 2, where an arc
from qi to qj with label W |x means that δ̃(qi,W)(qj) = x.
A box with qi|y in Fig. 2 means that F (qi) = y. We thus get
an FACW M̃ = (Q = {q0, q1, q2}, Σ̃ = {S,M,L}, δ̃, q0, F).
According to the fuzzy transition function, we can compute

q0|0.1 q2|0.1
-- q1|1�

-
�

M |0.9 L|0.3 L|0.9

M |0.9S|0.3S|0.9

M |1 L|1S|1

 s

Y

S|0.7

L|0.7

Fig. 2. An FACW modeling the relationship between the temperature and
the gas flux of a gas cooker.

the word language accepted by M̃ . For example, the degree
to which the string “SLM” is accepted is 0.7.

III. RETRACTIONS: COMPUTING WITH VALUES

Recall that the formal model derived by Ying is in fact
an extension from computing with values to computing with
words. In this section, we in turn address how to tackle
computing with values when we only have a fuzzy automaton
M̃ = (Q, Σ̃, δ̃, q0, F) for computing with words. To this end,
we shall establish a fuzzy automaton M̃↓ = (Q,Σ, δ↓, q0, F),
where the components Q, q0, F are the same as those of M̃ , Σ
is the underlying input alphabet of M̃ , and δ↓ which depends
on the fuzzy transition function of M̃ need to be defined.

As mentioned in the introduction, we will define δ↓ by using
the methodology of fuzzy control (see, e.g., [17] and [25]). To
do so, let us first recall the general scheme of a fuzzy logic
system based on fuzzy IF-THEN rules. A fuzzy IF-THEN rule
expresses a fuzzy implication relation between the fuzzy sets
of the premise and the fuzzy sets of the conclusion. Each fuzzy
IF-THEN rule is of the following form

IF premise THEN consequent.

For example, a fuzzy IF-THEN rule for controlling a product
line could be

IF buffer level is Full AND surplus is Positive, THEN
production rate is Low,

where Full, Positive, and Low are fuzzy sets defined on
corresponding universal sets. This is a condition→ action rule,
which means that the production rate should be decreased if
the buffer is full and, moreover, the production is superfluous.

A fuzzy logic system (FLS) is comprised of four compo-
nents:
• Rule-base: It consists of some fuzzy IF-THEN rules.
• Fuzzification: It encodes the crisp inputs into fuzzy sets

described by linguistic expressions.
• Inference engine: It uses the fuzzy rules in the rule-base to

produce fuzzy conclusions (e.g., the implied fuzzy sets).
• Defuzzification: It decodes the inferred fuzzy conclusions

into crisp outputs.
For our purpose of defining δ↓, there is no need for devel-

oping a complete FLS; in fact, the defuzzification component
will not be considered.

Let M̃ = (Q, Σ̃, δ̃, q0, F) be an FACW. Recall that if the
current state is p and the input is A, then by definition the next

CAO, YING, AND CHEN: RETRACTION AND GENERALIZED EXTENSION OF COMPUTING WITH WORDS 5

state distribution is δ̃(p,A). According to this, we associate to
each pair of p ∈ Q and A ∈ Σ̃ a fuzzy IF-THEN rule RA

p :

IF current state is 1
p AND input is A, THEN next state

distribution is δ̃(p,A).

The rule means that the possibility that the next state is q is
exactly δ̃(p,A)(q), if the current state is p and the input is
A. The rule-base associated to M̃ , denoted by R, consists of
all such fuzzy IF-THEN rules RA

p . If δ̃(p,A) = ∅ for some
p ∈ Q and A ∈ Σ̃, then we exclude the fuzzy IF-THEN rule
RA

p from the rule-base R since, as we will see later, this rule
does not contribute to the computation of δ↓. So there are at
most |Q| · |Σ̃| rules in R, where the notation |X| denotes the
cardinality of X .

Having built the rule-base, we now turn to the fuzzification.
This process is to specify how the FLS will convert its crisp
inputs into fuzzy sets that are used to quantify the information
in the rule-base. Formally, for a universal set X and any x ∈
X , fuzzification transforms x to a fuzzy subset of X , denoted
by x̃; in other words, fuzzification is a mapping from X to
F(X). Quite often singleton fuzzification is used in the fuzzy
control community, which produces a singleton fuzzy set x̃ =
1/x. Note that the singleton fuzzy set is nothing other than
a different representation for an element of the universal set,
so we sometimes identify x ∈ X with x̃ = 1/x when this is
convenient.

The inference engine has two basic tasks: The first is to
determine the extent to which each fuzzy IF-THEN rule in R
is relevant to the current situation characterized by the current
state and the input (we call this task matching); the second
is to draw conclusions by using the information in the rule-
base that relates to the current situation (we call this task an
inference step).

Suppose that the current state of M̃↓ is q ∈ Q and the input
of M̃↓ is a ∈ Σ. Using singleton fuzzification, we get two
fuzzy sets q̃ and ã that respectively describe the current state
and the input of the FLS. Following the standard approach
used in fuzzy control, for any fuzzy IF-THEN rule RA

p , let us
define two fuzzy sets SA

p ∈ F(Q) and IA
p ∈ F(Σ) as follows:

SA
p (q) = (

1
p
∩ q̃)(q) for any q ∈ Q;

IA
p (a) = (A ∩ ã)(a) for any a ∈ Σ.

The membership value SA
p (q) characterizes the matching

degree between the current state q̃ and the rule premise 1/p
of RA

p ; similarly, IA
p (a) characterizes the matching degree

between the input ã and the rule premise A of RA
p . By a

straightforward calculation, we find that

SA
p =

1
p

and IA
p = A.

Further, for the fuzzy IF-THEN rule RA
p we define a fuzzy set

MA
p ∈ F(Q× Σ) with the membership function given by

MA
p (q, a) = SA

p (q) ∧ IA
p (a).

Intuitively, MA
p (q, a) represents the certainty that the premise

of RA
p holds for the current state q and input a when we use

singleton fuzzification. By the previous argument, we see that

MA
p (q, a) =

1
p
(q) ∧A(a),

that is,

MA
p (q, a) =

{
A(a), if q = p
0, otherwise.

Since p and A are arbitrary, this concludes the process of
matching the current state q and crisp input a with the premises
of the rules.

Let us now turn to the inference step. For each rule RA
p , we

define an implied fuzzy set, denoted NA
p , with the membership

function
NA

p (q′) = MA
p (q, a) ∧ δ̃(p,A)(q′)

for any q′ ∈ Q. The implied fuzzy set NA
p specifies the

certainty level that the next state should be q′, taking into
consideration merely the rule RA

p . The overall implied fuzzy
set, denoted N̄ , is given by the following membership function

N̄(q′) = ∨(p,A)∈Q×Σ̃NA
p (q′)

for any q′ ∈ Q. The membership value N̄(q′) is a result of
considering all the rules in the rule-base at the same time, and
gives the maximal possibility degree of q′ as the next state
when the current state is q and the input is a.

It follows from the above inference step that it is rational to
define δ↓(q, a) = N̄ . We can present an explicit expression
for the membership function of δ↓(q, a) by the following
computation.

δ↓(q, a)(q′) = N̄(q′)
= ∨(p,A)∈Q×Σ̃NA

p (q′)

= ∨(p,A)∈Q×Σ̃[MA
p (q, a) ∧ δ̃(p,A)(q′)]

= ∨(q,A)∈{q}×Σ̃[MA
q (q, a) ∧ δ̃(q, A)(q′)]

= ∨A∈Σ̃[A(a) ∧ δ̃(q, A)(q′)],

i.e.,
δ↓(q, a)(q′) = ∨A∈Σ̃[A(a) ∧ δ̃(q, A)(q′)]

for any q′ ∈ Q. From the computation, we also see that δ̃(p,A)
has no contribution to δ↓(q, a) if δ̃(p,A) = ∅.

