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Fuzzy Compositional Modeling
Xin Fu, Student Member, IEEE, and Qiang Shen

Abstract—Automated modeling refers to automatic (re-)
formulation of alternative system models that embody the simplifi-
cation, abstraction, and approximation of knowledge and data for a
given task. This technique is highly desirable for effective problem
solving in many application domains. Over the past two decades,
compositional modeling (CM) has established itself as a leading
approach in automated modeling. CM is a framework to construct
system models by composing generic and reusable model fragments
(MFs) selected from a knowledge base. However, the existing work
mainly concerns the knowledge and data that are represented by
crisp and precise information. Little work has been carried out
to explore its potential to deal with uncertain environments. This
paper presents an innovative framework of fuzzy compositional
modeling (FCM) to develop such work.The proposed approach is
capable of representing and reasoning with a wide range of inex-
act information. An innovative notion of fuzzy complex numbers
(FCNs) is developed in an effort to enable synthesis of consistent
scenario descriptions from imprecise MFs. This paper also intro-
duces the modulus of FCNs to constrain the resulting scenario
descriptions. The usefulness of this study is illustrated by means of
an example to construct possible scenario descriptions from given
evidence, which is in support of crime investigation.

Index Terms—Compositional modeling (CM), crime investiga-
tion, fuzzy complex numbers (FCNs).

I. INTRODUCTION

E FFECTIVE problem solving often requires the automatic
construction of computational models that are both ade-

quate and efficient for a given task. However, automated mod-
eling is a complex problem: Generation of appropriate models
requires the consideration of not only the aims and intentions
of the task specification but user preferences as well. Never-
theless, several automated modelers have been proposed in the
literature, which specialize in performing different tasks and
supported with various fundamental architectures. Among these
is the work of compositional modeling (CM) [7], [16], which
is the knowledge-based approach, and has established itself as
a leading tool to synthesize and store plausible-scenario space
effectively and efficiently in many problem domains (e.g., those
of physics [7], ecology [17], criminology [27], and social sci-
ence [19]).

While existing CM work has demonstrated the potential of
the underlying approach, its use is restricted in real-world appli-
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cations, as it assumes that the model fragments (MFs) within the
knowledge base (KB) are expressed by precise and crisp infor-
mation. In coping with uncertainty, a set of numerically specified
probability distributions is typically employed by each MF to
represent the likelihood of its associated outcomes. However,
many problem domains involve imprecise, incomplete, and em-
pirical knowledge and data. The degree of precision of available
information may vary greatly, subject to different perceptions
and judgement of users. In particular, assessment of likelihood
reflects the expertise of the user and is often expressed in quali-
tative terms, i.e., verbally or diagrammatically. In fact, the use of
seemingly very precise numeric probabilities typically suffers
from an inadequate degree of accuracy [14].

Dealing with inexact knowledge and data captured in a variety
of forms has thus become an increasingly important issue in
CM. Conceptually, inexact information may be classified into
the following four general categories, which are of particular
interest to this study.

1) Vagueness: It arises due to a lack of sharp distinctions or
boundaries between pieces of information (e.g., Bob is
tall, not medium). Often, a vague proposition is modeled
by a fuzzy set that identifies a soft constraint on a set of
elements. Instead of using a crisp partition, an element of
a fuzzy set is allowed to satisfy the soft constraint to a
certain degree.

2) Uncertainty: It depicts the reliability or confidential
weight of a given piece of information stated in a propo-
sition. Due to the involvement of uncertainty, it is difficult
to state the exact truth of a given statement. In the lit-
erature, two types of uncertainty are often referred to as
randomness and fuzziness [20], [29]. Probability theory is
typically employed to model randomness, while the possi-
bility theory [33] is well established to deal with fuzziness
(where a fuzzy-set membership function is interpreted as
a possibility distribution). This work mainly concerns the
latter type of uncertainty, which is represented by a nu-
merical value (e.g., The suspect overpowers the victim,
with a certainty degree of 0.7).

3) Both vagueness and uncertainty: This means that informa-
tion of type 1 and that of type 2 coexist (e.g., The amount
of collected fiber is a_lot, with a certainty degree of 0.7).

4) Both vagueness and uncertainty with the latter also ex-
pressed in vague terms: Instead of using numerical values,
the uncertainty is described by a linguistic term (e.g., The
amount of collected fiber is a_lot, with a certainty degree
of very_likely).

Much work has been developed to support reasoning with in-
exact knowledge and data [18], [21]. Although the application
problems and the problem-solving approaches taken may be
rather different, the existing techniques all aim to integrate the
underlying distinct pieces of inexact information into a global
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Fig. 1. Architecture of CM.

measure. However, in performing such an integration, the un-
derlying semantics associated with different information com-
ponents may be destroyed. It is of great interest and potentially
beneficial to establish a new mechanism that will maintain the
associated semantics when reasoning with inexact knowledge
and data. This paper proposes a novel fuzzy-CM framework
in an attempt to instantiate and compose MFs into consistent
scenario descriptions given the aforementioned types of infor-
mation. In order to achieve this, an innovative notion of fuzzy
complex numbers (FCNs) [10] is employed to provide an effec-
tive and efficient representation and inference of 2-D inexactness
(i.e., vagueness and uncertainty) conjunctively and explicitly.

Note that the term FCN is not new; the concept of complex
numbers has been proposed in the literature. In particular, a form
of FCNs has been defined in [2] as a mapping from the complex
plane to the interval [0, 1]. Such an FCN is, therefore, simply a
conventional type-1 fuzzy set. Work on the differentiation and
integration of this type of FCN has been proposed in [3] and [4]
as well, with more advanced follow-on research reported in [23],
[24], [31], [32], and [35]. Recently, in combining fuzzy complex
analysis and statistical learning theory, important theorems (of
a learning process) based on fuzzy-complex random samples
were developed [13]. This work further establishes interesting
properties of the so-called rectangular FCNs, which are special
types of FCNs, as proposed in [2]. Another interesting develop-
ment is the notion that relates real complex numbers to fuzzy
sets [25]. It introduces a new type of set, which is called com-
plex fuzzy sets, to allow the membership value of a standard
fuzzy set to be represented using a classical complex number.
However, as discussed in [25], it may be difficult to acquire
an understanding for the use of complex-valued memberships.
Despite this obstacle, work has continued along this theme of
research. This is evident in that complex fuzzy sets have been
integrated with propositional logic to construct fuzzy-reasoning
systems [6].

Existing work related to the concept of FCNs is nevertheless
framed by either giving conventional complex numbers a real-
valued membership or assigning a fuzzy-set element to a com-
plex number as its membership value. These are rather different
from what is proposed in this paper, where both the real and
imaginary values of an FCN are, in general, themselves fuzzy
numbers, each with an embedded semantic meaning. In particu-
lar, the calculus of such FCNs over arithmetic and propositional
relations is purposefully developed to support scenario-model
synthesis from MFs, and the modulus of FCNs is introduced to
constrain the emerging scenario descriptions. Of course, the un-
derlying development of this new approach to FCNs is general
and may be further adapted to other application problems.

From the CM point of view, this work not only provides a
more flexible knowledge representation formalism, but also en-
hances the capability of CM in handling a variety of inexact
information. In order to achieve this, the following technical
inventions with respect to CM are developed. First, due to the
involvement of vague information, a precise and certain match
between the available evidence and the MFs, in general, cannot
be expected. The boolean retrieval approach used in existing CM
work fails to return any MFs that partially match the available
information. Hence, a fuzzy mechanism is proposed to retrieve
those MFs that involve no exact match and are most likely to be
relevant to the collected evidence. Second, a heuristic method for
model composition, in conjunction with its associated inference
mechanism is developed, for the first time, to dynamically syn-
thesize the retrieved (fuzzy) MFs in order to construct consistent
plausible scenarios. In particular, two algorithms are designed to
deal with the backward and forward propagation of the involved
inexact knowledge and data. Further, several filtering methods
are also introduced to refine the emerging scenario descriptions.

The rest of the paper is organized as follows. Section II in-
troduces the theoretical background that provides a basis for
this work. A structured knowledge-representation formalism is
described in Section III to represent and store various types of
inexact information within CM. This is based on the initial work
of Fu et al. [11]. Section IV presents the novel fuzzy compo-
sitional modeler that incorporates an inference mechanism to
match, compose, and propagate inexact information within the
model composition process. This is achieved by substantially
extending and combining the seminal ideas proposed in [9]
and [10]. An illustrative example is then given in Section V,
showing the utility and usefulness of this approach in provid-
ing decision support in crime investigation. Finally, Section VI
concludes the paper with future work pointed out.

II. OUTLINE OF COMPOSITIONAL MODELING

A. Compositional Modeling

A compositional modeler constructs a mathematical or con-
ceptual model based on certain initial knowledge and data
through computational means [16]. The generic architecture of
CM is depicted in Fig. 1. Given a piece of evidence (which may
come in a variety of forms, e.g., an observation, a query, or a
description of the expected behavior of the resulting model) and
a predefined KB, the task of CM is designed to create models
that represent the most useful and coherent plausible scenarios
that may explain the obtained evidence.

