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Representation of Uncertain Multi-Channel
Digital Signal Spaces and Study of Pattern
Recognition Based on Metrics and Difference
Values on Fuzzy n-cell Number Spaces

Guixiang Wang, Peng Shi, Senior Member, IEEE, and Paul Messenger

Abstract—In this paper, we discuss the problem of
characterization for uncertain multi-channel digital signal spaces,
propose using fuzzy n— cell number space to represent uncertain
n—channel digital signal space, and put forward a method of
constructing such fuzzy n- cell numbers. We introduce two new
metrics and concepts of certain types of difference values on fuzzy
n — cell number space, and study their properties. Further, based
on the metrics or difference values appropriately defined we put
forward an algorithmic version of pattern recognition in an
imprecise or uncertain environment, and we also give practical
examples to show the application and rationality of the proposed
techniques.

Index Terms—Uncertain multi-channel digital signals, Fuzzy
n— cell numbers, n- dimensional fuzzy vectors, Metrics,
Difference values, Pattern recognition

I. INTRODUCTION

T is known that in a precise or certain environment,

multi-channel digital signals can be represented by elements
of multi-dimensional  Euclidean space, 1i.e., crisp
multi-dimensional vectors. If however we wish to study multi
channel digital signals in an imprecise or uncertain
environment, then the signals themselves are imprecise or have
no certain bound, and it becomes unwise to use crisp
multidimensional vectors to represent them. In this paper, we
recommend using fuzzy n- cell numbers to represent
imprecise or uncertain multi-channel digital signals, and put
forward a method of constructing such fuzzy n- cell numbers.
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The concept of general fuzzy numbers was introduced by
Chang and Zadeh [2] in 1972 with the consideration of the
properties of probability functions. Since then both the
numbers and the problems in relation to them (see for example
[3,4,5,6, 11, 16, 19, 20, 21]) have been widely studied. With
the development of theories and applications of fuzzy numbers,
this concept becomes more and more important. In [7] Kaleva
ever used a special type of n- dimensional fuzzy number,
whose sets of cuts are all hyper-rectangles. In 2002 we
carefully studied the special type of n- dimensional fuzzy
number, and call it fuzzy n- cell number in [14,15]. It has been
demonstrated that fuzzy n-cell number is used much more
conveniently than general n- dimensional fuzzy numbers in
theoretical investigations and some fields of application in [14,
15, 17]. On the other hand, n- dimensional fuzzy vector is also
an important concept, which is the Cartesian product of N
1 - dimensional fuzzy numbers. In 1985, Kaufmann and Gupta
[8] already studied fuzzy vectors, soon afterwards, Miyakawa
and Nakamura et al. [9,10,12] also studied the problems of
theories and applications in relating to fuzzy vectors. In 1997,
Butnariu [1] studied Methods of solving optimization problems
and linear equations in the space of fuzzy vectors. Recently, we
[14] showed that fuzzy n-cell numbers and n- dimensional
fuzzy vectors can represent each other, and obtained the
representations of the joint membership function and the edge
membership functions of a fuzzy n - cell number of each other.

In a previous paper [15], we defined a metric D, on the

fuzzy n- cell number space, and studied its properties. And in
paper [14], we again studied this type of metric in regard to two
fuzzy n-cell numbers as the form of n-dimensional fuzzy
vectors. Although metric D, can be more conveniently used in

applications and theoretical investigations, it has some
shortcomings. That is, it has a tendency to be rougher, and can
not really characterize the degree of difference of two fuzzy
n— cell numbers in some applications (see Example 3.1 in
Section 3 of this paper). In this paper, in order to discuss the
problem of pattern recognition in an imprecise or uncertain
environment based on degree of difference, we define two new
metrics and some concepts of difference values on fuzzy
n— cell number space, which may better characterize the
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degree of difference of two fuzzy n-cell numbers in some
applications, and study their properties.

It is well known that pattern recognition is an important field
of research. In this aspect many research achievements have
been obtained (for example, see [13]). In this paper, as
applications of the metrics and difference values (defined by
us), we also study the problem of pattern recognition in an
imprecise or uncertain environment, put forward an algorithmic
version of pattern recognition based on the metrics or
difference values (defined by us) of fuzzy n-cell numbers,
and also give examples to show the application and rationality
of the method.

The organization of the paper is as follows. In Section 2, we
give an example to show how to set up fuzzy n- cell numbers

to represent imprecise or uncertain multi-channel digital signals.

In Section 3, we define two new metrics, and study their
properties. In Section 4, we introduce concepts of difference
values of two fuzzy n- cell numbers, and examine their
properties. In Section 5, an algorithmic version of pattern
recognition is given based on the metrics or the difference
values defined by us, and examples are also given to show the
application and rationality of the method. Finally, in Section 6,
we give a brief conclusion of this paper.

II. REPRESENTATIONS OF UNCERTAIN MULTI-CHANNEL
DIGITAL SIGNALS

A fuzzy set of the Euclidean space R" is a function
u:R"—[01]. For fuzzy set u, we denote [u]'={xeR":

ux)=r} for ref0,1] , and [u]’={xeR":u(x)>0} (the

closure of {xeR": u(x)>0}). If u is a normal and fuzzy
convex fuzzy set of R", u(x) is upper semi-continuous, and
[u]’ is compact, then we call U a n— dimensional fuzzy
numbers, and denote the n—dimensional fuzzy number space
by E". If ueE, and for each r €[0,1], [u]" is a hyper

rectangle, i.e., there exist U, (r), u_i(r) € R with u,(r) Sa(r),

(i=12,+,n)such that [u]" = [ " [u,("), u,(r)], then we call
u is a fuzzy n-cell number, and denote the fuzzy n—cell
number space by L(E"). A n—dimensional fuzzy vector is an
ordered class (u,,u,,---,u) , where U, €E (ie, E'),
i=12,---,n. In [14], We have shown that fuzzy n-— cell
numbers and n —dimensional fuzzy vectors can represent each
other, and as the representation is unique, L(E") and the

n —dimensional fuzzy vector space (i.e., the Cartesian product

E x Ex---x E ) may be regarded as identical.

When exploring and discussing some quantity, properties or
laws of movement of phenomena/objects in the physical world,
it is essential for us to establish the description space of them.
For instance, when the quantity in question is only the one with
a single factor, we can take it as a dot in real number field R,
that is, the space of quantities corresponding to single factor

can be described by 1- dimensional Euclidean space R .
Similarly, we can describe the quantities with n factors, using

n — dimensional Euclidean space R". However, in the physical
world, many phenomena are imprecise or uncertain (such as,
have no certain bound). When the quantity discussed by us
possesses some imprecise or uncertain attributes, it is
unsuitable that we use still R" to represent the space of the
quantities (see Remark 2.1). It is our opinion that using the
fuzzy n— cell number space discussed in [14, 15] to describe
the quantities with some uncertain factors and discuss these
quantities in this n— dimensional fuzzy vector space is a more
suitable method to reveal the objective laws of things in
physical world (see Remark 2.1).

In the following example, we demonstrate how we construct
a fuzzy n—cell number to represent a quantity that possesses
some uncertain attributes based on statistical data. About the
algorithmic version of such fuzzy n—cell numbers, we can see
the first or second step of the algorithmic version in Section 5.

Example 2.1. It is well known that different kinds of terrain
or landcover possess the different reflections of the
electromagnetic spectrum. Based on this principle, one can set up
a method to recognize the category of landcover, a challenging
remote sensing classification problem, using spectral and terrain
features for vegetation classification in some zone. In remote
sensing classification, the colligation of all species covering a
zone of 4500 m* can be boiled down to an element of remote
sensing space. We use “Korean Pine accounts for the main part”
to denote forest that mainly contains Korean Pines. Because in
different “Korean Pine accounts for the main part” areas, there
are many different factors such as the difference of the density of
Korean Pines, of the species and quantity of other plants, of the
physiognomy and so on, the values of reflections of the
electromagnetic spectrum are also different. Therefore “Korean
Pine accounts for the main part” should not be a certain crisp
value but a fuzzy set without certain bound. So, using a fuzzy
number to represent the spectral sensitivity level of the “Korean
Pine accounts for the main part” is more suitable than using a
crisp number. Suppose that we use 4 wave bands: MSS-4,
MSS-5, MSS-6, MSS-7. We take 10 samples, and acquire the
following data for some zone of “Korean Pine accounts for the
main part”:

MSS -4 MSS -5 MSS -6 MSS -7

Sample 1 15.01 13.30 40.50 19.37
Sample 2 15.60 12.56 38.81 16.35
Sample 3 15.82 12.79 37.70 18.16
Sample 4 14.90 11.70 35.50 14.75
Sample 5 16.10 13.80 42.10 20.75
Sample 6 13.80 11.94 32.10 15.54
Sample 7 15.90 10.98 30.87 14.29
Sample 8 16.82 13.67 37.64 18.62
Sample 9 15.50 12.58 36.10 18.02
Sample 10 15.38 12.48 34.08 17.45