Finally, we have the following definition.
Definition 5: Let M̃ = (Q, Σ̃, δ̃, q0, F) be an FACW. The

retraction of M̃ is an FACV M̃↓ = (Q,Σ, δ↓, q0, F), where
the components Q, q0, F are the same as those of M̃ , Σ is the
underlying input alphabet of M̃ , and δ↓ is a mapping from
Q × Σ to F(Q) that maps (q, a) ∈ Q × Σ to a fuzzy subset
δ↓(q, a) of Q with the membership function

δ↓(q, a)(q′) = ∨A∈Σ̃[A(a) ∧ δ̃(q, A)(q′)]

for any q′ ∈ Q.
The retraction of M̃ deals with crisp inputs, and thus it

may serve as a device for computing with values. We will
refer to “↓” as the operation of obtaining the retraction. As
an example, we derive the retraction of the FACW given in
Example 1.

CAO, YING, AND CHEN: RETRACTION AND GENERALIZED EXTENSION OF COMPUTING WITH WORDS 6

q0|0.1
-

q1|1- q2|0.1�
-

�
1|0.3, 2|0.3, 3|0.9, 4|0.2

2|0.2, 3|0.9, 4|0.3, 5|0.3

1|0.9, 2|0.5, 3|0.1

3|0.1, 4|0.5, 5|0.9
1|1

2|0.5
2|0.23|0.1 4|0.2

3|1

� � �j

Y

3|0.1

3|0.1

3|0.1

4|0.5

4|0.5

5|1

5|0.7

1|0.7 2|0.5

Fig. 3. Retraction of the FACW given in Example 1.

Example 2: Consider the FACW M̃ given in Example 1.
By Definition 5, a straightforward calculation yields that the
retraction of M̃ is M̃↓ = (Q,Σ = {1, 2, 3, 4, 5}, δ↓, q0, F),
where the components Q, q0, F are the same as those in
Example 1 and δ↓ is depicted in Fig. 3. We compute the
membership grades of δ↓(q0, 3) as an example:

δ↓(q0, 3)(q0) = [S(3) ∧ δ̃(q0, S)(q0)]
∨[M(3) ∧ δ̃(q0,M)(q0)]
∨[L(3) ∧ δ̃(q0, L)(q0)]

= (0.1 ∧ 1) ∨ (1 ∧ 0) ∨ (0.1 ∧ 0)
= 0.1,

δ↓(q0, 3)(q1) = [S(3) ∧ δ̃(q0, S)(q1)]
∨[M(3) ∧ δ̃(q0,M)(q1)]
∨[L(3) ∧ δ̃(q0, L)(q1)]

= (0.1 ∧ 0) ∨ (1 ∧ 0.9) ∨ (0.1 ∧ 0.3)
= 0.9,

δ↓(q0, 3)(q2) = [S(3) ∧ δ̃(q0, S)(q2)]
∨[M(3) ∧ δ̃(q0,M)(q2)]
∨[L(3) ∧ δ̃(q0, L)(q2)]

= (0.1 ∧ 0) ∨ (1 ∧ 0) ∨ (0.1 ∧ 0.7)
= 0.1.

We end this section by making a close link between com-
puting with values and computing with words.

Theorem 1: Suppose that M̃ = (Q, Σ̃, δ̃, q0, F) is an
FACW and M̃↓ = (Q,Σ, δ↓, q0, F) is the retraction of M̃ .
Then for any w = a1 · · · an ∈ Σ∗, we have that

L(M̃↓)(w) = ∨A1,...,An∈Σ̃

[
Lw(M̃)(A1 · · ·An) ∧A1(a1)∧

· · · ∧An(an)
]
.

Proof: See Appendix I.
The above theorem may be seen as a retraction principle

from computing with words to computing with values. The
meaning of this theorem is that computing with values can
be implemented by computing with words; and thus it gives
us a way of dealing with crisp inputs on an FACW. Observe
that the number of computations for implementing computing
with values by computing with words increases exponentially
as the length of the input string.

IV. GENERALIZED EXTENSIONS: COMPUTING WITH ALL
WORDS

Having finished the transformation from computing with
words to computing with values in the preceding section, we

turn our attention to another transformation which makes an
FACW more robust in the sense that it can deal with some
inputs not in its input alphabet.

More explicitly, let us consider the following problem.
Suppose that there is an FACW M̃ = (Q, Σ̃, δ̃, q0, F). Note
that the input alphabet Σ̃ comprises only some (not necessarily
all) words (i.e., fuzzy subsets of Σ). This means that M̃ cannot
accept a fuzzy subset A′, which is in F(Σ) but not in Σ̃, as
an input, although A′ may be very similar to A. For instance,
A = small and A′ = almost small. Since the fuzzy sets
in Σ̃ are mathematical expressions of linguistic terms that
are usually selected by an expert and are always somewhat
imprecise and vague, it is not reasonable to discriminate
among similar inputs. Thus, if δ̃(q, A) is defined for some
(q, A) ∈ Q × Σ̃, we hope that δ̃(q, A′) would be defined
whenever A′ is similar to A. To this end, we will extend δ̃ to
a fuzzy transition function δ↑ from Q×F(Σ) to F(Q). As a
result, we will obtain an FACAW M̃↑ = (Q,F(Σ), δ↑, q0, F)
which can accept more words than in Σ̃ as inputs.

Like the retractions, we define δ↑ again by utilizing the
methodology of fuzzy control. Recall that the fuzzification
of FLS introduced in the previous section can merely cope
with crisp inputs. In order to handle fuzzy inputs, we have
to seek other fuzzification techniques. In [7], Foulloy and
Galichet provided a means of introducing fuzzy inputs in
Takagi–Sugeno–Kang type FLS. In a similar manner, we can
develop a fuzzification for dealing with fuzzy inputs in our
context.

For later need, let us first review some basic concepts in
[7]. Let L be a set of linguistic terms and X be a crisp set.
Suppose that R is a fuzzy relation defined on L×X , that is,
R ∈ F(L×X). Now to any linguistic term l ∈ L, we associate
a fuzzy subset Ml ∈ F(X) given by the membership function

Ml(x) = R(l, x)

for any x ∈ X . The fuzzy subset Ml is called the fuzzy
meaning of l. Obviously, the fuzzy meaning is just another
representation of a fuzzy relation. In the same way, to any
x ∈ X , we associate a fuzzy subset Dx ∈ F(L) given by the
membership function

Dx(l) = R(l, x)

for any l ∈ L. The fuzzy subset Dx is called the fuzzy
description of x. The fuzzy description is a simple means
of describing an element of X in words. This notion can be
generalized to fuzzy subsets. For any A ∈ F(X), the (upper)
fuzzy description of A is a fuzzy subset DA ∈ F(L) given by
the membership function

DA(l) = height(Ml ∩A)

for any l ∈ L, which represents the possibility of a fuzzy
event characterized by the fuzzy meaning Ml of the linguistic
terms l ∈ L, considering the fuzzy input A as a possibility
distribution. As interpreted in [7], the fuzzy description of a
fuzzy subset gives the linguistic terms which possibly describe
an input.

CAO, YING, AND CHEN: RETRACTION AND GENERALIZED EXTENSION OF COMPUTING WITH WORDS 7

We now use the fuzzy description to determine the matching
degree between a fuzzy input and the premise of a fuzzy IF-
THEN rule. Assume that the current state of M̃↑ is q and the
input of M̃↑ is A′ ∈ F(Σ), and let RA

p be a rule in R. For
the first premise of RA

p , we may take L = F(Q) and X = Q.
Let R be the fuzzy relation that maps (p̃′, q′) to p̃′(q′) for any
(p̃′, q′) ∈ F(Q)×Q. Since the current state q of M̃↑ is crisp,
we may take Dq(1/p) as the fuzzy description of q relative to
the rule RA

p . By definition,

Dq(
1
p
) = R(

1
p
, q) =

1
p
(q).

