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OWA Operators in Regression Problems
Ronald R. Yager, Fellow, IEEE, and Gleb Beliakov, Senior Member, IEEE

Abstract—We consider an application of fuzzy logic connectives
to statistical regression. We replace the standard least squares,
least absolute deviation, and maximum likelihood criteria with
an ordered weighted averaging (OWA) function of the residuals.
Depending on the choice of the weights, we obtain the standard re-
gression problems, high-breakdown robust methods (least median,
least trimmed squares, and trimmed likelihood methods), as well
as new formulations. We present various approaches to numeri-
cal solution of such regression problems. OWA-based regression
is particularly useful in the presence of outliers, and we illustrate
the performance of the new methods on several instances of linear
regression problems with multiple outliers.

Index Terms—Aggregation operators, least trimmed squares
(LTS), outliers, ordered weighted averaging (OWA), robust
regression.

I. INTRODUCTION

IN THIS paper, we will look at an application of fuzzy logic
connectives, in particular, the popular ordered weighted av-

eraging (OWA) functions, to statistical regression. Outliers—
atypical data that do not follow the regression model—can be
very problematic in regression analysis. Even a single outlier
can affect the regression model so much that it does not stand
out. As the consequences, the computed model could be grossly
erroneous, and the outlier becomes undetectable. The notion of
an outlier is somewhat fuzzy: All data can be qualified as out-
liers to some degree, based on how well the regression model fits
each datum. It makes sense to weight the contribution of each
datum in the regression analysis based on the distance of this
datum from the model, called the residual. By down-weighting
poorly fitted data, which are considered outliers, we can limit
their effect on the model. We investigate aggregation of resid-
uals with various forms of OWA functions [1], and show how
robust alternatives to traditional regression can be obtained as a
result.

We consider the classical regression problem: Given a set of
pairs {(xk , yk )}, k = 1, . . . ,K: xk ∈ �n , yk ∈ � (data), and a
set of models fθ : �n → � parameterized by a vector of param-
eters θ ∈ Ω ⊆ �p , determine the parameter vector θ∗, such that
fθ∗ fits the data best. The goodness of fit can be measured in dif-
ferent ways. Three classical instances are the least squares (LS)
regression, the least absolute deviation (LAD) regression, and
Chebychev (minimax) approximation. The maximum likelihood
(ML) estimators give another set of instances. When functions
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fθ depend on θ linearly, the problem is called linear regression,
otherwise, it becomes a nonlinear regression problem.

We concentrate on linear regression, where the model is as
follows:

yi = xi1θ1 + · · · + xipθp + εi, i = 1, . . . ,K

with xip = 1 for regression with an intercept term. {xij} =
X ∈ �K×p is the matrix of explanatory variables and ε is a K-
vector of independent identically distributed random errors with
zero mean and (unknown) variance σ2 . The goal is to determine
the vector of unknown parameters θ.

Simple regression (p = n + 1 = 2 with the intercept term)
and multiple regression (p > 2) are classical instances of such a
problem. Polynomial and spline regression (in one or multiple
variables) can also be viewed as instances of such a problem:
If {B1 , . . . , Bp} is a set of basis functions of a single variable
t, then the explanatory variables are xik = Bk (ti). Another in-
stance of linear regression problem we will be dealing with, is
when there are additional linear constraints on the parameters
θ. For example, when fθ is chosen from the class of weighted
arithmetic means fθ (x) = x1θ1 + · · · + xnθn , then, we have
the constraints θi ≥ 0 and θ1 + · · · + θn = 1.

The goodness of fit is typically expressed in terms of either
squared or absolute deviations (residuals) rk = fθ (xk ) − yk ,
namely, the weighted averages

∑K
k=1 wkr2

k or
∑K

k=1 wk |rk |.
More generally, in the ML estimators, one maximizes the
log-likelihood function

∑K
k=1 wk l(θ; rk ), where l(θ; rk ) =

log(ρ(rk ; θ)) is the logarithm of the probability density of the
random variable R. The weights wk reflect the relative impor-
tance of the kth datum: The larger the weight, the better fθ (xk )
must approximate yk . With no a priori information, typically
equal weights are chosen.

