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Stability of Cascaded Fuzzy Systems and Observers
Zsófia Lendek, Robert Babuška, and Bart De Schutter, Member, IEEE

Abstract—A large class of nonlinear systems can be well approx-
imated by Takagi–Sugeno (TS) fuzzy models with linear or affine
consequents. It is well known that the stability of these consequent
models does not ensure the stability of the overall fuzzy system.
Therefore, several stability conditions have been developed for TS
fuzzy systems. We study a special class of nonlinear dynamic sys-
tems that can be decomposed into cascaded subsystems, which are
represented as TS fuzzy models. We analyze the stability of the
overall TS system based on the stability of the subsystems and
prove that the stability of the subsystems implies the stability of
the overall system. The main benefit of this approach is that it re-
laxes the conditions imposed when the system is globally analyzed,
thereby solving some of the feasibility problems. Another benefit is
that by using this approach, the dimension of the associated linear
matrix inequality (LMI) problem can be reduced. For naturally
distributed applications, such as multiagent systems, the construc-
tion and tuning of a centralized observer may not be feasible.
Therefore, we also extend the cascaded approach to the observer
design and use fuzzy observers to individually estimate the states
of these subsystems. A theoretical proof of stability and simulation
examples are presented. The results show that the distributed ob-
server achieves the same performance as the centralized one, while
leading to increased modularity, reduced complexity, lower com-
putational costs, and easier tuning. Applications of such cascaded
systems include multiagent systems, distributed process control,
and hierarchical large-scale systems.

Index Terms—Cascaded systems, fuzzy observers, fuzzy systems,
Lyapunov stability.

I. INTRODUCTION

MANY PROBLEMS in decision making, control, and
monitoring require the estimation of states and possi-

bly uncertain parameters, based on a dynamic system model
and a sequence of noisy measurements. For such a purpose, dy-
namic systems are often modeled in the state-space framework,
using the state-transition model, which describes the evolution
of states over time, and the sensor model, which relates the
measurements to the states.

Traditionally, the class of linear, time-invariant systems has
dominated control theory. The linearity and time-invariance
make this type of system easy to analyze. The disadvantages are
that such systems fail to describe nonlinear systems globally.
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An accurate approximation of a nonlinear system can only be
expected in the vicinity of an equilibrium point.

A generic method for the design of an observer valid for
all types of nonlinear systems has yet to be developed. A large
class of nonlinear systems can be well approximated by Takagi–
Sugeno (TS) fuzzy models [1], which, in theory, can approxi-
mate a general nonlinear system to an arbitrary degree of ac-
curacy [2]. Stability conditions have been derived for TS fuzzy
systems, most of them relying on the feasibility of an associated
system of linear matrix inequalities (LMIs) [3]–[5]. A compre-
hensive survey on the analysis of fuzzy systems can be found
in [6].

For a general nonlinear system represented by a fuzzy model,
well-established methods and algorithms can be used to de-
sign fuzzy observers; therefore, the analysis and design become
much easier. Several types of observers have been developed
for TS fuzzy systems, which include fuzzy Thau–Luenberger
observers [3], [7], reduced order observers [5], [8], and sliding-
mode observers [9]. In general, the design methods for observers
also lead to an LMI feasibility problem. However, the complex-
ity of the system grows exponentially with the number of an-
tecedents, and the stability analysis problem eventually becomes
intractable for a large number of rules.

Decentralized state estimation has been studied in the con-
text of large-scale processes and distributed systems. The de-
centralized architecture generally has the form of a network
of sensor nodes, each with its own computing capability. In
the case of a fully decentralized system, computations are per-
formed locally, and communication takes place between any
two nodes. Each node shares information with other nodes and
computes a local estimate. Computation and communication is
distributed over the network, and the global estimate is com-
puted by fusing the local results. Several topologies have been
proposed, depending on the particular application. In case of
large-scale processes [10], [11], the network is generally in a
hierarchical form, with several intermediate nodes and one final
fusion node. For distributed systems, such as multiagent soci-
eties [12]–[14], several fusion nodes are used, which process
the data and send the information to the rest of the nodes. Ob-
servers for distributed estimation include, but are not limited to,
the decentralized Kalman and the extended Kalman filter [15],
the information filter, and several types of particle filters [16],
[17].

An important class of distributed systems can be repre-
sented as cascaded subsystems (e.g., material processing sys-
tems, chemical processes). In several cases, conclusions refer-
ring to the overall system can be drawn based on the study of
the individual subsystems. For instance, for linear systems, the
stability of the subsystems implies the stability of the cascaded
system [18]. However, this property in general does not hold
for nonlinear or time-varying systems. Even global asymptotic
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stability of the individual subsystems does not necessarily imply
stability of the cascade.

In the literature, the stability of several types of cascaded
systems has been studied. The main motivation came from the
linear–nonlinear cascade [19], resulting from input–output lin-
earization. Conditions to ensure the overall stability of more
general cascades, in which both subsystems are nonlinear, were
derived in [18], [20], and [21].

The contribution of this paper is twofold. First, we study a
special class of systems, which are represented as TS fuzzy
systems, which can be decomposed into cascaded subsystems,
and analyze the stability of the whole system based on the
stability of the subsystems. The idea behind this type of stability
analysis is that many systems are naturally distributed (e.g.,
traffic control systems) or cascaded (e.g., hierarchical large-
scale systems), while others may be represented as cascaded,
observable subsystems, which are less complex than the original
system. The main benefit of this approach is that it relaxes the
conditions imposed by analyzing the system globally. Global
analysis may lead to infeasible LMI conditions, even if the
system is stable. We propose relaxed stability conditions, which
may render the associated LMI problem feasible. Moreover, the
dimension of the associated LMI problem is generally reduced.

Second, the results are extended to observer design. We ana-
lyze the joint performance of fuzzy observers individually de-
signed for the subsystems. The benefit of this type of estimation
is that separate observers can be designed for the individual sub-
systems, which makes their tuning easier. Moreover, different
types of observers can be combined, depending on the subsys-
tem considered. Such a cascaded system can be regarded as a
cooperative multiagent system, where each agent observes at
least its own states and makes decisions based on these obser-
vations. The agents rely on their own measurements and the
information gathered from other agents. In turn, each agent
communicates its own results to other agents. If all the agents
in a system use the same observer method, then such an ob-
server system can be designed and implemented in a modular
manner, i.e., after identifying the coupling among the subsys-
tems, the observers can be designed in a similar fashion. We
present a theoretical comparison of the centralized and cas-
caded fuzzy observers and compare their performance on two
examples.