We can directly work out the following means g,
(i=1,23,4) and standard deviations o, (i=123,4) from the
data:
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MSS-4 MSS-5 MSS-6 MSS-7
Mg, =1546 p,=12.58 4, =36.54  pu,=17.33
o,: 0,=122 o, =0.88 o, =3.55 o, =2.08
From the means and the standard deviations, with
XZUEZ29) 5y efu 20,410 (0:40)
20,
U (%) = (ﬂlfﬂ if X e (4,14 +20,1M(0,400)
O
0 if X &[4 —20;, 4 +20;1(0,+00)

(i=1234)
we can define 4 triangular model one-dimensional fuzzy
numbers U,, U,, U, and u, that respectively correspond with

MSS-4, MSS-5, MSS-6 and MSS-7:

X 1302 e e 1302, 15 .46

2.44
u,(x,) = 17;’% if x, e (15.46, 17.9]
0 it x, [13.02, 17.9]
X, Z 1082 ey e 1082, 12,58 ]

1.76
u,(x,) = 14'134% if  x, e (12.58, 14.34 ]
0 if X, ¢ [10.82, 14.34 ]
% it x, €[29.44, 36.54 ]
Uy (X)) = 43'67471_"3 if X, e (36.54, 43.64 ]
0 it x, #[29.44, 43.64 ]
% if x, e[13.17, 17.33 ]
U, (x,) = 21':9716_“ if X, e (17.33, 21.49 ]
0 ifx, e[13.17, 2149 |

By Theorem 3.1 and 3.2 in [14], we know that u,, u,, U, and
u, determine a fuzzy 4 - cell numberu = (u,,u,u,,u,) , and
the membership function of U is
U(XI 5 Xy Xy, X4) = min{ul (Xl )9u2 (Xz ),U3(X3 ),U4(X4)}
(Xl’ XZ’ X3’ X4) € R4
Then U can be used to represent “Korean Pine accounts for the
main part”.
Likewise, from the means and the standard deviations,
according to

(Xiz_—/j)z) it X e (0,+)

Vi (%) =exp(—

0 if X & (0,+00)
we can also define 4 Gaussian model one-dimensional fuzzy
numbers V,, V,, v, and v, that respectively correspond with
MSS-4, MSS-5, MSS-6 and MSS-7:

_ 2
vl(Xl)=exp(—(Xlzl%) if X, e(0,4o0)

0 if X, ¢ (0,+0)

i=1234

_ 2
V2(X2):exp(—%) if X, e(0,4)
0 ' if X, ¢ (0,40)

(X, —36.54) .
V(X)) = 3~ ") if X, (0,40
3( 3) exp( 2501 ) i 3 e( )
0 if X, & (0,400)

—17.33)* . .
v4(x4)=exp(—%) if X, e(0,40)
0 ' if X, & (0,40)

and obtain the membership function of the fuzzy 4 - cell
number V= (v,V,V;,V,) determined by v,, v,, v; and v, as

V(Xp, Xy, X5, Xy ) = min{ Vi (X,), V5 (X;), V5 (X3), V(X))
(X,,X,,X,,X,) € R*. Then the fuzzy 4 —cell number v can also

be used to represent the “Korean Pine accounts for the main
part”.
Remark 2.1. Of course, if the quantity to describe is precise
and certain, we should use a crisp multi-dimensional vector to
represent it. However, if the quantity to describe is imprecise
and uncertain, such as “Korean Pine accounts for the main part”,
then using a fuzzy n — cell number to represent it is better than
using a crisp N — dimensional vector. If we narrowly use a crisp
multi-dimensional vector, such as (15.46,12.58,36.54,17.33)

(i.e., the mean vector), to represent “Korean Pine accounts for
the main part”, then it can not clearly tell us the relationship of
“Korean Pine accounts for the main part” and the zone whose
value of reflection of electromagnetic spectrum is
(15.16,12.80,37.50,16.79) since (15.16,12.80,37.50,16.79)

#(15.46,12.58,36.54,17.33) . If we use fuzzy n— cell number

V=(V,V,V,,V,) torepresent it, then we can almost affirm that the
zone whose value is (15.16,12.80,37.50,16.79) is part of

“Korean Pine accounts for the main part” since
v(15.16,12.80,37.50,16.79) = min(0.94, 0.94,0.93,0.93) = 0.93, i.e,

the degree of the zone which is “Korean Pine accounts for the
main part” is 0.93.

III. METRICS ON FUZZY N — CELL NUMBER SPACE
In [3], the authors studied the metric d (-,-) (note that in
this paper we rewrite d (-,-) as D (-,-) ) on general
n — dimensional fuzzy number space E", which is defined by
D,(u,v) = (J‘Ol[d([u]r,[v]r)]”dr)”p for any u,veE" , and
point out that the metric D, is complete.

In [15], we studied the metrics D and D, on L(E"), but
the two metrics seem to be ‘rough’ in certain applications (see
Example 3.1). In the following, other metrics are defined on
L(E") , which better reveal the difference between two
different uncertain quantities (see Example 3.1). Their
properties are also discussed such that they may be used
appropriately.
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We denote LC(R") ={A: there exista <b, i=12,---,n
such that A = H,n:][ai7bi] }, where Hll[ai,bi] is the Cartesian
product [a,,b]x[a,,b,]x---x[a,,b,].

Theorem 3.1. We define mappings
d_ :LC(R")x LC(R") —>[0,+)

and
d, :LC(R")x LC(R") = [0,+00)
by
d,(AB)=) o -max{la-h|, |a-b}
and
IAB-Y a Ig—glgla—h |

for any A=]T [a.a]eLC(R") and B=]T [b.h]eLCR"),

. n
where a=(a,q,, --,a,) satisfies Zizlai=l and ¢, >0 ,

i=1,2,---,n. Then for any A= Hinzl[ai,a_,], B= Hinzl[b,,b_i],

c=[T lc.c] in LC(R") and each keR , d, and d,
satisfies

(1) d (A,B)=d,(B,A) and d (A,B)=d,(B,A);

(2) d (A,B)>0 and d_(A,B)>0;

(3)d.(AB)=0 < A=B < d,(AB)=0;

(4) d (AB)<d (AC)+d,(C,B) and d, (A B)<d,(AC)
+d,(C,B);

(5) d,(A+C,B+C)=d_(A,B) and d,(A+C,B+C)
=d,(AB);

(6) d, (kA kB) =k |d, (A B) and d, (kA kB)=k|d, (A B).

Proof. We only show Proofs (4), (5) and (6) (the other
proofs are easy). From

d,(AB)=" o -max{|a -b | [a b}
<> o maxi|a—c|+|¢ bl [a—c|+|c b}
<> @ -(max{la —c |, |a - |} +max{c,~b | [c b}
=d (AC)+d,(C,B)
d,(A+C,B+C)=" o, -max{|a +¢ b +¢ | |a +¢ —b +c |}
=Y @ -max{|a +¢,—b —c |, |a+¢—b—c}
=d, (AB)
d,(kAKB)=>" &, -max{ ka, —kb,|. | ka, — kb, |}
= o, -max{|ka kb |, | ka, — Kb, [}
=k|d,(AB)
we see that (4), (5) and (6) of the theorem hold for (ia . For Ja,

we can similarly prove that (4), (5) and (6) of the theorem also
hold. 0
Theorem 3.2. We define mappings

D,, :L(E")xL(E") - [0,40)

and
D, : L(E")x L(E") — [0,+o0)
by
B, ,(uv) = ([ [r-d, ([u]',[v )" dr)"®
and
B,,(uv) = ([ [r-d, ([u]',[v))dr)”
1.€.,

D, ,(U.v)
= (I e max{ () - ()| [0 () [0
and
D, »(u,v)
1 n . _ 1
= S (D =) [+ (D) =% () ) d)*
for any (u,v)e L(E")xL(E"), where p>1, and « = (a,,a,, -,
@) satisfies Zin:lai =1 and ¢, >0, i=12,---,n. Then for

any U,v,we L(E") and each k e R, [Sa_ and 5[“) satisfy

p

(1) D, ,(u,v)=D, ,(v,u) and D, ,(u,v) =D, ,(v,u);

(2) D, ,(u,v)>0 and D, (u,v)>0;

(3)D,,uV)=0 & u=ve D, uv=0;

4) D, ,(u,v)<D,,(u,w)+D, (w,v) and D, ,(u,v)
< Sa,p(u,w)+ ISM(W,V);

(5) D, ,(u+w,v+w)=D, (u,v) and D, ,(u+w,v+w)
=D, ,(uVv);

6) D, (ku,kv)=[k|D, (u,v) and D, ,(ku,kv)
=k|D, ,(uv).

Proof. It is obvious that (1) and (2) of the theorem hold.