Both the LS and LAD regression are sensitive to outliers—
atypical points that do not follow the regression model. There
are two types of outliers: The vertical outlier (only the value
of yi is atypical), and leverage points (the values xik are atypi-
cal). Leverage points often happen when some data are missing,
and are replaced with some default values (like the notorious
9999). LAD regression handles well vertical outliers, but lacks
robustness with respect to leverage points in the same way as
LS regression [2], [3]. ML estimators are not robust against
leverage points either [4].

The concept of the breakdown point ε∗ was introduced in [5].
ε∗ is the smallest proportion of contaminated data than can
cause the regression estimator to take arbitrary large aberrant
values. In the cases of LS and LAD, as well as ML estimators,
ε∗ = 0. Hence, even a single outlier can cause a wrong estimator.
There are many studies in robust regression in which higher
breakdown values were achieved, up to the maximum ε∗ = 0.5
(see Section II).

1063-6706/$26.00 © 2009 IEEE
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We look at an alternative way to aggregate the goodness of fit
of individual data, by using OWA operators introduced in [1].
OWA operators allow us to associate nonnegative weights not
with individual data, but with the magnitude of the residual rk

(or an appropriate function of rk ). Thus, we can either penalize
large or small residuals, or, alternatively, not penalize the largest
residuals, treating these data as outliers. The weighting vector
of the OWA operator will control the penalties associated with
each residual based on its ranking. It turns out that the standard
LS, LAD, ML methods, and Chebyshev approximation, as well
as several methods of robust regression, like the least median
of squares (LMS), the least trimmed squares (LTS), trimmed
absolute deviations, and trimmed likelihood methods, arise as
special instances of OWA-based regression. We also present
several numerical techniques for solving OWA-based regression
problems.

The paper is structured as follows. In Section II, we formulate
the regression problem and discuss previous work done in the
field of high-breakdown robust regression. In Section III, we
discuss various methods of numerical solution of the OWA-
based regression problems. These methods will depend on the
OWA weighting vector. In some cases, the optimization problem
is convex, while in other cases, it is concave, or neither convex
nor concave, and in all cases, it is nonsmooth. In Section IV, we
present our numerical results when fitting datasets with multiple
outliers, and show that OWA-based regression can effectively
identify and filter out the outliers in the data. This section is
followed with conclusions.

II. PROBLEM FORMULATION AND SOME PRIOR WORK

In the ordinary weighted linear LS regression, the optimal
vector of parameters θ is found by minimizing

Minimize F (θ) =
K∑

k=1

wk (rk (θ))2 (1)

where the residuals are rk (θ) = fθ (xk ) − yk . In the LAD re-
gression, the parameters are found by minimizing

Minimize F (θ) =
K∑

k=1

wk |rk (θ)|.

Huber [6] suggested the use of criteria less sensitive to out-
liers, namely,

Minimize F (θ) =
K∑

k=1

wkρ(|rk (θ)|)

with specially chosen functions ρ (continuous, strictly increas-
ing, with ρ(0) = 0), which produce M-estimators (ML type
estimators).

All mentioned methods are sensitive to the leverage points,
and their breakdown point ε∗ = 0. In order to make the estima-
tors robust to outliers, the method of LMS was proposed in [2].
In this method, the following expression is minimized:

Minimize F (θ) = median(rk (θ))2 .

In order to achieve the maximal breakdown point ε∗ = 0.5, the
median is replaced by the [(K + p + 1)/2]th quantile (the [x]
denotes the nearest integer larger than or equal to x). Nowadays,
Rousseeuw and Driessen [7] consider the method of the LTS,
also proposed in [2], superior to the LMS, because the objective
function is more smooth, its statistical efficiency is better and
the convergence rate is higher, while it has the same breakdown
point [2], [7], [8]. Here, the expression to be minimized is as
follows:

Minimize F (θ) =
h∑

k=1

(r(k)(θ))2

where the residuals are ordered in the increasing order |r(1) | ≤
|r(2) | ≤ · · · ≤ |r(K ) |, and h = [(K + p + 1)/2]. The method
of least trimmed absolute deviation (LTA) was advocated in [9]
and [10]. The minimization problem is as follows:

Minimize F (θ) =
h∑

k=1

|r(k)(θ)|.