The structure of the paper is as follows. Section II introduces
the cascaded setting for nonlinear systems and gives stability
conditions for such systems. Section III reviews stability condi-
tions for TS fuzzy systems and observers. The proposed stability
conditions for cascaded fuzzy systems and observers are pre-
sented in Section IV. Examples are given in Section V. Finally,
Section VI concludes the paper.

II. STABILITY OF CASCADED DYNAMIC SYSTEMS

In the literature, the main motivation to consider cascaded
dynamical systems came from the analysis of the models ob-
tained after input–output linearization [18], [19]. Several stabil-
ity conditions were derived for different types of subsystems. In
this section, the cascaded setting for general nonlinear systems

Fig. 1. Cascaded subsystems.

Fig. 2. Cascaded observers.

and observers is presented, together with the relevant stability
conditions.

A. Preliminaries

Consider the following general, observable nonlinear system:

ẋ1 = f1(x,u), y1 = h1(x,u)

ẋ2 = f2(x,u), y2 = h2(x,u)

...
...

ẋn = fn (x,u), ym = hm (x,u) (1)

where x = [x1 , . . . , xn ]T and u = [u1 , . . . , ul ]T , and assume
that this system can be partitioned into subsystems. For the ease
of notation, only two subsystems are considered, without loss
of generality:

ẋ1 = f 1(x1 ,u)

y1 = h1(x1 ,u) (2)

and

ẋ2 = f 2(x1 ,x2 ,u)

y2 = h2(x1 ,x2 ,u) (3)

where x = [xT
1 xT

2 ]T , y = [yT
1 yT

2 ]T (with possible reorder-
ing) so that (2) is observable. Note that since both the systems
(1) and (2) are observable, subsystem (3) is also observable.
In fact, for subsystem (3), x1 is an input. In general, such a
partition of the model does not necessarily exist. Moreover, if a
partition exists, it might not be unique.

Given a particular nonlinear system of the form (1), with at
least two measurements, a partitioning into two subsystems can
be constructed easily, while also deciding whether the partition-
ing is possible. For two subsystems, the cascaded structure is
depicted in Fig. 1.

If such a partition exists, observers may be designed for the
subsystems separately, with some observers using the estimates
obtained by other observers. For two subsystems, the cascaded
observer structure is depicted in Fig. 2.
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B. Stability of Cascaded Systems

It is well known that the cascade of stable linear systems is sta-
ble, since the eigenvalues of the joint system are determined only
by the eigenvalues of the individual subsystems [18]. Therefore,
the stability of the joint system is determined by the stability
of the subsystems. However, the same reasoning does not nec-
essarily hold for nonlinear or time-varying systems. Even the
global asymptotic stability of the decoupled subsystems does
not necessarily imply the stability of the cascade.

In the literature, the stability of several special cases has been
studied. The main motivation comes from the linear–nonlinear
cascade [19], resulting from input–output linearization. More
general cascades, in which both subsystems are nonlinear, were
studied, and conditions to ensure overall stability were derived
in [18]. A selection of relevant results is presented next.

Definition 1: A continuous function α : R+ → R+ belongs
to class K if it is strictly increasing and α(0) = 0. If α(s) → ∞
when s → ∞, then α is said to be of class K∞. �

Definition 2: A system ẋ = f(x,u) is input-to-state stable
(ISS) if and only if there exist a positive definite proper function
V (x) and two class K functions α1 and α2 such that

{‖x‖ ≥ α1(‖u‖)} ⇒
{

∂V (x)
∂x

f(x,u) ≤ −α2(‖x‖)
}

(4)

where ‖ · ‖ represents the Euclidian norm. �
Consider the nonlinear, cascaded, autonomous system

ẋ1 = f 1(x1) (5)

ẋ2 = f 2(x1 ,x2). (6)

It has been shown in [22] that if
1) the functions f1 and f2 are sufficiently smooth in their

arguments,
2) system (6) is input-to-state-stable with regard to the input

x1 , and
3) system (5) and the system

ẋ2 = f 2(0,x2) (7)

are globally asymptotically stable (GAS)
then the cascade (5) and (6) is GAS. An equivalent sufficient sta-
bility condition is presented in [21]; the cascaded system is GAS
if both subsystems are GAS and all solutions are bounded. The
main difficulty with this approach is that, in general, bound-
edness of all the solutions is not easy to determine, and the
conditions to ensure boundedness may be very conservative.

More relaxed sufficient stability conditions have been derived
for systems of the form

ẋ1 = f 1(x1)

ẋ2 = f 2(x2) + g(x1 ,x2) (8)

assuming that the individual subsystems are GAS, and addition-
ally, certain restrictions related to the continuity and/or slope
apply for the interconnection term g [19], [23], [24]. A theo-
rem for ensuring that the cascaded system (8) is uniformly GAS
(UGAS) [18] is presented next.

Assumptions:
1) System (7) is UGAS.
2) There exist constants c1 , c2 , µ > 0 and a Lyapunov func-

tion V (t,x2) for (7) such that V : R+ ×Rn → R+ is
positive definite, radially unbounded, V̇ (t,x2) ≤ 0, and∥∥∥∥ ∂V

∂x2

∥∥∥∥ ‖x2‖ ≤ c1V (t,x2) ∀x2 : ‖x2‖ > µ

∥∥∥∥ ∂V

∂x2

∥∥∥∥ ≤ c2 ∀x2 : ‖x2‖ ≤ µ. (9)

3) There exist two continuous functions θ1 , θ2 : R+ → R+

such that g(x) satisfies

‖g(x)‖ ≤ θ1(‖x1‖) + θ2(‖x1‖)‖x2‖. (10)

4) There exists a class K function α(·) so that for all t0 ≥ 0,
the trajectories of the system (5) satisfy∫ ∞

t0

‖x1(t; t0 ,x1(t0))‖dt ≤ α(‖x1(t0)‖). (11)

Theorem 1: Let Assumption 1 hold and suppose that the tra-
jectories of (5) are uniformly globally bounded. If, in addition,
Assumptions 2–4 are satisfied, then the solutions of system (8)
are uniformly globally bounded. If furthermore, system (5) is
UGAS, then so is the cascaded system (8). �

Proposition 1: If, in addition to the aforementioned assump-
tions, systems (5) and (7) are exponentially stable, then the
cascaded system (8) is also exponentially stable. �
The proof of Theorem 1, Proposition 1, and the study of different
cases of interconnection terms can be found in [18] and [19],
and stabilizability conditions were derived in [24] and [25].
For observer design for a special type of cascaded single-input
single-output (SISO) system, see [26].