The process of CM starts with MF selection, i.e., by match-
ing the evidence to the relevant referents in the KB, thereby
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identifying a subset of those available MFs. This module has an
embedded inference mechanism that instantiates, possibly par-
tially, the relevant MFs with known information. After this, the
model composition subprocess assembles the selected MFs into
plausible-scenario models by taking into consideration various
requirements and specifications of (in-)consistencies. Concep-
tually, this subprocess can be viewed as a search step, where the
goal is to select an appropriate and consistent scenario model
from a space of plausible models created by the retrieved MFs
and the initial evidence. In implementing this module, a number
of techniques may be employed. In particular, a consistency-
checking mechanism can be adopted to ensure that the emerging
model is compatible with the entire environment in which the
models are to be built. In addition, causal-ordering techniques
may be used to establish cause-and-effect relations over the
variables in the models.

Often, there are more than one plausible-scenario model that
may be generated, although they are not always equally suitable
for the problem at hand. The quality of a model depends on many
aspects, including the necessity of the components, the quality
of the given KB, and the adequacy of the included assump-
tions. All candidate models are therefore evaluated in the model
evaluation module with respect to user-specified criteria, such
as simplicity, completeness, or other preferences. The result-
ing most-appropriate model is passed on to the problem-solver
module to implement the actual model-based application sys-
tem. During the model evaluation and problem-solving phases,
new pieces of information that conflict the current inference and
assumptions may be derived. For example, a certain assignment
of one variable may conflict with the observation of its environ-
ment or certain variables may be out of the scope of the operating
ranges assumed by the model. Such contradictions are then fed
back to the MF-selection module to revise the models. Note
that this generic architecture of CM will be further extended in
Section IV to support fuzzy-CM task.

B. Knowledge Representation

The KB of the CM consists of a number of reusable MFs that
represent generic relationships between domain concepts and
their states for a certain partial scenario. Different MFs can de-
scribe different partial scenarios or can be different descriptions
of a common partial scenario. The generality of MFs is inher-
ited from the first-order representation in which only variables
appear in an MF, such that the variables can be instantiated by
being assigned certain values.

Definition 1: An MF is a tuple 〈X,Y,H,R〉, which is de-
scribed as follows.

IF X
Assuming H
THEN R(X,H,Y)

1) X = {x1 , . . . , xn} is a set of antecedent predicates, which
refers to already-identified objects of interest in the partial
scenario.

2) H = {h1 , . . . , hq} is a (possibly empty) set of assump-
tions, which refers to those pieces of information that are
unknown or currently cannot be inferred from others, but

they may be presumed to hold for the sake of performing
hypothetical reasoning.

3) Y = {y1 , . . . , ym} is a set of consequent predicates,
which describe the consequences when the conditions and
assumptions hold, including pieces of new knowledge or
relations that are derived from the hypothetical reasoning.

4) R = {r1 , . . . , rf } is a set of relations imposed by this
MF. It describes constrains over the objects/predicates in
X,Y, and H.

5) The IF statement describes the required conditions for a
partial scenario to become applicable. These conditions
must be at least true to a certain degree or logical conse-
quences of other instantiated MFs.

6) The Assuming statement indicates the reasoning environ-
ment, which specify the uncertain events and states that
are presumed in a partial scenario description.

7) The THEN statement concludes the consequent when the
conditions and presumed assumptions hold.

C. Significance of Compositional Modeling

The most important property of CM is its ability to automati-
cally construct many variations of a given problem from a rela-
tively small KB, which is possible because the constituent parts
of different scenarios are not normally unique to any one specific
scenario, i.e., there are potentially many scenarios that possess
common or similar properties locally and globally. These partial
scenarios, including scenario elements and their relationships,
can therefore be modeled as generic and reusable MFs and only
need to be recorded once in the KB.

Second, a compositional modeler can compose a range of
candidate models for a given task specification. As such, CM
provides an efficient and compact means to represent and store
modeling knowledge of different types of perspective. With the
help of CM, users may not only obtain the models that they
expect but also discover those plausible models that have never
been considered.

Another significant property of CM is that it allows hypothet-
ical reasoning to be performed by assembling MFs to form a
variety of scenario models under different sets of model assump-
tions. This is often required as the available data and knowl-
edge may be insufficient to build a complete model description
(particularly at the initial stage of model building). CM pos-
sesses this property due to the default utilization of modeling
assumptions.

III. KNOWLEDGE REPRESENTATION UNDER INEXACTNESS

Effective knowledge representation is essential to the devel-
opment of CM framework. This section focuses on the creation
of a structured knowledge-representation scheme that is capable
of storing and managing inexact knowledge and data. It involves
two conceptually distinct aspects: 1) introduction of a KB that
consists of a weighted taxonomy and generic fuzzy MFs and
2) the definition of an innovative notion of FCNs that facilitates
the propagation of vagueness and uncertainty within the process
of model composition.

Authorized licensed use limited to: IEEE Transactions on SMC Associate Editors. Downloaded on August 11,2010 at 10:06:52 UTC from IEEE Xplore.  Restrictions apply. 



826 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 18, NO. 4, AUGUST 2010

Fig. 2. Portion of a weighted taxonomy.

A. Weighted Taxonomy

In this work, a weighted taxonomy is employed to represent
the collection of concepts and their relationships within a given
problem domain. Many concepts may exist that share structural
similarities, those concepts that share aspect(s) in common or
are highly relevant are grouped into the same class. For example,
Fig. 2 shows part of such a weighted taxonomy for the problem
domain of crime investigation.

In a given taxonomy, not only nodes but also arcs can carry
semantic information. A weight attached to each arc indicates
the degree of relevance between a child node and its parent.
In other words, it expresses to what extent the child can be
classified as an element of the class representing its parent node.
The higher weight a concept receives, the more common features
it inherits from its parent. These numeric weights are assigned
by domain experts. Note that, in general, such weights may be
given in linguistic terms. However, as an initial work on fuzzy
CM, they are assumed to be expressed numerically only to keep
this development focussed on the essentials. Note also that since
a concept may belong to different categories, the sum of the arc
weights of subtype concepts does not have to be equal to 1. Each
weight can be assigned independently and subjectively, without
taking into account its sibling nodes. Furthermore, the weighted
taxonomy is independent of whether the concepts themselves
are fuzzy.

B. Fuzzy-Model Fragments

In this work, fuzzy-set theory is employed to represent
vague/ill-defined concepts and quantities in MFs. Such con-
cepts and quantities are defined as fuzzy variables and their
values are fuzzy sets. The representation of fuzzy MFs involves
the following two aspects: 1) identification and definition of
fuzzy variables in a generic sense and 2) specification of fuzzy
constraints over involved fuzzy/boolean variables.

1) Fuzzy Parameters: Fuzzy variables are indicated by
means of the keyword fuzzyvariable.

Definition 2: A fuzzy variable is defined by specifying the
following parameter fields.

1) Name: It is a constant that uniquely identifies the fuzzy
variable.

2) Universe of discourse: It is the domain of the fuzzy vari-
able.

3) Unit: It represents the variable’s physical dimension.
4) Cardinality of partition: It represents the number of fuzzy

sets that jointly partition the universe of discourse. It is
encoded by a positive integer.

5) Quantity space [28]: It is the collection of all the mem-
bership functions, which define the fuzzy sets that jointly
cover the partitioned domain.

6) Name of fuzzy sets: It represents the symbolic label of each
fuzzy set in the quantity space.

7) Unifiability: It is the declaration of a unifiable property of
the variable, which is specified by a predicate.

The following example shows a fuzzy variable, which is
named Chance, and its associated quantity space, as illustrated
in Fig. 6. Let us define fuzzyvariable{

Name: Chance Universe of discourse: [0, 1]
Unit: none Cardinality of partition: n = 7
Quantity space:

fs1 =
[
0, 0,

1
n − 1

]
· · ·

fsi =
[

i − 2
n − 1

,
i − 1
n − 1

,
i

n − 1

]
· · ·

fsn =
[
n − 2
n − 1

, 1, 1
]

Name of fuzzy sets: {0, VL, L, M, H, VH, 1}
Unifiability: Chance(X)}

2) Fuzzy Constraints: In CM, knowledge is normally ex-
pressed as constraints or relations that must be obeyed by certain
variables. For example, velocity and duration relations often ap-
pear in physical systems; length and angle relations often appear
in spatial reasoning systems. In this work, the relations between
domain elements are represented in a form similar to the style
of production rules but involve much more general contents.
However, variables under different situations may behave dif-
ferently. Thus, within such generic rules, a set of rule instances
may also be included, which are interchangeably termed as can-
didate assignments. These rule instances represent how certain
the corresponding (possibly partially) instantiated relationships
hold.

Definition 3: A fuzzy MF is adapted to possess the following
form:

IF X Assuming H THEN X, H → Y
Distribution Y
{A1

j1
, . . . , An

jn
, C1

i1
, . . . , Cq

iq
→ B1

jn + 1
, . . . , Bm

jn + m
: p}

where X = {x1 , . . . , xn}, Y = {y1 , . . . , ym}, and H =
{h1 , . . . , hq} are the antecedent, consequent, and assumption
variables, respectively. Within the Distribution specification,
the left-hand side of the “implication” sign in each propositional
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instance is a combination of value pairs involving the values of
antecedent and assumption variables, and the right-hand side
indicates the corresponding possible outcome if the MF is in-
stantiated, where

Al
jl
∈ Dxl

= {Al
1 , A

l
2 , . . . , A

l
kl
}

jl = 1, 2, . . . , kl , l = 1, 2, . . . , n

· · ·
Cl

jn + l
∈ Dzl

= {Cl
1 , C

l
2 , . . . , C

l
kn + l

}
jn+ l = 1, 2, . . . , kn+ l , l = 1, 2, . . . , q

· · ·
Bl

jn + q + l
∈ Dyl

= {Bl
1 , B

l
2 , . . . , B

l
kn + q + l

}
jn+q+ l = 1, 2, . . . , kn+q+ l , l = 1, 2, . . . , m.