In the maximum trimmed likelihood (MTL) methods, the
expression

−
h∑

k=1

wk l(θ; r(k))

is minimized, where l are log-likelihood functions [4].
In essence, in the LTS, LTA, and MTL methods, half of the

sample is discarded as potential outliers, and the model is fitted
to the remaining half. This makes the estimator not sensitive to
up to the half of contaminated data. The problem of course is to
decide, which half of the data should be discarded. The prob-
lem becomes NP-hard (like all robust estimation problems with
high breakdown point [11], including LTS and the least quan-
tile regression, another method in which instead of the median,
the hth quantile of the absolute deviations is minimized [4]).
The choice of h = [(K + p + 1)/2], while giving the highest
breakdown point, limits the convergence and coverage of the
method. Instead, often the values h = 0.75K or h = 0.9K are
used (e.g., in statistical package SPlus), and in [12] an adaptive
choice of h was proposed, based on the data.

Note that in all mentioned methods, instances of an OWA
function (with different weighting vectors) are used. Let us for-
mally define OWA operators and OWA-based regression.

Definition 1: An OWA function with the weighting vector
w ∈ [0, 1]K ,

∑
wi = 1 is the function

OWAw (x) =
K∑

i=1

wix(i)

where x(i) is the ith largest component of x.
We remind the basic facts about OWA function, for details

the reader can consult [1], [13]–[17].
Definition 2: The orness of an OWA function OWAw

orness(OWAw ) =
K∑

i=1

wi
K − i

K − 1
. (2)
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The entropy (dispersion) of an OWA function OWAw is as fol-
lows:

Disp(OWAw ) = −
K∑

i=1

wi log wi.

Special cases of OWA include the maximum [w =
(1, 0, . . . , 0)], the minimum [w = (0, . . . , 0, 1)], the arithmetic
mean [w = ((1/K), . . . , (1/K))], and the median (for odd K,
w(K +1)/2 = 1, for even K, wK/2 = wK/2+1 = 1/2). Depend-
ing on the properties of the weighting vector, one can ob-
tain many other interesting cases, like the “olympic” OWA,
which discards the largest and the smallest components of x
(w1 = wK = 0), the average of the h largest (or smallest) com-
ponents, etc.

Let us formulate an OWA-based regression problem.

Minimize F (θ) =
K∑

k=1

wkρ(|r(k)(θ)|) (3)

subject to θ ∈ Ω ⊆ �p , where r(k) stands for the kth largest
residual, and ρ is one of the functions appearing in M-estimators.
The right hand side of (3) is the OWA function with the weights
wk . We now concentrate on the the functions ρ(r) = rq with q ≥
1, and particularly, on the cases q = 1 and q = 2. Müller [18]
considered other choices for q (trimed weighted Lq estimators).

As special cases of (3), when Ω = �p , we obtain the LS
and LAD, the LMS method, the least quantile regression, the
LTS and LTA methods (with w = (0, 0, . . . , 0, u, u, . . . , u), u =
1/h, and q = 2 and q = 1, respectively), and the MTL (when
choosing ρ as negative log-likelihood function). Note that since a
constant factor can be factored out from the objective function F
in (3), we can use instead the weighting vectors defined by wk =
0, k = 1, . . . ,K − h, and wk = 1 for k = K − h + 1, . . . ,K,
with h = [(K + p + 1)/2], or h = [0.9K], etc., i.e., we will not
require wi to sum to one.

In such cases, when the dimension of OWA operator changes
from one problem instance to another (in our case it is the
number of data K), it is convenient to use stress function to
determine the weights [19].

Definition 3 Let h : [0, 1] → �+ be a nonnegative function
on the unit interval. OWA weights are defined as follows:

wi =
1
H

h

(
i

K

)

, i = 1, . . . ,K (4)

with H =
∑K

i=1 h (i/K), the normalization constant.
Stress function is related to fuzzy linguistic quantifiers [15],

[20], [21], by Q′(t) = Hh(t), where H is the normalization
constant, Q : [0, 1] → [0, 1], Q(0) = 0, Q(1) = 1, a continuous
monotone increasing function, called the regular increasing
monotone (RIM) quantifier, and the value Q(t) represents the
degree to which t satisfies the fuzzy concept represented by the
quantifier. Examples of such quantifiers for fuzzy sets are as
“for all”, “there exists”, “identity”, “most”, “at least half”, “as
many as possible”, etc.