III. STABILITY OF FUZZY SYSTEMS

Though the consequents of TS fuzzy systems are usually cho-
sen to be linear or affine, it is well known that the stability of
these local models does not imply the stability of the overall
fuzzy system. During operation of the full fuzzy model, the
local models are blended. The particular blending of several
local models may be strongly nonlinear, which influences the
stability. The switching surfaces between the models depend on
the operators used for intersection, union, and implication in
the antecedent of the rules. Several such operators can be used.
Some of them are continuous like the product or sum; others,
however, are not (e.g., MIN and MAX). MIN and MAX oper-
ators cause rapid switching in fuzzy models, and therefore, the
model surface is not smooth. The smoothness of the premise
membership functions influences the smoothness of the switch-
ing of the local models and, consequently, the general stability
of the system. It is theoretically a very difficult problem to es-
tablish the stability of a fuzzy system considering the possible
switching surfaces, and therefore, several stability conditions
were derived that ensure the stability of the system for any nor-
malized membership functions, independent of the operators
used in the antecedent rules. Most of these conditions depend
on the feasibility of an associated LMI problem. Some of them
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are reviewed later. Throughout the paper it is assumed that the
membership functions are normalized.

A. Autonomous Fuzzy Systems

Consider the autonomous fuzzy system expressed as

ẋ =
m∑

i=1

wi(z)Aix (12)

where Ai , i = 1, 2, . . . ,m represents the ith local linear model,
wi is the corresponding normalized membership function, and
z the vector of the scheduling parameters. System (12) can also
be written as

ẋ = A(z)x (13)

with A(z) =
∑m

i=1 wi(z)Ai .
For system (12), several stability conditions were derived.

Among them, a well-known and frequently used condition is
now formulated [3].

Theorem 2: System (12) is exponentially stable if there exists
P = PT > 0 so that AT

i P + PAT
i < 0, for i = 1, 2, . . . ,m. �

A condition on the convergence rate of system (12) was also
derived from Theorem 2 [3].

Theorem 3: The decay rate of system (12) is at least α, if there
exists P = PT > 0 so that

AT
i P + PAi + 2αP < 0, i = 1, 2, . . . ,m.

�
Stability conditions similar to those of Theorem 2 can be used

if the system considered is subjected to vanishing disturbances.
Consider the following perturbed fuzzy system:

ẋ =
m∑

i=1

wi(z)Aix + Df(t,x) (14)

where D is a perturbation distribution matrix and f is a vanish-
ing disturbance, i.e., f(t,x) → 0 when t → ∞, and assume that
f is Lipschitz, i.e., there exists µ > 0 so that ‖f(t,x)‖ ≤ µ‖x‖
for all t and x. With these assumptions, a sufficient stability
condition can be formalized by the following theorem [27].

Theorem 4: System (14) is exponentially stable if there exist
matrices P = PT , Q = QT so that

P > 0, Q > 0

µ ≤ λmin(Q)
‖PD‖

AT
i P + PAT

i < −2Q, i = 1, 2, . . . ,m (15)

where λmin is the eigenvalue with the smallest absolute
value. �

Several variants of this theorem exist, together with algo-
rithms to compute robustness measures [27]. However, these
approaches are conservative by disregarding the fact that the
rules are valid only in a region of the state space. For fuzzy
systems, the membership functions often have bounded sup-
port. Therefore, it is sufficient that xT (AT

i P + PAT
i )x < 0

only where wi(z) > 0. Stability conditions for the case when
the support of each membership function can be bounded were
derived in [4].

Another approach, which is based on partitioning the
state space into operating and interpolation regimes Xk , k =
1, 2, . . . ,K, K being the number of regimes, and Ki the index
set of the local models active in the regime i, is described in [28].
Assuming that in (12), z can be expressed as some function of
x, the system can be written as

ẋ =
∑
i∈Kk

wi(x)Aix, x ∈ Xk (16)

where Kk is the index set of the linear subsystems active
in the region Xk . Then, one can use a Lyapunov function
Vk (x) = xT Pkx for region Xk , i.e., the corresponding part
of the Lyapunov function V (x) =

∑K
k=1 wk (x)xT Pkx for the

whole system. The system (16) is stable under the conditions
expressed by the following theorem [28].

Theorem 5: The system (16) is GAS if there exist matrices
Pi = PT

i , H = HT > 0, Fi , i = 1, 2, . . . , K so that

Pi = FT
i HFi

Pi > 0

Fix = Fjx ∀x ∈ Xi ∩ Xj

AT
k Pi + PiAk < 0 ∀k ∈ Ki. (17)

�
For more relaxed conditions and how to compute the corre-

sponding matrices, see [29] and [30]. Similar conditions for the
discrete-time case are described in [31].

Note that all the earlier conditions rely on the feasibility of a
derived LMI problem. Since efficient algorithms exist for solv-
ing LMIs, they can be easily verified. However, two shortcom-
ings of these theorems must be mentioned: 1) The conditions
are conservative and often lead to infeasible LMIs, and 2) the
number of LMIs associated in particular to the conditions of
Theorem 5 is, in the worst case, exponential in the number of
local models.