By the definition of IIA)a it is obvious thatu =v =

P2

lﬁa‘p(u,v):o. Otherwise, let lﬁa‘p(u,v):o . Then we have
[Ir> e max ] u ()= v, (N)], [U;(1) = V,(r) }]°dr = 0.
Taking note of ¢ >0, we see that r(z:‘:]ai-max{\ﬁ(r)—

vi(n], |u_i(r)—v_i(r)|}) =0 holds for r almost everywhere on
[0,1] . Further, we have that Zin:lai ~max{|&(r)—&(r) l,

|u_i(r) —v_i(r) [} =0 holds for r almost everywhere on [0,1], so
we can see that u,(r)=v,(r) and u_i(r)=v_,(r) holds for r
almost everywhere_ on [OI] for i =1,2,---,n . Therefore, we
obtain that [u]" =[v]" holds for r almost everywhere on [0,1],

so we know that U=V holds by Lemma 2.1 in [18]. Thus,
lﬁa‘p(u,v):o < u=V holds. Likewise, we can prove
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Sa,p(u,v)zo S u=v
Theorem 3.1, we have
B,, V)= (] [rY & -max{|u,(r) - v,(0) |, [U,(1)~V,(r)[}]" dr)"”
<[ (r-[d, (ur . Iwp) + d, Q] [vI)]) dr]
< ([ 1r-d, (qur.w)rdn® + ([ [r-d, (w. V) Tdr)
= Da_p(u,w)+ Da_p(w,v)
The proofs of [N)ayp(u,v) < [N)a_p(u,w)+ [N)a_p(W,V) , (5) and (6)
can be similarly proved. O
Remark 3.1. From Theorems 3.1 and 3.2, we know da,aa

and D D

a,p?

, S0 (3) of the theorem holds. From

are metrics on LC(R") and L(E"), respectively,
and satisfy translation invariance, absolute homogeneity. Also,
from the factor r of the integrands in the definitions of
D,,(u,v) and D, (u,v), we can see that the bigger the
degrees of the points are, which belong to the fuzzy n— cell
numbers U and Vv, the greater the effects on the metric of u
and V. This is true in reality.

Example 3.1. Let u,v,w be the 2 — cell numbers defined
by: u=(u,u,), v=(v,v,) and w=(w,,w,), where,

X if xe[0,1] x-2 if xe[23]
u(x)y=92-x if xe(2] »>vi(xX)=:4-x if xe(34]
0 if  xe[0,2] 0 if xe[2,4]
(i=12)
X if  xe[0,1] x=2 if xe[2,3]
w(x)=92-x if xe(2], w,(X)=94-x if xe(34]
0 if x¢[0,2] 0 if x¢[2,4]
Then we know that U (r)=r, u(r)=2-r, v,(r)=2+r,

\Ti(r)=4—r (i=L2),w(r)=r ,Wl(r):2—r ,Wy(r)=2+r
and W_Z(I’) =4-r for r €[0,1]. From the definitions of D,
we have D (u,v)=2=D, (u,w),

difference of D, (u,v) and D, (u,w),sowe say that D, seems

i.e., D, can not tell us the

to be ‘rough’ (similar proof for D ). However, as a matter of

fact, D (u,v) and D, (u,w) should have some difference.

Takinga =(1/2, 1/2), from the definitions of D
2 1

btain D u,v) = > =D
R (P L (P

W€ can

a,p?

wp(U,W) , this

accord with fact.

If we restrain the metric D, (ie. d (-,-) defined by

Diamond in [3], see paragraph 1 of this section) on general
n — dimensional fuzzy number space E" into on L(E"), then

it also becomes a metric on L(E"). In the following, we give

D ,D and D,.

a,p? ~a,p

the relationships of the metrics

Theorem 3.3. Metrics D D

a,p? ~a,p

and D, satisfy

1A ~ A . J ~
(1) ED“"’ <D,,<D,,<D,<D,i.e, EDa’p(u,v) <D, ,(u,v)

<D, ,(u,v)<D,(uv)<D(,v) for any uveL(E") (D is
discussed in [15]).

3 1 1 _ .
2) D < D < D, ie, D, (u,v
@) D, (p+D"" " (p+D'* 1. p(ULv)

1 1 i
Ty L(u,v)S—(pH)l/p D(u,v) forany u,ve L(E").

Proof. Forany u,ve L(E") and r €[0,1], by the definitions

of Oia and aa,we have
[u]',[v]")
:%ZL% smax {|u, (1) = V(N ], [4(r) = v, () |
U, (1) = Vi (D) [+ U, (1) =V, (1) [ 4] 14, (1) = v, (1) | = U, (1) = v, (1) |

I o bt M
_EZizlai' B } ) B }
n ‘ui(r)_Vi(r)l+‘ui(r)_vi(r)|+|ui(r)_vi(r)|+|ui(r)_vi(r)‘
<Y 4= R
h [u;(r)— V(f)|+\U(r) V(r)l
<3 4 : d, ([u)".vI")
5w 2max{|5(r)—g(;)|, |uf(r)—vi(r>\}

=d, ([ul".[vI")

From this, we can directly obtain %Iﬁa’p(u,v) < ISM(U,V)
<D, ,(uv).

<d< \/ﬁdL, where,

d, (AB)=max,.{[a -b||a -b [} for any A=T]" [a.a]

By Theorem 4.4 in [15], we know d,

eLC(R") and B = H [bl, I]e LC(R"). Therefore, for any
u,ve L(E"), we have

D, ,(u.V)
= ([ [rY o max | w () =V, (1) | U, (r) = (r) [}]° dr)'®
< (I3 e max,y 14 (0 =V, (0], [U,(1) =V, (D) [} dn)''?
= ([ Ir-d, (uI.VHY @
< ([ [d(uI. V)P dr)® (= D, (u.v)
< ([ [5upyegq, A ((UT VI dry''®

= ([ [D@uv))* dr)"'®
< D(u,v)
Thus, we also obtain ba,p(u,v)s D,(u,v) < D(u,v) and the

P dr)” p

proof of (1) of the theorem is complete.
From

Iﬁa p (U, V)

= ([ Ir Y] e max ] u () =vi(n) |, [ U0 = v () 17 dr)''?
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< (L:[r -d, ([u]",[v])]P dr)'/P
< (I(:[r -sup, oy & (U], [VI)IP dr)''P
= (I;[rDL(U,V)]p dr)l/ P

< D(u,v)(j;rp dry’®

1
:WD(U,V)

and Theorem 4.5 in [15], we can see that (2) of the theorem
holds. 0
Remark 3.2. From (1) of Theorem 3.3, we see

D,,<D,,<D,,,ie, D, and D, are equivalent, so we

a.p? a,p

N | =

know that |ja,p and Sa’p induce equivalent topologies on

L(E") by the knowledge of topological space.

IV. DIFFERENCE VALUES ON FUZZY N — CELL NUMBER SPACE

In Section 3, we discussed metrics on L(E"). But sometimes

these have some shortcomings demonstrating the difference of
two objects. For example, we consider that the degree of
difference of 1 and 2 is bigger than the degree of difference of
10" and 10" +1 though their metrics (Euclidean metric)
measure both are 1. A mapping from the Cartesian product
X x X ofaset X into R needs to satisfy stronger conditions
in order that it can become a metric, and this brings limitations
in some applications. The measure used to characterize the
differences does not need to satisfy all metric conditions, for
example, when we set up a method of pattern recognition
basing on the principle of minimal difference (i.e. the principle
of maximal likelihood), the measure used to characterize the
differences does not need to satisfy all metric conditions. To
conveniently set up methods of pattern recognition using fuzzy
n— cell numbers, we introduce the concepts of difference

values on L(E"), and study the properties.
Let ue L(E") and a =(a,,a,,-,a,) € R" satisfy
> =1 We

Ma(u):z:‘:laijgr[ﬁ(rﬂu_i(r)]dr, denote M (u)=M, ()

and ;20 ( i=L2--,n ). denote

as a:(—,—,---,l),and denote M(u)=M,(u) as ueE.
nn n

Definition 4.1. Let u,ve L(E") with
M,), M,(v)20and M_(u)+M_(v) =0. We denote
> f 20 [u () -v,(r)|dr
M, (W)+M, (VI

L,.uv)=
and

> ] 20 [U(n) - v, (r) | dr
(M, )+ M, ()]

Ra,a (u,v) =

andcall L,,(u,v) and R_,(u,v) a left difference value and a

right difference value of U and v (with respect to the weight
a and parameter a ), respectively. And we denote

A, (V)= %[La,a(u,w FR,,(UV)]

1e.,
> a [ T = v+ U0 - v, () [dr

Aa‘a(u’v) = a
(3] o) s+ 50+ o |

and call A_,(u,v) a difference value of U and V (with
respect to the weight o and parameter a ), where,

a=(a,a,,,a,)eR" with Zin:laizl and «, >0

(i=12,---,n) , and ae(0,+o) . Specially, we denote
AUV =A, L (UY) as a=(=t Dy | and Ay
’ nn n

=A,(v)a uvek.