The use of OWA operator in problem (3) allows us to model
the following verbally expressed informal requirements.

1) We need to fit all data (standard LS or LAD problem).
Here, we take h(t) = 1, for all t.

2) We need to fit, even the worst datum (Chebyshev approx-
imation problem). Here, we take h(0) = 1 and h(t) =
0, t > 0.

3) We need to fit most data. An example of the corresponding
stress function is h(t) = 0 for t < 1/10 and h(t) = 1,
otherwise.

4) We need to fit the majority of the data. An example is

h(t) =






0, t < a
t−a
b−a , a ≤ t < b
1, t ≥ b

(5)

with say, a = 0 and b = 1/4.
5) We need to fit at least half the data. We can take a piece-

wise linear h in (5), with a = 1/3, b = 2/3, etc.
For each of the mentioned requirements, we choose an ap-

propriate stress function, generate the corresponding weighting
vector w, and solve problem (3) for θ. Depending on the vector
w, the methods of solution will be different. We outline them in
the next section.

III. METHODS OF SOLUTION

A. Decreasing Weighting Vector w

Let the vector w have the following property: wi ≥ wj , for
all i < j. We note that this happens when the RIM quantifier
is a concave function (the stress function h is decreasing). One
special case is w = (1, 0, . . . , 0), which results in Chebyshev
approximation. The alternatives could be as follows.

1) w = (α, 1 − α, 0, . . . , 0), α > 1/2, i.e., minimize the
weighted mean of the two largest (squared, absolute)
residuals.

2) w = ((1/m), . . . , (1/m), 0, . . . , 0), i.e., minimize the
mean of the m largest (squared, absolute) residuals, etc.

The problem (3) is reformulated as follows:

Minimize max
π

K∑

k=1

wk |rπ (k)(θ)|q (6)

subject to θ ∈ Ω, where π denotes a permutation of the indexes
1, 2, . . . ,K. This formulation follows from the observation that∑

wk |r(k)(θ)|q ≥
∑

wk |rπ (k)(θ)|q for any π.
The implication of this result is that the objective function

in (6) is convex. Hence, there exists a unique minimum of F ,
as long as Ω is convex. Note that for many other choices of ρ
in M-estimators, when ρ is not convex, the objective is neither
convex nor quasi-convex.

There are three main approaches to numerical solution of (3)
in the case of decreasing weighting vectors.

1) Direct Method: The first method is to solve (3) directly
by using methods of nonsmooth optimization, e.g., the discrete
gradient, or bundle methods discussed in [22]–[25], and im-
plemented in [26]. We note that the objective in (3) is not dif-
ferentiable, and this creates difficulties for most off-the-shelf
optimization packages. However, recent developments in nons-
mooth optimization make this issue less relevant.
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2) Linear Programming Formulation: The second ap-
proach, applicable to the case of q = 1 and Ω being a polytope,
is to formulate an equivalent linear programming (LP) problem

minimize ε

s.t. ε ≥
K∑

k=1

wk

(
d+

π1 (k) + d−π1 (k)

)

ε ≥
K∑

k=1

wk

(
d+

π2 (k) + d−π2 (k)

)

...

ε ≥
K∑

k=1

wk

(
d+

πM (k) + d−πM (k)

)

d+
πm (k) − d−πm (k) =

n∑

j=1

θjxkj − yk ,

d+
πm (k) , d

−
πm (k) ≥ 0, m = 1, . . . ,M. (7)

Here, M = K!, the total number of possible permutations π,
πm is the mth permutation, and the auxiliary nonnegative
variables d+

πm (k) , d
−
πm (k) are simply the positive and negative

parts of the residuals fθ (xk ) − yk , so that d+
πm (k) + d−πm (k) =

|fθ (xk ) − yk | = |rπm (k) |.
Of course the size of such an LP problem is K!, which means it

will be numerically expensive, even for relatively small datasets.
However, the size of this problem can be reduced in several
important special cases, when some of the weights wk coincide.
For instance, consider the vector w = ((1/2), (1/2), 0, . . . , 0).
Then, all permutations in which the first two or the last K − 2
indexes differ, are equivalent. In this case, instead of M = K!,
we can take M = K!/(2!(K − 2)!) = K(K − 1)/2.