B. Fuzzy Observers

Consider now the affine fuzzy system

ẋ =
m∑

i=1

wi(z)(Aix + Biu + ai)

y =
m∑

i=1

wi(z)(Cix + di) (18)

and an observer of the form

˙̂x =
m∑

i=1

wi(z)(Aix̂ + Biu + ai + Li(y − ŷ))

ŷ =
m∑

i=1

wi(z)(Cix̂ + di). (19)

As before, it is assumed that the membership functions are
normal. Depending on the explicit form of the error system
given by ė = ẋ − ˙̂x, the theorems presented in Section III-A
can be applied directly, or similar conditions may be derived
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to ensure the stability of the observer. For the analysis, two
cases are distinguished: 1) The scheduling vector z does not
depend on the estimated states, and 2) z depends on (some of)
the estimated states, that is, z = ẑ.

1) Scheduling Vector Does Not Depend on the Estimated
States: In this case, the error system can be written as

ė =
m∑

i=1

m∑
j=1

wi(z)wj (z)(Ai − LiCj )e. (20)

Using a Lyapunov function of the form V (t) = eT Pe, with
P = PT > 0, basic sufficient stability conditions for this system
were derived in [3].

Theorem 6: The system (20) is GAS if there exists P = PT >
0 so that for i = 1, 2, . . . ,m

(Ai − LiCi)T P + P (Ai − LiCi) < 0

(Gij + Gji)T P + P (Gij + Gji) ≤ 0

Gij = Ai − LiCj

for j = 1, 2, . . . ,m for wi(z)wj (z) > 0. (21)

�
A well-known condition on the design of the observer for the

system (12), so that a desired convergence rate α is guaranteed,
is presented next [3].

Theorem 7: The decay rate of the error system (20) is at least
α if there exists P = PT > 0 so that

(Ai − LiCi)T P + P (Ai − LiCi) + 2αP < 0

i = 1, 2, . . . ,m

(Ai − LiCj )T P + P (Ai − LiCj ) + 2αP < 0

i, j = 1, 2, . . . ,m for wi(z)wj (z) 
= 0.

�
2) Scheduling Vector Depends on the Estimated States: The

second case is when the scheduling vector depends on the states
to be estimated, i.e., z = ẑ. For simplicity, only the case with
common measurement matrices will be considered. Then, the
observer (19) becomes

˙̂x =
m∑

i=1

wi(ẑ)(Aix̂ + Biu + ai + Li(y − ŷ))

ŷ = Cx̂ (22)

and the error dynamics can be expressed as

ė =
m∑

i=1

wi(ẑ)(Ai − LiC)e

+
m∑

i=1

(wi(z) − wi(ẑ))(Aix + Biu + ai).

For such a system, sufficient stability conditions are given by
the following theorem [27].

Theorem 8: The error system (22) is exponentially stable, if
there exist µ > 0, P = PT > 0, Q = QT > 0 so that for all

i = 1, . . . ,m

(Ai − LiC)T P + P (Ai − LiC) ≤ Q(
Q − µ2 P

P I

)
> 0

‖(wi(z) − wi(ẑ))(Aix + Biu + ai)‖ ≤ µ‖e‖ (23)

i.e., (wi(z) − wi(ẑ))(Aix + Biu + ai) is bounded by a linear
growth of e. �

IV. STABILITY OF CASCADED FUZZY OBSERVERS

In this section, stability conditions for cascaded TS fuzzy
systems and observers are derived. We prove that, thanks to the
special form of the TS fuzzy system, the stability of the indi-
vidual subsystems implies the stability of the global cascaded
system.

A. Cascaded Fuzzy Systems

Consider the case when the system matrices of the model (12)
for each rule i = 1, 2, . . . ,m can be written as

Ai =
(

A1 0
A21 A2

)
i

=
(

A1 i 0
A21 i A2 i

)
i.e., system (12) can be expressed as the cascade of two fuzzy
systems:

ẋ1 =
m∑

i=1

w1i(z1)A1 ix1

ẋ2 =
m∑

i=1

w2i(z1 ,z2)(A21 ix1 + A2 ix2) (24)

or equivalently

ẋ1 =A1(z1)x1

ẋ2 =A21(z1 ,z2)x1 + A2(z1 ,z2)x2 (25)

with normalized membership functions w1i and w2i ,
x = [xT

1 , xT
2 ]T , z = [zT

1 , zT
2 ]T , A1(z1) =

∑m
i=1 wi(z1)A1 i ,

A2(z) =
∑m

i=1 w2i(z)A2 i , etc.
Now, we prove that, if the subsystems

ẋ1 = A1(z1)x1 (26)

and

ẋ2 = A2(z1 ,z2)x2 (27)

are UGAS, then it is possible to apply Theorem 1 to fuzzy
systems of the form (24).

Theorem 9: If there exist two Lyapunov functions of the form
V1(x1) = xT

1 P1x1 and V2(x2) = xT
2 P2x2 so that the subsys-

tems (26) and (27) are UGAS, then the cascaded system (25) is
also UGAS.

Proof: Note that the Lyapunov functions V1(x1) = xT
1 P1x1

and V2(x2) = xT
2 P2x2 for the subsystems (26) and (27) sat-

isfy Assumptions 1 and 4 and ensure exponential stability of
the individual subsystems. Equations (14), as well as (24) and
(25), are special cases of (8), where the individual subsystems
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f 1(x1) and f 2(x2) are represented by fuzzy models. The in-
terconnection term g is a nonlinear combination of local linear
models.

1) Assumption 2 is satisfied as ∀x2 : ‖x2‖ > µ∥∥∥∥∂V2

∂x2

∥∥∥∥ ‖x2‖ = 2‖xT
2 ‖‖P2‖‖x2‖

≤ 2λmax(P2)‖x2‖2 ≤ c1V2(x2)

for any c1 ≥ [2λmax(P2)/λmin(P2)]. For the second con-
dition of Assumption 2, we have ∀x2 : ‖x2‖ ≤ µ∥∥∥∥∂V2

∂x2

∥∥∥∥= ‖2xT
2 P2‖ ≤ 2‖x2‖‖P2‖ ≤ 2µλmax(P2) = c2 .

2) Consider continuous, positive functions θ1(‖x1‖) =
max

z
‖A21(z)‖‖x1‖ and θ2(‖x1‖) = 0. By choosing

these functions, we can ensure that ‖g(x)‖ =
∑m

i=1
wi(z)A21x1 ≤ θ1(‖x1‖) + θ2(‖x1‖)‖x2‖, and there-
fore, Assumption 3 is satisfied.