For the second premise, we may take L = Σ̃ and X = Σ.
Let R be the fuzzy relation sending (B, a) to B(a) for any
(B, a) ∈ Σ̃ × Σ. Consequently, the fuzzy meaning of A is
given by

MA(a) = R(A, a) = A(a)

for any a ∈ Σ. We thus obtain that the fuzzy description of
A′ relative to the rule RA

p is

DA′(A) = height(MA ∩A′)
= ∨a∈Σ[MA(a) ∧A′(a)]
= ∨a∈Σ[A(a) ∧A′(a)].

Further, for any fuzzy IF-THEN rule RA
p we define a fuzzy

set MA
p ∈ F(Q×F(Σ)) with the membership function given

by

MA
p (q, A′) = Dq(

1
p
) ∧DA′(A).

Similar to the FLS with crisp inputs, MA
p (q, A′) can be viewed

as the matching degree between the current situation of M̃↑

and the premise of RA
p . By a straightforward calculation, we

have that

MA
p (q, A′) =

{ ∨a∈Σ[A(a) ∧A′(a)], if q = p
0, otherwise.

After finishing the step of matching, let us address the
inference step. In fact, the inference step of FLS introduced
in the last section remains applicable. Correspondingly, the
implied fuzzy set for the rule RA

p , denoted NA
p , is defined by

the membership function

NA
p (q′) = MA

p (q, A′) ∧ δ̃(p,A)(q′)

for any q′ ∈ Q. The implied fuzzy set NA
p specifies the

certainty level that the next state should be q′ when only the
rule RA

p is considered. The overall implied fuzzy set, denoted
N̄, is given by the membership function

N̄(q′) = ∨(p,A)∈Q×Σ̃N
A
p (q′)

for any q′ ∈ Q. The membership value N̄(q′) is a result of
considering all the rules in the rule-base at the same time, and
it gives the maximal possibility degree of q′ as the next state
when the current state is q and the input is A′.

In the same manner as for the retraction, we define
δ↑(q, A′) = N̄. By the previous definitions, we have that

δ↑(q, A′)(q′) = N̄(q′)
= ∨(p,A)∈Q×Σ̃N

A
p (q′)

= ∨(p,A)∈Q×Σ̃[MA
p (q, A′) ∧ δ̃(p,A)(q′)]

= ∨(q,A)∈{q}×Σ̃[MA
q (q, A′) ∧ δ̃(q, A)(q′)]

= ∨A∈Σ̃

{[∨a∈Σ [A(a) ∧A′(a)]
]

∧δ̃(q, A)(q′)
}

= ∨A∈Σ̃ ∨a∈Σ [A(a) ∧A′(a) ∧ δ̃(q, A)(q′)],

i.e., δ↑(q, A′)(q′) = ∨A∈Σ̃ ∨a∈Σ [A(a) ∧ A′(a) ∧ δ̃(q, A)(q′)]
for any q′ ∈ Q.

Finally, we have the following definition.
Definition 6: Let M̃ = (Q, Σ̃, δ̃, q0, F) be an FACW.

The generalized extension of M̃ is an FACAW M̃↑ =
(Q,F(Σ), δ↑, q0, F), where the components Q, q0, F are the
same as those of M̃ , F(Σ) consists of all fuzzy subsets of the
underlying input alphabet of M̃ , and δ↑ is a mapping from
Q×F(Σ) to F(Q) defined by

δ↑(q, A′)(q′) = ∨A∈Σ̃ ∨a∈Σ [A(a)∧A′(a)∧ δ̃(q, A)(q′)] (1)

for any (q, A′) ∈ Q×F(Σ) and q′ ∈ Q.
As we see from the above definition, the generalized exten-

sion M̃↑ of M̃ can deal with all words over the underlying
input alphabet of M̃ as inputs. We thus consider M̃↑ as a
device for computing with all words and refer to “↑” as
the operation of obtaining the generalized extension. The
differences between M̃↑ and M̃ are visible, as the following
example shows.

Example 3: Consider again the FACW M̃ =
(Q, Σ̃, δ̃, q0, F) given in Example 1. By Definition
6, we get that the generalized extension of M̃
is M̃↑ = (Q,F(Σ), δ↑, q0, F), where δ↑ is given
by (1) in Definition 6. For instance, let S′ be
almost small defined by the membership function
S′(x) = [S(x)]

1
2 for any x ∈ Σ = {1, 2, 3, 4, 5}, where

S = small = 1/1+0.5/2+0.1/3. By a simple calculation, we
see that S′ = 1/1 + 0.7071/2 + 0.3162/3 6∈ Σ̃, which means
that S′ is not an admissible input of M̃ . But S′ ∈ F(Σ), so
S′ is an admissible input of M̃↑. If we input the word S′ at
q0 of M̃↑, then we obtain that

δ↑(q0, S
′)(q0) = ∨A∈Σ̃ ∨a∈Σ [A(a) ∧ S′(a) ∧ δ̃(q0, A)(q0)]

= 1,

δ↑(q0, S
′)(q1) = ∨A∈Σ̃ ∨a∈Σ [A(a) ∧ S′(a) ∧ δ̃(q0, A)(q1)]

= 0.3162,

δ↑(q0, S
′)(q2) = ∨A∈Σ̃ ∨a∈Σ [A(a) ∧ S′(a) ∧ δ̃(q0, A)(q2)]

= 0.1,

namely, δ↑(q0, S
′) = 1/q0 + 0.3162/q1 + 0.1/q2.

Analogous to Theorem 1, we can also establish a close link
between computing with some special words (i.e., those in Σ̃)
and computing with all words.

Theorem 2: Suppose that M̃ = (Q, Σ̃, δ̃, q0, F) is an
FACW and M̃↑ = (Q,F(Σ), δ↑, q0, F) is the generalized

CAO, YING, AND CHEN: RETRACTION AND GENERALIZED EXTENSION OF COMPUTING WITH WORDS 8

extension of M̃↑. Then for any W = A′1 · · ·A′n ∈ F(Σ)∗,
we have that

Lw(M̃↑)(W) = ∨A1,...,An∈Σ̃ ∨a1,...,an∈Σ

[
Lw(M̃)(A1 · · ·An)

∧A1(a1) ∧ · · · ∧An(an) ∧A′1(a1) ∧ · · · ∧A′n(an)
]
.

Proof: See Appendix I.
Theorem 2 may be seen as a generalized extension principle

from computing with special words to computing with all
words. The meaning of this theorem is that computing with all
words can be implemented by computing with special words;
and thus it gives us a way to deal with arbitrary fuzzy inputs
on an FACW. It is clear that the number of computations for
implementing computing with all words by computing with
words increases exponentially as the length of the input string.

V. RELATIONSHIPS AMONG RETRACTIONS, EXTENSIONS,
AND GENERALIZED EXTENSIONS

Up to now, we have seen three kinds of transformations
among FACVs, FACWs, and FACAWs, that is, the extensions
in Definition 3, the retractions, and the generalized extensions.
In fact, they are related; some of the relationships are shown
in this section.

We first show that the extension given in Definition 3 is a
special case of the generalized extension introduced in the last
section. To see this, we only need to regard an FACV as an
FACW by identifying an input with its singleton fuzzification.
Given an FACV M ′ = (Q′,Σ′, δ′, q′0, F

′), it is clear that we
can identify M ′ with an FACW M̃ ′ = (Q′, Σ̃′, δ̃′, q′0, F

′),
where two different components are

Σ̃′ = {ã : ã is the singleton fuzzification of a ∈ Σ} and
δ̃′(p, ã) = δ′(p, a) for any p ∈ Q′ and ã ∈ Σ̃′.