The sets Dxl
,Dzl

, and Dyl
are the domains of corresponding

variables and Al
jl

, Cl
jn + l

, and Bl
jn + q + l

are the domain elements.
In each rule instance, p indicates the certainty degree of its
corresponding outcome if the MF is instantiated.

The existing work on CM either does not handle uncertainty
or requires numerical values to quantify the probability of a con-
sequence’s occurrence. However, such subjective assessment is
usually the product of barely articulate intuition. This seem-
ingly numerically precise expressions may cause loss of effi-
ciency, accuracy, and transparency [5], [14]. Often, experts may
be unwilling or simply unable to suggest a numerical probabil-
ity. Therefore, the work developed here intends to capture the
vagueness of the probability distribution in terms of subjective
certainty degrees. Rather than using numerical values, fuzzy
numbers or their corresponding linguistic terms are introduced
to represent such subjective certainty degrees.

For simplicity, when describing a rule instance, the assump-
tions are treated as part of the antecedent due to their logical
equivalence, i.e., a rule instance in an MF is of the form

IF x1 is A1
j1
⊕ · · · ⊕ xn is An

jn

THEN y1 is B1
jn + 1

⊗ · · · ⊗ ym is Bm
jn + m

(1)

where the operator ⊗ in the consequence is restricted to logical
conjunction in this paper, but the ⊕ in the antecedence denotes
either a conjunctive or disjunctive operator. Further, this rule
instance can be decomposed to multiple simpler rules, each
involving a single consequence, and can equivalently be written
as

IF x1 is A1
j1
⊕ · · · ⊕ xn is An

jn
, THEN y1 is B1

jn + 1

· · ·
IF x1 is A1

j1
⊕ · · · ⊕ xn is An

jn
, THEN ym is Bm

jn + m
.

Hence, in the remainder of this work, only those rules with
single consequence will be considered. The following MF il-
lustrates the concepts and applicability of fuzzy parameters and
constraints:

IF {height(S), height(V)}
Assuming {attempted_to_kill(S,V )}
THEN {difficulty(overpower(S,V ))}

Distribution difficulty(overpower(S,V )){
r1 : tall, short, true → easy: VH
r2 : short, tall, true → easy: VL}.
This MF describes a general relation between the height of

two people involved in a fight and the difficulty for one to over-
power the other. Here, the height is modeled as a fuzzy variable
that takes values from the quantity space of Q = {very_short,
short, average, tall, very_tall}, and difficulty is another fuzzy
variable with possible values of easy, average, and difficult.
Specifically, the MF covers two rule instances, which indicate
that if suspect S is tall, while victim V is short, and S indeed
attempted to kill V , then S stands a Very_High (VH) chance to
overpower V easily. Conversely, if S is shorter than V and s/he
indeed attempted to kill V , then there is only a Very_Low (VL)
chance for S to overpower V easily.

C. Presumptions

The KB used in this work is assumed to possess the following
properties.

1) There are no cycles in the KB: In other words, there are
no self-referencing rules in the KB. This means that an
antecedent variable cannot be its own consequence. This is
required to support representation of causality in variable
relations.

2) Incomplete assignments of certainty degrees: It is not re-
quired that every possible combination of antecedent and
assumption values has to be assigned a certainty degree as
the number of combinations will increase exponentially
with the number of variables. Knowledge embedded in
any reasoning system is always incomplete, and it is un-
likely to obtain all such details but the most-significant
components. As with any practical-knowledge-based ap-
proach, the default certainty degree for those unassigned
combinations is set to 0.

D. Fuzzy Complex Numbers

Within this work, generic MFs may involve both vague and
uncertain information. In dynamically instantiating and com-
posing those potentially relevant MFs into plausible-scenario
descriptions, such inexact knowledge and data need to be com-
bined and propagated throughout the emerging-model space. In
order to achieve this, a novel framework of FCNs is proposed,
with the significant capability of representing two types of un-
certainty conjunctively. FCNs inherit from the real complex
numbers.

Definition 4: An FCN, i.e., z̃, is defined in the form of

z̃ = ã + ib̃ (2)

where both ã and b̃ are fuzzy numbers with membership func-
tions µã(x) and µb̃(x), with regard to a given domain variable
x. Term ã is the real part of z̃, while b̃ represents the imaginary
part, i.e., Re(z̃) = ã, and Im(z̃) = b̃.

Importantly, in general, for a given z̃, both Re(z̃) and Im(z̃)
are fuzzy numbers. However, if Re(z̃) and Im(z̃) degenerate to
real numbers, then z̃ degenerates to a real complex number. In
addition, if b̃ does not exist, z̃ degenerates to a fuzzy number.
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Further, if b̃ does not exist and ã itself degenerates to a real
number, then z̃ degenerates to a real number.

In a given application, both the real and imaginary parts of an
FCN can be assigned with their embedded semantic meaning.
In particular, to support CM, the real part is utilized to represent
the certainty degree of a certain piece of information, while
the imaginary part represents the fuzzy-matching degree of a
given piece of evidence or a derived piece of information using
a particular rule instance of a certain MF. As such, FCNs offer
an efficient common scheme to represent all four previously
mentioned types of inexact information. Note, particularly, the
following points.

1) Vagueness: In CM, the imaginary part only exists when
fuzzy matching is performed between two pieces of infor-
mation. Given a piece of evidence, if there is no specific
certainty degree assigned to it, then it is assumed to be
certain by default. In this case, the real part of the FCN
that represents this evidence is equal to 1. For example,
given a fact, i.e., f1 : Bob is tall, this piece of information is
represented as: z̃ = 1. However, when a piece of evidence,
i.e., e1 : victim is very_tall, is collected, f1 matches e1 with
a fuzzy-matching degree b̃, such that if f1 is activated, the
FCN attached to f1 will be written as z̃ = 1 + ib̃.

2) Uncertainty: If a piece of information (e.g., a rule in-
stance) only involves uncertainty, then the corresponding
uncertainty measure can be represented as z̃ = ã, which
can either be a real number or a fuzzy number.

3) Both vagueness and uncertainty coexist: The third and
fourth types of inexactness can both be represented in the
following generic form: z̃ = ã + ib̃. The only difference
is that ã is a real number for the third type and is a fuzzy
number for the fourth.

Notationwise, it may be the case that FCNs can be re-
represented using a 2-D vector. However, the introduction of
FCNs allows an effective extension of conventional complex
number concepts and calculus in fuzzy terms. This is, in princi-
ple, independent of the development of fuzzy-CM techniques,
thereby making a potential useful contribution to the general
research on fuzzy sets and systems. The modulus of FCNs well
preserves the physical interpretation of the conjunction of dif-
ferent information measures that may be gauged in dissimilar
dimensions. Indeed, the framework of FCNs can be extended to
represent arbitrary n-types of inexact information. In particular,
in supporting (fuzzy) model composition (see Section IV-B),
the modulus offers a global measure to rank the possible as-
signments. This helps to effectively and efficiently maintain the
emerging scenario space, since only the most-likely scenario
descriptions are necessarily generated in the first instance. In
addition, the implementation of FCNs is simple and efficient,
where a single system index is sufficient to assess each mul-
tidimensional FCN. With an alternative representation scheme
like a simple vector, additional effort is needed to record and
propagate dimensional-specific indices within the process of
model composition. This would reduce the transparency and in-
terpretability of the modeling process to users, in addition to an
increase in computational cost.

In general, the framework of fuzzy CM works without the
need of FCNs if there is only one type of inexact information
to be considered. However, the notion of FCNs provides a more
convenient and effective means of handling multimodal inexact
information within the process of CM, especially with regard to
the representation and propagation of such information.

E. Fuzzy-Complex-Number Operators and Their Properties

To support the work of CM, the basic operations on the pro-
posed FCNs need to be developed. Note that the rectangular
FCNs, which are proposed in [2], are represented in a form that
is similar to the proposed work (but have different interpreta-
tions). In addition, when performing addition and subtraction
on these two types of FCNs, the same results may be obtained.
However, in multiplication and division, this is not the case.
The rectangular FCNs are defined as type-1 fuzzy sets, and
the basic arithmetic operations upon them are developed using
the extension principle. Here, the operations on the proposed
FCNs are a straightforward extension of those on real complex
numbers.

Definition 5: Let z̃1 = ã + ib̃ and z̃2 = c̃ + id̃ be two FCNs,
where ã, b̃, c̃, and d̃ are fuzzy numbers with membership func-
tions µã(x), µb̃(x), µc̃(x), and µd̃(x), respectively. The basic
arithmetic operations on z̃1 and z̃2 are defined as follows.