Since the conditions of Theorem 1 are satisfied, the cascaded
system is UGAS. Furthermore, since these Lyapunov func-
tions ensure exponential stability of the subsystems, based on
Proposition 1, the cascaded system is also exponentially
stable. �

While it is true that the cascaded system is stable under the
aforementioned conditions, finding a Lyapunov function valid
for the cascaded system is not trivial. A global Lyapunov func-
tion of the form

V0(x1 ,x2) = V1(x1) + V2(x2) + Ψ(x1 ,x2) (28)

has been proposed in [23], with V1 and V2 being Lyapunov func-
tions for the systems (26) and (27), respectively. The cross-term
Ψ(x1 ,x2) has been constructed by the authors of [23], under
the condition that the cascaded system satisfies Assumptions 2
and 3.

For the case when the first subsystem is linear and time-
invariant, the authors of [23] proved that the cross-term ex-
ists and is continuous, and V0 is positive definite and radially
unbounded. If (26) is globally exponentially stable, the result
from [23] can be extended to the system (25). The cross-term Ψ
is then given by

Ψ(x1 ,x2) =
∫ ∞

0

∂V2

∂x2
(x̃2(s))A21(z(s))x̃1(s)ds

where x̃1 and x̃2 are the trajectories of systems (26) and (27),
respectively.

It has to be noted that in general, the sum of the individual
Lyapunov function is not a Lyapunov function for the cascaded
system. To use the sum of Lyapunov functions would require
additional, unnecessary constraints.

In the same way, for Theorems 4 and 5, the stability conditions
presented in Section III can be relaxed. The new conditions are
presented next.

The conditions of Theorem 4 can be replaced as follows.
Theorem 10: Consider system (24) expressed as

ẋ =
(

A1(z1) 0
0 A2(z1 ,z2)

)
x +

(
0

A21(z1 ,z2)

)
x1

where A1(z1) =
∑m

i=1 wi(z1)A1 i , A2(z1 ,z2) =
∑m

i=1 wi

(z1 ,z2)A2 i , etc. This system is UGAS if there exist P1 = PT
1 >

0, P2 = PT
2 > 0 so that

AT
1iP1 + P1A1i < 0

AT
2iP2 + P2A2i < 0

for i = 1, 2, . . . ,m. �
The proof is similar to that of Theorem 9.
In order to relax the conditions of Theorem 5, let K1 and K2

be the number of operating and interpolation regimes for the
individual subsystems, with Ki

1 and Kj
2 being the index sets

corresponding to the local models of the subsystems active in
the matching region. Note that, in general, the number of regions
generated in such a way is lesser than the number of regions for
the global system, i.e., K1 + K2 ≤ K. Then, the conditions can
be expressed as follows.

Proposition 2: The system (16) is UGAS if there exist
matrices P i

1 = (P i
1 )

T > 0, Pj
2 = (Pj

2 )T > 0, H1 = HT
1 > 0,

H2 = HT
2 > 0, F i

1 , and Fj
2 , i = 1, 2, . . . ,K1 , j = 1, 2, . . . , K2

so that

P i
1 = (F i

1 )
T H1F

i
1

Pj
2 = (Fj

2 )T H2F
j
2

F i
1x1 = F t

1 x1 ∀x1 ∈ Xi
1 ∩ Xt

1

Fj
2 x2 = F l

2x2 ∀x2 ∈ Xj
2 ∩ Xl

2

AT
1kP i

1 + P i
1A1k < 0 ∀k ∈ Ki

1

AT
2kP j

2 + Pj
2 A2k < 0 ∀k ∈ Kj

2 . (29)

�
Note that the proposed conditions are still only sufficient

conditions for the stability of cascaded fuzzy systems. However,
by taking advantage of the special form of the system, i.e.,
studying the subsystems instead of the overall fuzzy system,
the complexity of the associated LMI problem is reduced with
respect to Theorems 2, 4, and 5.

In the remainder of this section, we study the convergence
rate of the system (25) with respect to the convergence rate of
the individual subsystems (26) and (27).

Consider the case when both subsystems are exponentially
stable, i.e., there exist β1 , β2 , γ1 , γ2 > 0 so that

‖x1‖ ≤ β1‖x10‖e−γ1 t (30)

‖x2‖ ≤ β2‖x20‖e−γ2 t . (31)

It has been an open question whether this also meant that
the convergence rate of the system (25) is min{γ1 , γ2}; this
conjecture is indeed valid for linear systems; however, it can-
not be proven with a Lyapunov function of the form V (x) =
V1(x1) + V2(x2), where V1 and V2 are Lyapunov functions for
the individual subsystems, as presented next.

Consider the joint system (25), and assume that there exist
a Lyapunov function, V = xT Px, P = PT > 0, and γ > 0 so
that

α‖x‖2 ≤ V ≤ β‖x‖2

V̇ = xT (A(z)T P + A(z))x = −xT Q(z)x ≤ −γ‖x‖2 .
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Then, the convergence rate of the system is at least γ/β. To have
the same convergence rate for the subsystems, it is necessary (in
terms of the earlier conditions) that there exist P1 = PT

1 > 0,
P2 = PT

2 > 0 so that
1) α ≤ λmin(P1 , P2);
2) β ≥ λmax(P1 , P2);
3) λmax(diag[A1(z1)T P1+P1A1(z1), A2(z2)T P2 +P2A2

(z2)] ≤ −γ.
Now, it will be proven that, if the subsystems are exponentially

stable, the convergence rate of the system (24) is also determined
by the convergence rate of the individual subsystems (26) and
(27).

Theorem 11: The convergence rate of the system (25) is equal
to max{−α1 ,−α2}, if

1) system (26) is exponentially stable with convergence rate
−α1 ;

2) system (27) is exponentially stable with convergence rate
−α2 ;

3) the matrix A21(z) is bounded, i.e., there exists M ∈ R,
so that ∀z, ‖A21(z)‖ ≤ M .

Proof: Assumption 1 can be written as ‖x1(t)‖ ≤
k1‖x10‖e−α1 t . The solution of the system (27) is the homo-
geneous solution x2h(t) of the system

ẋ2 = A21(z)x1 + A2(z)x2 (32)

and therefore, it satisfies ‖x2h(t)‖ ≤ k2‖x20‖e−α2 t . The par-
ticular solution of (32) can be expressed as

x2p =
∫ t

t0

x2h(t − s)A21(z(s))x1(s)ds.