By definition, it is easy to verify that M̃ ′↓ = M ′.
Further, we have the following.
Proposition 1: Let M ′ = (Q′,Σ′, δ′, q′0, F

′) be an FACV.
Then M̂ ′ = (Q′,F(Σ′), δ̂′, q′0, F

′) given by Definition
3 is the same as the generalized extension M̃ ′↑ =
(Q′,F(Σ′), δ′↑, q′0, F

′).
Proof: It is sufficient to show that δ̂′(p,A)(q) =

δ′↑(p,A)(q) for any p, q ∈ Q′ and A ∈ F(Σ′). By Definition
3, we see that δ̂′(p,A)(q) = ∨a∈Σ′ [A(a)∧δ′(p, a)(q)]. On the
other hand, it follows from Definition 6 that

δ′↑(p,A)(q) = ∨ã∈Σ̃′ ∨b∈Σ′ [ã(b) ∧A(b) ∧ δ̃′(p, ã)(q)]
= ∨ã∈Σ̃′ ∨b∈Σ′ [ã(b) ∧A(b) ∧ δ′(p, a)(q)]
= ∨ã∈Σ̃′ [ã(a) ∧A(a) ∧ δ′(p, a)(q)]
= ∨a∈Σ′ [A(a) ∧ δ′(p, a)(q)].

Hence, δ̂′(p,A)(q) = δ′↑(p,A)(q), as desired.
Based on Proposition 1, we view the extension in Definition

3 as a generalized extension hereafter. As we see from Fig.
1, there are two approaches from computing with words to
computing with all words: One is the generalized extension
(b); the other is the composition of processes (a) and (c).
The next proposition shows that the two approaches yield the
same result.

Proposition 2: Let M̃ = (Q, Σ̃, δ̃, q0, F) be an FACW.
Then (M̃↓)↑ = M̃↑.

Proof: By definition, M̃↑ = (Q,F(Σ), δ↑, q0, F) with
δ↑(p,A)(q) = ∨A′∈Σ̃∨a∈Σ [A′(a)∧A(a)∧δ̃(p,A′)(q)] for any
p, q ∈ Q and A ∈ F(Σ). In contrast, M̃↓ = (Q,Σ, δ↓, q0, F),
where δ↓(p, a)(q) = ∨A′∈Σ̃[A′(a)∧ δ̃(p,A′)(q)] for any p, q ∈
Q and a ∈ Σ. Consequently, the generalized extension of M̃↓

is (M̃↓)↑ = (Q,F(Σ), (δ↓)↑, q0, F). By Proposition 1 and
definition, we see that

(δ↓)↑(p,A)(q) = ∨a∈Σ[A(a) ∧ δ↓(p, a)(q)]
= ∨a∈Σ

{
A(a) ∧ [∨A′∈Σ̃ [A′(a)

∧δ̃(p,A′)(q)]
]}

= ∨a∈Σ{∨A′∈Σ̃[A′(a) ∧A(a) ∧ δ̃(p,A′)(q)]}
= ∨A′∈Σ̃ ∨a∈Σ [A′(a) ∧A(a) ∧ δ̃(p,A′)(q)]

= δ↑(p,A)(q)

for any p, q ∈ Q and A ∈ F(Σ). That is, (δ↓)↑ = δ↑, and thus
(M̃↓)↑ = M̃↑, finishing the proof.

A careful reader may find that the generalized extension
from M̃ to M̃↑ is generally not an extension in the strictly
mathematical sense, that is, δ↑(p,A) is not necessarily equal to
δ̃(p,A) even for A ∈ Σ̃. To see this, let us revisit Example 3.
Keep all notations in Example 3. We see that δ̃(q0, S) = 1/q0,
whereas by a computation analogous to that of δ↑(q0, S

′), we
find that δ↑(q0, S) = 1/q0 + 0.2/q1 + 0.1/q2. Further, we get
that Lw(M̃)(S) = 0.1 and Lw(M̃↑)(S) = 0.2; they are not
equal. This motivates us to consider the consistency of the
generalized extension.

From the viewpoint of computing, we are interested in the
following property. Let M̃ = (Q, Σ̃, δ̃, q0, F) be an FACW
with the generalized extension M̃↑ = (Q,F(Σ), δ↑, q0, F).
If Lw(M̃↑)(W) = Lw(M̃)(W) holds for all W ∈ Σ̃∗,
then the generalized extension from computing with words to
computing with all words is called consistent. The consistency
implies that for any input W ∈ Σ̃∗, using M̃↑ as a computing
device is the same as using M̃ . If each word in Σ̃ degenerates
into a singleton, then it is not hard to check that the gener-
alized extension is consistent. In general, not all generalized
extensions are consistent, as we have seen above.

The direct reason for the failure of consistency is that
δ↑(p,A) 6= δ̃(p,A) for some p ∈ Q and A ∈ Σ̃. The
appearance of such an inequality is not surprising if we have
noticed that the calculation of δ↑(p,A) depends on all A′ ∈ Σ̃
and δ̃(p,A′), while the words A′ ∈ Σ̃ may be intersecting each
other. Clearly, if the calculation of δ↑(p,A) is not disturbed
by those A′ ∈ Σ̃\{A} and δ̃(p,A′), then the generalized
extension must be consistent. From this point of view, the con-
sistency measures the independence of information afforded by
the words and fuzzy transition function of M̃ . So we introduce
the following definition.

Definition 7: Let M̃ = (Q, Σ̃, δ̃, q0, F) be an FACW. The
independence degree of Σ̃ and δ̃, denoted d(M̃), is defined by

d(M̃) = sup
W∈Σ̃∗

|Lw(M̃↑)(W)− Lw(M̃)(W)|,

where M̃↑ is the generalized extension of M̃ .

CAO, YING, AND CHEN: RETRACTION AND GENERALIZED EXTENSION OF COMPUTING WITH WORDS 9

By definition, the generalized extension from M̃ to M̃↑ is
consistent if and only if the independence degree equals 0.
If M̃ is specified by an expert, then d(M̃) > 0 is easily
understandable, since the information given by experts is
usually not completely independent. For a given M̃ with
d(M̃) > 0, one can utilize the idea of [29] and [26] to slightly
modify the fuzzy transition function δ̃ and then gives a new
FACW M̃ ′ such that d(M̃ ′) = 0. The detail of revising δ̃ is
beyond the scope of this paper, so we do not discuss it here.

Clearly, a sufficient condition for the independence degree
to be zero is that δ↑(p,A) = δ̃(p,A) for any p ∈ Q and
A ∈ Σ̃, namely, δ↑|Q×Σ̃ = δ̃, where the notation ϕ|X′ means
that we are restricting the mapping ϕ defined on X to the
smaller domain X ′. The equality δ↑|Q×Σ̃ = δ̃ implies that the
information is preserved when extending M̃ to M̃↑. We end
this section with a characterization of the equality.

Proposition 3: Let M̃ = (Q, Σ̃, δ̃, q0, F) be an FACW with
the generalized extension M̃↑ = (Q,F(Σ), δ↑, q0, F). Then
δ↑|Q×Σ̃ = δ̃ if and only if for any p, q ∈ Q and A ∈ Σ̃, the
following hold:

1) there exists a ∈ Σ such that A(a) ≥ δ̃(p,A)(q);
2) for any a ∈ {a ∈ Σ : A(a) > δ̃(p,A)(q)} and A′ ∈

Σ̃\{A}, either A′(a) ≤ δ̃(p,A)(q) or δ̃(p,A′)(q) ≤
δ̃(p,A)(q).

Proof: By definition, we see that δ↑|Q×Σ̃ = δ̃ if and only
if

∨A′∈Σ̃ ∨a∈Σ [A′(a) ∧A(a) ∧ δ̃(p,A′)(q)] = δ̃(p,A)(q) (2)

for any p, q ∈ Q and A ∈ Σ̃.
Let us first show the ‘only if’ part. For 1), suppose, by

contradiction, that A(a) < δ̃(p,A)(q) for all a ∈ Σ. Then it
follows that

∨A′∈Σ̃∨a∈Σ [A′(a)∧A(a)∧δ̃(p,A′)(q)] ≤ A(a) < δ̃(p,A)(q),

which contradicts (2). Hence, 1) holds. The condition 2) can
also be easily proven by contradiction.