Similarly, when we have a weighting vector with three groups
of identical values, like w = (a, a, . . . , a, b, . . . , b, c, . . . , c), we
have M = K!/(k!m!(K − k − m)!), where k is the number of
as and m is the number of bs.

3) Mixed Integer Programming Formulation: The third
method is based on mixed integer programming formulation,
and was presented in [27]. Here, we use auxiliary integer vari-
ables Z ∈ {0, 1}K×(K−2) to represent and enforce ordering in
the vector of deviations. Consider the following optimization
problem:

minimize
K∑

k=1

wkck

s.t. dk = |θjxkj − yk |q (= |rk |q )
c1 − dk ≥ 0, k = 1, . . . ,K

ci+1 − dk + M
i∑

m=1

zmk ≥ 0

for all i = 1, . . . , K − 2, k = 1, . . . ,K

K∑

i=1

zij = 1, for all j = 1, . . . ,K − 1

K−1∑

j=1

zij = 1, for all j = 1, . . . ,K − 1

zij ∈ {0, 1}, i, j = 1, . . . ,K. (8)

The first set of inequality constraints c1 − dk ≥ 0 ensures
that c1 = d(1) , the largest absolute deviation. The second set
of constraints ensures that ci+1 = d(i) , the ith largest absolute
deviation. Here, M is some large constant, larger than any pos-
sible value of ci or dk . Let us see how it works. c2 must be larger
than all, but smaller than one dk . If z1k = 0, then c2 ≥ dk , the
constraint is enforced, and if z1k = 1, then, the constraint is re-
lieved. There must be only one such inactive constraint, hence,
the condition

∑K
k=1 z1k = 1. Consider next c3 , which must be

the third largest d(3) , i.e., it must be larger than all, but smaller
than two dk . Therefore, we must relieve two constraints, but
one of these is exactly the constraint with the same index k we
relieved for c2 . Therefore, we use the term Mz1k to relieve that
constraint, and Mz2k to relieve a new constraint. To ensure that
we do not relieve the same constraint, we have the condition

K−1∑

j=1

zij = 1, for all i = 1, 2.

Proceeding in the same way for cj , j = 4, . . . , K − 1, we
obtain the other constraints, each time relieving one additional
constraint. For cK all the constraints are relieved. The binary
variables zij can be conveniently represented as a matrix Z of
size K × (K − 2). Each row and each column of Z contains
exactly one nonzero entry, and the kth element of column i is the
index of the additional inequality constraint, which is relieved
for ci+1 , so that ci+1 = d(i+1) = dk when zik = 1.

If q > 1, the problem (8) is a convex mixed integer pro-
gramming problem in which the variables are Z, θ, ci . When
q = 1, by splitting the components of dk into positive and neg-
ative parts dk = d+

k − d−k , as it was done in (7), we obtain
an equivalent mixed LP problem in variables Z, θ, ci , d

+
k , d−k ,

which can be solved by standard methods, like the branch-and-
bound method [28].

B. Increasing Weighting Vector w

This is a very important case suitable for robust regression.
The weights wi ≤ wj , for all i < j. We note that this happens
when the stress function is nondecreasing and the RIM quantifier
is a convex function. Various methods of robust regression,
notably, the LTS, LTA, and MTL, arise as special cases of (3)
with the increasing weighting vector. For instance, when Ω =
�p

1) w = (0, . . . , 0, 1, . . . , 1), with h = [(K + p + 1)/2] last
components wk = 1, q = 2 corresponds to LTS.

2) The same weighing vector, but q = 1 corresponds to LTA.
3) Other choices of ρ result in MTL methods.
4) w defined by (5) corresponds to a fuzzified, or weighted

versions of LMS or LTA. Here, the outliers are not
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eliminated, but down-weighted. We can call them fuzzy
outliers, with the weights giving their membership grades
in the set outliers.