1) Addition: It is defined as

z̃1 + z̃2 = (ã + c̃) + i(b̃ + d̃) (3)

where ã + c̃ and b̃ + d̃ are derived fuzzy numbers with
the following membership functions, respectively:

µã+ c̃(y) =
∨

y=x1 +x2

(µã(x1) ∧ µc̃(x2))

µb̃+ d̃(y) =
∨

y=x1 +x2

(µb̃(x1) ∧ µd̃(x2)). (4)

2) Subtraction: It is defined as

z̃1 − z̃2 = (ã − c̃) + i(b̃ − d̃) (5)

where ã − c̃ and b̃ − d̃ are derived fuzzy numbers with
the following membership functions, respectively:

µã−c̃(y) =
∨

y=x1 −x2

(µã(x1) ∧ µc̃(x2))

µb̃−d̃(y) =
∨

y=x1 −x2

(µb̃(x1) ∧ µd̃(x2)). (6)

3) Multiplication: It is defined as

z̃1 × z̃2 = (ãc̃ − b̃d̃) + i(b̃c̃ + ãd̃) (7)

where ãc̃ − b̃d̃ and b̃c̃ + ãd̃ are derived fuzzy numbers
with the following membership functions, respectively:

µãc̃−b̃ d̃(y) =
∨

y=x1 x2 −x3 x4

(µã(x1) ∧ µc̃(x2)

∧ µb̃(x3) ∧ µd̃(x4))
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µb̃c̃+ ã d̃(y) =
∨

y=x1 x2 +x3 x4

(µb̃(x1) ∧ µc̃(x2)

∧ µã(x3) ∧ µd̃(x4)). (8)

4) Division: It is defined as

z̃1

z̃2
=

(
ãc̃ + b̃d̃

c̃2 + d̃2

)
+ i

(
b̃c̃ − ãd̃

c̃2 + d̃2

)
. (9)

For notational simplicity, let t̃1 = (ãc̃ + b̃d̃)/(c̃2 + d̃2),
and t̃2 = (b̃c̃ − ãd̃)/(c̃2 + d̃2), where t̃1 and t̃2 are derived
fuzzy numbers with the following membership functions,
respectively:

µt̃1
(y) =

∨
y= x 1 x 3 + x 2 x 4

x 2
3

+ x 2
4

,x2
3 +x2

4 �=0

(µã(x1) ∧ µb̃(x2)

∧ µc̃(x3) ∧ µd̃(x4))

µt̃2
(y) =

∨
y= x 2 x 3 −x 1 x 4

x 2
3

+ x 2
4

,x2
3 +x2

4 �=0

(µã(x1) ∧ µb̃(x2)

∧ µc̃(x3) ∧ µd̃(x4)). (10)

5) Modulus: Given z̃ = ã + ib̃, the modulus of z̃ is defined
to be

|z̃| =
√

ã2 + b̃2 (11)

with the following membership function:

µ|z̃ |(y) =
∨

y=
√

x2
1 +x2

2

(µã(x1) ∧ µb̃(x2)). (12)

Let z̃1 = ã + ib̃, z̃2 = c̃ + id̃, and z̃3 = ẽ + if̃ be three
FCNs, where ã, b̃, c̃, d̃, ẽ, and f̃ are fuzzy numbers with member-
ship functions µã(x), µb̃(x), µc̃(x), µd̃(x), µẽ(x), and µf̃ (x),
respectively. The algebraic properties of the proposed FCNs are
summarized as follows, and due to space limitations, the proofs
for these theorems are omitted.

Theorem 1: If z̃1 = ã + ib̃, and z̃2 = c̃ + id̃ are FCNs, then
so are z̃1 + z̃2 , z̃1 − z̃2 , z̃1 z̃2 , and |z̃|.

Theorem 2: Associativity, i.e., z̃1 ∗ (z̃2 ∗ z̃3) = (z̃1 ∗ z̃2) ∗
z̃3 , holds if ∗ = +.

Theorem 3: Commutativity, i.e., z̃1 ∗ z̃2 = z̃2 ∗ z̃1 , holds for
∗ ∈ {+,×}.

Theorem 4: Distributivity, i.e., given ã > 0 or ã < 0 and b̃ > 0
or b̃ < 0, when c̃ and ẽ have the same sign (they are both either
a positive or negative fuzzy number), and d̃ and f̃ also have the
same sign, then z̃1 × (z̃2 + z̃3) = z̃1 × z̃2 + z̃1 × z̃3 .

IV. FUZZY COMPOSITIONAL MODELING

The main task of a fuzzy compositional modeler is to automat-
ically generate different scenarios that can explain the available
evidence. The overall architecture of such a modeler is shown in
Fig. 3. The contents of the KB have been introduced previously.
Given a new or ongoing investigation in which an initial set of
evidence E has been collected by the investigators, the fuzzy-MF
retrieval component initially retrieves those most-relevant MFs

Fig. 3. Outline of the FCM approach.

Fig. 4. Fuzzy-MF retrieval.

from the KB. Once the relevant MFs have been retrieved, the
heuristic-model-composition component instantiates and syn-
thesizes these MFs into a large scenario space that contains
a range of plausible scenarios. The generated scenario space
describes how plausible pieces of evidence and newly derived
information may casually be related to one another. It is there-
fore practically important to incorporate a means of evaluation
for such generated scenarios so that the generated information
remains manageable by the investigators. Finally, ranked plausi-
ble scenarios are fed back to the investigators for further analysis
or to determine future investigating actions. Of course, further
collected evidence can be added to E to start a new synthesis
cycle. Technical details to implement the underlying inference
mechanisms of FCM are described in the following sections.

A. Fuzzy-Model Fragments Retrieval

Given a set of collected evidence E and a KB, FCM begins by
retrieving from the KB those MFs that are most likely to be rele-
vant to the available evidence. However, due to the involvement
of inexact information, a precise and certain match between the
available evidence and the elements in the KB cannot, in gen-
eral, be expected. Partial matching may be all that is feasible
and may suffice for many application problems. The process of
retrieving partially matched and, hence, partly instantiated MFs
is outlined in Fig. 4.
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The collected evidence (E) is supplied to the system in a
piecewise fashion. Given the KB, the search component identi-
fies those MFs that are related to the involved concepts/object in
the given piece of evidence (ei). Then, the selected MFs and ei ,
which led to such selection, are both fed to the matching com-
ponent to compute their corresponding degrees of match. These
retrieved MFs together with the resulting matching degrees are
stored in a candidate pool for creation of the possible scenarios,
along with other candidates using other pieces of evidence. Af-
ter this, the aggregation component is employed to calculate an
overall relevance degree of each candidate MF to all the given
evidence, which is termed the retrieval status value (RSV) for
easy reference. Only those candidate MFs whose derived RSVs
are greater than a threshold will be passed to the next step. Fi-
nally, the output of this entire iterative process is an ordered set
of retrieved MFs, which have been at least partially instantiated
in relation to E.

1) Sematic Matching: In this work, a predefined taxonomy
T (see Section III-A) is employed to perform sematic matching
between two concepts/objects. Any two nodes within T may
be semantically considered similar to some extent if they are
linked, namely, one being another’s antecedent or descendant.
Without losing generality, best-first search is adapted to identify
the position of the required concept in T . The search starts from
the root node of T . At a common level of the taxonomical tree,
the higher the weight a child node has with respect to its parent,
the earlier it is checked to see if it is of semantic similarity
with the concept being searched for. Note that, in general, to
avoid practical difficulties in acquiring the required taxonomy,
it is allowed to have similar or even the same linguistic term
appearing in different parts of T .

Definition 6: Given two nodes c and c′ of a weighted taxon-
omy T , the semantic similarity between c and c′ is computed
by

Sv (c, c′) =
∑

i∈Nc c ′

wi

|Ncc ′ |
(13)

where Ncc ′ is the collection of all the edges of the shortest path
connecting c and c′ in T , wi is the weight on edge i, and |Ncc ′ | is
the cardinality of Ncc ′ . Sv (c, c′) = 0, if there is no generational
link between c and c′. Sv (c, c′) = 1, if c = c′.

Obviously, Sv (c, c′) ∈ [0, 1]. In particular, Sv (c, c′) = 1, if
c �= c′, and every edge has a weight of 1. This definition captures
intuition well. Let us consider Fig. 2, for example, given two
nodes “Cola” and “Liquid,” their semantic similarity can be
computed such that

Sv (Cola, Liquid) =
0.8 + 0.76

2
= 0.78.

2) Fuzzy-Set Matching: As aforementioned, variables in-
volved in fuzzy MFs are allowed to be boolean, fuzzy, or mixed.
Boolean variables can only be evaluated to be either true or false,
whereas the value of a fuzzy variable may be represented by a
fuzzy set. Given a single piece of evidence, x is υ, the semantic
match between x and antecedent/concequent variables in an MF
is performed as outlined above. Fuzzy-set matching addressed
here calculates the similarity degree of variable values. If x is

a boolean variable, the value of x must exactly match the value
of the antecedent/consequent variable, and the matching degree
between them is therefore either 1 or 0. For a fuzzy variable, the
degree of matching (of two fuzzy sets) is a value in the range
[0, 1]. In this work, the Hausdorff distance [15] is employed to
measure the fuzzy-set matching degrees.

Definition 7: Given two triangular fuzzy sets A = [a1 , a2 , a3 ],
and B = [b1 , b2 , b3 ], A �= B, the Hausdorff distance between
them is defined as

Sd(A,B) = max{d(A,B), d(B,A)}

= max
{

sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)
}

(14)

where d(a, b) is the normalized absolute distance between pa-
rameters a and b, i.e.,

d(a, b) =
|a − b|

max{|b3 − a1 |, |a3 − b1 |}
.

Definition 8: Given two fuzzy sets A and B, the matching
degree, i.e., Sf , between them is given by

Sf (A,B) = 1 − Sd(A,B). (15)

Since each MF may employ a set of rule instances, given
one piece of evidence e, more than one rule instance may be
instantiated with different matching degrees. In this work, the
largest fuzzy-set matching degree will be taken to represent the
overall Sf between the MF and e.