Then

‖x2p‖ = ‖
∫ t

t0

x2h(t − s)A21(z(s))x1(s)ds‖

≤
∫ t

t0

‖x2h(t − s)‖‖A21(z(s))‖‖x1(s)‖ds

≤
∫ t

t0

k2‖x20‖e−α2 (t−s)Mk1‖x10‖e−α1 sds

= k1k2M‖x10‖‖x20‖e−α2 t

∫ t

t0

e(α2 −α1 )sds.

If α2 
= α1

‖x2p‖ = k1k2M‖x10‖‖x20‖|(α2 − α1)|−1

· e−α2 t(e(α2 −α1 )t − e(α2 −α1 )t0 )

= k1k2M‖x10‖‖x20‖|(α2 − α1)|−1 |(e−α1 t − c1e
−α2 t)|

where c1 = e(α2 −α1 )t0 .
A bound on the general solution of (32) is

‖x2‖ ≤ ‖x2h‖ + ‖x2p‖
≤ k2‖x20‖e−α2 t + k1k2M‖x10‖‖x20‖

· |(α2 − α1)|−1 |(e−α1 t − c1e
−α2 t)|

≤ c2e
max{−α1 ,−α2 }t

where c2 = max{k2‖x20‖(1 + k1M‖x10‖|(α2 − α1)|−1c1),
k1k2‖x10‖‖x20‖M |(α2 − α1)|−1}.

For α1 = α2 = α, we have

‖x2p‖ ≤ k1k2M‖x10‖‖x20‖e−αt(t − t0)

‖x2‖ ≤ ‖x2h‖ + ‖x2p‖
≤ k2‖x20‖e−αt + k1k2M‖x10‖‖x20‖e−αt(t − t0)

≤ c3e
−αt + c4te

−αt (33)

with c3 = k2‖x20‖ and c4 = k1k2‖x10‖‖x20‖M . For the
bound in (33), it has been shown that the convergence rate
is α [32].

This means that the convergence rate of the system (32), and
therefore, of the system (25) is determined by the convergence
rate of the individual subsystems. �

B. Cascaded Observers

This section presents the cascaded approach applied to ob-
server design for TS fuzzy systems. As before, consider the
fuzzy system with normal membership functions

ẋ =
m∑

i=1

wi(z)(Aix + Biu + ai)

y =
m∑

i=1

wi(z)(Cix + di) (34)

and a fuzzy observer of the form

˙̂x =
m∑

i=1

wi(z)(Aix̂ + Biu + ai + Li(y − ŷ))

ŷ =
m∑

i=1

wi(z)(Cix̂ + di). (35)

Assuming that the system matrices for each rule i = 1, 2, . . . ,m
can be written as

Ai =
(

A1 0
A21 A2

)
i

=
(

A1 i 0
A21i

A2 i

)

Ci =
(

C1 0
C21 C2

)
i

=
(

C1 i 0
C21i

C2i

)
observers can be designed individually for each subsystem and
each rule, with the overall observer gain having the form

Li =
(

L1 0
0 L2

)
i

=
(

L1 i 0
0 L2 i

)
where i denotes the rule number.

Again, two cases are distinguished. If the weights do not
depend on the states to be estimated, the cascaded error system
can be written as

ė =
m∑

i=1

m∑
j=1

wi(z)wj (z)(Ai − LiCj )e

=
m∑

i=1

m∑
j=1

wi(z)wj (z)
(

A1 i − L1 iC1 j 0
A21 i − L2 iC21j

A2 i − L2 iC2j

)
e.

(36)
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This system is of the form (24) for which the stability condi-
tions from Section IV-A can be used. If the C matrix is common
for all the rules, the presented theorems can be directly applied.

In the case when the scheduling vector does not depend on
the states to be estimated, Theorem 11 can also be applied to
the design of observers with guaranteed convergence rate.

Using the results on the convergence rate, Theorem 7 can be
reformulated as follows.

Theorem 12: The decay rate of the error system (36) is at
least α if there exist P1 = PT

1 > 0 and P2 = PT
2 > 0 so that

for i = 1, 2, . . . ,m

(A1 i − L1 iC1 i)T P1 + P1(A1 i − L1 iC1 i) + 2αP1 < 0

(A2 i − L2 iC2 i)T P2 + P2(A2 i − L2 iC2 i) + 2αP2 < 0

(A1 i − L1 iC1 j )T P1 + P1(A1 i − L1 iC1 j ) + 2αP1 < 0

j = 1, 2, . . . ,m, w1i(z1)w1j (z1) 
= 0

(A2 i − L2 iC2 j )T P2 + P2(A2 i − L2 iC2 j ) + 2αP2 < 0

j = 1, 2, . . . , m, w2i(z)w2j (z) 
= 0. �

The proof follows directly. The previous conditions explicitly
state that, in order to design a global observer with a desired
convergence rate, it is sufficient to design observers for the
subsystems with the same convergence rate.

Now, consider the case when the parameters z depend on
the states to be estimated, i.e., z = ẑ. For simplicity, only the
case with common measurement matrix is considered. Then, the
fuzzy system is expressed as

ẋ =
m∑

i=1

wi(z)(Aix + Biu + ai)

y = Cx (37)

and the error system can be written as

ė =
m∑

i=1

(
w(ẑ1)(A1 − L1C1) 0

w(ẑ)(A21 − L2C21) w(ẑ)(A2 − L2C2)

)
i

e

+
m∑

i=1

(
w1i(z1) − w1i(ẑ1)

w2i(z) − w2i(ẑ)

)
(Aix + Biu + ai). (38)

To ensure the stability of the observer in such a case, Theorem 8
can be applied. However, using the results for cascaded systems,
relaxed stability conditions are derived. These conditions can be
expressed as follows.

Theorem 13: The cascaded error system (38) is UGAS if there
exist a Lyapunov function V1(x1), P2 = PT

2 > 0 and two con-
tinuous functions θ1 , θ2 : R+ → R+ such that the following
hold.