We now prove the ‘if’ part. Using 1), we get that

∨A′∈Σ̃ ∨a∈Σ [A′(a) ∧A(a) ∧ δ̃(p,A′)(q)]

≥ ∨a∈Σ[A(a) ∧A(a) ∧ δ̃(p,A)(q)]
≥ δ̃(p,A)(q).

On the other hand, it follows directly from 2) that ∨A′∈Σ̃∨a∈Σ

[A′(a) ∧ A(a) ∧ δ̃(p,A′)(q)] ≤ δ̃(p,A)(q). Therefore, (2)
is true, and thus δ↑|Q×Σ̃ = δ̃, finishing the proof of the
proposition.

VI. SOME ALGEBRAIC PROPERTIES OF RETRACTIONS
AND GENERALIZED EXTENSIONS

In this section, we look at the preservation properties of
retractions and generalized extensions under the use of product
operator and homomorphism.

As in classical computing, we can build the overall model
of computing with words by building models of individual
components first and then composing them by product. The
product operation models a form of joint behavior of a set
of FACWs and we can think of it as one type of systems

resulting from the interconnection of system components. Let
us recall the general definition (cf. [1], [15], [19] for some
relevant notions).

Let Mi = (Qi,Σ, δi, q0i, Fi) be a fuzzy automaton, where
i = 1, 2. The product of M1 and M2 is a fuzzy automaton

M1 ×M2 = (Q1 ×Q2,Σ, δ1 ∧ δ2, (q01, q02), F),

where

δ1 ∧ δ2((p1, q1), σ)(p2, q2) = δ1(p1, a)(p2) ∧ δ2(q1, a)(q2)

for all (pi, qi) ∈ Q1 × Q2 and σ ∈ Σ, and F is a fuzzy
subset of Q1 × Q2 with the membership function F (p, q) =
F1(p) ∧ F2(q) for any (p, q) ∈ Q1 × Q2. It is easy to verify
that L(M1 ×M2) = L(M1) ∩ L(M2).

The next proposition shows that the language (resp. word
language) accepted by the retraction (resp. generalized ex-
tension) of the product is bounded by the language (resp.
word language) accepted by the individual retraction of each
component.

Proposition 4: Let M̃i = (Qi, Σ̃, δ̃i, q0i, Fi) be an FACW
with the retraction M̃↓

i and the generalized extension M̃↑
i , i =

1, 2. Then L((M̃1×M̃2)↓) ⊆ L(M̃↓
1)∩L(M̃↓

2) and Lw((M̃1×
M̃2)↑) ⊆ Lw(M̃↑

1) ∩ Lw(M̃↑
2).

Proof: We only prove the first inclusion; the sec-
ond one can be proved similarly. Assume that M̃↓

1 =
(Q1,Σ, δ↓1 , q01, F1), M̃↓

2 = (Q2,Σ, δ↓2 , q02, F2), M̃↓
1 × M̃↓

2 =
(Q1 × Q2,Σ, δ↓1 ∧ δ↓2 , (q01, q02), F ′), and (M̃1 × M̃2)↓ =
(Q1 × Q2,Σ, δ̃↓, (q01, q02), F ′′). By definition, we see that
F ′ = F ′′, and for any (p1, q1), (p2, q2) ∈ Q1×Q2 and a ∈ Σ,

δ↓1 ∧ δ↓2((p1, q1), a)(p2, q2) = δ↓1(p1, a)(p2) ∧ δ↓2(q1, a)(q2)

and

δ̃↓((p1, q1), a)(p2, q2)
= ∨A∈Σ̃[A(a) ∧ (δ̃1 ∧ δ̃2)((p1, q1), A)(p2, q2)]

= ∨A∈Σ̃[A(a) ∧ δ̃1(p1, A)(p2) ∧ δ̃2(q1, A)(q2)].

Recall that L(M̃↓
1 × M̃↓

2) = L(M̃↓
1) ∩ L(M̃↓

2). Thereby, we
need only to prove that L((M̃1 × M̃2)↓) ⊆ L(M̃↓

1 × M̃↓
2).

It is enough to show that δ̃↓((p1, q1), a)(p2, q2) ≤ δ↓1 ∧
δ↓2((p1, q1), a)(p2, q2) for any (p1, q1), (p2, q2) ∈ Q1×Q2 and
a ∈ Σ. In fact, by the previous argument we have that

δ̃↓((p1, q1), a)(p2, q2)
= ∨A∈Σ̃[A(a) ∧ δ̃1(p1, A)(p2) ∧ δ̃2(q1, A)(q2)]

≤ {∨A∈Σ̃[A(a) ∧ δ̃1(p1, A)(p2)]}
∧{∨A∈Σ̃[A(a) ∧ δ̃2(q1, A)(q2)]} (3)

= δ↓1(p1, a)(p2) ∧ δ↓2(q1, a)(q2)

= δ↓1 ∧ δ↓2((p1, q1), a)(p2, q2),

as desired. This finishes the proof of the proposition.
It is easy to observe that the inequality (3) appearing in

the proof of Proposition 4 can be strict, so the inclusions in
Proposition 4 can also be strict.

Inputting the same word at a state means different next state
distributions to different experts. The concept of homomor-
phism can relate these distributions. We end this section by

CAO, YING, AND CHEN: RETRACTION AND GENERALIZED EXTENSION OF COMPUTING WITH WORDS 10

discussing the preservation of the generalized extension under
a homomorphism.

Given two fuzzy automata Mi = (Qi,Σ, δi, q0i, Fi), i =
1, 2, we say that M1 is a subfuzzy automaton of M2, written
M1 ≤ M2, if Q1 ⊆ Q2, q01 = q02, F1 ⊆ F2, and δ1 =
δ2|Q1×Σ.

Definition 8: Let M1 = (Q1,Σ, δ1, q01, F1) and M2 =
(Q2,Σ, δ2, q02, F2) be two fuzzy automata. A mapping f :
Q1 −→ Q2 is called a homomorphism from M1 to M2 if the
following hold:

1) f(q01) = q02.
2) δ2(f(p), σ)(f(q)) = ∨{δ1(p, σ)(r) : r ∈ Q1, f(r) =

f(q)} for any p, q ∈ Q1 and σ ∈ Σ.
3) F1(q) ≤ F2(f(q)) for any q ∈ Q1.

The homomorphism image of M1 under a
homomorphism f , denoted f(M1), is defined as
(f(Q1),Σ, δ2|f(Q1)×Σ, q02, F2|f(Q1)); it is clear that
f(M1) ≤ M2. In particular, if M1 ≤ M2, the embedding
mapping i : Q1 ↪→ Q2 gives rise to a homomorphism; the
homomorphism image of M1 under i is identical with itself.
Further, we make the following observation.

Lemma 1: Let M1 = (Q1,Σ, δ1, q01, F1) and M2 =
(Q2,Σ, δ2, q02, F2) be two fuzzy automata. If there is a
homomorphism from M1 to M2, then L(M1) ⊆ L(M2).

Proof: It follows readily from Definitions 2 and 8.
As a result, L(M1) = L(M2) whenever there exists a pair

of homomorphisms f : M1 −→ M2 and g : M2 −→ M1.
This implies that we may compare the computing power of
two fuzzy automata by constructing a homomorphism between
them.

If two FACWs are related by a homomorphism f , then so
are their retractions (resp. generalized extensions); moreover,
the homomorphism f preserves retractions (resp. generalized
extensions). More formally, we have the following proposition.

Proposition 5: Let M̃i = (Qi, Σ̃, δ̃i, q0i, Fi) be an FACW
with the retraction M̃↓

i and the generalized extension M̃↑
i , i =

1, 2. If f is a homomorphism from M̃1 to M̃2, then:

1) f gives a homomorphism from M̃↓
1 to M̃↓

2 , and, more-
over, f(M̃1)↓ = f(M̃↓

1).
2) f gives a homomorphism from M̃↑

1 to M̃↑
2 , and, more-

over, f(M̃1)↑ = f(M̃↑
1).