Based on the above semantic and fuzzy-set matching, the
overall matching degree between “x is υ” and “x′ is υ′” is
deemed to be aggregated by using the algebraic product operator

S(x : υ, x′ : υ′) = Sv (x, x′) ⊕ Sf (x : υ, x′ : υ′). (16)

Here, the product operator is adopted for aggregation because
boolean predicates may be involved, such that the Sf of boolean
predicates is either 1 or 0. It is obvious that if Sf = 1, then the
use of other aggregation operators, such as addition or max, may
lead to the Sf of boolean predicates dominating the aggregation
process. In addition, if Sf = 0, the overall matching degree will
become 0 by using the product operator. This clearly reflects the
intuition well.

3) Aggregation: The above steps are iteratively carried out
until all elements in E have been examined. For each ei ∈ E,
a set of relevant MFs may be instantiated and returned. Each
such MF will have a relevance degree attached with respect
to ei . However, the antecedence of an MF often involves
more than one atomic predicate that are connected by con-
junctive/disjunctive operators. Hence, those relevance degrees
associated with the individual antecedent predicates need to be
aggregated to derive the final RSV and stored with the MF in
the set of retrieved MFs in preparation for composition.

The individual relevance degrees of the n atomic predicates
in one MF, i.e., S1 , S2 , . . . , Sn , are herein aggregated by

fi = fi−1 + Si − fi−1 × Si (17)

where f0 = S0 = 0, and i = 1, 2, . . . , n, with n being the num-
ber of activated atomic predicates in an MF and fn being the
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final RSV of that MF. This aggregation scheme once again re-
flects the intuition that the more evidence there exists to support
an MF, the higher relevance that MF is to be involved in the
scenario to build.

B. Model Composition

Once the potentially relevant MFs have been retrieved and at
least partially instantiated, a mechanism is required to dynam-
ically synthesize those MFs into consistent plausible scenar-
ios. This section presents such a model-composition technique.
First, the inference mechanism to generate plausible scenar-
ios is described. Next, several filtering methods are introduced
to reduce the solution space. In particular, during the process
of composition, vague and uncertain knowledge and data need
to be propagated from individually instantiated MFs to their
related ones. Hence, this section also describes how inexact in-
formation captured in FCNs may be combined and propagated
through constraints.

1) Creation of Model Space: Composition of a scenario
space, or model space, in general, requires a means for the
scenario elements to interact. This is facilitated by the use of
the shared variables. The retrieved MFs must have shared vari-
ables with the collected set of evidence and, normally, have
shared variables among themselves (if they are relevant in de-
scribing a common scenario). In CM, a node in the space of
plausible-scenario descriptions (which is called emerging sce-
nario space, hereafter) represents a proposition, and each has
an FCN attached. After MF retrieval, those nodes that share
common variables with the available evidence will have initial
FCNs attached, thus indicating the vague and uncertain informa-
tion involved. These initial FCNs are the starting point of model
composition, and they will be spread gradually throughout the
scenario generation.

Given an MF, if initial FCNs are associated with the values of
antecedent variables, then the consequent variable’s value can be
derived by using the compositional rule of inference [34]. This
process is named forward propagation of FCNs. Conversely, if
the initial FCN is associated with the value of the consequent
variable, then a backward propagation of FCNs is needed to
derive the values of the antecedent variables. However, due to
the lack of inverse operators over fuzzy sets, there is no general
method to compute the exact values of antecedent variables
directly. This is especially the case when there are more than
one antecedent variable involved.

To address this problem, fuzzy constraints embedded within
MFs are not used to derive the unknown values of the related
variables. Instead, such constraints over antecedent and conse-
quent variables are causally employed to check for consistency
among their respective possible values. Once the quantity space
of a variable within a retrieved MF has been revised and some
spurious values removed, such changes are propagated to those
MFs that share the same variables. In this work, the CM process
is completed by iteratively passing the revised MFs (actually, the
revised quantity space of the variables involved in these MFs)
through the KB. Note that such iterative passages of reduced
quantity spaces are not limited to the current set of retrieved

MFs, but the entire KB to enable further search of other MFs,
that are not instantiated by the present evidence. This process
continues until no further changes are produced.

To implement the above process efficiently, Waltz algorithm
[30] (as shown in Algorithm 1) is applied. Running the Waltz
algorithm equivalently adds or removes instantiated MFs dy-
namically. The addition of new MFs is more likely as the prop-
agation of variable values may instantiate other variables that
have not been activated so far. However, the removal of certain
MFs may also take place if a certain variable’s quantity space is
reduced to empty, which means that the constraints given so far
are inconsistent. At termination of the algorithm, a set of con-
sistent and the most-likely scenario descriptions that explain the
given evidence is generated. Note that the constraints are not
used to find unknown values but employed to work as filters to
check for consistency among given values. The actual filtering
mechanism is explained below.

2) Filtering Techniques: The main component of Waltz al-
gorithm is that it applies the Revise method (see Algorithm 2)
to each retrieved MF. As aforementioned, each MF may have
several rule instances or candidate assignments attached. Given
an MF, if it is activated by the collected evidence, each candi-
date assignment within this MF will go through the filters (see
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Fig. 5. Filtering the candidate assignments.

below) and the output of the Refine method is termed survival
assignments and saved in a buffer Sc . Note that if an MF has
been revised, there is no need to check all candidate assignments
from scratch, but only those in Sc need to be further checked by
other filters.

As illustrated in Fig. 5, there are three filters that candidate
assignments need to pass, namely, FCN filter, compatibility fil-
ter, and pairwise filter. FCN filter is employed to check the
consistency between the FCNs associated with individual vari-
ables within one MF. Any candidate assignment involving an
inconsistent FCN is ruled out. Additionally, the remaining as-
signments are ranked with respect to the moduli of their FCNs.
In doing so, the most-likely scenario descriptions can be gener-
ated first, and the generation of alternative plausible scenarios
is postponed until more likely ones have to be discarded.

In any knowledge-based approach, inconsistent information
may lead to not only unexpected and unsatisfactory results but
to wasted computational resources as well. When inconsistency
is detected, such information is recorded and utilized to impose
further restriction over future candidate assignments. This is
implemented as the compatibility filter by introducing a spe-
cific type of MF, which is called nogood MF in the KB, which
collects all detected inconsistencies. Passing candidate assign-
ments through this filter ensures that each surviving assignment
is consistent with the knowledge accumulated so far. For exam-
ple, the following nogood MF shows that it is inconsistent for
V to commit suicide and to be the victim of homicide by M at
the same time.

IF {commits suicide(V), homicide by(V,M)}
THEN {nogood}
Distribution nogood {r1 : true, true → true: 1}.

Finally, in the emerging scenario space, if there are two or
more surviving MFs sharing a common variable, the assign-
ments of that variable in those MFs must be identical to each
other. This constraint is checked by the pairwise filter. After
this, the global consistency of the emerging scenario space is
guaranteed (due to the compatibility filter and pairwise filter).

In terms of algorithmic complexity, suppose that there are n
variables and m MFs in the KB and that in the worst case, each
of the m MF consists of k plausible rule instances. In the worse
case, the algorithm may use O(m2s1 + mkns2) space, where
s1 and s2 are the unit memory space for an MF and a scenario
node, respectively. In addition, the time complexity to execute
this algorithm is (m + n(m − 1)) × k × T ≈ O(mnkT ). Due

to space constraints, the proofs for these results are omitted
here. In essence, due to the Waltz’s algorithm, the worst-case
complexity of the proposed model-composition process is linear
with regard to the number of variables for both time required
and space used.

3) Propagation of Fuzzy Complex Numbers: In fuzzy CM,
the vague and uncertain information (which is concisely repre-
sented in terms of FCNs) needs to be combined and propagated
through relations embedded in MFs. Within an emerging sce-
nario space, each node represents a proposition with an FCN
attached. Each rule instance, in any generic MF, is also asso-
ciated with an FCN, which is denoted by z̃r , indicating the
certainty degree of the corresponding causal proposition. Thus,
the model-composition process combines the FCNs attached to
the (antecedents or consequent) variables and the FCN attached
to each instantiated rule instance (z̃r ).

For simplicity, the following rule instance in an MF:

IF x1 is A1
j1
⊕ · · · ⊕ xn is An

jn
, THEN y is Bjn + 1 (z̃r )

is rewritten as

IF p1 ⊕ · · · ⊕ pn , THEN c (z̃r )

where p1 , . . . , pn are the antecedent propositions, each of
which has an attached FCN, z̃pj

= Re(z̃pj
) + iIm(z̃pj

), j ∈
{1, 2, . . . , n}, c is the consequent proposition, and z̃r is the
FCN attached to the rule instance. As stated previously, ⊕ in
the antecedence may be interpreted as either a conjunctive or
disjunctive operator.

Definition 9: If ⊕ is a conjunctive operator, then the aggre-
gated FCN of the antecedent is given by

z̃antecedent = min(Re(z̃p1 ), . . . , Re(z̃pn
))

+ imin(Im(z̃p1 ), . . . , Im(z̃pn
)). (18)

If ⊕ is a disjunctive operator, then the aggregated FCN of the
antecedent is given by

z̃antecedent = max(Re(z̃p1 ), . . . , Re(z̃pn
))

+ imax(Im(z̃p1 ), . . . , Im(z̃pn
)). (19)

Since a rule instance in an MF only has the certainty degree
attached, i.e., z̃r = Re(z̃r ), the newly derived FCN attached to
the consequence is deemed to be

z̃new = z̃antecedent × z̃r

= Re(z̃antecedent) × z̃r + i Im(z̃antecedent) × z̃r (20)

where Re(z̃antecedent) and Im(z̃antecedent) are fuzzy numbers,
in general.