Remark 4.1. (1) Generally speaking, we consider that the
degree of the difference of two numbers is related not only by
the metric of them but also by the sizes of them. As the metrics
are the same, the bigger the sizes of the two numbers are, the
smaller the degree of their difference is. The denominator
[M,)+M,()F in the definition of A, , just plays the action

(see Example 4.1), and the exponent a in [M_(U)+M (V)]?
can be properly chosen accordingly to the case in question. (2)

Taking the note of that Zn a, M) +Mw) =1 holds as
A MW+ M (v)
a:(l,l’...’l) and a=1, and zn a M =
nn n = A M,W+M,_()

does not necessarily hold as a # ( ,l,m,l) or a=1, from
n n

S |-

Aa,a(ua V)

S [ ) = Vi) [+ 0 (0 = v, () [1dr

[ZL] o[ U, () +v, (N +u (1) +v_i(r)]drja

[ Fus(n) -+ vi(r) + 0 () + v, (rlar

=zn a, ; — -
S ] e v + ) v (g

[ ¥l u (0 =vi(r) [+ u;(r) = v,(r) 1dr

(j (0 +v, (r)+I<r)+Z(r>]drja

_Z"a{Ma(unMa(v)J Attt
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we can directly see that A_](u,v) is a convex combination of
AU,V), i=12,---,n, but A_ (u,v) is not necessarily a
combination of A (u,v,) ,

convex i=12,-n as

a;t(l,l,m,l) ora=l.
nn n

Example 4.1. Let u,v,u’,v’ be the 2— cell numbers
defined by: u=(u,,u,) , v=(v,,v,) , u'=(u;,uy) and
v'=(v,,v;), where,

X; if  x; €[0,1]
u(xp)=<2-x% 1if x e(1,2]
0 it x, ¢[0,2]
~10+x, if x e€[10,11]
vi(x)=1 12-x if x e(11,12]
0 if  x; ¢[10,12]
~100+x, if X, €[100,101]
u(x)=14102-x, if x €(101,102]
0 if X, [100,102]
~110+x, if x e[10,11]
Vi(x) =4 112-x, if x e(11,12]
0 if  x; ¢[10,12]

and i=12. Then we know that u,(r)=r, u_i(r):Z—r ,
V(1) =10+r, v,(r)=12—r, u/(r)=100+r, u/(r)=102—r,
V/(r)=110+r, v/(r)=112—r (re[0,1], i=12). From the

definitions of [N)a_ and A, we can obtain

p
Da,p(uav)

:%U;[r(alqr—10—r\+\2—r—12+r|)
ta,(r=10—r|+[2-r—12+r)]"dr]|"”’
_%gﬂq”
211+ p)
D, , U,V
:%U;[r(al(\100+r—llO—r\+|102—r—112+r|)

1/p

(1100 4+ —110 -1 [+]102 -1 — 112 + r[))]"dr]

_l 20p 1/p
20+ p)

A, (Uy)

a,J'Olr(\r—lO—r|+\2—r—12+r\)dr+a2I;r(|r—10—r\+|2—r—12+r|)dr

(al_[olr(r+10+r+2—r+12—r)dr+az_[0‘r(r+10+r+2—r+12—r)dr)
10
122
Ay, (UV)

& F(100+ 7 =110~ 1 [+]102 - r =112+ 7 ))dr + &, ] (1004 r =110~ |+]102 112+ 1 dr

a
(al“r(lOOJrr+110+r+102—r+112—r)dr+a2jolr(100+r+110+r+102—r+112—r)dr)

10
212°

so we have Sa.p(u,v) = Sa,p(u',v’) and A, (U,v)>A,,(U,V).

Property 4.1. Let u,ve L(E") with M_(u), M_(v)>0 and
M,(W+M,(V)#0, a=(a,a,a)eR" with > =1
and ¢, >0 (i=12,---,n),and a e (0,+). Then

A, (uv)=0;

(2) A,,(u,v)=0 ifand only if u=Vv;

() A, UV)=4,.(V,u);

4) A, (u,w)=A_, (v,w) forany we L(E") and usv<w;

(5) A, ,(U+w,v+W)<A_ (u,v) for any we L(E") and
w>(0,0,--,0);

(6) A, ,(ku,kv) =k™A_,(u,v) forany k >0.

Proof. It is obvious that the conclusions (1) and (3) hold.
The proof of conclusion (2) can also be completed by imitating
the proof of (3) of Theorem 3.2 by using Lemma 2.1 in [18].

From u<v<w, we know that u,(r)<v,(r)<w(r) and

U(N V(N Sw(r) (=120 ), 50 [U(n)-w(r)]

2| v, (1)~ w, ()| and|u; (r) =W, (r) [ v, (1) = w,(r) | . Therefore,

we have
S o U ) = W) [ +] U (r) - wy(r) Jdr
>3 o (D) = W) |+ () —w,(r) [dr
On the other hand, from &(r) < &(r) < ﬁ(r) and
U (1) <Vi(r) SW(r) (i=12,-,n), we can also see that M, (u)
=3 o MO +uMIr <37 o [ (D) +G(nIdr =M, (v),

so we can obtain 0<M_(U) <M _ (V) <M_(W). Thus, we have

S o U () =W () | +] U ()~ wy(r) ldr
Aa a(U,W) = — — -
’ (M, (u)+M, (w))
| V(D) = W) [+, (r) = wi(r) [Jdr
) M, () +M, W)y
= Azx,a(v’w)

so conclusion (4) holds.

From sz),weknow M, (w) >0, so we have

A, U+ W,V +w)

S P W) (1) = v+ W), () | (U W), (1) = (v + W), (1) [Jdr

[Zi":] aijolr[(u + W), (1) + (V+w),(r+Uu+w),(r)+ v+ w),(r)]dr)a

S FIU () + W) = Vi) = Wi () |+ U (r) + W, (1) = v, () = w (1) [ldr

(ZLaiI U () + W) + V(1) + W(F) + Uy () + Wy () + v, (1) + Wi(r)]dr)

] U (D) = (1) |+ (r) = v (r) [ldr
(M, W)+ M, () +2M, (W)
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> .I r) U (1) = Vi(r) [+ Uy (r) = v, (r) [1dr
(M, (u)+M,(v))f

= Aa,a (U, V)

i.e., conclusion (5) holds.
For any k >0, we have
A, . (ku,kv)

XL,

( i .I r(ku); (r) + (kv); () + (ku), (r) + (kv), (r)]dr)

ka[ o 1“_[ riu (N +v; (r)+u (N+v, (r)]dr)a

=k'A, ,(u,v)
so conclusion (6) holds. Therefore, the proof of the theorem is
completed. O

Remark 4.2. (1) Although the conclusion (4) of Theorem 4.1
holds, u<v<w does not imply A_,(Uu,w)=A_, (u,v) (see

P[] (ku), (1) = (k)i (1) [+ (ku); (r) = (kv), (1) [1dr

[1U, () = Vi(r) |+ |, (1) = V() [Jdr

Example 4.2). Comparing

S o [ U (r) =W () | +] U (1) = w,(r) [ldr
(M, (u)+M_(w))

Aa,a (u’ W) -

to

S [ rlu 0 =vi(r) [+ [y (r) - v,(r) [idr
M, W +M, W)

we can see that the untruth of A_,(u,w)>A_,(u,v) is caused

only by (M, (u)+M,(w))* >(M_u)+M,(v))*, and when

(M, +M, W) and (M,W)+M, W)

smaller, U<v<w can imply A, (U,w)=A_ (U,V).

Aa,a (U,V) =

are properly
So, in
general, we may choose a in (0,1] such that A , can

reasonably characterize the degree of the difference of two
fuzzy n— cell numbers.

(2) Generally speaking, the difference value A,, does not

satisfy the property of the triangular inequality, i.e., the
inequality A, (u,v) <A, (u,w)+A_,(w,v) does not

necessarily hold for u,v,we L(E"). Example 4.3 can show it.
Example 4.2. Let u,v,w be the 2 — cell numbers defined

by: u=(0, 0), v=(v,,v,) and W= (W,,W,), where

-1+x if xe[l,2] 2+% if xe[23]
vi(X)=<3-x if % (23] wi(x)=14-x if ¥e(34]
0 it x ¢[13] 0 it x 2[2.4]
and i =1,2 . Then we know that u,(r)=0, u,(r) =0
v,(r)=1+r, v(r)=3—r, W(r)=2+r, and W (r)=4—r

(ref0,1], i=12), so we have u<v<w, but we can see
A, (UW <A, (U,V), from

A, ,(U,w)

a]folr[\O—z—r|+\o_4+r|]dr+a2.[01r[|0_2_r|+|0_4+r|]dr

2
(a]_[olr[()+2+r+0+4—r]dr+a2.[olr[0+2+r+0+4—r]drj

Q-u.)l»—

an
Aa,Z (U, V)

aljolr(|0—1—r|+|0—3+r|)dr+a2j01r(|0—1—r|+\0—3+r|)dr

2
(aljolr(0+1+r+0+3—r)dr+a2j0]r(0+1+r+0+3—r)dr}

Example 4.3. Let u,v,w be the 2 — cell numbers defined
by: U=(u,,u,), v=(11) and w=(2,2), where
19 9

Q+ X, if X e[-—,——]

10 10 10

1 1

U (x)=s—=x 1if -——
() =975 7% <1 10]
0 if X e[—Q,L]

10 10

and i=1,2. Then we know that ui(r):—i—(g)+r, u_i(r):——r

vi(n=1, v(N=1, (=2, w()=2 (re[0l], i=12),

2 1
so we have A, (u,v)=19, A_ (U,W) =1—? and A, (V,W) =3

itimplies A, (U,V) > A, (U,W)+A_ (V,W).