1) The Lyapunov function V1 ensures exponential stability
of the error system

ė1 =
m∑

i=1

w1i(ẑ1)(A1 − L1C1)e1 + (w1i(z1)

− w1i(ẑ1))(A1 ix1 + B1i
u + a1i). (39)

2) P2 satisfies (A2 i)T P2 + P2A2 i < 0, i = 1, 2, . . . ,m.

3) ‖
∑m

i=1(w2i(z1 ,z2) − w2i(ẑ1 , ẑ2))(A21 ix1 + A2 ix2 +
B2 iu + a2i)‖ ≤ θ1(‖e1‖) + θ2(‖e1‖)‖e2‖.

Proof: Since (A2 i)T P2 + P2A2 i < 0, i = 1, 2, . . . ,m, V2 is
a Lyapunov function for

ė2 =
m∑

i=1

w2i(ẑ1 , ẑ2)(A2 − L2C2)e2 (40)

and this system is UGAS (see Assumption 1). Let c1 =
2[λmax(P2)/λmin(P2)], where λmax is the eigenvalue with the
largest absolute value and c2 = 2ηλmax(P2). With these con-
stants, Assumption 2 is satisfied. The Lyapunov function V1
satisfies Assumption 4.

Now, the interconnection term in the second subsystem can
be written as

g(e1 ,e2) =
m∑

i=1

w2i(ẑ1 , ẑ2)(A21 i − L2 iC2 i)e1

+
m∑

i=1

(w2i(z1 ,z2) − w2i(ẑ1 , ẑ2))

(A21 ix1 + A2 ix2 + B2 iu + a2i)

‖g(e1 ,e2)‖ ≤
m∑

i=1

‖w2i(ẑ1 , ẑ2)‖‖A21 i − L2 iC2 i‖‖e1‖

+ θ1(‖e1‖) + θ2(‖e1‖)‖e2‖
‖g(e1 ,e2)‖ ≤ τ‖e1‖ + θ1(‖e1‖) + θ2(‖e1‖)‖e2‖
‖g(e1 ,e2)‖ ≤ θ

′

1(‖e1‖) + θ2(‖e1‖)‖e2‖.

With this, Assumption 3 [see (10)] is satisfied, and based on
Theorem 1, the cascaded system is UGAS. Moreover, since the
first subsystem is exponentially stable, the cascaded system is
also exponentially stable (see Proposition 1). �

C. Design Using LMI Regions

Designing observers based on the conditions presented in the
previous sections may not give an acceptable performance, since
the poles of the observer may be placed at arbitrary locations
in the left half-plane. This problem can be avoided by using
LMI regions, i.e., constraining the poles of each local model to
a specific region. A definition of the LMI regions can be found
in [33].

Definition 3: A subset D of the complex plane is called an
LMI region if there exist a symmetric matrix α ∈ Rm×m and a
matrix β ∈ Rm×m such that

D = {z ∈ C : fD(z) < 0}

where

fD(z) = α + zβ + z̄βT

is the characteristic function of the LMI region.
One can easily see that, because of the form of the function

fD(z), LMI regions are convex and symmetric with respect to
the real axis. Useful LMI regions include a vertical strip [dl, du ]
and a conic sector centered in the origin with inner angle θ
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Fig. 3. LMI regions.

(see Fig. 3). If all the eigenvalues of a matrix A are located in a
region D, then the matrix A is called D-stable.

A theorem to ensure D-stability of a matrix A was given
in [33].

Theorem 14: The matrix A is D-stable if and only if there
exists P = PT > 0 so that

α ⊗ P + β ⊗ AP + βT ⊗ (AP )T < 0

where ⊗ is the Kronecker product.
In the context of observer design, using LMI regions to ensure

the specific D-stability of the observer effectively means adding
constraints to the presented LMI problems; more specifically

[αj,kP + βj,kP (Ai − LiCi) + βk,j (Ai − LiCi)T P ] < 0

j, k = 1, 2, . . . ,m.

Here, αj,k and βj,k denote the (j, k)th element of the corre-
sponding matrices.

V. EXAMPLES

In this section, we demonstrate the benefits of the proposed
approach on two simulated examples.

A. Feasibility

We illustrate on a numerical example the case when the
proposed conditions can be used to prove the stability of a
fuzzy system, which otherwise requires much more complicated
analysis.

Consider the fuzzy system

ẋ =
2∑

i=1

wi(z)Aix (41)

with w1(z) ≥ 0, w2(z) ≥ 0, w1(z) + w2(z) = 1 ∀z.

The state matrices of the local linear models are given as

A1 =




−0.7 −1.0 0 0 0

−1.0 −2.8 0 0 0

−0.1 −1.8 −1.4 0.6 0.0

0.1 −0.7 0.6 −3.1 0.4

−1.8 1.3 0.0 0.4 −1.9




and

A2 =




−3.3 −1.3 0 0 0

−1.3 −2.6 0 0 0

0 0 −1.1 0.6 −0.7

0 0 0.6 −5.2 1.7

0 0 −0.7 1.7 −2.0




.

The LMI problem

P > 0

AT
1 P + PA1 < 0

AT
2 P + PA2 < 0

is infeasible, and therefore, Theorems 2 and 4 cannot be ap-
plied. The stability of this system can be investigated using
Theorem 5.

By examining the form of the system matrices, one can easily
see that the system can be cascaded, with x1 = [x1 x2 ]T and
x2 = [x3 x4 x5 ]T .

Based on Theorem 9, the system (41) is stable if the individual
subsystems are stable. As such, in order to prove the stability of
the system (41), it is sufficient that the LMI problems

P1 > 0

AT
11P1 + P1A11 < 0

AT
12P1 + P1A12 < 0

and

P2 > 0

AT
12P2 + P2A12 < 0

AT
22P2 + P2A22 < 0

are feasible. Using Yalmip’s solvesdp [34], one can easily see
that this is indeed so.

This example illustrates the main benefit of the proposed sta-
bility conditions: While the conditions imposed by conventional
methods lead to an infeasible LMI system, it is still possible to
prove stability of the system under study by using the stability
conditions proposed in this paper.

B. Observer Design

This example of a real-world system [35] illustrates the ben-
efits of using the cascaded approach instead of centralized ob-
server design.