Proof: We only prove the assertion 1), and 2) can be
proved analogously. Since f is a homomorphism from M̃1 to
M̃2, f is a mapping from Q1 to Q2 that satisfies

• f(q01) = q02;
• δ̃2(f(p), A)(f(q)) = ∨{δ̃1(p,A)(r) : r ∈ Q1, f(r) =

f(q)} for any p, q ∈ Q1 and A ∈ Σ̃; and
• F1(q) ≤ F2(f(q)) for any q ∈ Q1.

To prove that f is a homomorphism from M̃↓
1 =

(Q1,Σ, δ↓1 , q01, F1) to M̃↓
2 = (Q2,Σ, δ↓2 , q02, F2), it is enough

to show that δ↓2(f(p), a)(f(q)) = ∨{δ↓1(p, a)(r) : r ∈
Q1, f(r) = f(q)} for any p, q ∈ Q1 and a ∈ Σ. In fact,

it follows from definition that

δ↓2(f(p), a)(f(q)) = ∨A∈Σ̃[A(a) ∧ δ̃2(f(p), A)(f(q))]

= ∨A∈Σ̃{A(a) ∧ [∨ r∈Q1
f(r)=f(q)

δ̃1(p,A)(r)]}
= ∨A∈Σ̃ ∨ r∈Q1

f(r)=f(q)
[A(a) ∧ δ̃1(p,A)(r)]

= ∨ r∈Q1
f(r)=f(q)

∨A∈Σ̃ [A(a) ∧ δ̃1(p,A)(r)]

= ∨ r∈Q1
f(r)=f(q)

δ↓1(p, a)(r)

= ∨{δ↓1(p, a)(r) : r ∈ Q1, f(r) = f(q)}
for any p, q ∈ Q1 and a ∈ Σ, as desired.

Let us now verify that f(M̃1)↓ = f(M̃↓
1). By definition,

f(M̃1) = (f(Q1), Σ̃, δ̃2|f(Q1)×Σ̃, q02, F2|f(Q1)). We thus
obtain that f(M̃1)↓ = (f(Q1),Σ, δ↓2 |f(Q1)×Σ, q02, F2|f(Q1))
by a simple computation. On the other hand, since
M̃↓

1 = (Q1,Σ, δ↓1 , q01, F1) and f is a homomor-
phism from M̃↓

1 to M̃↓
2 , we have that f(M̃↓

1) =
(f(Q1),Σ, δ↓2 |f(Q1)×Σ, q02, F2|f(Q1)), which is the same as
f(M̃1)↓. This completes the proof of 1).

The equality f(M̃1)↓ = f(M̃↓
1) (resp. f(M̃1)↑ = f(M̃↑

1))
in Proposition 5 means that the effect of acting f on M̃1 first
and then retracting (resp. extending) is the same as that of first
retracting M̃1 (resp. extending) and then using f .

As an immediate consequence of Proposition 5, we have
the following corollary.

Corollary 1: Keep the notations in Proposition 5. If there
are homomorphisms f : M̃1 −→ M̃2 and g : M̃2 −→ M̃1,
then L(M̃↓

1) = L(M̃↓
2) and Lw(M̃↑

1) = Lw(M̃↑
2).

Proof: It follows directly from Proposition 5 and Lemma
1.

VII. CONCLUSION

In this paper, we have introduced a direct, formal model of
computing with words, where words are interpreted as fuzzy
subsets of a finite set of symbols. We have related the new
model to FACVs and FACAWs by establishing a retraction
principle and a generalized extension principle, respectively.
The retraction principle enables us to carry out computing with
values via computing with words and the generalized extension
principle enables us to carry out computing with all words
via computing with some special words. Some relationships
among retractions, extensions, and generalized extensions have
been examined and their algebraic properties have also been
investigated.

There are some problems which arise from the present
formalization for computing with words and are worth further
studying. A basic problem is how to choose words as the inputs
of an FACW and how to rationally specify a fuzzy transition
function such that the independence degree is as small as
possible. In addition, it is worth noticing that much current
interest in fuzzy control is devoted to model-based fuzzy
control methods [22]. Recently, FACVs and fuzzy languages
have been used to describe the so-called fuzzy discrete event
systems, and the corresponding supervisory control theory has
been developed [2], [3], [13], [20]. Some fuzzy automata
with fuzzy inputs were applied to systems analysis in the

CAO, YING, AND CHEN: RETRACTION AND GENERALIZED EXTENSION OF COMPUTING WITH WORDS 11

δ↓(p, wan+1)(q) = δ↓(p, a1 · · · anan+1)(q)
= ∪q′∈Q[δ↓(p, a1 · · · an)(q′) · δ↓(q′, an+1)](q)
= ∨q′∈Q[δ↓(p, a1 · · · an)(q′) ∧ δ↓(q′, an+1)(q)]

= ∨q′∈Q

{[
∨A1,...,An∈Σ̃

[
δ̃(p,A1 · · ·An)(q′) ∧ α

]] ∧ δ↓(q′, an+1)(q)
}

= ∨q′∈Q

{
∨A1,...,An∈Σ̃

[
δ̃(p,A1 · · ·An)(q′) ∧ δ↓(q′, an+1)(q) ∧ α

]}

= ∨q′∈Q

{
∨A1,...,An∈Σ̃

[
δ̃(p,A1 · · ·An)(q′) ∧ [∨An+1∈Σ̃[An+1(an+1) ∧ δ̃(q′, An+1)(q)]

] ∧ α
]}

= ∨q′∈Q

{
∨A1,...,An∈Σ̃

[
∨An+1∈Σ̃

[
δ̃(p,A1 · · ·An)(q′) ∧ δ̃(q′, An+1)(q) ∧ α ∧An+1(an+1)

]]}

= ∨q′∈Q

{
∨A1,...,An,An+1∈Σ̃

[
δ̃(p,A1 · · ·An)(q′) ∧ δ̃(q′, An+1)(q) ∧ α ∧An+1(an+1)

]}

= ∨A1,...,An,An+1∈Σ̃

{
∨q′∈Q

[
δ̃(p,A1 · · ·An)(q′) ∧ δ̃(q′, An+1)(q) ∧ α ∧An+1(an+1)

]}

= ∨A1,...,An,An+1∈Σ̃

{[
∨q′∈Q

[
δ̃(p,A1 · · ·An)(q′) ∧ δ̃(q′, An+1)(q)

]]∧α ∧An+1(an+1)
}

= ∨A1,...,An,An+1∈Σ̃

[
δ̃(p,A1 · · ·AnAn+1)(q) ∧A1(a1) ∧ · · · ∧An(an) ∧An+1(an+1)

]
.

L(M̃↓)(w) = height(δ↓(q0, a1 · · · an) ∩ F)
= ∨q∈Q

{
δ↓(q0, a1 · · · an)(q) ∧ F (q)

}

= ∨q∈Q

{[∨A1,...,An∈Σ̃ [δ̃(q0, A1 · · ·An)(q) ∧A1(a1) ∧ · · · ∧An(an)]
] ∧ F (q)

}

= ∨q∈Q

[∨A1,...,An∈Σ̃ [δ̃(q0, A1 · · ·An)(q) ∧A1(a1) ∧ · · · ∧An(an) ∧ F (q)]
]

= ∨A1,...,An∈Σ̃

[∨q∈Q [δ̃(q0, A1 · · ·An)(q) ∧A1(a1) ∧ · · · ∧An(an) ∧ F (q)]
]

= ∨A1,...,An∈Σ̃

[∨q∈Q [δ̃(q0, A1 · · ·An)(q) ∧ F (q)] ∧A1(a1) ∧ · · · ∧An(an)
]

= ∨A1,...,An∈Σ̃

[
height(δ̃(q0, A1 · · ·An) ∩ F) ∧A1(a1) ∧ · · · ∧An(an)

]

= ∨A1,...,An∈Σ̃

[
Lw(M̃)(A1 · · ·An) ∧A1(a1) ∧ · · · ∧An(an)

]
.

early 1970s [16], [32]; a few attempts [4] and [8] have
already been made for applying this kind of fuzzy automata
to control. It might be highly interesting to bridge the gap
among the supervisory control theory of FACVs, control of
fuzzy automata with fuzzy inputs, and fuzzy control, by using
our retraction principle and generalized extension principle.