Example 4.4. Let u,v,w be the 2 — cell numbers (see Fig.1)
defined by: u=(u,,u,), v= (i i) and w=(W,,w,), where
X: if  x, €[0,1]

U (x)=<2-x if x e(L2]
0 it x ¢[0,2]

-1+x if X €[1,2]

W, (Xx;))=43-% 1f X €(23]
0 if X ¢[1,3]

and i=12. Then we know that u;(r)=r, u_i(r)=2—r,

V(D=2 v(N=2, w()=1+r, w(n=3-r (ref0l],

. . ~ 1 =
i=12), so we can obtain that D,  (u,V) :E =D, ,(u,w) and

2 . . .
A,.(u,v) =3 A,.(U,w). However, it is obvious (see Fig.

4.1) that the degree of the difference of u and v is different
from the degree of the difference of U and w.
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u(x,x,)

0 T 2 3 X,
Fig. 1. Fuzzy 2 — cell numbers U, V and W in Example 4.4

In fact, sometimes, the degree of the difference of two fuzzy
numbers is not only related with the metric and the sizes of
them, but also related with the degree of fuzzy (we call it fuzzy
degree) of them. Example 4.4 shows that for the u,v,w given,

and the difference value A _ can not tell us

a,p aa

the difference of the degree of the difference u and v with the

the metric D

degree of the difference of U and W since ISa’p(u,v)

=D, ,(u,w) and A ,(u,v)=A, (u,w), but we see that the

two degrees of the differences indeed have some differences. In
order to overcome the defect, we introduce the following
concept.

Definition 4.2. Let u,ve L(E"). We denote

A aU,V)

= [Z.Laijo'rn (U (1) = Vi (1) [ +] U () = vy (r) |]drj

n ui k(1) V(1) Ui (0) Vi (0)
‘exp(azi:] (] jw u )t - | o dt |+ | o U0t~ | VOt \)J

and call A_,(u,v) a difference value of U and V (with

respect to the weight « and parameter a ), where,

u; (1)+u; (1)

uj (1) ===

« Vi (D+v; (1)
, Vi(D==—F—

, and a=(a,a,,,,)

e R" with Zin:lai =1 and ¢, 20 (i=12--,n), and ae(0,+x).

1

We denote Xa(U,V):Aa’a(U,V) as a=( ,%,"',H) , and

S| =

A,u,v)=A ,(,v)as uvek.
Example 4.5. Let u,v,w bethe 2 — cell numbers defined in

Example 4.4. Then
Aa,l (U,V)

:(Z;aij O'r(\ r—2|+[2-r-2 |)dr)
.exp(zi:aiq [t [ 10t [ -tdt— [ 1t \)j

= O'zrdr-exp(l)

=e
and
Aa,l (U, W)

- [Z;aijolr(\ Felor|+|2-r—3+r |)dr]
~exp(zi2:1 o (| tdt = [ -+ | [ @-vdt— [ G-ty |)j

= _[ 012rdr -exp(0)
=1
so we see A, (U,v)> A, (U,w). Therefore, in this case, the
difference value A,, is more suitable than metrics and
difference value A, , to characterize the degree of the
difference of two fuzzy n— cell numbers.

Property 4.2. Let u,velL(E"), a=(a,a,,,a,)eR"
with D" ;=1 and @, >0 (i=12,--,n), and ae(0,+).

Then

(A, UVv)20;
(2) A,,(u,v)=0 ifand only if U=v;

(3) A, UV)=A,, (V,u);

) A, (Uu+byv+b)=A_ (uv) forany beR;
(5) A, (kukv) =k A,

Proof. It is obvious that the conclusions (1) and (3) hold.
The proof of conclusion (2) can also be completed by imitating
the proof of (3) of Theorem 3.2 by using Lemma 2.1 in [18].

Forany beR and i=1,2,---,n, we have

(U, +b)(t) =sup{r e[0,1]:t € [(u; +b)(r),(u; +b)(r)]}
=sup{r €[0.1]:t—b e [u, (r),u,(N]}
=U; (t - b)

(u,v) forany keR.

hence
A, .U+ b,v + 6)

=[Z;aij;r|(5(r)+b—g(r)—b|+\u7(r)+b—v7<r)—b|]drj
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+b))dt - fv'” (v, + b))t |

U *(1)+ b
exp(aZ L],
|I ui (0)+b
Ui *(1)+ b

(T af riwm -+ uo-vo )

byt + Byt |>j

exp(azll a(| j (U, +B)(s +b)ds — j (v, +B)(s + b)ds |

[ uu.lw(“‘ +b)(s+b)ds — | vv,;m
( ARG RIGIMGE v(r)ﬂdr)
exp(az, a(l '“f))(ui)(sms— j;';f)”

1w [ wes Dj

(Vi)(8)ds |

= Aa,a(u5v)
i.e., conclusion (4) holds.

For any k > 0, we have
A, . (ku,kv)

[ 11 0,00 oo, 0+ e () R 0 o |
exp[az, () (k= [ P, @t

(ku); (0)

l J.((ktu)rl*((:(ku)i (tydt - -[(k )*(( )(kV) (Hadt ))
= (Zinzlai | olf[l ku (r) = kv, (r) | +] ku, (1) = kv;(r) |]dr)
R O] "

. |J- o, (t/k)dt_jkvi(l)vi (t/k)dt I)J

(t/k)dt — j vt/ k)dt |

ku; *(1)
= (kZLai [ U =)+ 10,0 = v,(r) ndr]

n ) %*(1)
.exp(kazi_lo:i ( jﬁ“” ui(s)ds—jﬁ(o) v, (s)ds |

i(0)

Ui (0)
+| J.UI*(])Ui (s)ds — Im
:| k | '[Aa,\k\a (U,V)]

For any k <0, we have
A, . (ku,kv)

=[] 1 G, ()= 0, 0+ e )y )

v, (s)ds )j

.exp(az:lai(|f(kU)'()(k ), (Hdt - j( ” ”(kv) (tydt |

(ku); (0)

(k); (0)
(kv); *(1)

T - [

(ku);*(1)

(kv), (Dt |>j

= [ZLI%I; Pl KU, (1) = kv, (1) + ] Ku, (1) kv, (r) udr)

(v, + b)(s +b)ds |)j

10

exp(azll a j “y (t/k)dt—jv,'(;)v(t/k)du

\j nOy (t/k)dt—jkvi“

ku; (1) i

vt/ kode |))
= [| KIS e [ Pu 0 = v (1) |+ Uy (D) =, (r) |]dr)
exp(azl L ,(|j ' ()ku ((s)ds — _[ "k, ((s)ds|
+f (((1’)’ ku, (s)ds - jvvi'm) kv, (s)ds |)j
(11 ] I 0+ - o)
exp@ Kl-a [} u)ds [ vi)ds,

ui (0) vi (0)
L u©ds=[ | vi(s)ds )j
=] k | '[Aa,\k\a u,v)]
If k=0, it is obvious that A, (ku,kv)=[k|A,,.(u,V)

holds, so conclusion (5) holds. Therefore, the proof of the
theorem is completed. N
At the end of the section, combining the definitions of A, and

A, . , we give the following definition of difference value T, , .
Definition 4.3. Let u,ve L(E") with M_(u), M, (v)>0
and M, (u)+M (V)= 0. We denote
[PSNCRY)

exp( DAL j “u(t)dt J"w)v(t)dt\ﬂ j u(t)dt J'v“*(::))vi(t)dt|)J

( - ,j rly; (r)+v(r)+u(r)Jrv(r)]dr]a

-[Z,l.aijo'rn (u,(n - yr)\+|l(r)—ﬁ(r)ﬂdr]
and call T, ,(u,v) a difference value of u and v (with respect
to « and a=(a,a,) ), where, a=(¢,a,,  ,a,)eR" with

> ay=land ;20 (i=12,n), and a=(a,a,) e (0,+)

% (0,+0) . We denote Ta uv)=Tr,,(uv) as a= (% %,-”,%),

and I',(u,v) =

Likewise, we have the following properties about the
difference value T, .