In the case of increasing w, the problem (3) can be reformu-
lated as follows:

Minimize min
π

K∑

k=1

wk |rπ (k)(θ)|q (9)

subject to θ ∈ Ω, and subsequently, as

min
π

min
θ∈Ω

K∑

k=1

wk |rπ (k)(θ)|q . (10)

The inner problem is a convex optimization problem as long as
Ω is convex (formulated as an LP problem for q = 1 or as a
quadratic programming (QP) problem for q = 2), with a unique
solution. However, M = K! such problems have to be solved.
The implication of this result is that problem (9) will, in general,
have M = K! different locally optimal solutions. We recognize
that the objective function in (9) as concave, hence, we have
an instance of concave programming problem, which is NP-
hard [28]. Finding the globally optimal solution numerically is
feasible only for small K.

Heuristics and branch-and-bound methods can be used to
solve (9) (or, alternatively, a combination of heuristics with
nonsmooth optimization methods when solving (3) directly).

Since various methods of robust regression arise as special
cases of (3) with the increasing weighting vector, we will have
a look at various algorithms for LTS and LTA problems, which
can be applied for OWA-based regression with these weighting
vectors, or perhaps modified for more general OWA.

1) Subset Selection Methods and Heuristics: The methods
of robust regression are generally based on the subset selection
problem. The direct approach is to try out all possible subsets of
“good” data of size h, solve the LS or LAD regression problem
for these data, and compare the values of the objective function.
The MVELMS code is presented in [29]. Of course, the number
of LS or LAD problems that need to be solved is

(
h
K

)
. An exact

branch-and-bound type method was proposed in [30], but of
course, it is applicable only to small datasets (e.g., n = 3, K <
200, or n = 5, K < 50). The FAST-LTS method proposed in [7],
is a heuristic, based on random start (a subset of “good” data
H1), and a “C-step” in which a better subset H2 is constructed
from the residuals of all data with respect to the best LS fit to
H1 . The C-step is relatively cheap O(K), and is repeated until
the convergence. The FAST-LTS method allows one to handle
tens of thousands of data, but it may not produce the global
minimum of (3) in a fixed number of random starts. Rousseeuw
and Driessen [7] also proposed an alternative selection of H1
based on PROGRESS algorithm in [3].

2) Methods Based on Elemental Sets: When p = 1 (the LTA
method), there is another alternative. Since LAD regression
corresponds to an exact fit to some subset of data of size p,
instead of trying all subsets of h out of K “good” data, one can
fit hyperplanes to all “elemental” subsets of p out of K, and
simply calculate and sort the corresponding residuals, and then,
calculate the value of the objective F . Of course the complexity

(the number of elemental datasets) is reduced to
(

p
K

)
. This is

the idea explored in [10].
A similar approach can be taken to the LMS regression

problem, another instance of OWA-based regression, where
OWA=median, see Section III-C. The LMS fit is a Chebyshev
fit to a suitably chosen subset of size p + 1, and the number of
such subsets is

(
p+1
K

)
.

In this context, let us outline an algorithm for a general in-
creasing vector w in (3), based on the same idea (the case q = 1
and Ω = �p ). Whether or not w has any zero entries, the LAD
fit corresponds to an exact fit to a subset of p data (elemental
set). Then, we follow the steps.

1) Generate every elemental set.
2) For each elemental set, compute the exactly fitting regres-

sion function, and get the residuals on all data.
3) Calculate the objective F (θ) in (3).
4) Choose θ, which minimizes F (θ).

C. Unimodal Weighting Vector w

The concept of centered OWA operators was proposed by
Yager in [31], and later, also investigated in [32]. Here, the
weights are symmetric (wj = wK +1−j ), strongly decaying
(wi < wj , if either i < j ≤ (K + 1)/2 or i > j ≥ (K + 1)/2),
and inclusive (wj > 0). We can relax the second and the
third conditions to get noninclusive, soft-decaying centered
OWA. A prototypical centered OWA operator is the median,
w = (0, . . . , 0, 1, 0 . . . , 0), with wh = 1 and h = [(K + 1)/2].