ACKNOWLEDGMENT

The authors would like to thank the anonymous referees for
some helpful suggestions.

APPENDIX I

To prove Theorem 1, it is convenient to have the following
lemma.

Lemma 2: Let M̃ = (Q, Σ̃, δ̃, q0, F) be an FACW and
M̃↓ = (Q,Σ, δ↓, q0, F) be the retraction of M̃ . Then for any
p, q ∈ Q and w = a1 · · · an ∈ Σ∗, we have that

δ↓(p, w)(q) = ∨A1,...,An∈Σ̃

[
δ̃(p,A1 · · ·An)(q) ∧A1(a1)∧

· · · ∧An(an)
]
.

Proof: We prove it by induction on n.

1) For the basis step, namely, n = 0, it is trivial.
2) The induction hypothesis is that the above equality holds

for w = a1 · · · an. We now prove the same for wan+1, i.e.,
a1 · · · anan+1. Using the definition of δ↓ and the induction
hypothesis, we have the first equation shown at the top of the
page, in which A1(a1)∧ · · · ∧An(an) is abbreviated to α for
simplicity. This proves the lemma.

Proof of Theorem 1: By the definition of Lw(M̃) and
Lemma 2, we have the second equation shown at the top of
the page, which completes the proof of the theorem. ¥

The idea of proving Theorem 2 is analogous to that of
Theorem 1; let us first establish the following lemma.

Lemma 3: Let M̃ = (Q, Σ̃, δ̃, q0, F) be an FACW and
M̃↑ = (Q,F(Σ), δ↑, q0, F) be the generalized extension of
M̃ . Then for any p, q ∈ Q and W = A′1 · · ·A′n ∈ F(Σ)∗, we
have that

δ↑(p,W)(q) = ∨A1,...,An∈Σ̃ ∨a1,...,an∈Σ

[
δ̃(p,A1 · · ·An)(q)

∧A1(a1) ∧ · · · ∧An(an) ∧A′1(a1) ∧ · · · ∧A′n(an)
]
.

Proof: We prove it by induction on n.
1) For the basis step, namely, n = 0, it is trivial.

CAO, YING, AND CHEN: RETRACTION AND GENERALIZED EXTENSION OF COMPUTING WITH WORDS 12

δ↑(p,WA′n+1)(q) = δ↑(p,A′1 · · ·A′nA′n+1)(q)

= ∪q′∈Q[δ↑(p,A′1 · · ·A′n)(q′) · δ↑(q′, A′n+1)](q)

= ∨q′∈Q[δ↑(p,A′1 · · ·A′n)(q′) ∧ δ↑(q′, A′n+1)(q)]

= ∨q′∈Q

{[
∨A1,...,An∈Σ̃ ∨a1,...,an∈Σ

[
δ̃(p,A1 · · ·An)(q′) ∧ α ∧ α′

]] ∧ δ↑(q′, A′n+1)(q)
}

= ∨q′∈Q

{
∨A1,...,An∈Σ̃ ∨a1,...,an∈Σ

[
δ̃(p,A1 · · ·An)(q′) ∧ δ↑(q′, A′n+1)(q) ∧ α ∧ α′

]}

= ∨q′∈Q

{
∨A1,...,An∈Σ̃ ∨a1,...,an∈Σ

[
δ̃(p,A1 · · ·An)(q′) ∧ [∨An+1∈Σ̃ ∨an+1∈Σ[An+1(an+1)

∧A′n+1(an+1) ∧ δ̃(q′, An+1)(q)]
] ∧ α ∧ α′

]}

= ∨q′∈Q

{
∨A1,...,An∈Σ̃ ∨a1,...,an∈Σ

[
∨An+1∈Σ̃ ∨an+1∈Σ

[
δ̃(p,A1 · · ·An)(q′) ∧ δ̃(q′, An+1)(q)

∧α ∧An+1(an+1) ∧ α′ ∧A′n+1(an+1)
]]}

= ∨q′∈Q

{
∨A1,...,An+1∈Σ̃ ∨a1,...,an+1∈Σ

[
δ̃(p,A1 · · ·An)(q′) ∧ δ̃(q′, An+1)(q)

∧α ∧An+1(an+1) ∧ α′ ∧A′n+1(an+1)
]}

= ∨A1,...,An+1∈Σ̃ ∨a1,...,an+1∈Σ

{
∨q′∈Q

[
δ̃(p,A1 · · ·An)(q′) ∧ δ̃(q′, An+1)(q)

∧α ∧An+1(an+1) ∧ α′ ∧A′n+1(an+1)
]}

= ∨A1,...,An+1∈Σ̃ ∨a1,...,an+1∈Σ

{[∨q′∈Q [δ̃(p,A1 · · ·An)(q′) ∧ δ̃(q′, An+1)(q)]
]

∧α ∧An+1(an+1) ∧ α′ ∧A′n+1(an+1)
}

= ∨A1,...,An+1∈Σ̃ ∨a1,...,an+1∈Σ

[
δ̃(p,A1 · · ·An+1)(q) ∧ α ∧An+1(an+1) ∧ α′ ∧A′n+1(an+1)

]
.

Lw(M̃↑)(W) = height(δ↑(q0, A
′
1 · · ·A′n) ∩ F)

= ∨q∈Q

{
δ↑(q0, A

′
1 · · ·A′n)(q) ∧ F (q)

}

= ∨q∈Q

{[∨A1,...,An∈Σ̃ ∨a1,...,an∈Σ[δ̃(q0, A1 · · ·An)(q) ∧ α ∧ α′]
] ∧ F (q)

}

= ∨q∈Q

[∨A1,...,An∈Σ̃ ∨a1,...,an∈Σ[δ̃(q0, A1 · · ·An)(q) ∧ α ∧ α′ ∧ F (q)]
]

= ∨A1,...,An∈Σ̃ ∨a1,...,an∈Σ

[∨q∈Q [δ̃(q0, A1 · · ·An)(q) ∧ α ∧ α′ ∧ F (q)]
]

= ∨A1,...,An∈Σ̃ ∨a1,...,an∈Σ

[∨q∈Q [δ̃(q0, A1 · · ·An)(q) ∧ F (q)] ∧ α ∧ α′
]

= ∨A1,...,An∈Σ̃ ∨a1,...,an∈Σ

[
height(δ̃(q0, A1 · · ·An) ∩ F) ∧ α ∧ α′

]

= ∨A1,...,An∈Σ̃ ∨a1,...,an∈Σ

[
Lw(M̃)(A1 · · ·An) ∧ α ∧ α′

]
.

2) The induction hypothesis is that the above equality holds
for W = A′1 · · ·A′n ∈ F(Σ)∗. We now prove the same for
WA′n+1, i.e., A′1 · · ·A′nA′n+1. Using the definition of δ↑ and
the induction hypothesis, we have the first equation shown at
the top of the page, where for convenience, we write α for
A1(a1) ∧ · · · ∧ An(an) and α′ for A′1(a1) ∧ · · · ∧ A′n(an),
respectively. This finishes the proof of the lemma.

Proof of Theorem 2: By the definition of word languages
and Lemma 3, we have the second equation shown at the top
of the page. Again, we write α for A1(a1)∧· · ·∧An(an) and
α′ for A′1(a1) ∧ · · · ∧ A′n(an), respectively. This proves the
theorem. ¥

REFERENCES

[1] R. Bělohlávek, “Determinism and fuzzy automata,” Inform. Sci., vol.
143, pp. 205-209, June 2002.

[2] Y. Z. Cao and M. S. Ying, “Supervisory control of fuzzy discrete event
systems,” IEEE Trans. Syst., Man, Cybern., Part B, vol. 35, pp. 366-371,
Apr. 2005.