Property 4.3. Let u,veL(E") with M_(u), M_(v)>0
and M, (W)+M_ (V)=0 , a=(a,a,,,a,)eR" with
Z. a;=1and a; >0 (i=12,
€ (0,+0)x (0,40) . Then
(HT,.uv)z0;

(2 T,.@u,v)=0 ifand only if u=v
() I.uv) =T, (v,u);

I,uv)auvek.

,N), and a=(a,,a,)



TFS-2008-0342

4) T, (u+b,v+b)<T, (u,v) forany be[0,+0);
(5) T,.(ku,kv)=k* T, (u,v) for any ke[0,+0) , where
b=(a.ka,).

Proof. The proofs of the properties can be completed

similarly with the proofs of Property 4.1 and 4.2, respectively,
s0 we omit it. 0

V. PATTERN RECOGNITION BASED ON METRICS AND
DIFFERENCE VALUES

In Section 3 and 4, we discussed metrics and difference
values on L(E") . In this section, we put forward an
algorithmic version of pattern recognition in an imprecise or
uncertain environment based on the metrics and difference
values defined by us, and give examples to show the
application (see Example 5.1) and rationality (see Example 5.2)
of the method.

Consider a problem to identify an object (denoted by O)
belonging to some one of | classes (denoted by C,,C,,---,C,)
in an imprecise or uncertain environment. Let the objects have
n characteristics. Since the problem discussed by us take on
some imprecise or uncertain attributes, it is unsuitable (see
Remark 2.1) that we use a crisp n — dimensional vector (i.e., a
standard n — dimensional real number vector) to express the n
character values of C; (i=12,--,1) or O. Therefore, using the
method of statistics, we construct | +1 fuzzy n— cell numbers
to express the n character values of C,,C,,---,C, and O,
respectively, and then put forward an algorithmic version of
pattern recognition based on the metrics or the difference
values defined by us.

Algorithmic version of pattern recognition based on metrics
The first step:

Depending on the practicality, we first find out one domain

of the jth character value of C, for each i (i=12,---,1 ) and

j (J=L12,---,n), and denote the said domain by D} .
We arbitrarily take m; samples in C, (i=12,---,1 ), and

gain m; measure values (denoted by c,c} ~~,Crini ) of the n
characters of the m, samples, denote c. =(c},,Ch,,"--,C})
(m=1L2,---,m,), i.e., we gain the following tables:
1 1 1 2 2 2
¢ Cr - Gy Ch Cp Gy
1 1 1 2 2 2
C - Cy Cp = Gy C. - Co Cpn - Gy
1- . . . 2 . . . .
1 1 1 2 2 2
lel lez len szl szz szn
I I I
Cp Cp, - G
I I I
C C cee C
C| . '21 ?2 ?n
I I I
Cm|1 Cm|2 len

For C, (i=12,---,1 ), we directly work out the following

11

and standard deviations

1 | .
m_z ::1 Cy

means 4 =

i 1 m; i i H
UJ:\/mZk_l(cki_'uj)z ( J=12,-n ) of the n

character values of C;, (i=L2,---,1 ), respectively. We

construct triangular model 1-—dimensional fuzzy numbers uij

(i=12,---,1, j=12,---,n) as the following:
X_(ﬂi'_zo_i') : i i i
T if xel[u;-20,u;]1ND;
i (uj+207)-x i i i
uj(x) = # if xe(uj,u;+20,]ND;
]
0 if xegl[u)-20,u;+20;1N D]
(i=12,---,1, j=12,---.n)
or construct Gaussian model one-dimensional fuzzy numbers Vij
(i=12,---,1, j=12,---,n) as the following
X—u')’ .
: exp(—#) if xeDj
VJ(X): 20}
0 if xgDj
(i=12,---,1, j=12,---,n)

We construct fuzzy n— cell numbers u'=(u},u,---,u})
(u‘(x],x2,~~,xn):min{uj(xl),uiz(xz),-~~,uin(xn)}) and V' = (v,
VotV (V0K %) = minfvl (). VA 06, Vs (%)) ),
i=1,2,---,1 , and use u' or V' to express the ith class C,
(i=1,2,--,1).
The second step:

For the object O to be recognized, taking t samples in O,

we can gain t classes of data about the n characters of O as
the following:

0, 0, - O
0O: 0,0 0y o 0y,
Oy Op - Oy

We work out the following means (denoted by 0,,0,,:--,0,)
and standard deviations (denoted by s,,S,,--,S,) of the n

character values of O :

B
i T ?Zk:l Oy

Ol

(i:1’2"..5n)

and

1 t _ .
S = tlek:l(oki_oi)z (|:1,2,"',n)

We construct triangular model one-dimensional fuzzy numbers
w; (i=12,---,n) as the following:
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OB e xefo-2s, 910U}, D)
W, (X) = % it xe(, 0,+25]1NWU',,D/)
0 if  xe[0,-2s;, 0;+25]1N(U', D)

(I :1,2"",n )
or construct Gaussian model one-dimensional fuzzy numbers
w, (i=12,---,n) as the following
(x=0)*, . | '
V/(X) = —~— ) if X D/
(%) =expl 28} )it xeUib (i=12,
0 it xegU), D/
We construct fuzzy n— cell numbers w=(W,W,, --,W,)
( W(Xlaxzo"'sxn) = min{Wl(Xl),Wz(Xz),~ "9Wn(Xn)} ) and W= (\M:
W;77W|’1) (W’(Xlaxza”'axn) = min{WI’(Xl)awg(Xz)a'"9W;1(Xn)} )9
and use W or W' to express the object O .
The third step:
Taking proper o =(¢,,a,,":-,c,) Wwith zin:lai =1 and
20, i=12--,n,and p=1, we compute the metrics

D, ,(w,u’)
= UIEE e (W~ [+ W) -5 )P

(j=12,--1)
or
D, ,(W,v')

I (W)~ )+ W) =) P dr

(j=12,--1)

The fourth step:

We choose u* in u',u?,--u', or v in v',v?,---V' such that

Dn.p(W’ujn) = min{Da,p(W$ul)9 Da,p(Wauz)a' " Da.,p(Wsul )}
or

Da,p (W’avln ) = min{Da,p (W,D V] )9 Da.p (W’avz)a Y Da,p (W’ovl )}
Then we can consider that object O belongs to the j,th class C; ,
or belongs to the jyth class C;, .

Remark 5.1. In the third and fourth steps of the above
method, we can have the metric Ija'p replace the metric D

a,p
as a result of which, we can also set up a method based on the
metric lﬁa’p .

Algorithmic version of pattern recognition based on
difference values
The first step and the second step:

They are respectively same with the first step and the second
step of the method of pattern recognition based on the metric, as
above.

The third step:

12

Taking proper a =(a,,a,, +,a,) Wwith zi":]ai =1 and

o,20,i=1,2,---,n ,and a=(a,,a,) € (0,+0) x (0,+x),

we compute the difference values

T,.(wu’)

n W, *(1) I CACH wi(0) B ul () j
exp[azz,:,ai ([ WO, @t [ widt=[ ) ul ot \)j

(Z.Lai [ riw(ry+u/ (r)+ﬂ(r)+u7(r)]drja'

-[Z,Lai [ vl wi(r) =l (r) [+ [ wi(r) -l (1) udr)
(j=12,--,1)

or
L, (w,v')

i
Vi

n Wi QUM wio) v () ;
exp[azZ,ZIai ([ ) W= W OOt ] widt= [ v Ot \)]

(Z?:.a. [ rwiy+ vt (r)@(r)@(r)}dr)a'

-[Zillaij W)=V () + [ W1 =V (1) udr)
( J 21729”'7| )

The fourth step:

We choose u* in u',u?,---,u

that

,or vo in v' v? .- v' such

ra,a (W,U jo) = min{ra,a (W: ul)vl—‘a‘a(wa u2)> e ’Fa‘a(wv ul )}

or

L, (W,v*")=min{l,  (W,Vv"),[, ,(W,v*),---, T, (W,v'")}

Then we can consider that object O belongs to the j,th class

c

Io?

Remark 5.2.

the difference value T’

a,a’®

method based on the difference value A

or belongs to the jyth class C;, .

In the third and fourth steps of the method
above, we can have the difference value A,

or A,, replace

a a

as a result of, we can also set up a

orA,,.

In order to be more obvious, we may use the following
diagram to illustrate the methods set up by us.

Measure values of the jth
character of samples in C;,
j=1,2,...n

.....

Measure values of the jth
character of samples in C,,
j=1,2,...n

Measure values of the ith
character of 2samples in O,
=1,2,...,n

Mean 4| , j=1,2,...,n

Standard deviation o} ,
=120

.....