There are two types of propagation that need to be discussed
separately: propagating an FCN from antecedent to consequent
and the reverse.

BackwardPropagation: This procedure is employed to in-
duce the domain variables and their states, which might have
led to the available evidence that matches the consequent
of an MF. Plausible causes can be identified by instantiat-
ing the conditions and assumptions of the MF. As indicated
earlier, given z̃c and z̃r , no general method exists to derive
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the exact value of z̃antecedent in a closed form. In doing so,
for computational simplicity, it is assumed that both the real
and the imaginary part of z̃antecedent take values from a cer-
tain fixed quantity space: QF N = {VF N1 , . . . , VF Nn

}, where
VF Nj

, j ∈ {1, 2, . . . , n}may be specified with respect to a given
problem. Of course, in theory, it is not necessary for the real and
the imaginary part to take values from a common quantity space.

Algorithm 3 is constructed by ensuring the generality that
each element in QF N may be the possible value of z̃antecedent .
Thus, all such values are checked using (20) as a constraint.
By applying (20), a derived fuzzy number does not necessarily
belong to QF N . The element that best satisfies this constraint
(i.e., with the largest matching degree) when given z̃c , is selected
to represent z̃antecedent . Note that Re(z̃c) and Im(z̃c) are checked
against the constraint separately.

Once z̃antecedent is obtained, the next step is to derive the indi-
vidual FCNs associated with each antecedent variable. Without
losing generality, taking the conjunctive operator as an example,
the following constraints are introduced:

min(Re(z̃p1 ), . . . , Re(z̃pn
)) = Re(z̃antecedent)

min(Im(z̃p1 ), . . . , Im(z̃pn
)) = Im(z̃antecedent). (21)

These constraints state that, for any (VF Nm
, . . . ,

VF Nk
) ∈ QF N × · · · × QF N , if min(VF Nm

, . . . , VF Nk
) =

Re(z̃antecedent), then VF Nm
, . . . , VF Nk

are possible solutions
for the real parts of z̃p1 , . . . , z̃pn

. Similarly, the possible
solutions of the imaginary parts can be obtained. Note that, if
⊕ is interpreted as a disjunctive operator, all that is needed is to
change the min in (21) to max.

ForwardPropagation: This procedure applies logical deduc-
tion to all those MFs in the KB whose conditions match the
existing nodes in the emerging scenario space. As described in
Algorithm 4, z̃antecedent and z̃r are known, and the FCN of the
consequent variable, i.e., z̃new , is computed by applying (20).
Given the fixed QF N , once z̃new is computed, it is used to
choose those elements of QF N , such that the selected ones will
receive the highest matching degree with z̃new . Again, the real
and imaginary parts are checked separately when implemented.

4) Fuzzy-Complex Numbers Updating: In generating the
scenario space, if instantiating one MF leads to a node that

has already existed (i.e., having been activated with another
MF), such that two instantiated MFs share a common variable
value, then the existing FCNs associated with this node needs to
be updated for consistency. Suppose that for a certain variable
to take value A, and that the following two FCNs are obtained
through different inference procedures

z̃A = VF Ni
+ iVF Nj

, z̃′A = VF Np
+ iVF Nq

where VF Ni
, VF Nj

, VF Np
, and VF Nq

denote different elements
in the predefined QF N , respectively. Given that the modulus
of an FCN indicates the overall confidence in the information
content of its associated variable value. Thus, if |z̃A | and |z̃′A |
are the same (while z̃A �= z̃′A ), then both z̃A and z̃′A will be kept
as possible FCNs. However, if |z̃A | �= |z̃′A |, then the updated
FCN of this variable taking value A is obtained by

z̃′′A = min(VF Ni
, VF Np

) + imin(VF Nj
, VF Nq

). (22)

This has an intuitive appeal because if (22) holds, then both z̃A

and z̃′A will also hold.

V. APPLICATION TO CRIME INVESTIGATION

To resolve the puzzle of a given crime from a set of available
evidence, investigators and forensic analysts aim to disclose the
scenario that has actually taken place and to determine efficient
strategies to proceed with the investigation or prevention [27].
However, humans are relatively inefficient at hypothetical rea-
soning, especially for cases where there are a large amount
of available data and knowledge involved. Intelligence experts
have commented that failure to detect plausible threats is not so
much due to a lack of data but more due to difficulties in relating
to and reasoning about the available data [1], [8]. There are many
potential sources of variability in precision, including vaguely
defined concepts, quantities and specifications of importance,
and certainty. It is, therefore, very interesting to examine if the
proposed fuzzy compositional modeler can be employed to as-
sist investigators in generating plausible-scenario descriptions
and analyzing them objectively. Note that this work has been
implemented computationally in Java. Because of space con-
straints, only a proof-of-concept example is provided here for
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TABLE I
FUZZY VARIABLES

Fig. 6. Fuzzy quantity space for both certainty and fuzzy-matching degrees.

illustration purposes. Details of a scaled-up prototype system is
beyond the scope of this paper.

A. Crime Scene

This illustrative example is extracted and adapted from a real-
istic case described in [12]. The case description is summarized
as follows: An explosion took place at an airport. Initially, the
police found that the degree of shattering of a nearby window
was quite_high. With further investigation, another two pieces
of evidence were gathered. A suspect named Dave was trying to
bring a bottle of cola on board an aircraft and was intercepted
by the security staff. Also, a mobile phone was found on him. A
few hours later, the security control centre reported that a small
bag of hair dye was also found in a suitcase under the name of
Dave.

B. Knowledge Representation

The given pieces of evidence, ei, i = 1, 2, 3, and some key
MFs used in this example are detailed in Appendix A. In or-
der to model this case, nine variables are extracted from the
description, as listed in Table I. In addition, for illustrative sim-
plicity, the fuzzy numbers used to form FCNs (namely, both
certainty and fuzzy-matching degrees) are defined in the fol-
lowing QF N = {0, V L, L,M,H, V H, 1} and shown in Fig. 6.

C. Fuzzy-Model Fragments Retrieval

Each element in E will go through the process of fuzzy MF
retrieval, as previously described in Fig. 4. For simplicity, the

taxonomy of Fig. 2 is used in this example to illustrate semantic
matching. Matching the first piece of evidence, i.e., e1 (de-
gree_shattering(window) is quite_high), against the KB leads
to MF2 being instantiated. In fact, the variable involved in e1
and the consequent variable (x1) of MF2 are identical. Thus, by
default, the semantic matching degree between e1 and MF2 is
Sv (ve1 , x1) = 1.

The fuzzy-set matching degree between e1 and the proposi-
tion “degree shattering(window) is high” in MF2 is obtained
by using (14) and (15) is Sf (ve1 : quite high, x1 : high) =
1 − 0.25 = 0.75, where 0.25 is the Hausdorff distance between
the corresponding two fuzzy sets. Note that e1 matches all the
rule instances in MF2 with the same fuzzy-set matching degree
(i.e., 0.75). Thus, the overall matching degree between the value
of e1 and that of the variable x1 of MF2 can be aggregated using
(16), thus resulting in S(e1 , x1) = 1 × 0.75 = 0.75.

Sequentially, given e2 (amount(cola) = a_lot), the antecedent
variables x5 and x7 of MF4 are instantiated. Matching them
against the taxonomy of Fig. 2, the following semantic match-
ing degrees are obtained, respectively: Sv (ve2 , x5) = 1 and
Sv (ve2 , x7) = 0.78.

As aforementioned in Section IV-A2, given one piece of ev-
idence e, if there are more than one rule instance of a certain
MF being fired, the greatest fuzzy-set matching degree for each
variable is intuitively taken to represent the overall Sf for that
variable between the MF and e. Here, the greatest fuzzy-set
matching degrees between e2 and the rule instances of MF4
with respect to different variables are obtained using (14) and
(15), respectively, such that

Sf (ve2 : a lot, x5 : many) = 0.75

Sf (ve2 : true, x7 : true) = 1.

The overall matching degree between e2 and x5 , and that be-
tween e2 and x7 of MF4 , are obtained by aggregation, which
results in

S(e2 , x5) = Sv (ve2 , x5) ⊕ Sf (ve2 : a lot, x5 : many)

= 1 × 0.75 = 0.75

S(e2 , x7) = Sv (ve2 , x7) ⊕ Sf (ve2 : true, x7 : true)

= 0.78 × 1 = 0.78.
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TABLE II
RESULTS OF BACKWARD PROPAGATION DUE TO e1

Similarly, given e3 , MF4 is fired again, and the overall match-
ing degrees between e3 and x6 , x8 of MF4 are calculated, re-
spectively, as S(e3 , x6) = 1 and S(e3 , x8) = 0.74.