[3] ——, “Observability and decentralized control of fuzzy discrete event
systems,” IEEE Trans. Fuzzy Syst., vol. 14, pp. 202-216, Apr. 2006.

[4] M. T. Dashti, “A fuzzy automaton for control applications,” in Proc.
2004 IEEE Int. Conf. Fuzzy Syst., Budapest, Hungary, July 2004, pp.
505-509.

[5] M. Doostfatemeh and S. C. Kremer, “New directions in fuzzy automata,”
Int. J. Approx. Reason., vol. 38, pp. 175-214, 2005.

[6] D. Dubois and H. Prade, Fuzzy Sets and Systems: Theory and Applica-
tions. New York: Academic, 1980.

[7] L. Foulloy and S. Galichet, “Fuzzy control with fuzzy inputs,” IEEE
Trans. Fuzzy Syst., vol. 11, pp. 437-449, Aug. 2003.

CAO, YING, AND CHEN: RETRACTION AND GENERALIZED EXTENSION OF COMPUTING WITH WORDS 13

[8] J. R. Garitagoitia, J. R. G. de Mendı́vil, J. Echanobe, J. J. Astrain, and
F. Fariña, “Deformed fuzzy automata for correcting imperfect strings
of fuzzy symbols,” IEEE Trans. Fuzzy Syst., vol. 11, pp. 299-310, June
2003.

[9] F. Herrera and L. Martı́nez, “A 2-tuple fuzzy linguistic representation
model for computing with words,” IEEE Trans. Fuzzy Syst., vol. 8, pp.
746-752, Dec. 2000.

[10] R. I. John and P. R. Innocent, “Modeling uncertainty in clinical diagnosis
using fuzzy logic,” IEEE Trans. Syst., Man, Cybern., Part B, vol. 35,
pp. 1340-1350, Dec. 2005.

[11] A. Kandel and S. C. Lee, Fuzzy Switching and Automata: Theory and
Applications. New York: Russak, 1979.

[12] G. J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and
Applications. Upper Saddle River, NJ: Prentice-Hall, 1995.

[13] F. Lin and H. Ying, “Modeling and control of fuzzy discrete event
systems,” IEEE Trans. Syst., Man, Cybern., Part B, vol. 32, pp. 408-
415, Aug. 2002.

[14] M. Margaliot and G. Langholz, “Fuzzy control of a benchmark problem:
A computing with words approach,” IEEE Trans. Fuzzy Syst., vol. 12,
pp. 230-235, Apr. 2004.

[15] J. N. Mordeson and D. S. Malik, Fuzzy Automata and Languages:
Theory and Applications. Boca Raton, FL: Chapman and Hall/CRC,
2002.

[16] C. V. Negoita and D. A. Ralescu, Applications of Fuzzy Sets to Systems
Analysis. New York: Wiley, 1975.

[17] K. M. Passino and S. Yurkovich, Fuzzy Control. California: Addison
Wesley, 1998.

[18] W. Pedrycz and F. Gomide, An Introduction to Fuzzy Sets: Analysis and
Design. Cambridge, Mass: MIT Press, 1998.

[19] T. Petković, “Congruences and homomorphisms of fuzzy automata,”
Fuzzy Sets Syst., vol. 157, pp. 444-458, Feb. 2006.

[20] D. W. Qiu, “Supervisory control of fuzzy discrete event systems: A
formal approach,” IEEE Trans. Syst., Man, Cybern., Part B, vol. 35, pp.
72-88, Feb. 2005.

[21] D. W. Qiu and H. Q. Wang, “A probabilistic model of computing with
words,” J. Comput. Syst. Sci., vol. 70, pp. 176-200, 2005.

[22] A. Sala, T. M. Guerra, and R. Babuška, “Perspectives of fuzzy systems
and control,” Fuzzy Sets Syst., vol. 156, pp. 432-444, Dec. 2005.

[23] E. S. Santos, “Maxmin automata,” Inform. Contr., vol. 13, pp. 363-377,
1968.

[24] H. Q. Wang and D. W. Qiu, “Computing with words via Turing
machines: A formal approach,” IEEE Trans. Fuzzy Syst., vol. 11, pp.
742-753, Dec. 2003.

[25] L. X. Wang, A Course in Fuzzy Systems and Control. Upper Saddle
River, NJ: Prentice-Hall, 1997.

[26] W. M. Wu, B. Yuan, and Y. Pan, “MP and invariant MP approximations
of fuzzy inference rules,” Int. J. Gen. Syst., vol. 23, pp. 255-269, 1995.

[27] R. R. Yager, “Defending against strategic manipulation in uninorm-based
multi-agent decision making,” Eur. J. Oper. Res., vol. 141, pp. 217-232,
Aug. 2002.

[28] ——, “On the retranslation process in Zadeh’s paradigm of computing
with words,” IEEE Trans. Syst., Man, Cybern., Part B, vol. 34, pp. 1184-
1195, Apr. 2004.

[29] M. S. Ying, “Reasonableness of the compositional rule of fuzzy infer-
ence,” Fuzzy Sets Syst., vol. 36, pp. 305-310, June 1990.

[30] ——, “A formal model of computing with words,” IEEE Trans. Fuzzy
Syst., vol. 10, pp. 640-652, Oct. 2002.

[31] L. A. Zadeh, “Fuzzy sets,” Inform. Contr., vol. 8, pp. 338-353, 1965.
[32] ——, “Toward a theory of fuzzy systems,” in Aspects of Network and

System Theory, R. E. Kalman and N. De Claris, Eds. New York: Holt,
Rinehart and Winston, 1971.

[33] ——, “Fuzzy logic, neural networks, and soft computing,” Commun.
ACM, vol. 37, pp. 77-84, 1994.

[34] ——, “Fuzzy Logic = computing with words,” IEEE Trans. Fuzzy Syst.,
vol. 4, pp. 103-111, Apr. 1996.

[35] ——, “From computing with numbers to computing with words – From
manipulation of measurements to manipulation of perceptions,” IEEE
Trans. Circuits Syst. I: Fund. Theory Appl., vol. 45, pp. 105-119, Jan.
1999.

[36] ——, “Outline of a computational theory of perceptions based on
computing with words,” in Soft Computing and Intelligent Systems, N.
K. Sinha and M. M. Gupta, Eds. Boston, MA: Academic, 1999, pp.
3-22.

[37] ——, “A new direction in AI: Toward a computational theory of
perceptions,” AI Mag. , vol. 22, pp. 73-84, 2001.

[38] L. A. Zadeh and J. Kacprzyk, Computing with Words in Informa-
tion/Intelligent Systems. Heidelberg, Germany: Physica-Verlag, vol. 1
and vol. 2, 1999.

Yongzhi Cao received the B.S. and M.S. degrees
from Central China Normal University, Wuhan,
China, in 1997 and 2000, respectively, and the Ph.D.
degree from Beijing Normal University, Beijing,
China, in 2003, all in mathematics.

He is currently a Postdoctoral Researcher at Ts-
inghua University, Beijing, China. His current re-
search interests include control of discrete event
systems, reasoning about uncertainty in artificial
intelligence, and formal methods.

Mingsheng Ying graduated from Department of
Mathematics, Fuzhou Teachers College in 1981.

He is currently Cheung Kong Chair Professor at
the State Key Laboratory of Intelligent Technology
and Systems, Department of Computer Science and
Technology, Tsinghua University, Beijing, China.
His research interests are formal methods, founda-
tions of artificial intelligence, quantum information,
and fuzzy logic. He has published more than 50
papers in various international journals. Also, he
is the author of the book “Topology in Process

Calculus: Approximate Correctness and Infinite Evolution of Concurrent
Program” (Springer-Verlag, New York, 2001).

Guoqing Chen received his Ph.D. degree from the
Catholic University of Leuven (K.U.Leuven, Bel-
gium) in 1992.

He is currently a professor of information sys-
tems at the School of Economics and Management,
Tsinghua University, Beijing, China. His research
interests include KDD and data mining, fuzzy data-
bases and data modeling, and information systems
management.