Mean 4| , j=1,2,...,n

Standard deviation o} ,
j=1,2,...,n

Mean g ,i=1,2,...,n

Stan-dard deviation o, ,
i=1,2,....n

1-dimensional fuzzy

1-dimensional fuzzy

1-dimensional fuzzy

numbers: . numbers: numbers:
uj, J=12,..,n peeeee uj, j=1,2,...,n w;, I=1,2,...,n
[ [ [
| Fuzzy n-cell number u, | ,,,,, | Fuzzy n-cell number u; | | Fuzzy n-cell number w |
[ | |
| Difference value T, ,(w,u,) | ,,,,,,,, | Difference value T, ,(w,u,) |

| The minimal T, ,(w,u, ) |

| 0 belongs to the jyth class C;, |




TFS-2008-0342 13

Example 5.1. Suppose that some terrain consists of five
different types of land based cover: C,: Road; C,: Farm or MSS-4 MSS-5 MSS-6 MSS-7
Sample I 18.12 1345 4576  23.64

Crop; C,: Korean Pine accounts for the main part; C, : Boreal
Sample 2 1641 12,62 4471  23.19

and Broad-leaf Mixture Forest; C,: Birch Forest. For the five Sample 3 17.04  12.88  44.95  22.54
types of land cover (C,,C,,C,,C,,C,) and by using the four Sample 4~ 16.58  13.13 4343 22.98
wave bands: MSS-4, MSS-5, MSS-6, MSS-7, we take 10 Cs: Sample3 18.21 1390 46.38 2341

Sample 6  17.23 13.73 45.03 23.76
Sample 7 15.89 12.98 44.32 23.15
Sample 8  17.02 13.25 45.38 22.61
Sample 9  15.97 12.70 43.96 23.11
Sample 10 17.67 13.34 46.09 23.62

samples, and acquire the following data:
MSS-4 MSS-5 MSS-6 MSS-7
Sample 1 18.62 20.71 58.20 26.72
Sample 2 19.76 17.01 51.02 24.32
Sample 3  18.24 19.46 48.12 26.33

Sample4 1876 1595 5635  22.89 By
C,: Sample5 1896 1878 4532  28.32 n :%2&% (i=1,2345,j=1234)
Sample 6 19.90  20.13  50.82  25.05
Sample 7 19.16  18.58 5230  22.21 and
Sample8 1936 17.32  55.02  25.28 i 1 10 i g .
Sample9  19.36  17.98 4826  23.86 ;= \/m (G —45)" (1=123,45,]=1,23,4)

Samplel0  18.48 1646 46.63 2746 we can work out the following means and standard deviations:

1 _19. Y 1 =18.24, o) =1.
MSS-4 MSS-5 MSS-6 MSS-7 t =19.06, 6, =055, 1, =18.24, o, >8

Samplel 2451 2813 5239  22.43 uy =51.20, oy =428, u,=2524, o, =198
Sample2 1937 2341 4556  23.89 (P =21.89, o =288, 4} =24.68, o =482

Sample 3 23.12 24.82 47.80 18.05
P uE=4737, 02 =409, u}=21.63, ¢> =239
Sample 4 18.93 18.87 43.88 20.43

C,: Sample5 2136 3228 5361 2495 i =15.46, o} =122, p; =12.58, o; =0.88
Sample 6  26.06  24.15 4275  19.38 W, =36.54, o; =3.55, u; =17.33, o, =2.08

S le 7 17.64 17.08 46.73 21.16
ampre wh=1622, of =064, 4 =12.78, o =058
Sample8  22.23 26.02 49.17 19.04

Sample9 2026  21.56 4137  24.39 py =4241, o) =287, u; =21.22, o, =150
Sample10 2542  30.52 5046  22.59 W =17.01, o’ =082, 1 =13.20, o) =042

5 _ 5 _ 5 _ 5 _
MSS-4 MSS.5 MSS-6 MSS.7 u; =45.00, o5 =094, p; =23.20, o, =0.42

Samplel 1501 1330 4050  19.37 Taking D/ =(0,+0) (i=123,4 and j=1,234,5) then
Sample 2 1560  12.56 3881  16.35 according to

Sample3 1582 1279 3770  18.16 X—(u' —20%) | | . i
Sample 4 1490 1170 3550  14.75 BTy if xel[u]-20},4;1ND;

C,: Sample5 1610 1380 4210  20.75 o .
Sample 6 13.80 1194 3210  15.54 Ul (x) = (uj + O_-J')_X
Sample 7 1590 1098  30.87  14.29 20,
Sample 8  16.82  13.67  37.64  18.62
Sample 9 1550  12.58  36.10  18.02
Sample 10 1538 1248  34.08  17.45

if xe(uj,uj+20;1ND;

0 if x¢[uj—20},u,+20;1ND;

( i = 1’2’35455 2 j = 1’2’3’4)

MSS-4 MSS-5 MSS-6 MSS-7 we have
Samplel  17.05  13.53 4332 2276 X179y 17,06, 19.06] XZISO8 o s0s, 18.24]
Sample2  16.09  12.03  38.65 19.47 ol Sl
Lo 20, A Lo e A
Sample3  15.44 12.87 4221 21.20 ul(x)= o if  xe(19.06, 20.16] , ul(x) = e if xe(18.24, 21.40]
Sample4 16.41 12.58 40.87 18.63 0 if x¢[17.96, 20.16] 0 if x¢g[15.08, 21.40]
C,: Sample5 1632 13.01 4656  23.58
Sample 6 1721  13.58 4598  21.33 % it xe[42.64, 51.20] % it xe[21.28, 25.24]
Sample7 1598  12.14  41.09  20.23 W= 10T =X e 5120, 5976] w00 = 122207X ity e (25,24, 2920]
Sample8 1621  12.68 4251  21.65 8.56 3.96
Sample9 15.09 12.10 38.03 21.01 0 if  xg[42.64, 59.76] 0 if  x¢[21.28, 29.20]

Sample 10 16.38 13.31 44.87 22.34
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Ut =

U (x) =

Uy =

U3 (x) =

ui () =

U3 (x) =

ui(x) =

ux) =

x—16.13

5.76
27.65-X

5.76

x-39.19
8.18
55.55-X
8.18

x—13.02

2.44
17.90 - x

2.44

X—29.44
7.10
43.64-x
7.10

x—14.94

1.28
17.50—x

1.28

X—36.67

5.74
48.15-x
5.74

x—15.37
1.64
18.65—x
1.64

X—43.02

1.98
46.98 — x
1.98

0

and for r €[0,1]

X €[16.13, 21.89]

X €(21.89, 27.65] , u2(x) =

X e[16.13, 27.65]

X €[39.19, 47.31]

X € (47.31, 55.55] ,

X £[39.19, 55.55]

x [13.02, 15.46]

x e (1546, 17.90] , ul(x) =

x 2[13.02, 17.90]

X €[29.44, 36.54]

X € (36.54, 43.64] , U3 (X) =

X 2[29.44, 43.64]

x €[14.94, 16.22]

x €(16.22, 17.50] , u3(x) =

X ¢[14.94, 17.50]

X €[36.67, 42.41]

X € (42.41, 48.15] 5 Ui (X) =

X ¢[36.67, 48.15]

x e[15.37, 17.01]

x e (17.01, 18.65]

X [15.37, 18.65]

X €[43.02, 45.00]

X € (45.00, 46.98] » U;(X) =

X & [43.02, 46.98]

u'(r)=1.10r +17.96,

uj(r)=3.16r +15.08,
Uy (r) =8.56r +42.64,
Uy (r) =3.96r +21.28,
uf(r)=5.76r +16.13,
U3 (r) =9.64r +15.04,
u3(r) =8.18r+39.19,
ﬁ(r) =4.78r +16.85,
U (r) =2.44r +13.02,

u;(r)=1.76r +10.82,

x—15.04

9.64
34.32-x

9.64
0 if  xg[15.04, 34.32]

if X e[15.04, 24.68]

it xe(24.68, 34.32]

XZ1685 G 1685, 21.63]

478
26.41-x

478
0 if  x¢[16.85, 26.41]

u(x) = if xe(21.63, 26.41]

x—10.82

1.76
14.34-x

1.76
0 if xe[10.82, 14.34]

if xe[10.82, 12.58]

if  xe(12.58, 14.34]

x—13.17

4.16
21.49 - x

4.16
0 if xg[13.17, 21.49]

if xe[13.17, 17.33]

if xe(17.33, 21.49]

Xx—11.62

o i xellle2, 1278)
13.94-x
1.16
0 it xe[11.62, 13.94]

if xe(12.78, 13.94]

x-18.22

3.00
2422 -x

3.00
0 if  xe[18.22, 24.22]

if xe[18.22, 21.22]

if xe(21.22, 24.22]

X21236 4y 12,36, 13.20)

0.84
14.04—x
0.84
0 i xg[12.36, 14.04]

ui(x) = if  xe(13.20, 14.04]