At termination of the above steps, all elements in E have
been examined. As a result, two MFs (i.e., MF2 and MF4) are
retrieved. Each MF can be instantiated by more than one piece
of evidence; those individual matching degrees associated with
different predicates of an MF are aggregated to derive its final
RSV. For MF2 , only one consequent predicate is fired by e1 ,
and hence, there is no aggregation required.Hence, RSVMF2 =
S(e1 , x1) = 0.75. For MF4 , four antecedent variables, namely,
x5 , x6 , x7 , and x8 , are activated by e2 and e3 . The individual
matching degrees between these instantiated variables and the
given evidence are 0.75, 0.78, 1, and 0.74, respectively. These
are aggregated by applying (17) to derive the overall RSVs of
MF4

RSVMF4 =S(e2 , x5)⊕S(e2 , x7)⊕S(e3 , x6)⊕S(e3 , x8) = 1.

Note that this RSV indicates the relevance degree of an MF to
be involved in the scenario to be built. Only those MFs whose
RSVs are greater than a threshold are kept for composition.

D. Generation of Plausible-Scenario Space

Because of the nature of evidence-driven scenario genera-
tion, backward propagation is performed first. Therefore, al-
though MF2 receives relatively lower RSV, it is still first in-
stantiated. Matching the derived matching degree (i.e., 0.75)
between e1 and MF2 back to the QF N leads to the identi-
fication of H being returned to the fuzzy-matching degree.
Hence, the initial scenario space is first created with a node of
“degree shattering(window) is high,” and it is associated with
the initial FCN: V H + iH . Given this and the instantiated MF2 ,
backward propagation is performed from x1 . This leads to x2
and x3 being added to the emerging scenario space. By applying
Algorithm 3 to MF2 , the results of Table II are obtained.

In order to avoid generating unnecessary explanations, the
modeler produces only the current best or the most-plausible
explanations in the first instance, i.e., the approach will not
create an alternative, but less-plausible, explanation unless the
current best has to be discarded. With regard to the use of the
modulus of a derived FCN for plausibility evaluation, r2 and r4
are established to outperform the rest. This means that either “the
sound volume is loud and the distance is medium” or “the sound
volume is medium and the distance is near” is the most-plausible

situation to have caused the quite_high degree of window being
shattered.

From Table II, let us take r2 , for example, z̃antecedentr 2
=

1 + i1; it follows from (21) that

Re(z̃antecedentr 2
) = min(Re(z̃x2 :loud), Re(z̃x3 :medium ))

Im(z̃antecedentr 2
) = min(Im(z̃x2 :loud), Im(z̃x3 :medium )).

It is obvious that

Re(z̃antecedentr 2
) = 1 ⇐⇒

{
Re(z̃x2 :loud) = 1

Re(z̃x3 :medium ) = 1

Im(z̃antecedentr 2
) = 1 ⇐⇒

{
Im(z̃x2 :loud) = 1

Im(z̃x3 :medium ) = 1.

Hence, the FCNs associated with x2 : loud and x3 : medium
can be, respectively, written as

z̃x2 :loud = 1 + i1, z̃x3 :medium = 1 + i1.

Similarly, the FCNs attached to r4 can be derived. After
that, the quantity spaces of x1 , x2 , and x3 have been re-
vised, and these variables are added to the CHANGED array in
Algorithm 1, thereby continuing the process of scenario-space
generation. The newly created instances of plausible nodes are
recursively used in the same manner as if each of them was one
piece of original evidence. As a result, MF3 and MF4 are then
instantiated in sequence, x4–x9 are then added, and the FCNs
associated with their states can be obtained in the same way as
above. This phase of scenario generation (with given e1) leads
to what is shown in Fig. 7. The remaining rule instances can
be formed into two global solutions, as presented in Table III.
These two solutions are equally suitable as they have the same
FCNs attached.

At the termination of the above iteration, MF4 , which was pre-
viously retrieved by the other two pieces of initial evidence, i.e.,
e2 and e3 , is then activated to continue the process of scenario
generation until the CHANGED array is empty.In this case,
no backward propagation is needed as these two pieces of infor-
mation only match the antecedent of MF4 . The overall matching
degree between them has been illustrated (see Section V-C); the
FCNs attached to the corresponding scenario nodes are then re-
quired to be derived. As an example, the results of matching-rule
instance r1 of MF4 with e2 and e3 happen to be H for the imag-
inary part of each FCN associated with its instantiated variables
(i.e., x5–x8). Thus, the FCNs for these nodes are V H + iH ,
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Fig. 7. Emerging scenario space after initiated by e1 .

TABLE III
TWO PLAUSIBLE SOLUTIONS TO THE CURRENT PROBLEM

TABLE IV
RESULTS OF FORWARD PROPAGATION

H + iH , V H + iH, and H + iH , respectively. Note that the
real part of each of these FCNs is inherited from the certainty
degree attached to the given evidence. For instance, for node “x5
is many,” its certainty degree is the one assigned to evidence e2
(“amount of cola is a_lot” with a certainty degree of very_high).
Hence, the FCN associated with this node is V H + iH .

The resulting FCNs are those associated with instanti-
ated variables within the individual rule instances of MF4 .
They are combined using (18) to obtain the overall FCN
of the antecedent part of a rule instance. For r1 , the re-
sulting overall FCN is H + iH(= min(V H,H, V H,H) +
imin(H,H,H,H)). From this, applying the forward propa-
gation method, i.e., (20), results in the FCNs associated with
the instantiated consequent of each rule instance. These results
are listed in Table IV. Results of the above procedure are then
passed through the compatibility filter. For this simple example,

TABLE V
OUTCOME OF PAIRWISE FILTERING

no nogood MFs are provided in the KB. Thus, no instantiated
consequents are removed. After this, the results are processed
by the pairwise filter. For example, the reasonal consequence of
r1 already exists in the emerging scenario space. The FCN as-
sociated with this description must be updated with its existing
counterpart using (22). The resulting FCN is (again) H + iH .
The outcome of pairwise filtering is listed in Table V.

Given Table V, it is straightforward to calculate the moduli
of all the FCNs attached to the different consequents of MF4 .
Clearly, the modulus of FCN of r1 is of the higher value, which
implies that the reasonal consequence of “the power level of
the liquid bomb combined by cola and hair_dyes being high”
requires higher focus of attention. This leads to the focused
scenario space, as shown in Fig. 8. For this example, no further
instantiations and propagations of variable states are possible.
Hence, Fig. 8 is the final (prioritized) outcome of the entire FCM
process.

E. Analysis of Generated Scenario Space

It is obvious that many explosive ingredients and liquids can
be combined to create homemade liquid bombs. However, there
are a lot of explosive chemicals that can be concocted from some
very common items, which are otherwise innocent. Under many
circumstances, initially collected information or data may seem
to be irrelevant, which makes it very difficult for intelligence
analysts to detect a plausible threat. In the above example, the
initial pieces of evidence may not seen to be very relevant to
the explosion case under investigation from the outset. The pro-
posed fuzzy compositional modeler helps in building a scenario
space that can offer the best-possible explanation for the given
crime scene. The scenario describes the hypothesis that if the
suspect mixes the cola and hair dye in an appropriate proportion,
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Fig. 8. Emerging (and final) scenario space after propagated by e2 and e3 .

TABLE VI
CONVENTIONAL CM VERSUS FCM

a liquid bomb can be produced to cause the quite_high degree
of window shattering. Note that if the generated scenario space
contains more than one hypothesis, the plausibility can be glob-
ally evaluated with respect to their attached FCNs. The one with
the largest modulus of the derived FCN can be first taken into
account by the investigators.

Further, the generated scenario space can also be applied to
guide further evidence collection. For example, Fig. 8 suggests
that the distance between the liquid bomb and the window is
medium, which indicates that the individuals lying either near
or far from the window are more likely to be victims rather
than suspects. In other words, it is more efficient and effective
to identify the suspect by searching the dead bodies lying at a
medium distance away from the window.

F. Comparison With Existing Compositional Modeling Work

This section presents results of comparing the use of different
CM techniques for crime investigation. The methods that are
employed by different approaches [27] to implement CM are
detailed in Table VI. The performance and capability of different
approaches within each CM component, as shown in Fig. 1, are
discussed as follows.

1) Knowledge Representation: Each assumption or fact
in the nonfuzzy-CM approach requires a prior numerical-
probability distribution, which must either be predefined in the
KB or be specified by the user. However, the degree of preci-
sion of available knowledge and data can vary greatly, subject
to different perception, judgement, and individuality of peo-
ple. Thus, it is often very difficult, if not impossible, to obtain
such complete probability distributions. Additionally, the num-

ber of required probability measures increases exponentially
with respect to the number of involved variables. Consider-
ing the above crime scene, for example, in MF4 , a complete
probability distribution requires 600 (i.e., 5 × 5 × 2 × 2 × 2)
numerical-probability values. The embedded knowledge in the
existing KB is insufficient to build such probability distribu-
tions. For FCM, every possible outcome does not need to be
specified, only the most-significant and interesting components
are considered and represented in qualitative terms (which are
much easier to obtain).

2) Model Fragment Retrieval: In nonfuzzy-CM approach,
boolean retrieval is employed to implement the corresponding
component. This restrictively requires that both the semantics
of a variable and its associated values be matched precisely;
otherwise, no retrieval is possible. In the above example, given
the collected evidence E and the KB, none of the MFs will be
activated for further composition due to no exact match can be
made (e.g., no rule instance in MF2 fully matches the obser-
vation of window shattering with the “quite_high” degree). As
a result, the crisp CM approach is incapable of detecting and
generating any plausible scenarios, while the proposed fuzzy
compositional modeler can make useful suggestions.