Here, we recall the method of LMS [2], one of the high
breakdown methods mentioned earlier. To get the highest
breakdown point of ε∗ = 0.5, in LMS one chooses, in fact
h = [(K + p + 1)/2]. To apply the concept of centered OWA,
we therefore, relax the symmetry condition, which effectively
leaves us with the following class of unimodal weighting vec-
tors, satisfying the conditions.

1) The maximal weight wh is achieved at some 1 < h < K.
2) The weights are soft-decaying wi ≤ wj , if i < j ≤ h or

i > j ≥ h.
Thus, the middle-sized absolute or squared residuals are pe-

nalized most in (3), with the largest an the smallest residuals
having limited, if any, contribution. The LMS method illustrates
this well.

Here, we shall make an interesting observation. Because the
LTA method (when the weighting vector is increasing) corre-
sponds to an exact fit of an elemental subset of size p, effectively
the smallest p residuals make no contribution to the objective
in (3). Then, we can replace the increasing weighting vector
with the unimodal vector by zeroing the last p components (or
replacing them with arbitrary numbers), and obtain the same
optimal solution.

Another way of defining the unimodal weighting vector is
the following. Let w1 = · · · = wh = 0, wh+1 = 1, and weights
wj , j > h + 1 soft-decaying to 0. The objective will discard the
h largest residuals as outliers, and at the same time will not
penalize small residuals.

The solution methods for this class of OWA-based objective
are the same as those in the case of increasing weights.
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Fig. 1. Telephone data from [3], and the regression lines obtained by LS, LAD,
and OWA-based regression. All outliers are vertical outliers. We see that the LS
regression line is affected significantly, while the outliers have little effect on
LAD. However, OWA regression is not affected at all.

IV. NUMERICAL EXPERIMENTS

The purpose of this section is to illustrate the usefulness of
OWA-based regression in the problem of outlier detection, and
show feasibility of the direct approach for solving (3).

A. Description of the Datasets

In our numerical experiments, we concentrated on fitting dif-
ficult datasets containing outliers, such as real data: Modified
wood gravity data, Hertzsprung–Russell stars data, and tele-
phone data all discussed in [3], and data artificially generated to
test robust regression algorithms.

1) Telephone data relate the number of telephone calls in
Belgium to the variable year, for 24 years (n = 1,K =
24). Cases 15–20 are unusually high with cases 14 and 21
marginal (see Fig. 1).

2) Hertzsprung–Russell stars data (Stars) contain 47 mea-
surements of the logarithm of effective temperature of the
star and the logarithm of the light intensity n = 1,K =
47. The four red giants (cases 11, 20, 30, and 34) are clear
outliers and leverage points.

3) Modified wood gravity data (Wood) n = 5,K = 20 is
based on real data, but modified in [2] to contain outliers
at cases 4, 6, 8, and 19.

4) Hawkins, Bradu, and Kass (HBK) artificial dataset [33]
n = 3,K = 75, outliers are cases 1–10.

5) Hadi and Simonoff (H–S) artificial dataset [34] n =
2,K = 25, with three outliers (1, 2, 3). The data were
generated randomly, with the dependent variable consis-
tent with the model y = x1 + x2 + ε with εi ∼ N(0, 1)
(N(a, b) stands for the normal distribution with the mean
a and standard deviation b).

Fig. 2. Stars data, and the regression lines obtained by LS, LAD, and OWA-
based regression. Both LS and LAD regression lines are severely affected by
the four leverage points (red giants). OWA-based regression is not affected, and
the outliers are identified by large residuals.

6) Artificial data generated following [7] (R–D), namely, n =
1,K = 1000, the data generated using y = x1 + 1 + ε
for the first 800 observations, xi ∼ N(0, 100) and εi ∼
N(0, 1), and for the remaining 200 observations (xi, yi)
were drawn from the bivariate normal distribution with
µ = (50, 0) and Σ = 25I (see Fig. 2).