X—22.36

0.84
24.04 —x

0.84
0 if  xg[22.36, 24.04]

if  xe[22.36, 23.20]

if  xe(23.20, 24.04]

u'(r)=20.16—1.10r
ul(r)=21.40-3.16r
ul(r)=59.76-8.56r
ul(r)=29.20-3.96r
UZ(r) = 27.65-5.76r
U2(r) = 34.32-9.64r
u2(r)=55.55-8.18r
U2(r) = 26.41—4.78¢
U3 (r)=17.90—2.44r

U3 (r)=14.34—1.76r
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U3 (r)=7.10r +29.44, U3 (r)=43.64-7.10r
U3(r) = 4.16r +13.17, U3(r) =21.49-4.16r
U/ (r)=1.28r +14.94, ;' (r)=17.50~1.28r
ul (N =1.16r +11.62, ui(r)=13.94-1.16r
Ui (r)=5.74r +36.67, uj(r)=48.15-5.74r
Ul (r) =3.00r +18.22, U (r) =24.22-3.00r
U (1) = 1.64r +1537, U3 () =18.65—1.64r
U3 (r) = 0.84r +12.36, U3(r)=14.04-0.84r
U3 (r) =1.98r +43.02, U5 (r)=46.98—1.98r

US(r) = 0.84r +22.36, US(r)=24.04—0.84r

Thus the fuzzy 4— cell numbers u' = (u/,uj,ul,u}) ,
i=1,2,3,4,5,ie,
U' (X, Xy, X5, X,) = min Uy (X,),U3 (X,), U3 (%), Uy (X,)}
(X, %,,%,,%X,) e R, 1=1,23,45
can be used to represent C,, i=1,2,3,4,5, respectively.

Using the same four wave bands: MSS-4, MSS-5, MSS-6,
MSS-7, we now proceed to examine some zone (i.e., object,
denoted by O) 12 times, stochastically, at various times or
positions, or using various viewers, and obtain the following
data:

MSS-4 MSS-5 MSS-6 MSS-7
Samplel 1831  13.13 4541 2352
Sample2 1721 1271 4567  23.49
Sample3  17.00 1257 4482  22.56
Sample4 1632  13.06  43.53  22.77
Sample 5 18.01 13.91 45.31 23.31
o} Sample6 1611  13.59 4697  23.61
Sample 7 16.21 12.56 43.96 23.14
Sample8  17.13 1332 4601  22.84
Sample9 1620  12.34 4381  23.13
Sample10 17.51 1334 4589  23.52
Samplell 17.02 1378 4521  23.18
Sample12 18.02 1325 4456  23.23
We can work out the following means and standard deviations:
0,=17.09, s, =0.77, 0, =13.17, s, =0.50
0, =45.10, s, =1.01, 0, =23.19, s, =0.33
So we can obtain the fuzzy 4 — cell number o = (0,,0,,0,,0,),
1e.,
0(X;,X,, X3, X, ) = min{0, (X, ),0,(X,),05(X;),0,(X,)}
(X,,%,,%,X%,) € R
that can be used to represent O, where,

X21335 ey (1555, 17.09] X2I2UT ey cni2.17, 13.07)
154 1.00
1863-x . 14.17-x
0,(x) = f xe(17.09, 18.63] , 0,(X) = f xe(13.17, 14.17
,(X) 54 i e ( ], 0,(X) 00 lf & ( ]
i 12.17, 14.1
0 it xe[15.55, 18.63] 0 i Xe[12.17, 14.17]
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X-4308 -
i x[43.08, 45.10] X22233 ey 2253, 23.19]
D 0.66
T12-x 2379-x
0,00 =T it xe@S10. 4712, 0,0 =1 X if xe (2319, 2379)
0 it x¢[43.08, 47.12] 0 i xg[22.53, 23.79]

and for r €[0,1].

0,(r)=1.54r +15.55, 0,(r)=18.63—1.54r

0,(r)=1.00r +12.17, 0,(r)=14.17-1.00r

0,(r) = 2.02r +43.08, 0,(r)=47.12—2.02r

0,(r) =0.66r +22.53, 0,(r)=23.79—0.66r

Taking a = (

>

11
and a=(—,—),B
) (5 5) y

NG

1
349

ENQT
=

ru,a(u’v)

4 ui*(1) Vi *(1) Ui (0) vi(0)
exp[azzlzlai(\ j "o U, (t)dt —jm v, (t)dt |+ | J.u‘*mui(t)dt - j G \)]

(Zleaij U () + % (1) + U (1) + vT(r)]dr]a‘

[ LU () [+ 50 = v () [1dr
we can obtain T, ,(0,u')=3.36, I,,(0,u’)=1034, T, (o,u’)
=427, I,,(ou*)=111, T,,(o,u’)=0.03. From T, ,(o,u’)
= min{ra,a(o’ul)’ra,a(o’uz)’ra,a(05u3)’ra,a(0’u4)’ra,a(09u5)} > we
know that O belongs to C,, i.e., the zone measured by us is
covered by Birch Forest.

Remark 5.3. Although, only for the example, using mean
vectors (4, ub, 1y, 145) , i=123,4,5 and (0,,0,,0,,0,) to
represent respectively C,,C,,C;,C, and O, we perhaps also
judge that O belongs to C; by the usual Euclidean metrics,
we still emphasize that using fuzzy n— cell numbers to deal
with imprecise or uncertain quantities is better than using crisp
n — dimensional vectors. The following example (to simplify
and shorten the problem, we only consider 1-— dimensional
case) will show this.

Example 5.2. The following two classes of ferrous
quantities (kilogram per hundred kilogram) of minerals come

respectively two different mine areas (denoted by A and B).
A:10.20, 11.76, 831, 9.02, 9.63, 8.33, 11.36, 12.30, 12.03,7.98

B: 52.33, 79.34, 34.51, 62.34, 82.26, 28.36, 17.37, 25.32, 10.11, 8.34
Suppose that one group (denoted by C ) of minerals comes

from the one of A and B . The problem to be solved is to

identify if C comes from A or B . We take samples, and

acquire the following data for C :

C:18.20,20.31,76.02,9.36, 28.56,23.32,15.36,20.51,13.27,20.32
We can work out: u, =10.09, o, =1.67, uz =40.03,

0 =2743, u. =24.52 and o, =18.86.

If we use crisp means to represent A, B and C, then we
have A=10.09 , B=40.03 , C=24.52 and d(C,A)=14.43

<15.51=d(C,B). If we regard d(C, A)<d(C,B) as evidence,
we can draw a conclusion that C comes from A . However, the
conclusion does not accord with fact. We should note that

15

although d(C,A)<d(C,B), the difference of d(C,A) and
d(C, B) is small. Furthermore, from the statistical data, we can
see that the ferrous quantities of minerals coming from A are
more coincident, but B and C are not. It is almost impossible
that some minerals in C come from A, such as, minerals with
ferrous quantities 76.02 and 28.56. So we may judge that C
comes from B .

If we use fuzzy 1—cell numbers to represent A, B andC,
then we have

X=6T5 i xe[6.75, 10.09] X+I483 e xef0. 40.03]
334 54.86
A =ABB X e (1009, 13.43], Boo = {228 7X ie w4003, 94.89]
3.34 54.86
0 it xe[6.75, 13.43] 0 it xe[0, 94.89]
X+1320 ey cq0, 24.52)
37.72
Coo={ 82X i yc (2452, 62241
3772
0 if xe[0, 62.24]
54.86r —14.83 if re(0.27,1]
A(r)=3.34r +6.75 , B(r)= , ,
= = 0 if re[0,0.27]

re(0.35,1]

37.72r —13.20 if —
c(r) = , A(r)=13.43-334r ,
= r €[0,0.35]

0 if
B(r)=94.89 - 54.86r , C(r)=62.24—-37.72r , so T, ,,(C,A)

_er 180l 03950177 2@ 1938
3.487 4.019

Thus we can affirm that C comes from B .

= r(o.l,o.l)(c» B) .

VI. CONCLUSION

In this paper, we suggest using fuzzy n— cell numbers to
represent imprecise or uncertain multichannel digital signals,
and put forward a method (see the first or second step of the
algorithmic version in Section 5, or see Example 2.1) of
constructing such fuzzy n— cell numbers. Although the metrics
D and D, have been studied formerly in [14,15], in view of

the roughness of D and D, , we define two new metrics on

fuzzy n— cell number space in order that they can better
characterize the degree of the difference of two objects in some
imprecise or uncertain environment, and we study their
properties (Section 3). In some applications, metrics are
unsuitable for use in finding the difference of two fuzzy
n — cell numbers, so we introduce the concepts of difference
A, and T

aa? a,a -

values A study their properties, and show

the rationality for their use in characterizing the degree of the
difference of two fuzzy n— cell numbers by Remarks and
examples (see Section 4). Finally, in Section 5, we put forward
an algorithmic version of pattern recognition in an imprecise or
uncertain environment based on the metrics and difference
values defined by us, and give examples to show the
application (see Example 5.1) and rationality (see Example 5.2)
of the methods.
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