3) Model Composition: Two conventional inference tech-
niques, i.e., abduction and deduction, are iteratively applied
in [27] to develop the scenario space. The number of itera-
tions plays a crucial role in the process of model composition,
while it is difficult to automatically specify this number. If the
number is too small, it is hard to ensure completeness of the
generated scenario space. If, however, the number is too large,
it may incur considerable computational overheads. For FCM,
due to the employment of the Waltz algorithm (which is proven
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computationally very efficient), the generation of a complete
model space is ensured during the composition process itself.
In fact, the composition process stops automatically when no
further changes on the quantity spaces of involved variables are
produced.

Existing work on CM for crime investigation involves two
separate procedures: A structural scenario space is generated
first, and then, a corresponding probabilistic scenario space is
computed. A probabilistic scenario space is actually a Bayesian
network that describes how likely a certain combination of sit-
uations affects other situations. For each node that does not
correspond to an assumption or fact, a conditional-probability
distribution table based on the probability distribution associ-
ated with each MF is calculated. One significant drawback of
this technique is its incapability to perform backward propa-
gation of uncertainty. In the above example, given e1 , suppose
that MF2 (x2 ∧ x3 → x1) is retrieved and a prior probability
distribution of x1 is provided. The probability distributions of
x2 and x3 cannot be derived due to the lack of inverse calculus
of conditional probability. As such, the existing approach only
works when the collected evidence appears in the antecedent
part of the active MFs. For FCM, the inexact information can be
propagated both forward and backward effectively by employ-
ing Algorithms 3 and 4. This substantially extends the scope to
generate possible scenario descriptions, which is desirable for
the purpose of crime investigation.

4) Model Evaluation: The crisp CM work generates all the
possible scenarios at the same time, without the ability to pri-
oritize generated scenarios. To differentiate between the likeli-
hood of the scenarios within the constructed probabilistic space,
further evidence collection is necessary. For this, entropy is
employed as a measure to compute evidence-collection strate-
gies (which supports the selection of an investigation action
by minimizing the expected value of the entropy over a set of
hypotheses H given evidence E). In contrast, FCM only cre-
ates the most-likely scenarios in the first instance. Less-likely
ones are generated only when those that are more likely have
been refuted. The modulus of the attached FCN is interpreted
as a measure to evaluate generated scenarios directly. Hence, it
can be concluded that in terms of implementational simplicity,
FCM outperforms the crisp CM approach without the need to
introduce any additional measures.

In summary, compared with previous work on CM, the per-
formance of FCM is greatly improved with regard to a number
of important properties that an automated modeler should pos-
sess, including robustness, completeness, simplicity, and inter-
pretability. Of course, FCM requires specification of fuzzy quan-
tities and domain ontology. Its success relies on the quality (such
as completeness and coherence) of the predefined KB. Never-
theless, all CM methods are themselves knowledge-based—they
all require prior knowledge about the problem domain one way
or another. In particular, specification of numerical-probability
distributions associated with MFs, as demanded by the existing
CM work in crime investigation, is much more difficult to ob-
tain, as compared with qualitative description of linguistic terms
about domain variables.

VI. CONCLUSION

This paper has developed an innovative framework of the
fuzzy compositional modeler that is capable of automatically
generating plausible-scenario descriptions, given inexact knowl-
edge and data. In particular, a novel notion of FCNs has been
established and integrated into the existing CM framework, for
the first time, to handle 2-D uncertainty explicitly, as well as to
constrain the generation of scenarios. The utility and usefulness
of the proposed framework are illustrated by means of an appli-
cation to the construction of plausible descriptions from given
evidence in the crime-investigation domain.

While the applicability of the notion of FCN is demonstrated
to perform the task of CM, the notion of FCNs and their op-
erations are general and can be readily adapted to suit many
different problems, such as performance evaluation [26]. Addi-
tionally, from the CM perspective, the current research improves
this field both in breadth and in depth. It not only provides a
more concise and flexible knowledge-representation formalism
for generic MFs and multimodal inexact information but also
complements the conventional CM work with regard to the ro-
bustness, completeness, simplicity, and interpretability.

Although the proposed approach is promising, much may be
done through further research. One such aspect is to extend
the automated modeling process in a more dynamic manner,
i.e., to generate new scenarios with respect to the changing
modeling environment efficiently and effectively, with mini-
mal disruption to the generated scenarios. In addition, a more
general constraint-satisfaction mechanism, which is suitable for
constraining variables that are modified by FCNs, would help
to improve the generality of this work (as, at present, there is
a need to prespecify the fuzzy quantities used in FCN-based
CM). In particular, this may avoid the need to prefix just one
common quantity space from which the real and imaginary parts
of all FCNs may take values. Third, weights on the edges in the
taxonomical tree are currently numerical. A natural extension
is, therefore, to consider the employment of fuzzy numbers to
replace the seemingly precise numerical weights. This will, of
course, require revision to the semantic similarity calculus. This
may lead to ground-breaking techniques for linguistic similar-
ity measures, thereby making a contribution to computing with
words [22].

APPENDIX A

KEY MODEL FRAGMENTS IN SAMPLE KNOWLEDGE BASE

Let us define fuzzyvariable{
Name: amount Universe of discourse: [0, 1]
Unit: none Cardinality of partition: 5

Quantity space:

fs1 =
[
0, 0,

1
n − 1

]
· · ·

fsi =
[

i − 2
n − 1

,
i − 1
n − 1

,
i

n − 1

]
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· · ·

fsn =
[
n − 2
n − 1

, 1, 1
]

Names of fuzzy sets: {none, few, several, many, a_lot}
Unifiability: amount(X)}.

Let us define fuzzyvariable{
Name: power_level Universe of discourse: [0, 1]
Unit: none Cardinality of partition: 3

Quantity space:

fs1 =
[
0, 0,

1
n − 1

]
· · ·

fsi =
[

i − 2
n − 1

,
i − 1
n − 1

,
i

n − 1

]
· · ·

fsn =
[
n − 2
n − 1

, 1, 1
]

Names of fuzzy sets: {low, medium, high}
Unifiability: power_level(X)}.

Let us define fuzzyvariable{
Name: sound_volume Universe of discourse: [0, 1]
Unit: decibels Cardinality of partition: 3

Quantity space:

fs1 =
[
0, 0,

1
n − 1

]
· · ·

fsi =
[

i − 2
n − 1

,
i − 1
n − 1

,
i

n − 1

]
· · ·

fsn =
[
n − 2
n − 1

, 1, 1
]

Names of fuzzy sets: {low, medium, loud}
Unifiability: sound_volumn(X)}.

Let us define fuzzyvariable{
Name: distance Universe of discourse: [0, 1]
Unit: kilometer Cardinality of partition: 3

Quantity space:

fs1 =
[
0, 0,

1
n − 1

]
· · ·

fsi =
[

i − 2
n − 1

,
i − 1
n − 1

,
i

n − 1

]
· · ·

fsn =
[
n − 2
n − 1

, 1, 1
]

Names of fuzzy sets: {near, medium, far}
Unifiability: distance(P,X)}.

Let us define fuzzyvariable{
Name: degree_of_shattered Universe of discourse: [0,1]
Unit: none Cardinality of partition: 5

Quantity space:

fs1 =
[
0, 0,

1
n − 1

]
· · ·

fsi =
[

i − 2
n − 1

,
i − 1
n − 1

,
i

n − 1

]
· · ·

fsn =
[
n − 2
n − 1

, 1, 1
]

Names of fuzzy sets: {very_low, low, medium, quite_high,
high}
Unifiability: degree_of_shattered(X)}
IF {person(P), substance(X), location(L)}
Assuming {possess(P, X)}
THEN {seen_with(P, X, L)}
Distribution seen_with(P, X, L){
r1 : true, true, true, true→true:H,
r2 : true, true, true, true→false:VL} (MF1)

IF {sound_volumn(X), distance(P,Y)}
THEN {degree_of_shattered(Y)}
Distribution degree_of_shattered(Y){
r1 : loud, near → high:VH
r2 : loud, medium → high:H
r3 : loud, far → high:L
r4 : medium, near → high:H
r5 : medium, medium → high:M
r6 : medium, far → high:L
r7 : low, near → high:M
r8 : low, medium → high:L
r9 : low, far → high:VL} (MF2).

IF {power_level(X)}
THEN {sound_volumn(X)}
Distribution sound_volumn(X){

r1 : low → low:VH, r2 : low → medium:M
r3 : low → loud:VL r4 : medium → low:L
r5 : medium → medium:VH r6 : medium → loud:L
r7 : high → low:VL r8 : high → medium:M
r9 : high → loud:VH} (MF3).

IF {amount(X), amount(Y), isa_liquid(X)
isa_hydrogen_peroxide(Y)}
Assuming {mix(X, Y)}
THEN {power_level(liquid_bomb(X, Y))}.
Distribution power_level(liquid_bomb(X, Y)){
r1 : many, many, true, true, true, true → high:VH
r2 : many, several, true, true, true, true → high:M
r3 : many, few, true, true, true, true → medium:M
r4 : several, many, true, true, true, true → medium:M
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r5 : several, several, true, true, true, true → medium:VH
r6 : several, few, true, true, true, true → low:H
r7 : few, few, true, true, true, true → low:L} (MF4).

Collected Evidence
e1 : degree_of_shattering(window) = quite_high with cer-

tainty degree: VH
e2 : amount(cola) = a_lot with certainty degree: VH
e3 : amount(hair_dyes) = several with certainty degree: H.
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