B. Results and Discussion

We used increasing OWA weighting vectors given by (5) with
parameters a = 0.2 and b = 0.5. As the method of solution to
(3), we minimized F (θ) directly, with q = 1, using the derivative
free bundle method (DFBM) from [22], [25], implemented in
GANSO library [26] available from http://www.ganso.com.au.

We make three observations here. First, the objective F in (3)
has many local minima, we already mentioned that the optimiza-
tion problem with such an objective is NP-hard. Therefore, we
need to use a global search strategy. In this study, we used ran-
dom start heuristic (i.e., starting DFBM from 1000 randomly
chosen starting points), as well as used the solution to LAD
problem as the starting point for DFBM. We used the Sobol
quasi-random number generator [35] with the purpose of ob-
taining starting points.

The second observation is that the objective F in (3) is not
smooth, but is Lipschitz-continuous, and hence, DFBM is appli-
cable. DFBM [22], [25] uses a descent strategy similar to quasi-
Newton type methods, but calculates the direction of descent
differently, by using an approximation to Clarke-subdifferential.
This method is guaranteed to converge to a local minimum of the
objective, and has been shown to escape shallow local minima
in multiextremal problems.

The third observation is about the impact of the continuous
reordering of the residuals in OWA-based regression. We note
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TABLE I
RESULTS OF NUMERICAL EXPERIMENTS

Fig. 3. Artificial data R–D from [7], and the regression lines obtained by LS,
LAD, and OWA-based regression. LS and LAD are severely affected by outliers,
but OWA-based regression correctly discards the outliers.

that the computational complexity of calculating a single value
of F is the same of the sorting methods O(K log K). This
bound on the computational cost is very attractive, and the sort
operation has a limited impact on the total cost of OWA-based
regression, which is mainly due to multiple local optima of F .
Furthermore, it is possible to parallelize both the calculation of
the residuals and the sort operation on modern general purpose
graphic processing units (GPUs) [36], i.e., to use the worksta-
tion’s graphics card to off-load computation of F , which makes
direct minimization of F an attractive strategy, even for very
large datasets (K > 106).

Table I presents the results of our experiments. Our solution
method has correctly identified the outliers in all cases. Small
running times of the algorithm illustrate its efficiency, even for
large datasets. Computations were performed on a workstation
with Pentium 2.3 GHz processor and 2 GB RAM.

Figs. 1–3 illustrate OWA-based regression, and compares it to
LS and LAD regression. We can see that identification and elim-
ination of outliers is quite effective with OWA-based regression.
Note that several existing methods of robust regression, namely,
the LTS and LTA (which minimize special instances of OWA
functions) are also effective in eliminating the outliers in these
cases, as reported in [2], [7], [34]. We shall make two points
here. First, when we use gradually increasing weights on OWA-
based regression, as opposed to 0 and 1 weights in LTS and

LTA, we still obtain correct regression lines. It seems that the
location of the global minimum of F in (3) is not drastically
affected by the choice of weights. Second, we applied a very
different approach to solving (3), applicable to OWA with any
weighting vectors, and obtained the solution as efficiently, if
not more efficiently, as the alternative methods used in LTS and
LTA. This indicates the potential of the proposed method.

V. CONCLUSION

We introduced OWA-based regression as an alternative to
the ordinary LS, LAD, and M-estimators. Depending on the
OWA weighting vector, we obtain the classical instances of the
regression problem, as well as various high-breakdown robust
methods, such as the LMS, LTS, quantile regression, and least
trimmed likelihood methods. We discussed various alternative
methods of numerical solution of the regression problem. These
methods vary depending on the OWA weighting vector. In par-
ticular, for the most interesting cases of increasing and unimodal
weighting vectors, the regression problem becomes nonconvex
and NP-hard (which is true for all high breakdown methods). We
have used a method of nonsmooth global optimization to mini-
mize the total fitness function in our numerical experiments. In
all cases, we were able to identify correctly the outliers in the
data, consistently with the latest methods of robust regression.

What makes OWA-based regression advantageous is that 1)
it provides a generic problem formulation in which the existing
classical and robust methods are special cases; and 2) it allows
one to use an alternative method of numerical solution, with
less rugged objective. We see the potential of this method in
identifying outliers in large datasets, as the complexity of the
method is not exponential in K.
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