Consider the three tanks connected in a cascade, as shown in
Fig. 4. Water is pumped from a reservoir into the upper tank (3).
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Fig. 4. Cascaded tanks system.

TABLE I
PARAMETER VALUES USED

From this tank, the water flows to the lower tanks and from the
lowest tank back to the reservoir. The system has one control
input u, which is the voltage applied to the motor of the pump
and two measured outputs: the water levels h3 in the upper tank
and h1 in the lowest tank. The flow rate Fin , provided by the
pump, and the water level h2 in the middle tank need to be
estimated, and therefore, an observer has to be designed. The
differential equations describing the dynamics of this system
are the following:

τḞin = −Fin + Qs · u

ḣ3 =
Fin

A3
− s3

√
2gh3

A3

ḣ2 =
s3
√

2gh3

A2
− s2

√
2gh2

A2

ḣ1 =
s2
√

2gh2

A1
− s1

√
2gh1

A1
. (42)

The parameter values are presented in Table I.
It is assumed that the tanks have the same height, hmax = 2 m.

Therefore, all levels are bounded, hi ∈ [0, hmax].
This system is highly nonlinear and a linear observer cannot

be used. However, it is possible to design a fuzzy observer for
this system. In order to use the proposed design, a TS fuzzy

Fig. 5. Membership functions for the heights.

TABLE II
LMI REGIONS AND THE CPU TIME

model of the system (42) is constructed. For each level hi ,
four points hi ∈ {0.1, 0.55, 1.05, 1.6} are chosen, together with
appropriate membership functions, as depicted in Fig. 5. Note
that the scheduling vector consists of the levels h1 , h2 , and h3 ,
which are the states to be estimated.

The system (42) is linearized for each combination of the
chosen points. Since the linearization is not done in equilibria,
the consequents are affine. For instance, the rule obtained by
linearizing in h1 = 0.55, h2 = 0.1, and h3 = 0.55 is as follows.

If h1 is approximately 0.55 and h2 is approximately 0.1 and
h3 is approximately 0.55, then ẋ = Ax + Bu + a, with

A =




−0.3333 0 0 0
0.1111 −0.0995 0 0

0 0.1120 −0.1751 0
0 0 0.1401 −0.0747




B = ( 0.1120 0 0 0 )T

a = (0 − 0.0547 0.0441 − 0.0271)T

where x = [Fin h3 h2 h1 ]T . To compute the membership de-
gree of the scheduling vector, the algebraic product operator is
used. Note that, by using this operator, the membership functions
obtained for the scheduling vectors are smooth. Other operators,
such as MIN and MAX, would render the membership functions
nonsmooth.

By examining the form of system (42) and the matrices of the
fuzzy system, one can easily see that the system can be cascaded,
with x1 = [Fin h3 ]T and x2 = [h2 h1 ]T . Therefore, observers
can be designed separately for the individual subsystems. The
observers are designed both for the whole system and the indi-
vidual subsystems using the same pole-placement method and
conditions. Both observers have the form (22).
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Fig. 6. Estimation errors for Fin using centralized and cascaded observers. (a) Case 1. (b) Case 2. (c) Case 3. (d) Case 4. (e) Case 5. (f) Case 6.

Fig. 7. Estimation errors for h2 using centralized and cascaded observers. (a) Case 1. (b) Case 2. (c) Case 3. (d) Case 4. (e) Case 5. (f) Case 6.
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To simulate the system, the differential equations were
discretized with the Euler method, using a sampling period
T = 0.1 s. The input was randomly generated, and so were the
“true” and “estimated” initial states. For the presented cases,
the true initial conditions were [1.7 0.4 0.1 0.4]T , while the
estimated ones were [1.5 0.2 1.3 0.8]T . The observers were de-
signed using different LMI regions. The regions and the CPU
time needed to solve the LMIs for these regions using the Yalmip
toolbox [34] are presented in Table II for the centralized and
cascaded observers. As can be seen, the time needed to solve
the LMIs for the centralized observer is, in most cases, more
than ten times larger than the time needed for the cascaded ob-
server. This is due to the fact that for the centralized system,
sixty-four 4 × 4 LMIs need to be solved, while for the cascaded
approach, this number is reduced to 2 × 4 LMIs of dimension 2.

The estimation errors of Fin and h2 , when using centralized
and cascaded observers, for the six cases are presented in Figs. 6
and 7, respectively.

If the LMI region is the entire left half-plane, the cascaded
observer converges much faster than the centralized [see Figs.
6(a) and 7(a)]. If the closed-loop poles are restricted to the
interval [−10, −2], but there is no restriction on θ (case 2),
the imaginary parts of the closed-loop poles of the centralized
observer are of the order 106 so that the observer effectively
becomes unusable. Therefore, only the results obtained by the
cascaded setting are presented [see Figs. 6(b) and 7(b)]. If θ is
constrained, the performance of the observers is comparable.
For no constraints on the poles’ real part (i.e., no vertical strip
in Fig. 3), the estimation error on h2 of the cascaded observer
converges faster [see Fig. 7(c) and (e)]. When both the real part
and the damping are constrained, the overshoot of the cascaded
observer is slightly larger than that of the centralized one [see
Fig. 6(d) and (f)].

VI. CONCLUSION

In many real-life applications, a complex process model can
be decomposed into simpler, cascaded subsystems. This parti-
tioning of a process leads to increased modularity and reduced
complexity of the problem, while also making the analysis eas-
ier. In this paper, we have studied the stability of a cascaded
fuzzy system, based on its individual subsystems. We have
proven that the stability of the individual subsystems implies
the stability of the global fuzzy system. Furthermore, the pro-
posed approach relaxes the conventional stability conditions and
reduces the dimension of the LMI problem to be solved.

We have also extended the cascaded setting to state estima-
tion. If a complex process model can be decomposed into a
cascade of simpler subsystems, observers can be designed for
these individual subsystems. This partitioning of a process and
observer leads to increased modularity and reduced complexity
of the problem, with reduced computational costs. The benefits
of studying stability based on subsystems have been demon-
strated in simulation examples.

In our future research, we will investigate the theoretical con-
ditions under which fuzzy observers can be used for distributed,
but not necessarily cascaded, systems.
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